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Abstract

This paper aims to extend the proportionate adaptation concept to the design of a class of diffusion normalised

subband adaptive filter (DNSAF) algorithms. This leads to four extensions of the algorithm associated with different

step-size variation, namely, diffusion proportionate normalised subband adaptive filter (DPNSAF), diffusion µ-law

PNSAF (DMPNSAF), diffusion improved PNSAF (DIPNSAF) and diffusion improved IPNSAF (DIIPNSAF). Subse-

quently, steady-state performance, stability conditions and computational complexity of the proposed algorithms are

investigated. For each extension the performance has been evaluated using both real and simulated data, where the

outcomes demonstrate the accuracy of the theoretical expressions and effectiveness of the proposed algorithms.

Index Terms

Diffusion, distributed estimation, subband adaptive algorithm, sparse system identification, proportionate.

I. INTRODUCTION

IN many networking applications, the ultimate goal of the network can be posed as a solution to distributed

estimation problem [1], [2], [3]. Three common strategies for this problem are incremental [4], [5], consensus

[6], [7], [8], and diffusion [9], [10], [11], [12], [13], [14], [15], [16]. Among the available solutions, this paper

focuses on the diffusion-based adaptive networks, since in comparison with the consensus-based methods, they have

lower steady-state estimation error and faster convergence rate [17]. Moreover, compared to the incremental based

solutions, they are robust to link and node failures. In diffusion based algorithms, the network nodes communicate

with their immediate neighbours, defined by the network topology. Every node exchanges its predictions with its

neighbors and fuses the estimated values using a linear combination. Different combination policies have been

reported in previous research such as Metropolis or maximum-degree rules [11]. In the diffusion networks, the

information diffuses more rapidly in the network.
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A. Related Work

Based on the diffusion strategies and by extending previously proposed adaptive filter algorithms, various dis-

tributed estimation algorithms have been derived. These include diffusion least mean square (DLMS) [9], diffusion

least mean fourth (DLMF) [18], diffusion affine projection algorithm (DAPA) [19] and diffusion recursive least

square (DRLS) [20], [21]. Among these algorithms, DLMS is more common because of its simplicity and ease

of implementation. For improving the convergence rate of LMS algorithms, a new family of adaptive filters called

subband adaptive filter (SAF) [22], [23], [24] has been proposed. SAF performs well in environments with highly

correlated input signals. Fortunately, the diffusion mode of these algorithms, called diffusion normalised subband

adaptive filter (DNSAF) has been proposed [25], [26] which has a better convergence rate than the conventional

DLMS algorithm.

Diffusion algorithms have been intensively studied for identifying dispersive systems, where the energy is

distributed uniformly among all tap-weights [10]. Here, we consider the unknown sparse vector identification

problem, whose power is concentrated on only a few taps with other taps having approximately zero power.

Sparsity is a characteristic which can be found in both natural and man-made systems [27], [28]. Some of its real-

world applications are data compression, acoustic echo cancellation, digital TV transmission, multipath channels

and underwater acoustic communications [29], [30], [31], [32], [33]. The design of such algorithms has become

a challenging and attractive research agenda recently, where it is shown that through considering the sparsity of a

system, the estimation performance can be further improved.

Through some criteria and using the idea that each filter coefficient can be adjusted by assigning different learning

rate and even proportional to the magnitude of measured coefficient, in [34], the proportionate normalised least

mean square (PNLMS) algorithm has been proposed. PNLMS algorithm exhibits a rapid convergence in the initial

iterations, but after the initial phase, its convergence slows down. This concept is called proportionate adaptation

and is extended to various adaptive filters. In practice, it is seen that the proportionate adaptive filters have better

performance in identifying sparse-type systems than the conventional ones. In [35], an improved PNLMS (IPNLMS)

has been presented in which the applied rule switches automatically from one algorithm to another. Another version

of PNLMS termed µ-law PNLMS (MPNLMS) has been introduced in [36] to have a faster convergence rate over the

entire adaptation procedure until approaching the steady-state condition. This algorithm outperforms the PNLMS

algorithm but is computationally slightly more complex. The improved IPNLMS (IIPNLMS) presented in [37]

follows one of the two methods depending on the coefficients being active or passive.

