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Abstract. Ray flow methods are an efficient tool to estimate vibro-acoustic or electromagnetic
energy transport in complex domains at high-frequencies. Here, a Petrov-Galerkin discretization of
a phase-space boundary integral equation for transporting wave energy densities on two-dimensional
surfaces is proposed. The directional dependence of the energy density is approximated at each
point on the boundary in terms of a finite local set of directions propagating into the domain. The
direction of propagation can be preserved for transport across multi-component domains when the
directions within the local set are inherited from a global direction set. The range of applicability
and computational cost of the method will be explored through a series of numerical experiments,
including wave problems from both acoustics and elasticity in both single and multi-component
domains. The domain geometries considered range from both regular and irregular polygons to
curved surfaces, including a cast aluminium shock tower from a Range Rover car.
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1. Introduction.

1.1. Motivation and contribution. Dynamical energy analysis (DEA) is a
framework for modelling the flow of high-frequency wave energy densities that has
been developed over the last ten years [4, 12, 34]. At the heart of the method is
a linear integral operator based model for transporting phase-space densities along
ray trajectories between intersections with the boundary of a domain or sub-domain.
In recent years, the capability of the method has extended to large-scale problems
from industry through an efficient implementation on finite element type meshes (in
the position variable) [4, 12]. However, the benchmarking of the method against
simple toy examples has often proved difficult [1, 4]. The problem stems from the fact
that the lowest order DEA approximations represent the momentum (or direction)
dependence of the energy density as a constant function and stronger directivity is
incorporated by increasing the order of this approximation in some sense, usually by
expanding in terms of Legendre polynomials [1]. However, for simple examples with
regular geometries, the dependence on direction is typically described in terms of a
finite number of Dirac delta distributions and hence the direction basis approximation
in DEA proves rather inefficient.

The main contribution of this study is to propose an alternative Petrov-Galerkin
discretization that will be efficient for approximating densities with the type of strong
directional dependence that is usually problematic for DEA. In particular, the direc-
tional dependence will be approximated using a basis of Dirac delta distributions to
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specify a discrete finite set of directions oriented into the domain from the bound-
ary. The propagation direction will be preserved when transporting densities through
multi-domains, such as through a sequence of mesh cells, provided that the finite
direction set at each boundary position is taken as a subset of a global set; a density
can then continue along a ray with the same global direction in different sub-domains.
As a consequence, the proposed methodology naturally extends to transport densi-
ties through complex geometries approximated by finite element type meshes, such as
those arising in industry.

1.2. Wider context and literature survey. The linear operator behind the
DEA method is a modified form of the Frobenius–Perron (FP) operator Lτ . The
FP operator describes the evolution through time τ of a density f along the solution
trajectories of a dynamical system defined by a vector field V as follows:

(1.1) Ẋ = V(X).

The solutions of (1.1) define trajectories in phase-space of the form X(τ) = ϕτ (X(0)),
where ϕτ is the associated flow map. The FP operator may then be written as a linear
integral operator

(1.2) Lτ [f ](X) =

∫
δ(X − ϕτ (Y ))f(Y, 0) dY.

Depending on the underlying dynamical system, the FP operator (1.2) can be used to
model a variety of physical phenomena including tracking uncertainties in the dynam-
ics of hypersonic flight [6], analyzing the conformation dynamics of molecules [8] and
modes of optical cavities [17] as well as finding regions of minimal external transport
in atmospheric science [29]. The underlying dynamical system for the DEA approach
is a classical Hamiltonian system describing the propagation of ray trajectories in the
phase-space X = (r,p) with position and momentum variables r, p, respectively [34].

Discretization methods for FP operators have traditionally focused on 1D dy-
namical systems, for example the classical Ulam method [35] whereby phase-space is
divided into cells and the cell-to-cell transition rates are estimated. More recently,
Junge et al. proposed wavelet and spectral collocation methods for the infinitesimal
FP operator [9, 14] opening up the possibility to treat higher dimensional systems,
but typically in simple geometric settings such as unit cubes or tori. Dynamic mode
decomposition (DMD) based approaches have been put forward for a related transfer
operator (Koopman) in [3] and subsequently extended to the FP operator and com-
pared to Ulam’s method, as well as generalised Galerkin methods, in a recent review
article [15]. Here, extended DMD is shown to be efficient when the eigenfunctions
are smooth and the authors suggest that extended DMD would then be suitable for
high-dimensional systems, such as those arising in molecular dynamics. A further
survey of data-driven model reduction methods for the FP (and Koopman) opera-
tor is given in [16], including extended DMD along with methods developed by the
dynamical systems and molecular dynamics communities such as time-lagged inde-
pendent component analysis and generalised Markov state models. The analysis of
high-dimensional systems is proposed in a problem specific manner via an informed
choice of dimensionality reduction, tensor decomposition and sparsification (includ-
ing deep learning) methods. Several other schemes have recently been proposed and
rigorously analysed including the finite volume method [25] and the Galerkin method
[13, 37]. The discretization methods used in DEA previously have been based on
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Galerkin projections onto Legendre polynomial or Fourier basis expansions [1, 34].
The first rigorous results concerning the convergence of DEA appeared recently [31]
for the case of Fourier basis expansions in circular domains.

Instead of transporting densities along trajectories in phase-space, there are many
alternative high-frequency wave models based on directly tracking rays, beams or
wave-fronts. The focus of these direct approaches tends to be on scattering, refractive
lens or aperture problems in free-space, or absorbent cavities, where only a small
number of reflections must be modelled - a review of this family of methods can
be found in Ref. [7]. Example applications can be found in a wide range of high-
frequency wave problems including in room acoustics [18, 30], electromagnetics [20],
as well as in seismology [36] and underwater acoustics [32]. Recent developments in
terms of ray-based methods for heterogeneous problems include ray approximations
of the heterogeneous Green’s function for medical imaging applications [28], and the
fast Huygens sweeping method for high-frequency Helmholtz [21] and Maxwell [27]
wave problems.

