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A B S T R A C T   

Low frequency readiness potential (RP) is elicited in electroencephalograms (EEGs) as one intends to perform an 
imagery (IMI) or real movement (RMI). While in most brain-computer-interface (BCI) applications the challenge 
is to classify RPs of different limbs from the given EEG trials, the objective of this study is fast and automatic 
detection of RPs from the entire single channel EEG signal. The proposed algorithm has two threshold blocks 
based on the nonlinear Teager-Kaiser energy operator (TEO) in the first block and the morphological properties 
of the RP waveform as constraints in the second block. The performance is strongly influenced by the abrupt 
energy changes due to transients and artefacts. As the major contribution, the proposed nonlinear convex 
optimization algorithm enables separation of transients from low frequency components by providing a fast 
thresholding mechanism. Application of the proposed method to Physionet RMI dataset, BCI competitionIV-1 IMI 
dataset and our own left hand movement datasets of healthy subjects led to true positive rates (TPRs) of 
76.5±8.27%, 83.85±11.4%, and 81.1±5.23%, number of FPs/min of 2.4±1.07, 1.4±0.7, and 1.6±0.69 and 
accuracy rates of 85.4±3.83%, 90±3.56%, and 91.2±2.04%. Movement onset detection latency from our 
automatic RP detector was -384.9±296.5 ms. 

As a conclusion, the proposed method outperforms state-of-the-art techniques using as low as single channel 
EEG making it suitable for real-time neuro-rehabilitation of paralyzed subjects suffering from stroke.   

Introduction 

Since the detection of bereitschafts potential (BP) or readiness po-
tential (RP) in 1964 by Kornhuber and Deecke [1-3], it has been proven 
that RP is initiated as early as 2 s before starting a voluntary movement. 
Its low amplitude oscillatory changes continues to approximately 400 
ms before the movement onset and proceeds as a low frequency negative 
slope (NS) component which is followed by a positive slope and oscil-
lations after the movement onset. The time for the end point of the NS 
component is the movement onset to trigger a real movement. RP may 
be considered as a slow wave in delta frequency [4]. Besides real 
movement intention (RMI), RP is also evoked by imagery movement 
intention (IMI) [5,6]. It’s a cortical potential produced by motor cortex 

neurons which is evident in the EEG over central electrodes. 
Brain-computer-interface (BCI) systems with the aim of neuro-

modulation of cortico-muscular interactions follow two objectives: 
training subjects to improve their motor potentials (MPs) by applying a 
cue to imagine a specific limb movement and a duration for rest [7]. At 
last a scoring system is used to feedback how successful they are in 
producing their RPs. On the other hand, one aims to control a prosthetic 
limb or an attached motor unit [8,9] from their own RPs. For the latter 
purpose we need smart devices [10,11] to early detect the RMIs to 
facilitate real-life activities for paralyzed subjects. The latter one is the 
main objective of this paper, i.e., developing a fast and accurate method 
for early detection of RPs with the future purpose of real-time imple-
mentation. Our proposed method also meets the first objective, i.e., 
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detection of the RPs due to IMIs for neurofeedback scoring devices. 
Till now, many works have been carried out for early detection of RP, 