B. Contributions

This paper aims to develop efficient and fast algorithms for diffusion-based techniques, which are able to

estimate a sparse parameter vector of interest by processing the streaming data. To this end, by extending the

method of proportionate adaptation to distributed networks, a family of diffusion proportionate NSAF algorithms,

namely diffusion proportionate NSAF (DPNSAF), diffusion µ-law PNSAF (DMPNSAF), diffusion improved PNSAF

(DIPNSAF) and diffusion improved IPNSAF (DIIPNSAF) are proposed. In summary, the contributions of this paper

are as follows:

• A family of diffusion proportionate NSAF algorithms is proposed which outperform the DNSAF algorithm

when the estimated optimum weights are sparse.
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TABLE I

SYMBOLS AND THEIR DESCRIPTIONS

Symbol Description

(·)T Matrix transposition

‖ · ‖2 Squared Euclidean norm

vec{x} Makes a diagonal matrix with x

‖x‖2ΣΣΣ Weighted norm, x∗ΣΣΣx

tr(X) Trace of matrix X

E[·] Statistical expectation

bvec{·} block vectorization operator

col{a, b} column vector formed by stacking a and b

⊗ Kronecker product

� Block Kronecker product

Blkdiag{A,B} block diagonal matrix with entries A and B

[x]t tth element of vector x

I identity matrix

• Different aspects of the proposed algorithms, including the complexity analysis, steady-state performance,

stability conditions and transient behavior are analyzed and discussed.

• Through several computer simulations, the performance of each of the proposed algorithms is evaluated for

system identification. Real sparse data which is a channel impulse response (FIR model) obtained from a

digital microwave radio system is used here.

In this paper, normal lowercase letters are used to denote scalars while bold lowercase letters for used for vectors.

A list of symbols is given in Table I.

II. SYSTEM MODEL

Consider a connected network with K nodes denoted by a set K = {1, 2, · · · ,K}. Each node k can only

collaborate and share information with its immediate neighbors (denoted by Nk). The noisy measurement of each

node k ∈ K at time instant i is modeled via linear regression as

dk(i) = uT

k(i)wo + ηk(i) (1)

where wo denotes the optimum M -dimensional (unknown) model parameter vector, ηk(i) is the zero-mean in-

dependent and identically distributed (i.i.d.) measurement noise with variance σ2
η,k, and uk(i) , [uk(i), uk(i −

1) . . . , uk(i−M + 1)]T represents an M -dimensional input regressor vector.

To proceed, it assumed that the data satisfy the following assumptions:

Assumption 1.

(i) Both {uk(i)} and {ηk(i)} are zero-mean stationary processes.

(ii) {ηk(i)} is statistically independent of u`(j) for all k 6= ` and i 6= j.

(iii) The regressor covariance matrix is positive-definite Ru,k = E[uT

k(i)uk(i)] > 0.
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TABLE II

SOME OF THE PROPOSED COMBINATION RULES (nk IS USED TO SHOW THE NUMBER OF NODES NEIGHBORING NODE k, ` 6= k AND ` ∈ Nk )

Method Employed Rule

Relative degree [20] c`,k = n`/
∑

i∈Nk
ni

Maximum degree [40] c`,k = 1/K

Uniform [41] c`,k = 1/nk

Metropolis [42] c`,k = 1/max {n`, nk}
Laplacian [42] c`,k = 1/nmax

The goal of each node is to calculate an estimate of wo by solving the following problem

J(w) =

K∑
k=1

E
[
|dk(i)− uT

k(i)w|2
]

(2)

A fully distributed algorithm, which can be used to solve (2) is the diffusion LMS [38], [39] which involves two

adaptation and combination phases. In this algorithm, each node updates its local estimate wk(i) at each time step

i according to the following iterative scheme:

φφφk(i) = wk(i− 1) + µkek(i)uk(i), (adaptation)

wk(i) =
∑
`∈Nk

c`,kφφφ`(i), (combination) (3)

where is a set of non-negative real values to weight the combination of local estimates of neighboring nodes, µk > 0

is a suitably chosen step-size parameter and ek(i) denotes the estimation error signal defined as

ek(i) = dk(i)−wT

k(i)uk(i) (4)

There have been proposed various rules for selecting combination weights, taking account the degree of each node.

In Table II some of these methods have been shown. While other options are possible, In this paper the metropolis

rule has been chosen considering its promising results in previous studies [20]. A thorough study of the diffusion

LMS algorithm has been reported in [39], [11].