The DEA method computes the stationary density ρ accumulated in the long-time
limit of the dissipative FP operator:

(1.3) ρ(X) = lim
T→∞

∫ T

0

∫
w(Y, τ)δ(X − ϕτ (Y ))f(Y, 0) dY dτ,

given an initial density distribution f(X, 0). The dissipative factor w has been in-
cluded to facilitate convergence in the long-time limit. The stationary density ρ can
then be used to describe the wave energy distribution corresponding to the geomet-
rical optics (GO) limit of frequency-domain wave problems in finite domains [34]. In
this case, directly tracking rays or wave-fronts can quickly become intractable since
multiple reflections at boundaries often lead to complicated folding patterns of the
associated level-surfaces and an exponential increase in the number of branches that
need to be considered. Instead, simplified statistical models are typically set up under
additional ergodicity and mixing assumptions on the ray dynamics [11, 23]. One of
the simplest and most well-known approaches of this type is the so-called Statistical
Energy Analysis (SEA), which has proved popular for applications in vibration and
acoustics [22, 23]. The principle advantage of SEA models is that they describe highly
complex systems using relatively small systems of equations by subdividing a built-
up structure into a set of subsystems and considering the (thermodynamic) energy
flow rates, or coupling loss factors, between subsystems. However, setting up an SEA
model requires considerable expertise since there are a number of limiting assump-
tions on its validity that must be considered with care - these limitations are widely
reported in the SEA literature, see for example Refs. [2, 19]. DEA relaxes some of the
limiting assumptions of SEA by including directional dependence as well as allowing
for local variability in the positional dependence [34]. As such, DEA provides a higher
resolution result than SEA whilst at the same time removing the remodelling effort.

1.3. Structure of the paper. The paper is structured as follows: in Section
2 we will describe a boundary integral operator model for transporting wave en-
ergy densities through phase-space, including the projection of the resulting bound-
ary density into the domain. Section 3 will then introduce the direction preserving
Petrov-Galerkin discretization of both the boundary integral operator and the do-
main projection formula, whereby the latter can be reduced to a finite sum over the
global direction set. The effectiveness of the proposed discretization scheme will then
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(sj, pj)

ϕi, j(sj, pj)

Fig. 2.1. The boundary map ϕi,j(sj , pj) taking the phase-space coordinates Xj = (sj , pj) ∈
Γj × (−ηj , ηj) to ϕi,j(sj , pj) = (s′i, p

′
i) ∈ Γi × (−ηi, ηi), which corresponds to the next intesection

with a boundary edge where the ray undergoes either (refracted) transmission or a specular reflection.

be demonstrated through the numerical experiments reported in Section 4. The nu-
merical examples considered range from a simple problem in a unit square domain,
through irregular coupled acoustic cavities and culminate in a simulation of the vi-
brational energy distribution within a triangle mesh of a thin aluminium shell taken
from a vehicle shock tower.

2. Propagating phase-space densities via integral operators. In this sec-
tion we outline the underlying model for propagating phase-space densities along
ray trajectories using the Perron-Frobenius operator. We are concerned with trans-
porting densities through multi-domains Ω = ∪Kj=1Ωj , via Hamiltonian ray dynamics
Hj(r,p) = |p|/η(r) ≡ 1, where η(r) > 0 is related to the inverse of the phase velocity
(or slowness) in Ωj for j = 1, . . . ,K. Here, r ∈ Ω denotes the position coordinate and
p denotes the momentum (or slowness) vector. We assume that each Ωj , j = 1, . . . ,K
is a convex polygon containing a homogeneous medium, that is, η(r) = ηj when r ∈ Ωj
for j = 1, . . . ,K and ηj , j = 1, . . . ,K are constants. Note that when ηj = c−1

j , the
inverse of the phase velocity in Ωj , then Hj corresponds to the Hamiltonian for the
ray trajectories obtained in the GO limit for the Helmholtz equation

(2.1) ∆u+ k2
ju = 0,

with kj = ω/cj the wavenumber at angular frequency ω. Alternatively when ηj =√
ω/cj , then Hj corresponds to ray trajectories for the frequency domain biharmonic

wave equation

(2.2) ∆2u− k4
ju = 0,

in the GO limit. The additional
√
ω factor stems from the fact that the phase velocity

cj ∝
√
ω for (flexural) wave solutions to (2.2), whereas cj is independent of ω for

solutions to the Helmholtz equation - see Appendix A for further details.
We next define the phase-space coordinates Yj = (sj , pj) on the boundary Γj =

∂Ωj , j = 1, . . . ,K, where sj parametrizes Γj by arclength and pj = ηj sin(θj) de-
notes the component of the momentum vector tangential to Γj at sj . The angle
θj is formed between the outgoing ray trajectory and the inward pointing normal
vector to Γj at sj - see Fig. 2.1. Now let ϕi,j(sj , pj) = (s′i(sj , pj), p

′
i(sj , pj)) de-

note the boundary map describing the flow from the boundary of the domain Ωj to
(s′i(sj , pj), p

′
i(sj , pj)), where s′i(sj , pj) is positioned on the boundary of the domain

Ωi and p′i(sj , pj) = ηi sin(θ′i(sj , pj)) is the corresponding tangential momentum. Note
that we are implicitly assuming that either i = j or Γi and Γj share a common edge,
through which the ray could travel. As before, the angle θ′i is formed between the
outgoing ray trajectory and the inward pointing normal vector to Γi at s′i. The cal-
culation of the angle θ′i will depend on the nature of the media within Ωi and Ωj , as
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well as other physical factors such as the curvature in the case of a thin shell domain,
for example. In the simplest possible cases, θ′i will correspond to either a specular
reflection if i = j or the continued transmission of the ray in the same direction as
when it arrives at Γi if i 6= j, but ηi = ηj .

Phase-space densities are transported throughout Ω using a modified form of the
FP operator (1.2) first proposed in [34], whereby the continuous time flow map ϕτ is
replaced by the discrete boundary map ϕi,j . In this way the FP-operator becomes a
local boundary integral operator Bj , transporting a density f from the phase-space
on the boundary Γj to the next boundary intersection with Γi via

(2.3) Bj [f ](Xi) :=

∫
e−µjD(Xi,Yj)wi,j(Yj)δ(Xi − ϕi,j(Yj))f(Yj) dYj .

