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Abstract

In this letter, we develop a partial update Kalman filtering (PUKF) algorithm to solve the state of a discrete-time linear

stochastic dynamical system. In the proposed algorithm, only a subset of the state vector is updated at every iteration, which

reduces its computational complexity, compared to the original KF algorithm. The required conditions for the stability of the

algorithm are discussed. A closed-form expression for steady-state mean-square deviation (MSD) is also derived. Numerical

examples are used to validate the correctness of the provided analysis. They also reveal the PUKF algorithm exhibits a trade-off

between the estimation accuracy and the computational load which is extremely profitable in practical applications.

Index Terms

Partial Update, Kalman Filtering, Convergence analysis.

I. INTRODUCTION

Kalman filter (KF) is a fundamental tool in applications where the state variables of a dynamic system are required to

be estimated based on a series of noisy observed information. A key factor in the implementation of KF algorithm is the

dimensionality of state variables, since the computational complexity increases (even exponentially) as the dimensionality

increases. Although this may not be a problem in some applications (for example, in some 2-D positioning applications),

in some applications (such as positioning and numerical weather prediction) the state vector may contain variables for the

locations of thousands of landmarks. So, reducing the computational complexity is a major issue for the practical use of KF

such applications.

In the case of dynamic systems with a non-linear measurement model (where extended KF (EKF) is used), different methods

of computational complexity reduction have been reported in the literature. In [1] it is suggested to divide the non-linear system

model into linear and non-linear parts. A computationally efficient EKF for non-linear with continuous dynamic systems has

been reported in [2]. In [3] different code optimization methods to reduce the computational complexity of EKF have been

introduced. In the case of high dimentional non-linear system model with non-Gaussian data, the ensemble KF can be applied

[4]. None of the mentioned methods is similar to our proposed algorithm in the current letter, which relies on the Partial

updating (PU) method.

Partial updating is known as an effective method to reduce the computational complexity of adaptive filters [5], [6]. The

main idea in PU is to update only a fraction of the filter coefficient vector at each iteration, instead of reducing filter order. The

resulting algorithms reduce the computational complexity while keeping the estimation performance close to their counterpart

V. Vahidpour and A. Rastegarniaare with the Department of Electrical Engineering, Malayer University, Malayer 65719-95863, Iran (email:

v.vahidpour@stu.malayeru.ac.ir; rastegarnia@malayeru.ac.ir).



2

full-update algorithms. The method was originally reported for LMS adaptive filter [7], but its extended to other adaptive filters

[8]–[12]. Some distributed versions of PU adaptive filters such as [13]–[19] have been developed in the literature.

In certain applications, like network and acoustic echo cancellation, the complexity reduction accessible by partial coefficient

updates is of practical importance. The main reason for employing such scheme is the finite availability of hardware multipliers

frequently driven by cost, space and power consumption considerations. This problem is especially critical in Digital Signal

Processing (DSP) and Field Programmable Gate Array (FPGA) implementation of adaptive signal processing algorithms.

Even though the concept of partial updates is very effective in terms of addressing scarce hardware resources, it can lead to

deterioration in convergence performance. After all, only a subset of all coefficients is updated, so one would expect some

performance deterioration as a result [20].

In this letter, we apply the PU method to KF framework and develop the partial update Kalman filter (PUKF) to perform

state estimation in linear dynamic systems. In the proposed algorithm, only a subset of the state vector is updated at every

iteration. It is shown that the PUKF algorithm is able to provide an acceptable estimation performance, while the computational

complexity is kept low. It is noteworthy to mention that PUKF algorithm has not been addressed in any of references [11]

and [16]. Indeed, algorithm in [16] uses the Kalman filter for adaptation and learning in the agents, where nodes are allowed

to receive (diffuse) only a subset of their intermediate state estimate entries. Algorithm in [11] consider widely linear model,

which in this paper we have assumed a linear state-space model. Moreover, in [11] the Augmented Complex LMS algorithm

is employed as the learning rule; whereas in our algorithm we have used kalman filter algorithm for adaptation and learning.