A. DNSAF Algorithm

Unlike the update equation in the DLMS algorithm, a DNSAF algorithm employs a subband adaptive filtering

structure [24] in the adaptation step. In this algorithm, first the input signal uk(i) is split into N subband signals

ûk(i), by means of N analysis filters H0,H1, · · · ,HN−1. Then, each subband signal ûk(i) is sub-sampled to a

lower rate commensurating with the associated bandwidth.

Remark 1. In order to distinguish between the original sequence and sub-sampled signal, the time index for the

original sequence is denoted by i, and for the sub-sampled signal by n.

At every node k, the sth decimated input vector is given by

uk,s(n) = [ûk,s(nN), ûk,s(nN − 1), · · · , ûk,s(nN −M + 1)]T

The decimated desired signal is expressed as

dk,s(n) = uT

k,s(n)wo + ηk,s(n), (5)
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where ηk,s(n) is a sub-sampled additive noise. DNSAF algorithm has an update equation of the form

φφφk(n) = wk(n− 1) + µk

N∑
s=1

uk,s(n)

ε+ ‖uk,s(n)‖2
{dk,s(n)−wk(n)Tuk,s(n)} , (adaptation)

wk(n) =
∑
`∈Nk

c`,kφφφ`(n), (combination) (6)

at node k and time i. ε is small value to prevent division by zero. Since the nodes exchange data with their

neighbors and their current update depends on their previous estimates, performance analysis of the entire network

is the ultimate objective. To see the role of inter-node dependence and cooperation and network topology on overall

performance, investigating the whole network would be beneficial. If we combine two equations of (6) into one

and extend it to cover whole network, then network update equation can be derived as [DELETED: the network

update equation for the DNSAF algorithm is given by] [43]

w(n) = Gw(n− 1) + GDUUU(n)[ε+UUUT(n)UUU(n)]−1e(n) (7)

where

w(n) = col{w1(n),w2(n), · · · ,wK(n)} (8)

G = CT ⊗ IM (9)

D = Blkdiag{µ1IM , µ2IM , · · · , µKIM} (10)

UUU(n) = Blkdiag{U1(n),U2(n), · · · ,UK(n)} , (11)

e(n) = d(n)−UUUT(n)w(n− 1) (12)

where C is a K ×K whose kth column is cl,k, l = 1, ...,K and Uk(n) and d(n) are defined as:

Uk(n) = [uk,1(n),uk,2(n), · · · ,uk,N (n)], (M ×N)

d(n) = [d1,1(n), · · · , d1,N (n), · · · , dK,1(n) · · · , dK,N (n)]T.

Using the above definitions, (5) can be rewritten as

d(n) = UUUT(n)Wo + ηηη(n) (13)

In (13) we have Wo = Awo and

A = col{IM , IM , · · · , IM}

ηηη(n) = [η1,1(n), · · · , η1,N (n), · · · , ηK,1(n) · · · , ηK,N (n)]T

A detailed analysis of DNSAF algorithm (including steady-state and convergence analysis) has been reported in

[43].

III. PROPOSED ALGORITHMS

In this section, we use the proportionate adaptation framework to exploit the sparseness of unknown vector

parameter for obtaining diffusion adaptive networks with improved adaptation rate. The general idea of proportionate

adaptation is to adjust the learning step-size according to the magnitude of the filter weight taps. Since the optimum

magnitude of the filter taps are unknown, the current estimated magnitude of the weights are used in practice.
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Therefore, the adaptation gain is distributed proportionately among filter coefficients, larger gains will be assigned

to larger weights and vice vesra, which explains faster convergence rate of this method than the conventional

algorithms.

The general form of the proposed algorithms is given by

w(n) = Gw(n− 1)

+ GDΘΘΘ(n)UUU(n)[ε+UUUT(n)ΘΘΘ(n)UUU(n)]−1e(n) (14)

where ΘΘΘ(n) is a KM ×KM block diagonal matrix defined as

ΘΘΘ(n) = Blkdiag{B1(n),B2(n), · · · ,BK(n)} (15)

with

Bk(n) = diag{θk,1(n), θk,2(n), · · · , θk,M (n)} . (16)

ΘΘΘ(n) is a gain distributor among individual coefficients of the filter and is proportional to the magnitude of the

related impulse-response taps of unknown system wo. Therefore, larger/smaller taps receive larger/smaller gains

which speed up the convergence. In the sequel, we introduce different choices for Bk(n) which in turn, result in

different algorithms.