with the use of single or multiple channel EEG. Nguyen et al. [9] 
detected braking intention with 8- channel EEG during simulated 
driving. Feeding artificial neural network (ANN) with autoregressive 
(AR) model-based features; they achieved an average sensitivity of 
88.4%, an average accuracy of 91% and average − 600 ms movement 
onset detection latency. In [7] the movement intention was detected 
from single trial EEGs of 8 healthy subjects with an average sensitivity of 
75% and an average detection latency of − 206 ms before the movement 
onset. They applied template matching to laplacian spatial filtered EEG. 
In [12] it has been shown that the spectral features fed into a linear 
discriminant classifier lead to an average 5.5% detection error and 93% 
sensitivity which is much better than using template matching (average 
28.9% detection error and 82% sensitivity) [13]. The authors in [14,15] 
proposed a constrained blind source extraction method for detection of 
RPs from non-invasive EEG of RMIs. In [16], the authors applied a 
template matching algorithm to single channel EEG for detection of 
movement intention. They achieved an average TPR of 78% and an 
average movement onset detection latency of − 150 ms. Mahmoodi et al. 
[17] proposed a robust beamformer to extract RP from neuron activities 
on primary motor cortex from 64-channel EEG and detected the move-
ment intentions 512 ms in average before the movement onsets with 
28% false positive rate (FPR) and 77% sensitivity. Beamforming can be 
used as a denoising technique to reconstruct specific source(s) on pre-
defined location(s) in space from their mixture [18] and has been 
implemented on a single channel field programmable gate array (FPGA) 
board in [19,20] for telecommunication purposes. For medical purposes, 
e.g., EEG beamforming for brain source reconstruction, at least 64 
channels [18] are needed for sufficient spatial resolution, which makes 
it complicated to implement for neuromodulation purposes. Unlike our 
previous work [17], we aim to propose a fast and highly accurate 
method for detection of movement intention from a single channel EEG 
in this study to enable low cost and easy implementation in future 
neuromodulation applications. Solnik et al. [21] applied the nonlinear 
Teager-Kaiser energy operator (TEO) to the EMG signals resulting in the 
TEO-signal which could continuously track the energy changes of the 
EMG signal. They showed that applying a threshold to the TEO-signal 
helps detection of movement onset with an average latency of − 229 
ms which is earlier than latency of onset detection by directly applying a 
threshold to the EMG signal (− 40 ms). In this paper, we use two 
threshold blocks for automatic RP detection. The nonlinear TEO on EEG 
signal resulting in the TEO-signal is used in the first threshold block and 
RPs are detected when their negative ramps make increasing energy 
changes to the TEO-signal. The second threshold block gets each 
segment of the EEG signal detected from the first threshold block as 
input and next compares its properties in terms of duration and slope 
with predefined morphological properties of a true RP waveform as the 
limiting constraints for final decision. The second threshold block 
effectively reduces false detections from the first block. Unlike template 
matching and machine learning based methods, our method does not 
need any data splitting into trials or data training. The best performance 
of our RP detector is determined from the 
receiver-operating-characteristic (ROC) curve through which the opti-
mum threshold for the first threshold block, TEO-signal, is also deter-
mined. Our proposed RP detector is strongly influenced by the sudden 
energy changes of the signal due to transients and artefacts. Hence, an 
effective nonlinear threshold-based transient suppression method based 
on a convex optimization model is applied to the EEG signal in the EEG 
preprocessing stage before RP detection. The EEG also goes to a 
threshold block for fast detection and immediate suppression of the high 
amplitude eye blinking artefacts. Our proposed RP detector, evaluated 
on three datasets, is able to detect RPs (IMIs or RMIs) continuously over 
time. From [1, 2], we know that the neural activity of RP on primary 
motor cortex projects better on central region electrodes, contra-lateral 
to the movement direction. As determining the origin of movement, 

corresponding to each detected RP, is not the purpose of this study, and 
with a glance to low cost online implementation of our RP detector in 
future, the best position to pick up the RPs for both sides is over the 
midline motor area, i.e. Cz. 

We know that we would need more electrodes for determining the 
origin of movement. We show that it is possible to have a fast and highly 
accurate RP detector from a single channel EEG. 

Methods 

Preprocessing 

The EEG preprocessing involves transient removal, EOG blinking 
artefact rejection and lowpass filtering. First, using short-time Fourier 
transform (STFT) based time-frequency analysis, the EEG spectrogram is 
plotted. Each signal segment is bandpass filtered over 1–30 Hz using a 
20th order linear phase FIR filter. In Fig. 1, the RPs are marked by black 
vertical bars on the signal at the starting times of voluntary left-hand 
movements by pressing a soft push button in hand. Although, the push 
button was soft enough for the subjects that they didn’t need much 
effort, the accuracy of movement onset was also validated by the EMG 
signal. In an offline processing, we first find EMG peaks and next find the 
nearest time corresponding to 10% of each peak amplitude as movement 
onset. Then, we validate the markers from push button with markers 
from EMG. Moreover, our subjects were already asked and trained to 
press buttons exactly at the time of their movement intention. From 
Fig. 1, the RPs generate low frequency (0–5 Hz) hotspots on the spec-
trogram color-map. There are also energy changes in rest durations due 
to high frequency transients or myogenic artefacts which are inevitable 
in non-stationary artefact contaminated signals. 