In summary, the following are the contributions of this letter:

• A new algorithm, called PU-ACLMS is proposed to control the computational complexity;

• The computational complexity for full-update KF and its partial-update (PUKF) implementations are examined thoroughly;

• The stability of PUKF algorithm in both mean and mean-square senses under certain statistical conditions is derived;

• The steady-state performance of the PUKF algorithm is evaluated theoretically in terms of the MSD metric;

• By numerical example, it is shown that the PUKF algorithm provides a trade-off between estimation accuracy and the

computational load.

Throughout the letter, we adopt normal lowercase letters for scalars, bold lowercase letters for column vectors and bold

uppercase letters for matrices.

The rest of the letter is organized as follows: In Section II, we briefly introduce the Kalman filtering and derive the

PUKF algorithm algorithm. The convergence and steady-state analysis are provided in Section III. Performance evaluations

are illustrated in Section IV. The letter is finally concluded in Section V.

II. KALMAN FILTERING WITH PARTIAL UPDATES

A. Overview of Kalman Filtering

Consider the following stochastic dynamic model and the sequence of noisy observations

xi+1 = Fxi + wi (1)

yi = Hxi + vi (2)

where xi ∈ RN is a state vector to be estimated, F ∈ RN×N , H ∈ RP×N , wi ∈ RN , and vi ∈ RP denote the model matrix,

observation matrix, state noise vector, and the observation noise vector, respectively. For the dynamics described by (1) and

(2), the following assumptions are considered:

Assumption 1:
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(i) The measurement noise, vi, the state noise, wi, and the initial state of the system, x0, are Gaussian distributed sequences

with vi = N (0,R), ni = N (0,Q), and x0 = N (0,P0). Note that the covariance matrices R and Q are both positive

definite.

(ii) The measurement noise, the state noise, and the initial state, {vi,ni,x0}, are uncorrelated random vector sequences.

For future reference, the define the following quantities are defined

Definition 1: we denote by x̂i|i−1 and x̂i|i the priori and posteriori minimum-variance linear estimate of xi, respectively.

We also use Pi|i to show the estimation error covariance matrix after processing the measurement yi, and Pi|i−1 as the

extrapolated error covariance matrix.

To estimate xi, the standard form of Kalman filter can be applied, which is described by the following recursive equations:

x̂i|i−1 = Fx̂i−1|i−1

Pi|i−1 = FPi−1|i−1F
T + Q

Kp,i = Pi|i−1H
T
(
HPi|i−1H

T + R
)−1

x̂i|i = x̂i|i−1 + Kp,i

(
yi −Hx̂i|i−1

)
Pi|i = Pi|i−1 + Kp,iHPi|i−1

(3)

Note that the update equation for x̂i|i can be expressed als as

x̂i|i = (I−Kp,iH) Fx̂i−1|i−1 + Kp,iyi (4)

Remark 1: As it is discussed in [21], the estimator (4) is uniform asymptotic stable, provided that (F,H) is observable and(
F,Q

1
2

)
is controllable. Uniform asymptotic stability means that for θ1 > 0 and θ2 > 0, such that for all

∀ i ≥ j ≥ 0,
∥∥Φi|j

∥∥ θ2e
−θ1(i−j) (5)

where Φi|j , (I−Kp,iH) F such that

Φi|j ,


I, if i = j

Φi|i−1, . . . ,Φi|j−1, if i > j(
Φi|j

)−1
, otherwise

(6)

B. Partial Update KF Algorithm (PUKF)

Our main objective is to decrease computational complexity of the KF algorithm associated with adaptation process by

updating only M (M < N) elements of the state estimate vectors at each iteration. Clearly, partial updating can be applied to

each of the equations in (3), which in turn, result in different forms of KF with partial updating. Here, we apply the partial

updating on the update equation of the state vector (i.e. equation (3)). Then, we modify (3) in the proposed algorithm as

x̂i|i = x̂i|i−1 + ΠiKp,i

(
yi −Hx̂i|i−1

)
(7)

where Πi coefficient selection matrix which is a diagonal matrix defined by:

Πi ,


τ1 (i) · · · 0

...
. . .