A. Diffusion Proportionate NSAF Algorithm

Inspired by [44] in the DPNSAF algorithm, the step-size at each node is assigned in a way that the coefficients

with larger magnitudes are considered to assign large step-sizes, and vice versa. In this scheme, each θk,m(n) is

given by

θk,m(n) =
αk,m(n)

1
M

∑M
j=1 αk,j(n)

(17)

where αk,m(n) is defined for every m = 1, · · · ,M as

αk,m(n) = max{(ρmax{δ, ‖wk(n)‖∞}), |[wk(n)]m|} (18)

with ρ > 0 and δ > 0. Using the algorithm, the adaptation gains are distributed among the taps. It should be noted

that, larger taps are accentuated to accelerate their convergence, leading to a rapid convergence at initial steps.

B. Diffusion µ-law Proportionate NSAF

Subsequent to the initial convergence, the DPNSAF algorithm eases back down significantly. The procedure of

calculating the gains to control the step-size distribution among the DPNSAF coefficients is not in accordance with

any optimization criterion. In [36] the MPNLMS algorithm has been reported which has faster convergence across

the entire adaptation process. Following a similar approach, the diffusion µ-law PNSAF algorithm can be obtained

by defining θk,m(n) as:

θk,m(n) =
βk,m(n)

1
M

∑M
j=1 βk,j(n)

(19)

where

βk,m(n) = max{(ρ ·max{δ, ‖fk(n)‖∞}), [fk(n)]m} (20)
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with fk(n) = [fk,1(n), · · · , fk,M (n)] where

fk,m(n) = ln(1 + ν[wk(n)]m) (21)

in which ν is an infinitesimal positive value. The assigned value may be selected according to the additive noise

level.

C. Diffusion Improved Proportionate NSAF

In [45], the improved PNLMS algorithm has been provided by employing a rule to use a combination of

proportionate and non-proportionate adaptations. It can be considered as a mixture of NLMS and PNLMS algorithms.

Therefore, applying it to both sparse and dispersive systems would be favourable. Following the same modification,

the DIPNSAF algorithm is proposed and the main diagonal elements of θk,m(n) are defined as:

θk,m(n) =
1− γ
2M

+ (1 + γ)
|[wk(n)]m|

2‖wk(n)‖1 + ζ
(22)

in which ‖ · ‖1 denotes `1-norm and ζ is an infinitesimal positive coefficient, considered to prevent any undefined

value and γ ∈ [−1, 1]. For γ = −1, the DIPNSAF and DNSAF algorithms have no differences. However, γ = 1

results in a faster convergence while higher sensitivity regarding sparsity is expected. Practicality speaking, a range

of -0.5 to 0 for γ is reasonable.

D. Diffusion Improved IPNSAF

Referring to the IPNLMS algorithm, γ which represents the relative weighting between NLMS and PNLMS

algorithms is the same for all the coefficients. In [37], the IIPNLMS has been proposed in which the relative

weighting of proportionate and non-proportionate updating is rearranged for every coefficient separately. The

corresponding adjustment is attainable by implementing two dissimilar values for γ. For large coefficients, γ is

selected in such a way that non-proportional updates are weighed more heavily. On the other hand, for small

coefficients, γ is selected to meet the condition in which proportionate updating is desired. Similarly, we propose

a DIIPNSAF algorithm with the diagonal entries of θk,m(n) defined through a procedure as follows:

θk,m(n) =
1− πk,m(n)

2M
+ (1 + πk,m(n))

|[wk(n)]m|
2‖wk(n)‖1 + ζ

(23)

where ζ is again an infinitesimal value and

πk,m(n) =

π1 tk,m(n) > g0 ×max{tk(n)}

π2 tk,m(n) ≤ g0 ×max{tk(n)}
(24)

In (24) tk(n) = [tk,1(n), · · · , tk,M (n)] and

tk,m(n) = max{(ρ · ‖wk(n)‖∞), [wk(n)]m} (25)

A logical value for g0 is 0.1 [37].
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TABLE III

THE COMPUTATIONAL COMPLEXITY OF DNSAF, DPNSAF, DMPNSAF, DIPNSAF AND DIIPNSAF ALGORITHMS.