Here Xi ∈ Γi×(−ηi, ηi) for some i = 1, 2, . . . ,K and the weighting factor wi,j is intro-
duced to incorporate absorption factors at boundaries as well as direction-dependent
reflection/transmission coefficients. A trajectory length dependent damping factor
with coefficient µj > 0 has also been introduced, with D(Xi, Yj) representing the
Euclidean distance between sj and the solution point. The global boundary integral
operator B =

∑
j Bj is formed by taking the sum over each sub-domain Ωj that shares

a common edge with Ωi.
The stationary boundary density ρ induced by a prescribed initial boundary den-

sity ρ0 can be obtained from a Neumann series via

(2.4) ρ =

∞∑
n=0

Bn[ρ0] = (I − B)−1[ρ0],

where Bn models the density after n iterates of the operator B. Once the stationary
density ρ is found, the interior density ρΩ can then be obtained by projecting onto
position space in Ω using

(2.5) ρΩ(r) =
η2
j

α

∫ 2π

0

e−µjD(r,sj)ρ(sj(r,Θ), pj(r,Θ)) dΘ.

The method for deriving (2.5) from the underlying Hamiltonian mechanics is presented
in Appendices B and C of Ref. [12]. The pre-factor α depends on the underlying wave
equation, with α = 1 for the Helmholtz equation or α = 2 for the biharmonic equation.
In addition, r ∈ Ωj is a prescribed solution point and Θ ∈ [0, 2π) is the polar angle
parametrising trajectories approaching r from sj(r,Θ) ∈ Γj . With abuse of notation,
the distance function D is here used to represent the Euclidean distance between the
solution point r ∈ Ωj and the boundary position sj ∈ Γ.

3. Discretization. In this section we discuss a direction preserving discretiza-
tion of the local boundary operator (2.3) using a Petrov-Galerkin projection in order
to numerically solve for the stationary density ρ via (2.4). We detail how the two-
dimensional integral can be simplified and evaluated analytically for the case of convex
polygonal sub-domains Ωj , j = 1, 2, . . . ,K considered here.

Consider a subdivision of the boundary Γj into elements Ejm for m = 1, 2, . . . ,Mj

and a set of global ray directions Φl ∈ [0, 2π), where l = 1, 2, . . . L, defined anti-
clockwise relative to the positive x-axis. Here we make the choice Φl = 2π(l − 1)/L,
but note that this can be tailored for the example under consideration to ensure
the inclusion of dominant directional transmission paths if these are known a-priori.
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Γj

sj

φ1 = π/4

φ2 = 0

φ3 = − π/4

Fig. 3.1. Depiction of the local direction coordinates φn(sj) ∈ (−π/2, π/2), n = 1, 2, 3 for the
case when there are L = 8 global directions given by Φl = 2π(l − 1)/8 for l = 1, 2, . . . , 8. The map
between local and global coordinates takes the form φn = γ − Φn+1 for n = 1, 2, 3, where the global
coordinate index has been shifted to run over the correct subset of directions. The change of sign
between φn and Φn+1 is due to the fact that the local angles are chosen positive for positive projected
momenta pn. The constant γ corresponds to the global direction of the inward normal vector at sj
and so γ = π/2 in the depicted example.

We also perform the boundary element subdivision in such a way that any two sub-
domains sharing a common edge will have identical boundary elements along the
common edge. Furthermore, we set up the subdivision such that none of the Ejm
extend over any of the vertices of the polygon Γj , i.e. every Ejm belongs to exactly
one straight boundary edge. Now define φn(sj) ∈ (−π/2, π/2), n = 1, 2, . . . , Nm to be
the local ray directions at sj ∈ Γj . The local directions correspond to the subset of the
global directions that are directed into Ωj at sj and have been re-labelled according
to the angle they make with the interior normal vector at sj - see Fig. 3.1 for a simple
example case. If adjacent mesh cells are non-planar, then care has to be taken on how
to map the local to the global position set, see Section 4.3 for details.

We now approximate ρ on Γj×(−ηj , ηj) using a finite-dimensional approximation
of the form

(3.1) ρ(sj , pj) ≈
Mj∑
m=1

Nm∑
n=1

ρ(j,m,n)bm(sj)δ(pj − p̃n(sj)), j = 1, . . . ,K,

where p̃n(sj) = ηj sin(φn(sj)) and bm(sj) = |Ejm|−1/2 for sj ∈ Ejm, and zero elsewhere,
with |Ejm| = diam(Ejm). For m = 1, 2, . . . ,Mj , bm defines an orthonormal basis of
piecewise constant functions with respect to the standard L2 inner product and hence
we apply a standard (Bubnov) Galerkin projection onto our basis in the position
variable sj . However, in the momentum variable pj we choose a set of test functions
that are orthogonal (in fact orthonormal) in the L2 inner product to δ(pj − p̃n(sj))
for n = 1, 2, . . . , Nm as follows. First define ∆φn = φn+1−φn for n = 1, 2, . . . , Nm−1
and consider a subdivision of the local direction range

(−π/2, π/2) =

Nm⋃
n=1

In

with I1 = (−π/2, φ1 + ∆φ1/2], INm = (φNm−1 + ∆φNm−1/2, π/2) and

In = (φn−1 + ∆φn−1/2, φn + ∆φn/2]
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Fig. 3.2. Illustration of the case when the entries of the discretized boundary operator matrix
BI,J are non-zero for a reflected ray (i = j). The initial position sj and local direction θj must be
such that the ray arrives at the boundary element Ei

m′ and the local direction of the reflected (or
transmitted if i 6= j) ray must fall within the local direction sub-interval In′ .

for n = 2, 3, . . . , Nm − 1. We then define the test functions as

χn(pj) = χ̃n(arcsin(pj/ηj)),

where χ̃n(θj) are the characteristic functions χ̃n(θj) = 1 if θj ∈ In, or zero otherwise.
Hence we have the property

(3.2) 〈δ(· − p̃n(sj)), χn′〉L2(−ηj ,ηj) = 0

unless n = n′, when the inner product is one.
A Petrov-Galerkin projection of the operator Bj on to the basis and test function

combination described above leads to a matrix representation B with entries given by

BI,J =

∫
Γj×(−ηj ,ηj)
e−µjD(ϕi,j(Yj),Yj)wi,j(Yj)bm(sj)bm′(s′i(Yj))δ(pj − p̃n(sj))χn′(p′i(Yj)) dYj

=

∫
Γj

e−µjDi(sj)wi,j(sj , p̃n(sj))bm(sj)bm′(s′i(sj , p̃n(sj)))χn′(p′i(sj , p̃n(sj))) dsj