...

0 · · · τN (i)

 ,
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Fig. 1. Sequential partial updates using fractions of the state coefficient vector. j = mod
(
i, B̄

)
is associated with the partition to be updated at iteration i.

Note that x̂i|i =
[
x̂1,i|i, x̂2,i|i, . . . , x̂B̄,i|i

]
.

where τj ∈ {0, 1}, and τj = 1 means that the jth element of x̂i|i is selected for update. In order to select M -subset of x̂i|i,

we consider two different schemes, including sequential partial update and stochastic partial update. In the sequential partial

update (See Fig. 1), τj is given by

τj (i) =

1, if j ∈ J mod(i,B̄)+1

0, otherwise

with B̄ = dN/Me. The number of coefficients updated at each iteration is limited by M . The coefficient subsets J i are not

unique as long as they obey the following requirements:

• Cardinality of J i is between 1 and M ;

•
⋃B̄
k=1 J k = S where S = {1, 2, . . . , N};

• J k ∩J j = ,∀ k, j ∈
{

1, . . . , B̄
}

and k 6= j.

Note that if B̄ = dN/Me (i.e. N/M is an integer) then the cardinality of each J i must be M by necessity.

The following procedure yields a set of J i compliant with the above requirements

J 1 = {1, 2, . . . ,M}

J 2 = {M + 1,M + 2, . . . , 2M}

J B̄ =
{(
B̄ − 1

)
M + 1,

(
B̄ − 1

)
M + 2, . . . , N

}
where the cardinality of J 1,J 2, . . . ,J B̄−1 is M and that of J B̄ is N −

(
B̄ − 1

)
M ≤M .

The second proposed algorithm, termed the stochastic partial update KF algorithm, is given by the same equation as described

in (7). The only difference, however; between them is how to define the diagonal elements of the coefficient selection matrix

Πi.

The diagonal elements of the Πi are defined by the following scheme:

τj (i) =

1, if j ∈ Jm(k)

0, otherwise

Here the coefficient subsets J i are characterized equitably to the sequential scheme, and m (k) is an independent discrete

random variable with uniform distribution:

Pr {m (k) = i} =
1

B̄
, 1 ≤ i ≤ B̄

Accordingly, the PUKF can be expressed as the Algorithm 1.
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Algorithm 1 Partial Update Kalman Filter
Initialize x̂0|0 and P0|0

for i ≥ 1

Step 1: Time update (Predicted)

• Project the state ahead

x̂i|i−1 = Fx̂i−1|i−1

• Project the error covariance ahead

Pi|i−1 = FPi−1|i−1FT + Q

• Compute the Kalman gain

Kp,i = Pi|i−1HT
(
HPi|i−1HT + R

)−1

Step 2: Measurement update (Correct)

• Update estimate with measurement yi

x̂i|i = x̂i|i−1 + ΠiKp,i

(
yi − Hx̂i|i−1

)
• Update the error covariance

Pi|i = Pi|i−1 + Kp,iHPi|i−1

End for

Remark 2: The τj(i) are some Bernoulli random variables, that the randomness varies over each iteration i. Each τj (i) is

either zero or one with probability

Pr {τj (i) = 0} = τ, 0 ≤ τ < 1

Remark 3: Table I illustrates the complexity of update equation in the proposed PUKF algorithm compared to KF algorithm,

in terms of scalar multiplications and additions per iteration. Clearly, in models where N and P are very large (See real-World

applications in [22]), the complexity of the proposed algorithm is much lower than the KF algorithm.

III. PERFORMANCE ANALYSIS

A. Mean Stability

Define the intermediate state estimate-error vector as

x̃i|i , xi − x̂i (8)

Subtracting both sides (7) from xi and using (2) give

x̃i|i = x̃i|i−1 −ΠiKp,iHx̃i|i−1 −ΠiKp,ivi (9)

or more compactly as

x̃i|i = (I−ΠiKp,iH) x̃i|i−1 −ΠiKp,ivi (10)

Moreover, we have that

x̃i|i−1 = Fx̃i−1|i−1 + wi−1 (11)
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TABLE I

REQUIRED COMPLEXITY FOR IMPLEMENTATION OF UPDATE EQUATION FOR STATE ESTIMATE FOR BOTH PUKF ALGORITHM AND KF ALGORITHMS.