Transients on the EEG signal are suppressed by applying a nonlinear 
method, called total variation denoising (TVD) [22,23]. Unlike con-
ventional lowpass filter, TVD filter is defined by a nonlinear optimiza-
tion approach for noise suppression whereas preserving low frequency 

Fig. 1. (A) EEG of left hand movement and EEG spectrogram acquired with 
STFT on 400 ms windows with 99% overlap and the sampling frequency (fs) of 
256 Hz. Spectrogram, implemented on 1–30 Hz bandpass filtered EEG signal, 
shows hotspots in frequencies less than 10 Hz (0–5 Hz) around the movement 
onsets (black vertical bars on the signal). (B) Zoomed signal and corresponding 
spectrogram of the top figure in 15–45 s for better realization of low frequency 
energy changes around the movement onsets. 
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sharp edges and shape of the underlying signal [22-24,25-27]. Let’s 
assume y is a noisy signal as: 

y(n) = x(n) + w(n), n = 0, …, N − 1 (1)  

where x is (an approximately) piecewise constant signal with a sparse 
derivative and w is white Gaussian noise. The total variation (TV) of the 
signal x(n) with N points is defined as L1-norm (‖ . ‖1) of its derivative 
[22,23]: 

TV(x) = ‖ Dx ‖1 =
∑N− 1

n=1
|x(n) − x(n − 1)| (2)  

where |.| denotes the absolute value. TVD means to estimate the signal x 
from the noisy signal, y, by minimizing the following nonlinear convex 
objective function F(x) [23]: 

arg min
x

{

F(x)=
1
2
∑N− 1

n=0
|y(n) − x(n)|2 + λ‖ Dx ‖1

}

(3)  

where λ is the regularization and smoothing factor which controls the 
degree of smoothness in x. The first statement after equation equals 
power 2 of L2-norm (‖ . ‖

2
2). So, (3) can be rewritten as the following 

convex optimization equation: 

arg min
xεRN

{

F(x)=
1
2
‖ y − x ‖

2
2 + λ‖ Dx ‖1

}

(4) 

A direct noniterative threshold-based solution was proposed in [22] 
and released with a C code implementation. This method is suitable for 
online processing of the signal, since the incoming jumps in the signal 
amplitude are detected and suppressed one after the other. The reader is 
referred to the Appendix A and [22] for details on the denoising algo-
rithm. We call the output N-point denoised signal as xTVD. The output 
normalized error as defined in (4) is only dependent on λ and is defined 

in decibel (dB) by: 

Error = 20log10

(
1
N

F(xTVD)

)

(5) 

Calculating (5) by each part in (4) with respect to λ gives the esti-
mation error curves for the noniterative TVD method. From Fig. 2, a 
lower λ minimizes the errors, but increasing λ lowers the variations in 
xTVD (‖ DxTVD‖1) whereas slowly increases the errors to a steady con-
stant. The smoothing parameter λ = 70 was selected in our study since 
giving more smoothness to xTVD empirically facilitates detection of the 
low frequency RPs on xTVD and the spectrogram as shown in Fig. 3. 
Hence, it increases the accuracy of our energy-based RP detection al-
gorithm. TVD implementation time in MATLAB R2014b, a corei5 system 
with 4GB RAM and 2 GHz CPU speed is 0.01 s for a 5-minute signal. The 
xTVD signal is then filtered by a 1–30 Hz 20th order FIR bandpass filter 
(Fig. 3). Next, each 2 s xTVD segment with amplitude exceeding 110 μV 
(generally any threshold suitable by visual inspection) is replaced with 
zero-mean random numbers for myogenic artefact rejection. This 
method is discussed in the Appendix B. 