=
1

|Ejm|1/2

∫
Ejm

e−µjDi(sj)bm′(s′i(sj , p̃n(sj)))χn′(p′i(sj , p̃n(sj))) dsj ,

(3.3)

where I and J denote the multi-indices I = (i,m′, n′) and J = (j,m, n), respectively.
We have also introduced the notation Di(sj) for the Euclidean distance between
sj ∈ Γj and s′i(sj , p̃n(sj)) ∈ Γi. Note that the four dimensional integration in the
definition of the Galerkin projection has been reduced to a single integral over the
boundary element Ejm ⊂ Γj due to the local support of the spatial basis and the
properties of the Dirac δ distributions arising in equations (2.3) and (3.1). To obtain
the third line in (3.3), we have further assumed that the weight function wi,j is
independent of sj ∈ Ejm and may define either locally constant damping at boundaries
or direction-only dependent reflection/transmission coefficients.
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The calculation of the matrix element BI,J is therefore relatively simple, since the
two basis functions are also locally constant and will be zero unless the direction θ′i ∈
In′ and s′i ∈ Eim′ , meaning that most entries to the matrix will be zero. The case when
the matrix elements are non-zero is illustrated in Fig. 3.2 and the calculation only
involves the integral of the exponential term e−µjDi(sj) over the element Ejm and mul-
tiplication by the pre-factor wi,j(p̃n(sj))bm(sj)bm′(s′i) = wi,j(p̃n(sj))(|Ejm||Eim′ |)−1/2.
For polygonal boundaries, the Euclidean distance function Di(sj) is linear in sj ∈ Ejm
and hence the integral in the third line of (3.3) can be performed analytically with
relative ease. The only potential complication arises when s′i(sj , p̃n(sj)) coincides
with one of the vertices, and the integral must then be sub-divided at the correspond-
ing value of sj . We note that analytic spatial integration is also possible for higher
order basis functions using Legendre polynomials, albeit with a more complicated
implementation process based on recursion formulae [1]. Since the expansion (3.1)
represents a local density approximation and the transfer of energy is only between
connected sub-domains, B is also a block-sparse matrix for large K.

The coefficients of the expansion (3.1) can be found by solving the linear system
ρ = (I − B)−1ρ0, which corresponds to the discretized form of equation (2.4). Here
ρ0 and ρ represent the coefficients of the expansions of ρ0 and ρ, respectively, when
projected onto the finite dimensional basis. Note that for I − B to be invertible, we
must include either a positive dissipation factor µj > 0 or a boundary absorption
factor within wi,j . The entries of the source vector ρ0 corresponding to an initial
density ρ0 are given using the property (3.2) and orthonormality of the spatial basis
functions via

[ρ0]J =

∫
Γj×(−ηj ,ηj)

ρ0(sj , pj)bm(sj)χn(pj)dYj

=
1

|Ejm|1/2

∫
Ejm

∫
In

ρ0(sj , pj)dpjdsj .

(3.4)

Once ρ has been computed and substituted into (3.1), then the interior density
ρΩ can be approximated using (2.5) as follows

ρΩ(r) ≈

η2
j

α

Mj∑
m=1

Nm∑
n=1

ρ(j,m,n)

∫ 2π

0

e−µjD(r,sj(r,Θ))δ(pj(r,Θ)− p̃n(sj(r,Θ)))bm(sj(r,Θ)) dΘ.

(3.5)

Applying the properties of the Dirac delta one may write

(3.6) δ
(
pj(r,Θ)− p̃n(sj(r,Θ))

)
=
δ(θj(r,Θ)− φn)

ηj cos(θj(r,Θ))
=

δ(Θ− Φl)

ηj cos(θj(r,Θ))
,

where Φl is the global direction corresponding to the local direction φn, which arises
in the term p̃n(sj(r,Θ)) = ηj sin(φn(sj(r,Θ))). We note that the sj dependence of
φn relates to the differences in the local direction set on each edge of Γj , and is
independent of sj along a given edge of Γj . To apply the expression (3.6) we must
therefore subdivide the integral in (3.5) into a set of sub-integrals, split at the angles
Θ where sj(r,Θ) corresponds to a vertex of Γj . The second equality in (3.6) is due the
fact that the mapping between local and global directions is a switch of orientation
(multiplication by −1) and then a translation by a local edge dependent constant - see
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Fig. 3.1 and caption. The denominator in (3.6) is calculated from the (absolute value
of) the θj derivative of pj(r,Θ) = ηj sin(θj(r,Θ)). Finally, we arrive at the following
global ray summation result for the interior density

(3.7) ρΩ(r) ≈ ηj
α

L∑
l=1

e−µjD(r,sj(r,Φl))ρ(j,m,n)(r,Φl)

|Ejm(r,Φl)|1/2 cos(θj(r,Φl))
.

Here the integral has only returned a non-zero value each time Φ coincides with a
member of the global direction set and so the double sum over boundary elements
and local directions can be replaced with a single summation over the global directions
Φl, l = 1, 2, . . . , L. The boundary position sj and local direction θj can be determined
from knowledge of the solution point r and the ray direction Φl, hence we can also
obtain the element index m and the local direction index n.

4. Numerical results. In this section we study a series of examples in order
to investigate the effectiveness of the proposed discretization, including rates of con-
vergence as the phase-space discretization is refined and investigating the effect of
including a transparent internal mesh. We include examples both where the direc-
tivity can be exactly described by a finite direction set and irregular domains where
the directivity can only be approximated by increasing the number of ray directions.
We also consider both flat two-dimensional acoustic domains and flexural vibrations
of curved thin shells. We start with the simplest example of a ray reflecting back and
forth between two parallel walls.

4.1. Simple parallel wall reflections. Consider a unit square acoustic domain
Ω with vertices (0, 0), (1, 0), (1, 1) and (0, 1) and sound-hard reflections along the
adjoining edges. The problem is forced via a spatially constant line source

(4.1) ρ0(s, p) = 1{xs=0}(s)δ(p)

along the fourth edge from (0, 1) to (0, 0), propagating rays into the domain directed
perpendicularly to this edge. Note that since there is only one sub-domain we have
dropped the subscripts from the phase-space boundary coordinates and denote (s, p) =
(s1, p1). The notation 1{xs=0} is used to represent an indicator function that is zero
unless the position defined by the arclength parameter s has (Cartesian) x-coordinate
xs = 0, where 1{xs=0}(s) = 1.