Algorithm Multiplications Additions

KF 2NP 2NP

PUKF M(2N + 1) M(N + 1)

Substituting (11) into (10) the following recursion update equation is achieved

x̃i|i = (I−ΠiKp,iH) Fx̃i−1|i−1 −ΠiKp,ivi

− (I−ΠiKp,iH) wi−1 (12)

Taking expectation from both sides of (12) we have

E
[
x̃i|i
]

= (I− (1− τ) Kp,iH) FE
[
x̃i−1|i−1

]
(13)

From (13), we observe that in order for the algorithm to be stable in the mean sense, the matrix (I− (1− τ) Kp,iH) F should

be stable.

Assumption 2: The pair of matrices (F,H) is detectable and
(
F,H

1
2

)
is controllable on the unique circle. Moreover,(

F,H
1
2

)
is stabilizable.

In light of Remark 1 and Assumption 2, the recursion of type (13) is stable in mean sense.

B. Mean Square Performance

For the system described by (1) and (2), partial update easily leads to the convergence of PUKF. Hence, in this section, we

discuss the stability of PUKF for system (1) and (2) under further assumption.

Taking mean square of (10) and (11) on both sides, we can get that

P̃i|i−1 , E
[
x̃i|i−1

(
x̃i|i−1

)T]
= E

[(
xi − x̂i|i−1

) (
xi − x̂i|i−1

)T]
= FP̃i−1|i−1F

T + Q (14)

P̃i|i , E
[
x̃i|i

(
x̃i|i
)T]

= E
[(

xi − x̂i|i
) (

xi − x̂i|i
)T]

= (I− E[Πi] Kp,iH) P̃i|i−1 (I− E[Πi] Kp,iH)
T

+ E[Πi] Kp,iE[viv
T

i ] K
T

p,iE[Πi]

− (I− E[Πi] Kp,iH)E[vT

i ] K
T

p,iE[Πi]

− E[Πi] Kp,iE[vi] (I− E[Πi] Kp,iH)
T

=
(
I− K̄p,iH

)
P̃i|i−1

(
I− K̄p,iH

)T
+ K̄p,iRK̄T

p,i (15)

where K̄p,i , (1− τ) Kp,i. The two equations above can be written more compactly as follows:

P̃i|i =
(
I− K̄p,iH

) (
FP̃i−1|i−1F

T + Q
) (

I− K̄p,iH
)T

+ K̄p,iRK̄T

p,i (16)
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This leads to the following equation

P̃i|i =
(
FP̃i−1|i−1FT + Q

)
+ K̄p,iRK̄T

p,i

(17)

where

F =
(
I− K̄p,iH

)
F

Q =
(
I− K̄p,iH

)
Q
(
I− K̄p,iH

)T
The steady-state MSD can be expressed by

MSD = lim
i→∞

E
[∥∥xi − x̃M,i|i

∥∥2
]

= tr
(
P̃i|i

)
(18)

Assumption 3: The pair is (F,H) detectable for every, i.e., there exists a matrix L such that F − LH is stable (all of its

eigenvalues lie inside the unit circle). Moreover,
(
F,H

1
2

)
is stabilizable, i.e., there exists a matrix K such that F−GQ

1
2 K

is stable as well.

Remark 4: As it is discussed in [23], when Assumption 3 holds, matrix F is stable, which in turn guarantees the convergence

of (17).

Lemma 1: Consider a recursion with the following for

Xi+1 = AXiA
T + Bi (19)

where A is a stable matrix and Bi converges uniformly to B as i → ∞. Then, Xi converges to X which is the solution of

the following Lyapunov equation

X = AXAT + B (20)

Proof 1: For proof, see Theorem 5.1 in [23].