Since TVD saves sharp low frequency peaks like eye blinking arte-
facts, one other denoising step is needed to remove high amplitude eye 
blinking (EOG) artefacts. Blinking artefacts produce low frequency 
hotspots in the frequency range of movement hotspots and may lead to 
false positives (FPs) in automatic RP detection. We empirically (by vi-
sual inspection) found an appropriate adaptive threshold for detection of 
blinking waveforms on the xTVD signal as: 

Threshold =
3
N
‖ xTVD ‖1 (6)  

where N is the number of samples of xTVD. Absolute values of xTVD which 
are greater than both Threshold and 45 μV are defined as the eye blinking 
segments. EOGx, the red-colored signal in Fig. 4(A), is the signal of 
blinking artefact. It has the same length as xTVD with amplitudes equal to 
the xTVD amplitudes at times during which absolute values of xTVD 
crosses both the Threshold and 45 μV and zeros elsewhere, hence EOGx 
tracks blinking triangular waveforms on xTVD. For blinking rejection, a 
duration of 0.5 s before and 0.5 s after the mid-point of each triangular 
waveform on xTVD (as the blinkings take duration of almost 1 s) is 
replaced with previous clean segment of xTVD. Suppressing EOG artefacts 
in this way avoids discontinuities in the denoised signal. We refuted to 
use this method for rejection of myogenic artefact since the duration of 
muscular artefact is variable and it usually lasts longer than blinking, 
wich has almost fixed duration and certain triangular pattern. This 
shows the need for wider clean segments for replacement which are, of 
course, more probable to contain RPs. Hence, the replacement with last 

Fig. 2. Output estimation Error curves with respect to λ (defined in (5)).  

Fig. 3. (A) Spectrogram of xTVD, i.e., TVD and 1–30 Hz 20th order FIR bandpass 
filtered signal of Fig. 1(B). (B) xTVD (light blue), acquired with smoothing 
parameter λ=70 and movement onset markers (black vertical bars) and original 
signal (dark blue). Suppressing EEG transients, TVD makes RPs visually more 
dominant on the EEG and spectrogram. Signals of Fig. 1(B) and Fig. 3 are 
intentionally made the same to comprehend the TVD effect. 

Fig. 4. (A) xTVD (blue) and EOGx (red), signal of triangular eye blinking arte-
facts. EOGx is acquired by applying an appropriate data-driven threshold ((6)) 
to absolute value of xTVD. Blinkings are those segments with absolute values 
exceeding the threshold (positive/negative black dashed lines) and 45 μV. (B) 
xd, denoised signal after artefact rejection by replacing 0.5 s around mid-point 
of each artefact contaminated segment with its previous clean part. (C) xdLP, i. 
e., xd after applying a 5 Hz 4th order butterworth lowpass filter. 
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segments for this kind of artefact may lead to False RP detections, and 
that’s why we preferred replacing with zero-mean random numbers for 
myogenic rejection. Denoised signal, xd, is shown in Fig. 4(B). For the 
last preprocessing step, a 5 Hz 4th order butterworth lowpass filter is 
applied to xd, resulting in the xdLP (Fig. 4(C)), since energy changes 
around movement onsets are tracked in this frequency range. Pre-
processing blocks are described in Algorithm 1. 

RP detection algorithm 

The proposed method for RP detection contains two threshold 
blocks. Fig. 5 briefly shows the RP detection block diagram. The first 
threshold block detects RPs based on energy tracking of preprocessed 
signal, xdLP, by the nonlinear TEO [28]. Continuous and discrete TEO of 
xdLP at continuous and discrete times, t and n, are defined by [28]: 

TEOxdLP (t) = ẋ2
dLP(t) − xdLP(t) ẍdLP(t), (7)  

TEOxdLP (n) =
xdLP

2(n) − xdLP(n − Δn) xdLP(n + Δn)
(Δn)2 (8)  

where . and .. refer to first and second order derivatives. Considering 
each signal amplitude in discrete time as one sample, Δn is the sample 
interval which is 1 in discrete time. TEO is applied to the preprocessed 
signal, xdLP, sample by sample and results in an energy signal (TEOxdLP ) 
with the same length as xdLP. TEOxdLP , as shown in Fig. 6, peaks around 

RPs. Hence, applying a threshold to TEOxdLP is the solution for RP 
detection. Threshold is defined by: 

ThresholdTEOxdLP
= avg

(
TEOxdLP

)
− c δ

(
TEOxdLP

)
(9)  

where avg is the average value operator and δ is the standard deviation 
operator. The parameter "c" is a variable coefficient which determines 
the performance of the final RP detection in terms of TPR and number of 
FPs/min. This will be discussed later. The time segments in which 
TEOxdLP rises, crosses the predefined ThresholdTEOxdLP