The resulting ray dynamics is extremely simple since rays only bounce between
the source edge and the opposite edge, and are always directed perpendicular to these
edges. The ray density will simply take a constant value on these two edges and
be zero on the remaining two edges. After applying a dissipative term of the form
exp(−µD), with damping coefficient µ and trajectory length D, then the interior
ray density ρΩ may be calculated at r = (x, y) ∈ Ω via a geometric series over the
reflection order to give

(4.2) ρΩ(x, y) =
e−µx + e−µ(2−x)

1− e−2µ
.

For the calculations in this section we set the damping parameter µ = π/2.
Despite its apparent simplicity, we study this example to demonstrate the pro-

posed methodology in comparison to previous DEA approaches which employ the
same spatial discretization as here, but instead use a Bubnov-Galerkin projection
onto a basis of scaled Legendre polynomials in the momentum variable [4, 12]. We
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Table 4.1
Relative mean errors and estimated orders of convergence as the size of the momentum basis is
varied: comparison between the best and worst choice of global direction set for the Dirac delta basis
and an orthogonal polynomial basis using Legendre polynomials.

Φl = 2π(l − 1)/L Φl = (2l − 1)π/L Legendre basis
L/2 or basis order Error Error EOC Error EOC

4 1.4737e-16 6.2325e-2 - 5.6847e-2 -
8 1.4736e-16 5.8211e-2 0.10 3.4446e-2 0.72
16 1.4736e-16 1.4781e-2 1.98 2.0904e-2 0.72
32 1.4736e-16 7.7382e-3 0.93 1.1887e-2 0.81
64 1.4736e-16 3.8344e-3 1.01 6.4164e-3 0.89
128 1.4736e-16 1.4887e-3 1.37 3.5660e-3 0.85
256 1.4736e-16 3.5971e-4 2.05 1.8413e-3 0.95

first consider this problem as a single domain and then as a multi-domain problem,
where the sub-domains are given by triangular mesh cells. We then introduce curva-
ture in the x-direction and consider essentially the same example with the curvilinear
coordinate taking the role of x in the exact solution.

Considering the unit square as a single domain, we divide the boundary into four
elements (one per edge) and apply a direction basis containing four directions Φ1 = 0,
Φ2 = π/2, Φ3 = π and Φ4 = 3π/2. Using this coarse discretization we are able to
achieve a machine accuracy approximation of ρΩ. The reason for this effectiveness is
that even at this coarse discretization level, the exact solution for ρ on Γ lies in the
approximation space since it takes a constant value on each edge and propagates only
in the directions Φ1 and Φ3. One can also consider the convergence of the model if the
direction set is chosen to be an equi-spaced set of directions that are as far from the
true propagation directions as possible. That is, we replace the choice Φl = 2π(l−1)/L
with Φl = (2l − 1)π/L, l = 1, 2, . . . , L. The results are summarised in Table 4.1 and
also include a comparison against Legendre basis approximation typically used in
DEA simulations. The first column relates to the number of degrees of freedom in the
momentum approximation on a given boundary element, which for the Dirac delta
basis is L/2 since half of the equally spaced global direction set are designated as
directions propagating within the unit square domain. For the Legendre basis, the
number of degrees of freedom is actually the basis polynomial order (shown in the first
column) plus one since the basis order starts from zero. The error columns show the
relative mean error sampled at P = 3638 interior points ri, i = 1, 2, . . . , P taken as
the centroids of a triangle mesh generated by the Distmesh package [26] for MATLAB
with mesh spacing 0.025 (corresponding to the finest internal mesh considered in the
next experiment). Explicitly, we calculate

(4.3) Error =

∑P
i=1 |ρ̂Ω(ri)− ρΩ(ri)|∑P

i=1 ρΩ(ri)
,

where ρ̂Ω is the approximation to ρΩ calculated via (3.7) for the error values reported
in columns 2 and 3, or calculated using the DEA approximation detailed in Refs. [4, 12]
for the error values in column 5. The estimated order of convergence (EOC) is then
calculated via the binary logarithm of the ratio of each error value to the previous
error value (in the same column).

The results in Table 4.1 show that even in the worst case scenario, the Dirac delta
basis achieves reasonably small errors but with a fairly volatile convergence rate that
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Fig. 4.1. The exact solution (4.2) illustrated on the two types of internal mesh considered.
Left: mesh consisting of K = 100 square mesh cells generated from an equal subdivision of the
standard Cartesian coordinates, right: mesh consisting of K = 211 triangles generated by Distmesh
with nominal mesh spacing h = 0.1.

is approximately between first and second order. For any Dirac delta basis including
the true propagation directions, the method is accurate to machine precision. In
comparison to a DEA approximation using Legendre polynomials, even the worst case
direction choice typically provides better accuracy when compared to the Legendre
polynomial basis with one additional degree of freedom. Whilst the convergence
rate for the Legendre polynomial basis is less volatile, it is also typically sub-linear
and slower than the convergence of the Dirac delta basis with the ‘bad’ direction set
choice. Two further advantages of the Dirac delta basis are that one achieves a sparser
representation of the matrix B and a simpler evaluation of the matrix entries, which is
free of the numerical evaluation of the integral with respect to the momentum variable
due to the sifting property of the Dirac delta. The computation times approach an
O(L) scaling from below as the number of directions is increased. For non-optimised
serial MATLAB code running on a 2.6GHz processor, the computational times for
the Dirac delta basis results in Table 4.1 range between 8s and 255s, and in each case
the time is dominated by the assembly cost for the linear system. All other tasks
(preprocessing, solution of the linear system, calculation of the interior density) take
around 2s in total, for all values of L considered. We note that this approximate O(L)
scaling is a consequence of the sparsity of the matrix (3.3). The number of matrix
entries to compute for the linear system formed using the Legendre basis grows with
the square of the basis order and the computational cost scales worse than this because
higher order basis functions require additional numerical integration effort.