Algorithm Multiplications Divisions Comparisons

DNSAF
K∑

k=1

(M(3 + |Nk|) + 3NL+ 1) K –

DPNSAF
K∑

k=1

(M(4 + |Nk|) + 3NL+ 2) K(M + 1) 2KM

DMPNSAF
K∑

k=1

(M(5 + |Nk|) + 3NL+ 2) K(M + 1) 2KM

DIPNSAF
K∑

k=1

(M(5 + |Nk|) + 3NL+ 1) K(M + 1) –

DIIPNSAF
K∑

k=1

(M(5 + |Nk|) + 3NL+ 1) K(M + 1) 2KM

IV. FURTHER INSIGHTS

A. Computational Complexity

The computational complexity of DNSAF algorithm is compared with those of the proposed proportionate

algorithms for the number of multiplications, divisions and comparisons for every time iteration and node, as

listed in Table III. Here, N , M and L are the number of subbands, the filter length, and the length of analysis and

synthesis filters, respectively.

B. Steady-state Analysis

The steady-state performances of the proposed algorithms are analyzed through the time evaluation of E{‖w̃(n)‖2ΣΣΣ},
where w̃(n) = wo −w(n) represents the weight-error vector and ΣΣΣ refers to any positive-definite and Hermitian

matrix. Considering the general form of (14), the update equation of weight-error vector for diffusion proportionate

NSAF algorithms is expressed as:

w̃(n) = Gw̃(n− 1)−GDΘΘΘ(n)UUU(n)[εI +UUUT(n)ΘΘΘ(n)UUU(n)]−1e(n) (26)

Replacing e(n) = UUUT(n)w̃(n − 1) + ηηη(n) in (26) and taking the weighted norm from both sides of the resultant

expression gives

‖w̃(n)‖2ΣΣΣ = ‖w̃(n− 1)‖2ΩΩΩ + ηηηT(n)Y(n)ηηη(n) + cross terms involving ηηη(n) (27)

where

Y(n) = (GDΘΘΘ(n)UUU(n)ΞΞΞ(n))TΣΣΣGDΘΘΘ(n)UUU(n)ΞΞΞ(n) (28)

ΩΩΩ = GTΣΣΣG−GTΣΣΣGDZ(n)− (GDZ(n))TΣΣΣG (29)

with

ΞΞΞ(n) = [εI +UUUT(n)ΘΘΘ(n)UUU(n)]−1 (30)

Z(n) = ΘΘΘ(n)UUU(n)ΞΞΞ(n)UUUT(n) (31)

Taking the expectation from both sides of (27) and considering Assumption 1 yields:

E
[
‖w̃(n)‖2ΣΣΣ

]
= E

[
‖w̃(n− 1)‖2ΣΣΣ′

]
+ E[ηηηT(n)Y(n)ηηη(n)] (32)
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where

ΣΣΣ′ = GTΣΣΣG−GTΣΣΣGDE[Z(n)]− E[ZT(n)]DTGTΣΣΣG + E[ZT(n)DTGTΣΣΣGDZ(n)] (33)

By applying bvec{·} operator to (33) some relations are derived as follow:

bvec{GTΣΣΣG} = (GT �GT)σσσ (34)

bvec{GTΣΣΣGDE[Z(n)]} = (E[ZT(n)]� IKM )

× (DT � IKM )(GT �GT)σσσ (35)

bvec{E[ZT(n)]DTGTΣΣΣG} = (IKM � E[ZT(n)])

× (IKM �DT)(GT �GT)σσσ (36)

bvec{E[ZT(n)]DTGTΣΣΣGDZ(n)} =

E[ZT(n)� ZT(n)] (DT �DT)(GT �GT)σσσ (37)

in which bvec{ΣΣΣ} = σσσ and bvec
{
ΣΣΣ′
}

= σσσ′. Hence, by setting matrix P as

P =

(
IK2M2 − (E[ZT(n)]� IKM )(DT � IKM )

− (IKM � E[ZT(n)])(IKM �DT)

+ (E[ZT(n)� ZT(n)])(DT �DT)

)
(GT �GT) (38)

The following relation is obtained:

σσσ′ = Pσσσ (39)

In addition, the second term in the r.h.s of (32) becomes:

E[ηηηT(n)Y(n)ηηη(n)] = gTσσσ (40)

where

g = bvec
{
E
[
GDΘΘΘ(n)UUU(n)ΞΞΞ(n)ηηη(n)