, and remains above 
the threshold are defined on xdLP as segments of primarily detected RPs. 
The second threshold block gets those segments on xdLP, primarily 
detected from the first threshold block, and rejects false detections (FPs) 
by comparing the morphological properties of the detected RPs with the 
general morphological properties of a true RP waveform for final deci-
sion. The general morphological properties, as shown in Fig. 6(A) are 
defined in terms of duration, slope1 and slope2 from RPs around 
movement onsets in duration of rising the TEOxdLP . The two measure-
ments slope1 and slope2 for each EEG segment are defined by: 

slope1 = ampstart − ampmin; slope2 = ampend − ampmin (10)  

where ampstart, ampmin and ampend are defined for each segment on xdLP 
as the amplitudes of starting point, minimum amplitude point and the 
end point. Calculating these parameters around movement onsets (Fig. 6 
(A)), averaged over all 10 subjects in our experiment of voluntary left 
hand movements, give the general morphological properties of a RP 
waveform. Since we don’t want to lose RPs, it is important to know 
which minimum duration is acceptable for a segment length to be an RP. 
First, the segment lengths were detected by thresholding the TEOxdLP 

around movement onset markers. 
Next, minimum RP duration for each subject was detected. Finally, 

average over all minimum durations of our subjects’ RPs was concluded 
to be 300 ms as the duration constraint. The average slopes are in the 
following range: 

5 μV < slope1 < 45μV; 5 μV < slope2 < 45 μV. (11) 

Each primarily detected segment on xdLP with duration more than 
300 ms and slopes in the determined range of (11) is detected as a final 
RP segment (Fig. 6(B)). The binary output signal is 1 in time samples of 
detected RPs and 0 elsewhere. Our RP detector procedure is applied to 
each 10 s non-overlapping signal length as it is the empirical duration 
used by clinicians in which EEG can be considered statioary. Using 
"slope" instead of "amplitude difference" may be misleading since (10) is 
exactly the amplitude difference. But why we didn’t define the slope as 
the amplitude difference divided by duration? This is because we didn’t 
put limitation on the upper boundary of duration. We had tried it at first 
with upper boundaries on durations but the result of RP detection was 

Fig. 5. Block diagram of the RP detection algorithm.  

Fig. 6. (A) Morphological consideration of RP waveform in terms of duration and slopes (slope1 and slope2) in the duration of rising TEOxdLP (in green) around 
movement onset (black bar). Average durations and slopes from all subjects in our study give the general morphological properties (in (11)) of RP waveform. (B) RP 
detection steps; Automatic RP detection (pink rectangles) as a binary signal determined by threshold on TEOxdLP and morphological constraints (A) on xdLP. 
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not sensitive and rejected many true RPs. So, we preferred just a lower 
bound for high performance. 

From Fig. 6(B), in a real non stationary EEG data, we may have some 
intra and inter-subject variabilities in the starting point of negative 
ramp. Although, the RP negative ramp component is not probable to 
start earlier than 1 s, but energy changes due to the RP oscillatory 
component may start earlier. This leads wider detection window which 
means earlier detection latency. Sensitivity (TPR) is defined as the 
percentage of correctly detected RMIs. The best performance of the 
proposed RP detection algorithm for each subject in terms of maximum 
TPR vs. minimum average number of FPs/min is determined from the 
knee point of the ROC curve (Fig. 7) from which the best coefficient "c" is 
also determined. 

Experiments 

Data 

Three datasets were considered in this study: physionet (physionet- 
R03) movement dataset [29,30,31], BCI competition IV (BCICIV-1) 
imagery movement dataset [32,33] and our own dataset of voluntary 
left hand movements of pressing push buttons. The two datasets, 
physionet-R03 movement dataset of closing left and right fist and 
BCICIV-1 hand and foot imagery movement dataset, were recorded by 
giving visual cues to subjects for doing predefined real or imagery 
movements for predefined trials and rest at the end of each trial. The 
experimental setup for recording our own dataset of voluntary left hand 
movement has been described in the next section. 