We now consider the effect of including an internal mesh in the model and mod-
elling the ray flow as a local propagation between mesh cell boundaries. This pro-
cedure is in no way necessary for the example at hand, but would be necessary to
describe propagation through complex domains including curvature and/or inhomo-
geneities, and so will be tested here. We consider two types of internal mesh as
depicted in Fig. 4.1, the first of which is based on square mesh cells resulting from
an equal subdivision in both x and y. The second is a triangulation generated by
the Distmesh package for MATLAB [26]. In each case we apply the simplest possible
boundary element discretization on each mesh cell Ωj , j = 1, 2, . . . ,K with exactly
one boundary element per edge. To consider the effect of the mesh on the accuracy
in isolation of other factors we choose the direction set Φl = 2π(l− 1)/L with L = 4,
which calculated the result to machine accuracy in the absence of an internal mesh.
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Table 4.2
Relative mean errors and estimated orders of convergence as the size of the internal mesh elements
are varied: comparison between square and triangular elements for the Dirac delta basis and trian-
gular elements for different orders of Legendre polynomial basis.

Quad delta Distmesh delta Distmesh poly 8 Distmesh poly 256
h Error Error EOC Error EOC Error EOC

0.4 - 3.9038e-2 - 6.2347e-2 - 4.8582e-2 -
0.2 3.0060e-16 1.3012e-2 1.59 5.4538e-2 0.19 1.6165e-2 1.59
0.1 1.4942e-15 5.8543e-3 1.15 1.0237e-1 -0.91 1.0011e-2 0.69
0.05 5.9241e-15 2.7935e-3 1.07 1.2036e-1 -0.23 5.6531e-3 0.82
0.025 2.5038e-14 1.3721e-3 1.03 1.2070e-1 0.00 4.5696e-3 0.31

The first column of Table 4.2 shows the mesh spacing, which is either the length
of each side of the square element mesh or the nominal mesh spacing parameter used
within the Distmesh package. The remaining columns show the corresponding errors
and EOCs calculated as in Table 4.1, except now taking the average error using
the centroids of the mesh cells within the current internal mesh (as opposed to the
centroids of the fixed Distmesh triangulation with h = 0.025). The second to fourth
columns show results computed using the Dirac delta basis with the global direction
set Φl = 2π(l − 1)/L with L = 4 and the final four columns compare these results
to those computed using a Legendre polynomial approximation truncated after the
8th or 256th order term as indicated in the table headings. The results in the 2nd
column show that introducing the quadrilateral mesh retains the machine precision
accuracy obtained in the absence of a mesh, but as the mesh density is increased,
round off errors accumulate and become more significant. The reason for the high
accuracy is that the exact solution (4.2) is independent of the y-coordinate, meaning
that it takes a constant value along the vertical boundary lines of each mesh cell.
Furthermore, since the only rays propagating through Ω travel parallel to the x-axis,
then rays do not emerge from the horizontal boundary lines of a mesh cell making the
boundary density ρ zero along these edges. Hence, the exact solution for ρ on Γ is again
within the approximation space. This is no longer the case for general triangle meshes
generated using Distmesh and consequently one loses the high accuracy as shown in
column 3 of Table 4.2. The error introduced corresponds to the approximation of the
exact solution (4.2) by piecewise constant functions along the mesh cell boundaries
within Ω and consequently the EOC results shown in the fourth column of Table 4.2
indicate first order convergence. These results compare favourably with the Legendre
basis results. Here, the refinement of the spatial mesh with a fixed order polynomial
approximation in momentum leads to convergence to a solution different from the
exact solution; this solution becomes closer to the exact solution only once the order
polynomial approximation in the momentum variable is increased.

We conclude this section by considering the additional error introduced when
the triangulated domain is used to approximate a curved surface. The parallel wall
reflection problem and boundary conditions are unchanged from before, except that
the domain is now curved in the x − z plane. The problem retains invariance in the
y-direction. A curvilinear coordinate x̃ ∈ [0, 1] takes the role of the x-coordinate in
the exact solution (4.2) and the definition of the global direction set. The region x̃ ∈
(1/3, 2/3) is a quarter cylinder with radius 2/(3π) and outside this region the domain
is flat as before - see Fig. 4.2. The additional error in this example (compared with the
results shown in columns 3 and 4 of Table 4.2) arises solely from the approximation
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Distmesh delta
h Error EOC

0.4 8.6884e-2 -
0.2 1.8460e-2 2.23
0.1 6.8713e-3 1.43
0.05 2.9971e-3 1.20
0.025 1.4194e-3 1.08

Fig. 4.2. Results for the parallel wall reflection problem when the middle third of the domain in
the x-direction has been replaced with a quarter cylinder with the same surface area. Left: numerical
solution computed using the Dirac delta basis containing the propagation directions of the exact
solution and with one spatial (boundary) element per mesh cell edge using a mesh with h = 0.1.
Right: table of results showing the relative mean errors and estimated orders of convergence as the
size of the internal mesh is varied.

of the curved geometry in the region x̃ ∈ (1/3, 2/3) by a mesh of flat triangles. A ray
travels a shorter distance through the triangle mesh than it does on the actual curved
surface. The distance travelled through the mesh will converge towards the correct
one as the mesh is refined.

The numerical solution on a Distmesh generated mesh with h = 0.1 is shown in
the left plot of Fig. 4.2 and we note the correspondence to the exact solution on the
equivalent Distmesh generated mesh for the unit square domain shown in the right
plot of Fig. 4.1. The table at the right of the plot in Fig. 4.2 shows the relative
mean errors and EOCs when the mesh size is varied as in Table 4.2. The results
in columns 3 and 4 of Table 4.2 show the results for the corresponding examples on
the unit square. Introducing the curved geometry has therefore resulted in larger
errors than those for the equivalent flat planar domain problem as would be expected.
However, the increase in the error is relatively small for h ≤ 0.1 and the convergence
rate appears to be unaffected, approaching first order as the mesh is refined. For the
calculations in Table 4.2 and those documented in Fig. 4.2, the direction basis size L
was fixed and instead the number of mesh cells K was varied. The computational cost
scales with O(K2) and for large K it is recommended to compute in parallel, since
the method is embarrassingly parallel in K [4]. As before, the computation times are
dominated by the cost of assembling the linear system, but there is a notable increase
in the preprocessing cost compared to before, owing to the mesh generation and
associated pre-calculation tasks (finding nearest neighbours, classifying edges etc.).
The computation times ranged from 0.3s to 34 minutes for non-optimised MATLAB
code using the parallel computing toolbox on 16 cores with a 2.6GHz clock speed.