In light of Lemma 1, (17) converges to the unique solution of the following Lyapunov equation:

P̃ = FP̃FT + K̄RK̄T (21)

IV. NUMERICAL SIMULATION

In this section, the performance of the proposed algorithm and the accuracy of the theoretical stead-state analysis are

evaluated. To this end, we use the proposed algorithm to perform the state-estimation task in a centralized sensor network with

J = 20 sensors. In this simulation scenario, each sensor transmits its noisy observations of a high-dimensional state xi with

N = 80 to a fusion center (FC), where the estimation task is performed. The noisy measurement of each senor n (i.e. yn,i)

is given by

yn,i = Hnxi + vn,i

where

Hn =

1 0 0 1

0 1 0 1

 (22)
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TABLE II

STEADY-STATE PERFORMANCE OF DIFFERENT ALGORITHMS.

Proposed (stochastic) M = 20 Proposed (stochastic) M = 57 Full-update KF Method [24]

-7.52 -9.1 -9.74 -8.8

with vn,i is a zero mean Gaussian process with R = 0.001IM . The initial state is x0|0 = 0.5× [1 · · · 1]T. The collected noisy

data at the FC is given by (1) where

F =


F0 0 0 0

0 F0 0 0

0 0
. . . 0

0 0 0 F0

 , Hi =


H1 0 0 0

0 H2 0 0

0 0
. . . 0

0 0 0 HJ

 ,

F0 =


1 0 0.61 0

0 1 0 0.61

0 0 1 0

0 0 0 1

 , vi =


v1,i

v2,i

...

vJ,i

 , yi =


y1,i

y2,i

...

yJ,i


The state noise wi is zero mean Gaussian process with Q = 0.001IN .

Figures 2 and 3 show the evolution of MSD for PUKF algorithm for different values of M . Both stochastic and sequential

partial updating schemes are considered. The simulated MSD are obtained by averaging over r = 1000 Monte Carlo runs.

MSDSim
i =

1

r

r∑
`=1

(
xi − x̂i|i

) (
xi − x̂i|i

)T
(23)

Note that the theoretical MSD values are calculated using (18). These figures show that the PUKF algorithm with both

sequential and stochastic schemes can deliver acceptable estimate accuracy. Moreover, the MSD curves tend to the theoretical

steady-state value, which validates the provided steady-state analysis. Fig. 4 shows the evolution of first elements in xi and

x̂i for different values of M . We can observe that the PUKF algorithm provides a trade-off between the estimation accuracy

and the computational complexity, i.e. as M increases, better estimates for state vector xi are obtained. From this figure, we

can also observe it is possible to select a small value for M and obtain an acceptable estimation accuracy. Table. II shows the

steady-state performance of the proposed algorithm in comparison with the full-update KF and the given algorithm in [24].

As we can see, there is a performance deterioration in comparison to the full-update KF, as expected. In addition, it provides

an acceptable performance, compared to the given method in [24] which relies on the combination of combinations of the

recursive least squares (RLS) and least mean square (LMS) algorithms, which equire more computaions than our proposed

algorithm.

V. CONCLUSION AND FUTURE WORK

In this letter we derived the partial update Kalman filtering algorithm for state estimation. We considered sequential and

stochastic partial updating schemes in the proposed algorithm. The condition for mean and mean-square convergence discussed

and provided steady-state analysis has been evaluated by simulation results. Theoretical analysis and numerical simulations

provided valuable insights into the performance of the PUKF algorithm. As we have shown in the simulation results, although

partial updating is an effective way to address scarce hardware resources (reduce algorithm complexity), however, it can lead

to performance deterioration is expected, since only a subset of all coefficients is updated.

In our future work, we will consider the problem of developing reduced-complexity Kalman filtering algorithm for more

realistic case such as state estimation of linear and nonlinear stochastic systems in presence of faults and nonGaussian noises

[25]–[27].
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Fig. 2. The evolution of experimental MSD of sequential PUKF for different values of M .
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Fig. 3. The evolution of experimental MSD of stochastic PUKF for different values of M .
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