Experimental setup 

Ten 25–35 year old subjects participated in the experiment. They 
were asked to sit relaxed and randomly move their left hands while 
pressing a soft push button in their hands to be marked as the movement 
onset. The push button pressing was validated by finding the time of 
crossing over 10% of local maximum amplitude of the related EMG 
signal. The average duration of each experiment was 5 min. No cues for 
starting a movement or rest were given in order to simulate a real-life 
scenario. They were only asked to rest at least 5 s after each move-
ment. The experiments were repeated for subjects to help them be more 
relaxed and focused on their movement task without any movement 
imagination. The 64-electrode EEG signals were recorded with sampling 
frequency of 256 Hz and 64 EEG electrodes (10–20 standard electrode 
placement) of g.USBamp (g.tec) recording device at Iranian National 
Brain Mapping Laboratory (NBML) [34]. Ground and reference elec-
trodes were attached to mastoid and nasion respectively. In this paper 
we only processed channel Cz for the reasons primarily explained. 

Results 

For the RP detection related to RMI, here the following quantifica-
tion parameters are defined: If the mid-point of each final selected RP 
interval (In a pseuodo online paradigm RPs are detected in the duration 
of negative ramp (slope1)) locates in a duration of − 2 s to 200 ms around 
a movement onset, it is marked as TP, otherwise it is marked as FP. For 
each truly detected RP, latency is defined as the difference of RP 
detection time and movement onset. A negative latency means an early 
detection of RP. For BCICIV-1 and physionet-R03 datasets, those 
detected RP intervals which are overlapped with true RP events are 
marked as TPs. Those RPs detected in the rest intervals are marked as 
FPs. As the detection algorithm seeks for RPs, sensitivity (TPR) is defined 
as the percentage of all RP events correctly detected as RPs. The accu-
racy is defined as the percentage of correctly detected RPs (TPs) from all 
RPs detected by the algorithm. The average number of FPs/min is also 
reported for each subject. The quantitative parameters are defined by: 

TPR (%) =
Number of true RP detections (TPs)

Total number of RP events
× 100 (12)  

Accuracy (%) =
Number of true RP detections (TPs)

Total number of RP detections
× 100 (13)  

Number of FPs
/

min =
Number of false RP detections (FPs)

Total rest duration in minutes
(14) 

We had an accuracy of 91.2±2.04%, a sensitivity of 81.1±5.23%, an 
average number of FPs/min of 1.6±0.69 and a negative latency of 

Fig. 7. The ROC curve from the EEG signal of one subject obtained by changing 
coefficient "c" (in (9)) in the RP detection algorithm. The knee point of ROC curve 
determines the appropriate "c" which results in the maximum TPR vs. minimum 
average number of FPs/min. 

Table 1 
Quantitative results of RP detection for 3 datasets.  

Subjects Sensitivity (TPR) (%) Number of FPs/min Accuracy (%) Latency (ms) 
Our data 
(movement) 

Physionet- 
R03 
(movement) 

BCICIV-1 
(imagery) 

Our data 
(movement) 

Physionet 
(movement) 

BCICIV-1 
(imagery) 

Our data 
(movement) 

Physionet- 
R03 
(movement) 

BCICIV-1 
(imagery) 

Our data 
(movement) 