4.2. Irregular coupled cavity examples. We now consider numerical exam-
ples in three different configurations (labelled A to C) of coupled polygonal acoustic
cavities Ω = Ω1 ∪ Ω2 as introduced in Refs. [24, 34] and shown in Fig. 4.3. In each
case the cavities are connected along the line y = 0 and driven by an acoustic velocity
potential point source with angular frequency ω located at r0 ∈ Ω1. This leads to an
initial boundary density in Ωj , j = 1, 2, of the form [1]

(4.4) ρ0(sj , pj ; r0) =
ω% cos(θ0)e−µD(r0,sj)wj,1(sj , pj)δ(pj − p0)

8πD(r0, sj)
,
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Fig. 4.3. Logarithm (base 10) of the interior energy densities in coupled cavity configurations
A, B and C with damping coefficient µ = π/2. The results have been calculated using L = 2048
global ray directions and an average boundary element step size of 0.0125.

where % is the density of the acoustic fluid in Ω. In addition, p0 = η1 sin(θ0) is the
tangential momentum of the ray emerging from sj (after specular reflection in Ω1

or transmission into Ω2) that arrived directly from r0, and θ0 ∈ (−π/2, π/2) is the
angle that this ray makes with the internal normal vector at sj . The initial boundary
density ρ0 will only be non-zero along polygonal edges that are directly illuminated by
rays from the source point, meaning that ρ0(s2, p2) = 0 along the edges of Γ2 except
for the edge that connects to Ω1. This property enters (4.4) through the term

wj,1(sj , pj) =


1 if j = 1 and sj is on a free edge,
R(pj) if j = 1 and sj is on the interface connecting to Ω2,
T (pj) if j = 2 and sj is on the interface connecting to Ω1,
0 otherwise.

Here, by a free edge we mean an edge not connecting to another sub-domain and R/T
denote the reflection/transmission probabilities for rays in Ω1 arriving at the interface
between Ω1 and Ω2. In the examples here we assume that Ω contains a homogeneous
fluid medium meaning that R(pj) ≡ 0 and T (pj) ≡ 1; furthermore, we choose: % = 1,
cj = 1 for j = 1, 2, ω = 100π and µ = π/2, as before.

Figure 4.3 shows the results for log10(ρΩ) in each of the coupled cavity configura-
tions using L = 2048 global ray directions and an average boundary element step size
of 0.0125, that is the number of elements along each edge is calculated by dividing
the edge length by 0.0125 and rounding to the nearest integer. The interior points at
which the solution is calculated are taken as the centroids of a triangle mesh generated
by the Distmesh package [26] for MATLAB with mesh spacing 0.025 as before. For
each configuration one observes that the interior solutions fluctuate locally between
illuminated and darker regions, particularly in the receiver sub-domain Ω2. This can
be attributed to the momentum discretization using a finite number of discrete ray
directions and such artefacts are typical in ray tracing methods - see, for example,
Section IV(B) of Ref. [30]. Note that the fluctuations are less visible in the source
sub-domains since the solution in Ω1 is the sum of the interior density computed via
finite ray summation (3.7) and the initial acoustic energy density emitted from the
source before reaching the boundary, which is given by %ω2η2

1 |G(r, r0)|2, where G
is the free-space Green’s function for the Helmholtz equation. Note that (3.7) only
gives the solution after the source has arrived at the boundary meaning that the initial
direct source illumination has to be added to give the full solution.

We now compare our results to an ‘exact’ solution given by the image source
method [5, 30], which is exact in the sense that we perform sufficiently many iter-
ations (reflections) that the mean solution in each sub-domain has converged to 12
significant digits. The number of iterations required for this level of convergence de-
pends on the damping coefficient µ and for the value µ = π/2 used here, the solution
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Fig. 4.4. Interior energy density in configuration A calculated at P = 3791 points in the right-
hand (receiver) sub-domain Ω2 with damping coefficient µ = π/2. The plot compares the results
calculated using a Dirac delta momentum basis with L = 2048 global ray directions and an average
boundary element step size of 0.0125, DEA with a Legendre polynomial expansion up to degree 32 in
the momentum variable and the same spatial approximation as before, and the image source method
with 32 iterations.

converges up to 12 digits after 32 iterations. Calculating the relative errors with
respect to this exact solution using (4.3) gives poor results due to the fluctuations
described above. For the discretizations used to create Fig. 4.3, the relative errors
for the solutions in the receiver sub-domain Ω2 range from 0.083338 for configura-
tion C, to 0.20644 in configuration B and up to 0.25379 for configuration A. This
is considerably worse than expected, given the results in the previous section. The
more accurate results for configuration C are probably due to the source sub-domain
Ω1 being rectangular, meaning that here the reflected ray directions will be exactly
represented in the direction basis.

To better understand the above results, in Fig. 4.4 we plot the interior density
in the receiver sub-domain for the worst case (configuration A) against the interior
point index number and compare to the image source result. Figure 4.4 also shows
a corresponding DEA result computed using the same spatial approximation with
average boundary element step size of 0.0125, but with the approximation in the
momentum variable computed using a Legendre polynomial expansion up to degree
32. The Legendre polynomial basis leads to a less fluctuating solution and the relative
error here is 0.067113. While this result is a considerable improvement on the Dirac
δ basis approximation and uses fewer degrees of freedom in the momentum variable,
it is still relatively large compared to the results of the previous section. The Dirac δ
basis result in Fig. 4.4 appears to approximately fluctuate about a mean given by the
image source method result. To verify whether this is indeed the case we calculate
the relative error in the mean of the Dirac δ basis result in Ω2:

Mean Error =

∣∣∣∑P
i=1 ρ̂Ω(ri)−

∑P
i=1 ρΩ(ri)

∣∣∣∑P
i=1 ρΩ(ri)

,

where ρ̂Ω is the approximation to the image source ‘exact’ result ρΩ. In configuration
A the result of this mean error calculation is 8.3112 · 10−4 and so the approximation
of the mean interior density in Ω2 is reasonably good (the mean error result for con-
figuration B is 2.4259 · 10−3 and for configuration C is 1.4634 · 10−3). Furthermore,
it is often only the mean response in a sub-domain that is of interest (depending on
the application) and in statistical energy analysis, this is typically the only available
quantity [24, 34]. The results in Fig. 4.4 also suggest that our method will give rea-
sonable results beyond this sub-domain average after applying local spatial averaging
or low pass filtering to smooth the fluctuations. We expect the results to improve
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Fig. 4.5. Logarithm (base 10) of the interior energy densities in coupled cavity configuration
A with damping coefficient µ = π/200. The three sub-plots compare the results calculated using an
average boundary element step size of 0.0125 and L = 1024 (left) or L = 2048 (center) global ray
directions with the result of applying 400 iterations of the image source method (right).

in the so-called ray chaos regime of longer trajectories where the dependence on the
direction is milder and very large numbers of reflections must be included, which also
means that the image source method soon becomes computationally prohibitive [30].