× (GDΘΘΘ(n)UUU(n)ΞΞΞ(n)ηηη(n))T
]}

= E
[
(G�G)(D�D)(ΘΘΘ(n)�ΘΘΘ(n))(UUU(n)�UUU(n))

× (ΞΞΞ(n)�ΞΞΞ(n))(ηηη(n)� ηηη(n))
]

(41)

Thus, using the obtained moments, Equation (32) can be expressed in the following iterative form:

E
[
‖w̃(n)‖2σσσ

]
= E

[
‖w̃(n− 1)‖2Pσσσ

]
+ gTσσσ (42)

or

E
[
‖w̃(n)‖2σσσ

]
= E

[
‖w̃(0)‖2Pnσσσ

]
+ gT(IK2M2 + P + · · ·+ Pn−1)σσσ. (43)
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In the recent equation weighting matrix ΣΣΣ is replaced by σσσ = bvec{ΣΣΣ} to simplify the notation. This leads to the

useful result

E
[
‖w̃(n)‖2σσσ

]
= E

[
‖w̃(n− 1)‖2σσσ

]
+ gTPnσσσ

+ ‖w̃(0)‖2Pn−1(I−P)σσσ. (44)

Let’s define the following vectors

mk = vec{diag{bk,K} ⊗ IM} (45)

rk = vec{diag{bk,K} ⊗Ru,k} (46)

where bk,K denotes a column vector of the diagonal matrix IK in kth position. Substituting σσσ = rk or σσσ = mk

in (43), the transient response associated with two learning curves, i.e. mean square deviation (MSD) and excess

mean square error (EMSE), respectively, is estimated.

According to (43), when n approaches infinity, the final values of EMSE and MSD at each node can be calculated

respectively as:

EMSEk = gT(I−P)−1rk (47)

MSDk = gT(I−P)−1mk. (48)

C. Transient Expressions

Replacing (45) in (44) leads to local mean-square deviation as follows

MSDk(n) = MSDk(n− 1) + gTPnmk + ‖w̃(0)‖2Pn−1(I−P)mk
. (49)

with initial condition MSDk(0) = ‖w̃(0)‖2diag(bk,K⊗IM ). Likewise, by replacing (46) in (44) the local excess mean-

square error relation can be derived

EMSEk(n) = EMSEk(n− 1) + gTPnrk + ‖w̃(0)‖2Pn−1(I−P)rk
. (50)

with initial condition EMSEk(0) = ‖w̃(0)‖2diag(bk,K⊗Ru,k).

Besides, EMSE and MSD for the entire network can also be ascertained considering the averages for MSD and

EMSE across all the network nodes:

MSDnet(n) =
1

K

K∑
k=1

MSDk(n) (51)

EMSEnet(n) =
1

K

K∑
k=1

EMSEk(n) (52)

In the simulation results section, the accuracy of the obtained expressions is examined.
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D. Mean Stability

To conduct the stability analysis, we rewrite (26) as

w̃(n) = G[I−GDΘΘΘ(n)UUU(n)ΞΞΞ(n)UUUT(n)]w̃(n− 1)−GDΘΘΘ(n)UUU(n)ΞΞΞ(n)ηηη(n) (53)

Taking expectation of both sides under Assumption 1 yields

E[w̃(n)] = GFFFE[w̃(n− 1)] (54)

where

FFF , I−GDΘΘΘ(n)E
[
UUU(n)ΞΞΞ(n)UUUT(n)

]
(55)

It is obvious that the condition λmax(GFFF) ≤ 1 guarantees the stability of the proposed algorithms. From the

analysis in [11], we can show that

• λmax(FFF) ≤ λmax(GFFF),

• the stability of the block-diagonal matrix FFF is equivalent to the stability of its block-diagonal entries

I−CTµkBk(n)E
[
Uk(n)(εI + UT

k(n)Bk(n)Uk(n))−1UT

k(n)
]

Hence, in order to guarantee the convergence of E[w̃(n)], the following condition must be met:

0 < µk ≤
2

λmax

( N∑
k=1

E
[
Uk(n)(εI + UT

k(n)Bk(n)Uk(n))−1UT

k(n)
]) . (56)

where λmax(·) denotes the largest eigenvalue of its matrix argument.