Otherdata 

S1 
S 2 
S 3 
S 4 
S 5 
S6 
S7 
S8 
S9 
S10 

84 
82 
86 
82 
80 
70 
75 
85 
87 
80  

67 
93 
86 
73 
80 
80 
73 
73 
67 
73 

90 
96 
65 
90 
71 
90 
85  

1 
2 
1 
2 
1 
3 
1 
1 
2 
2  

1 
3 
2 
4 
4 
3 
2 
2 
2 
1 

3 
1 
2 
1 
1 
1 
1  

94 
90 
91 
88 
93 
88 
92 
92 
93 
91 

90 
85 
80 
80 
82 
85 
88 
90 
89 
85 

89 
93 
95 
88 
84 
91 
90  

− 250 
− 257 
− 48 
− 305 
− 27 
− 786 
− 518 
− 705 
− 707 
− 534 

- 
- 
- 
- 
- 
- 
- 
- 
- 

Mean 
STD 

81.1 
5.23 

76.5 
8.27 

83.85 
11.42 

1.6 
0.69 

2.4 
1.07 

1.4 
0.7 

91.2 
2.04 

85.4 
3.83 

90 
3.56 

− 384.9 
296.5   
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− 384.9±296.5 ms before the movement onsets using our own database. 
The proposed method was also evaluated on physionet-R03 movement 
dataset (closing left and right fist) [21-23] and BCICIV-1 imagery dataset 
(hand and foot) [24,25], with average signal duration of two minutes 
and thirty minutes for each subject respectively. We were not able to 
calculate the latency for physionet movement dataset due to lack of 
markers for the movement onsets. We had only visual cue onsets and cue 
durations for real and imagery movements. We achieved an accuracy of 
90±3.56%, a sensitivity of 83.85±11.42%, an average number of 
FPs/min of 1.4±0.7 for detection of IMIs from the BCICIV-1 imagery 
dataset and an accuracy of 85.4±3.83%, a sensitivity of 76.5±8.27% 
and an average number of FPs/min of 2.4±1.07 for detection of RMIs 
from the physionet-R03 movement dataset. The quantitative results are 
depicted in Table 1. The results of automatic RP detection for one subject 
of each dataset are shown in Fig. 8. 

Discussion 

Here, a method for automatic, fast and accurate detection of move-
ment intentions of different limbs has been developed for single channel 
EEG. Unlike the existing works which split the signals into windows or 
trials for pattern recognition or classification, our threshold-based 
method is applied to the whole signal on each 10 s non-overlapping 
signal length. The detection method is based on tracking energy 
changes of low frequency denoised signals. It takes 0.1 s on a corei5 
system of 4GB RAM and 2 GHz CPU speed to process a 5-minute signal. 
Due to the simplicity of denoising and detection methods applied to 
single channel Cz, there is potential for online implementation on low 
cost movement neurofeedback devices for neuromodulation of neuro-
muscular interactions in stroke patients. Compared to a similar work 
with a statistical analysis approach applied to multiple channel EEG of 
hand movement in [35] which resulted in an average 96.37% accuracy 
and an average 77.93% sensitivity, our results led to lower accuracy 

(91.2%) but higher sensitivity (81.1%). Their achieved average onset 
prediction latency (− 500 ms) was less than ours (− 384.9 ms), i.e. they 
were earlier in RP detection. They didn’t evaluate their method on im-
agery movements also didn’t report the computation time of their 
method to compare with the speed of our proposed method. The validity 
of our detection method has been evaluated not only on our own hand 
movement dataset but also on two other well-known datasets: 
physionet-R03 hand movement [31] and BCICIV-1 hand and foot im-
agery movement datasets [33]. Quantitative results (Table 1) show that 
our detection method is capable of detecting both real and imagery 
movements with high accuracy. Our proposed method is faster and has a 
much better performance (an average accuracy of 91.2%, average 
number of FPs/min of 1.6 and sensitivity of 81.1%) than that in our 
previous work [17] based on template matching (an average FPR of 
28.96% and sensitivity of 77.1%). In comparison with the results in [9] 
which used AR based features as input to an artificial neural network, we 
achieved the same accuracy but more average onset prediction latency 
(− 384.9 ms) than theirs (− 600 ms), i.e., they were earlier in detection of 
movement intention. Authors of [4] achieved an average classification 
accuracy of 87% for RMI detection vs. rest and an average classification 
accuracy of 73% for IMI detection vs. rest by applying their neural 
network classifier to spectral features from each 1 s window of source 
space signals on motor cortex. Our achieved accuracies are better than 
theirs, especially for discrimination of imageries vs. rest. Applying a 
combination of wavelet transform and SVM classifier to 8-channel EEG, 
authors in [11] predicted the gait intention of 6 healthy subjects in a 
pseudo online environment with an average accuracy of 88.23%, an 
average sensitivity of 85.42%, an average number of FPs/min of 6.8 and 
an average latency of − 1002 ms. Their achieved latency is earlier than 
ours, but their detection algorithm results in more number of FPs/min 
than ours. In comparison with our threshold based eye blinking artefact 
rejection algorithm, their ICA based artefact rejection algorithm is not 
computationally efficient for their online preprocessing. Compared to 

Fig. 8. (A) Detected RMIs for left hand (press-
ing push button) are shown by pink vertical 
bars on the original signal (Cz) from one 
healthy subject of our own dataset. Black ver-
tical bars shown on the denoised and lowpass 
filtered signal (xdLP) are the movement onsets. 
FPs are due to inevitable IMIs. (B) Detected 
hand and foot IMIs are shown by pink rectan-
gles on the original signal (Cz) from one healthy 
subject of BCICIV-1 dataset [25]. Black rectan-
gles shown on the denoised and lowpass filtered 
signal (xdLP) are the cue durations for imagery 
movements. High amplitude blinkings which 
are obvious in the original signal have been 
well suppressed in xdLP. (C) Detected RMIs for 
closing left and right fists are shown by pink 
rectangles on the original signal (Cz) from one 
healthy subject of physionet dataset [23]. Black 
rectangles shown on xdLP are the movement cue 
durations.   
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the template matching algorithm on single channel EEG in [16] which 
resulted in an average TPR of 78% and an average detection latency of 
− 150 ms, our RMI detection on single channel EEG performed better (an 
average sensitivity of 81.1% and an average onset detection latency of 
− 384.9 ms). The above mentioned studies aiming at accurate detection 
of RPs were not applied to BCICIV-1 [33] and Physionet-R03 [31] 
datasets. So, we were not able to compare our quantitative results on 
these datasets. Unfortunately, most papers on these datasets focus on 
feature selection and classification of different limb movements [36], 
which were not the objective of this study. Deep learning the denoised 
spectrogram images is the subject of our next study for classification of 
different limb movements. Implementation of our method on three 
datasets; we showed the generalization of our RP detection method for 
detection of the RPs related to any limb movement as shown in Fig. 8. 
Quantitative results in Table 1 validate the feasibility of our method for 
RP detection of different limbs. Table 2 shows an overview of similar 
studies for comparison. 

From [1,2], for both RMI and IMI the brain generates RP, but the RP 
associated with RMI may be stronger with higher amplitudes in order to 
trigger a real movement. The reader is referred to Fig. 8 for visual 
comparison. Actually, the reason why we plotted Fig. 8 was not only to 
show the generalization of our RP detector performance for detection of 
RPs of different limbs from the three datasets, but also to show the RPs 
from RMI (Fig. 8(A) and (C)) and IMI (Fig. 8(B)) for comparison. 

The equivalence between the RPs generated by RMI and IMI en-
courages recovery or neuromodulation of the stroke patients by imagery 
movements. These patients are trained to generate RPs by focusing on 
IMI of their paralyzed limb, inorder to control a prosthetic limb or 
activate an attached functional electric stimulation (FES) electrode. In 
fact, focusing on generating better RPs by their IMIs helps RP classifier 
software with higher classification accuracy, which means better syn-
chronization between the patient and the control unit. Better synchro-
nization gives the patient a sense of self paced voluntary movement. 
Upon this success, the patients are more encouraged to provide the 
classifier with better RPs by focusing on their IMIs. Over therapy ses-
sions they restore the functionality of their paralyzed limb [37]. 

The advantage of our RP detector is that you can make changes to the 
ThresholdTEOxdLP 

(in (9)) by changing the coefficient "c"  or to the mini-
mum duration constraint (which was 300 ms from our experiment, not 
the other datasets) and achieve higher sensitivities. But we used one 
criterion for quantitative analysis for all the datasets. Moreover, we 
didn’t have onsets for RMIs of physionet datasets to calculate minimum 

durations of RPs. 

Conclusion 

In this work, which is applicable to BCI, we visually detected the RPs 
with a time-frequency based EEG analysis and automatically detected 
the RPs from the low frequency denoised single channel EEG with a fast 
threshold-based method using the nonlinear TEO and morphological 
properties of the RP waveform without any data splitting into trials. In 
conclusion, achieving an acceptable average RMI detection latency 
before movement execution (− 384.9 ms), a high average detection ac-
curacy (91.2%), an acceptable average sensitivity (83.85%) and an 
average low number of FPs/min (1.4) through a fast algorithm on a 
single electrode show the capability of our method to be integrated in 
real-time low cost neuromodulation and rehabilitation devices. It can 
also be integrated within entertaining rehabilitation tools used at home 
for monitoring recovery of the patients after stroke. 
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