E. Mean-Square Stability

In order to derive the stability condition in the mean-square sense, we rewrite P in (38) as

P = O(GT �GT) (57)

in which

O = IK2M2 − (E[ZT(n)]� IKM )(DT � IKM )

− (IKM � E[ZT(n)])(IKM �DT)

+ (E[ZT(n)� ZT(n)])(DT �DT) (58)

To guarantee the stability, one should ensure that the following condition is satisfied for all eigenvalues of P:

|λ(P)| < 1 (59)

through initialization of µk and cooperation protocol (CT). Through the following procedure global stability can

be guaranteed. Using Euclidean norm, we can write

‖P‖2 = ‖O(GT �GT)‖2 ≤ ‖O‖2 . ‖G
T �GT‖2 (60)
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and this can be rewritten using kronecker product [1] as

‖O(GT �GT)‖2 = ‖O.PT(GT ⊗GT)P‖2

≤ ‖O‖2 . ‖(G
T ⊗GT)‖2

= ‖O‖2 . ‖G
T‖2 . ‖G

T‖2 (61)

In this equation, P is an orthogonal permutation matrix. Noting (8), we can write

|λmax(O.(GT �GT))| ≤ |λmax(O)| . ‖CT‖22 . (62)

For the combination rules that produce matrice CT stochasticly, (considering above equation) we can write

|λmax(O.(GT �GT))| ≤ |λmax(O)| . (63)

This condition is generally met, hence to ensure stablity of the network, it is sufficient to ensure ‖CT‖22 ≤ 1.

V. SIMULATION RESULTS

In order to evaluate the performances of proposed algorithms and validate the theoretical analysis, we provide

different computer simulations in a setup of system identification. To this end, different sparse vectors consisting of

M = 100 FIR prototype are considered where each one is a short cut model of a digital microwave radio channel1.

Fig. 1 indicates the topology of a network with K = 20 nodes. Two input signals uk(n) are considered in the

modeling including

1) zero mean white Gaussian with Ru,k = σ2
uk
I,

2) colored Gaussian where the correlated elements are generated at each node by filtering a zero-mean white

Gaussian sequence through a first-order system 1
1−pkz−1 . Consequently, at each studied node, a colored

Gaussian signal is produced.

The node profiles of pk (correlation index), σ2
uk

(power of regressor data), and σ2
ηk

(noise variance) are shown in

Fig. 2. The combination weights c`,k are assigned according to the Metropolis rule. The extended lapped transform

(ELT) [46] is used in the simulations as the filter bank with N = 4. To compare the algorithm performances,

normalized mean square deviation (NMSD) learning curve of the network is used which is defined as [DELETED:

NMSDnet =
1

K‖wo‖2
K∑
k=1

E
[
‖w̃(n)‖2

]
(64)

]

NMSDnet =
1

K‖wo‖2
K∑
k=1

E
[
‖w̃k(n)‖2

]
(65)

All modeled learning curves are extracted using ensemble averaging over hundred non-contingent trials. To make

it easier to follow the empirical results of this section all parameter selection of simulated algorithms are illustrated

in Table IV.

Fig. 3 shows the DNSAF and DPNSAF learning curves for different values of ρ. The step-sizes are adjusted

in a way that the steady-state errors have approximately equal values to make their learning curves comparable

1The employed radio channel coefficients are available in http://spib.linse.ufsc.br/microwave.html
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Fig.  1. (a) sparse impulse response, (b) dispersive impulse response 
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Fig.  2. Network topology (𝑱 = 𝟐𝟎) 
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Fig. 1. The network topology with K = 20 nodes.
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Fig. 2. Correlation index (top), input power (middle), and noise power at each node (bottom).

and we set δ = 0.01. Different values are chosen for ρ, (ρ=1, 0.1, 0.025, and 0.01) in Fig. 3 for identifying the

unknown system with given impulse response. It is shown that faster convergence would be achieved by reducing

this parameter. However, if the parameter has a small value, slower convergence is expected during the entire

adaptation. It should be noted that, a common value for ρ is 5
M . Besides, relatively fast convergence is seen in the

charts for ρ= 0.025, so this value is set in the conducted simulations.
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Fig. 3. The NMSD curves of DNSAF and DPNSAF algorithms with various values of ρ: (top) impulse response, (bottom) the NMSD learning

curves when input regressors are white Gaussian.

TABLE IV

SUMMARY OF THE PARAMETER SELECTION FOR EMPIRICAL INVESTIGATION

Simmulation Number Parameter Setup of Each Algorithm Figure Number

The First

DNSAF (µ = 1)

3

DPNSAF (µ = 0.4, ρ = 0.01, δ = 0.01)

DPNSAF (µ = 0.75, ρ = 0.025, δ = 0.01)

DPNSAF (µ = 1, ρ = 1, δ = 0.01)

DPNSAF (µ = 0.87, ρ = 0.1, δ = 0.01)

DPNSAF (µ = 0.9, ρ = 0.025, δ = 0.01)

DNSAF (µ = 1.2)The Second

DMPNSAF (µ = 0.9,ρ = 0.025, ν =
√

1000, δ = 0.01)

4

The Third

DIIPNSAF (µ = 0.6, ρ = 0.025, π1 = −o.8, π2 = o.8, g0 = 0.1, ζ = 0.001)

5
DNSAF (µ = 1)

DPNSAF (µ = 0.7, ρ = 0.025, δ = 0.01)

DIPNSAF (µ = 0.87, ζ = 0.001)

The Fourth (theoretical justification) DIIPNSAF (µ = 0.5, ρ = 0.025, π1 = −o.8, π2 = o.8, g0 = 0.1, ζ = 0.001) 6

The learning curves of DNSAF, DPNSAF and DMPNSAF algorithms are shown in Fig. 4 for both input regression

types (when input regressors are white Gaussian and when input regressors are Gaussian AR(1)) δ = 0.01, ρ = 0.025,

and ν =
√

1000 are set. The results in Fig. 4 show that the DPNSAF and DMPNSAF algorithms converge faster than

DNSAF. On the other hand, the DPNSAF algorithm converges faster initially, while the DMPNSAF converges more

rapidly during the entire adaptation. The NMSD learning curves of DNSAF, DPNSAF, DIPNSAF and DIIPNSAF
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Fig. 4. The NMSD learning curves of DNSAF, DPNSAF, and DMPNSAF algorithms: (top) impulse response of the unknown system, (middle)

when input regressors are white Gaussian, (bottom) when input regressors are Gaussian AR(1).

algorithms are shown in Fig. 5 for both input regression types (when input regressors are white Gaussian and

when input regressors are Gaussian AR(1)). Here we set, δ = 0.01, ρ = 0.025, γ = −0.5, π1 = −0.8, π2 = 0.8,

g0 = 0.1, and ζ = 0.001 are set. As shown in the figure, the DIPNSAF algorithm concludes faster convergence than

the DPNSAF. In addition, the performance of DIIPNSAF algorithm is slightly better than that of the DIPNSAF.

Now, the theoretical values of examined algorithms are confirmed by conducting numerous simulations. In these

experiments, the network consists of K = 6 nodes and the unknown system is sparse (see Fig. 6). The node

profiles of pk (correlation index), σ2
uk

(power of regressor data), and σ2
ηk

(noise variance) are shown in Fig. 7.

In Fig. 8 (top), the simulated NMSD learning curves of DPNSAF, DMPNSAF, DIPNSAF and DIIPNSAF and

their theoretical steady-state values have been presented. The theoretical values are calculated from (65). It can

be observed that there is a decent agreement between the values obtained by simulations and those obtained by

theoretical expressions. This can be verified by Fig. 8 (bottom) which presents values of theoretical steady-state

NMSD and experimental steady-state NMSD at each individual node.
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(middle) when input regressors are white Gaussian, (bottom) when input regressors are Gaussian AR(1).
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Fig. 6. The sparse impulse response (right) and network topology (left).

VI. CONCLUSIONS

Here, a group of DPSNF algorithms, suitable for sparse systems, based on the proportionate adaptation method

has been introduced. The DPNSAF, DMPNSAF, DIPNSAF, and DIIPNSAF algorithms have been proposed for

distributed processing over diffusion networks and it is shown that the proposed algorithms are faster than the
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Fig. 7. Correlation index (top), input power (middle), and noise power at each node (bottom).

DNSAF algorithm when they are applied to a system with sparse impulse response. Regarding the weighted energy

conservation, the behavior of presented algorithms has been discussed through analysis of the transient and the

steady-state performances across the whole network. A decent functionality of the investigated algorithms has been

demonstrated by various experiments.
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