In order to explore the long-time ray behaviour further, we now investigate the
effect of reducing the damping coefficient from µ = π/2 to µ = π/200. For this damp-
ing parameter, the image source method will still be used as a means of comparison.
However, the image source results have now only converged to between 3 and 4 sig-
nificant digits after 400 iterations and so we will use the term relative discrepancy as
opposed to relative error to describe the differences between the methods. We note
that convergence to 3 or 4 places will still be sufficient to identify an improvement in
the µ = π/2 relative error results described above.

Figure 4.5 shows the results using the Dirac δ direction basis with both L = 1024
and L = 2048 global directions, and an average boundary element step size of 0.0125,
compared to the image source result described above. The match to the image source
is clearly better with the increased number of directions and this is confirmed by the
fact that the relative discrepancy (computed using the formula (4.3) with the image
source result in place of the exact solution) decreases from 0.04068 to 0.007755. We
note that this is a considerable improvement on the results for larger damping and
our earlier assertion about the accuracy of the method improving in the regime of
many reflections appears to be correct. For completeness, the relative discrepancy for
the more standard DEA approach with a Legendre polynomial basis approximation
in the momentum variable up to degree 32 and an average boundary element step
size of 0.0125, as before, is 0.01985. The discrepancy is therefore in between the two
results computed with the Dirac delta basis, but with far fewer degrees of freedom in
the model. Note also that the computational overhead per degree of freedom for the
Dirac delta basis is considerably less than for the Legendre polynomial basis since no
numerical integration is necessary. The computation times for the results in Fig. 4.5
again show an approximate O(L) scaling. A non-optimised serial MATLAB code gave
computation times of 24 minutes with L = 1024 and 49 minutes with L = 2048, and
as before, the time is dominated by the assembly cost for the linear system. All other
tasks combined take less than 20s in total for both values of L considered.

4.3. Flexural vibrations of thin elastic shells.

4.3.1. Thin shell cylindrical ridge. We first revisit the example of the curved
ridge shown in Fig. 4.2, albeit with the underlying wave model replaced with the
biharmonic equation for plate bending. Throughout this section the material param-
eters used correspond to a homogeneous thin aluminium shell, approximated locally
as a flat plate in each triangular sub-domain, and are summarised in Table 4.3. We
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Table 4.3
Parameters for the thin elastic shell model.

Parameter description Notation Value Units
Material thickness ζ 2.5e-3 m
Young’s modulus E 7.0e10 kg m−1 s−2

Material density % 2700 kg m−3

Poisson’s ratio ν 0.33 -
Angular frequency ω 18000π Rad s−1

consider a modified source density defined as

(4.5) ρ0(sj , pj) = 1{xs=zs=0}(sj)δ(pj − p0)

for j = 1, 2, . . . ,K. The modified source term (4.5) corresponds to a line-source along
the y-axis from y = 0 to y = 1 with tangential momentum p0 = η sin(θ0) and direction
θ0 ∈ (−π/2, π/2). Note that the case θ0 = 0 corresponds to an incoming ray direction
that is perpendicular to the boundary as considered in Section 4.1. We have dropped
the subscript j from η since we consider a homogeneous aluminium shell and

η =

√
ω

c
=

(
12%(1− ν2)

Eζ2

)1/4

takes the value η = 0.5068 (to four significant digits, see Table 4.3) in every mesh cell
Ωj , j = 1, 2, . . . ,K. Throughout this section we apply the simplest possible boundary
element discretization on each mesh cell with exactly one boundary element per edge.

For flexural wave propagation on a thin shell cylindrical ridge, the bending wave
only transmits across the ridge if the wavenumber in the direction of the maximum
curvature is sufficiently large [33]. In the example here, the initial direction of rays
from the (upper-left) source edge needs to be below a critical value for transmission,
otherwise the wave is reflected. For the ridge considered here this critical value can be
computed from the known radius of curvature, taking the value 3π/2 for x̃ ∈ (1/3, 2/3)
and zero elsewhere. When applying the technique on curved shells more generally,
we instead numerically estimate the principle directions and curvatures for the shell
using a nearest neighbour interpolation by a quadric surface [10].

Once the principle directions and associated curvatures are estimated, the thresh-
old incoming ray direction for bending mode transmission may be calculated from the
dispersion relationship for a flat plate and a cylindrical shell [33]. In particular, the
dispersion curve for a cylindrical shell is orthotropic and the second component of the
wave vector k = (kx, ky) extends over a smaller range than in the dispersion curve
for the flat region; waves with large |ky| in the flat region cannot pass into the curved
region (see Ref. [33] for details). The threshold incident ray directions can then be
identified as corresponding to the maximum and minimum admissible values of ky in
the curved region. We note that by symmetry of the problem at hand only one of
the extrema of ky must be calculated, since the other extremum will simply be the
negative of this. The dispersion relation may be differentiated (analytically) to iden-
tify the extrema and then the threshold incoming direction θ∗ at an interface between
two mesh cells may be calculated from the corresponding wave vector k = (kx, ky)
via tan(θ∗) = ky/kx. Once the threshold directions have been calculated for each
interface, they are implemented within BI,J (3.3) by setting wi,j(p̃n(sj)) = 1 − δij
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Fig. 4.6. Flexural wave energy densities on a cylindrical ridge approximated by K = 899
triangular mesh cells and with line sources emerging from the upper-left edge with direction θ0 =
0.39π (left column) or θ0 = 0.41π (right column). Top row: geodesic flow model with complete
transmission across the ridge. Bottom row: model including reflections due to the curvature.

for transmission from Ωj to Ωi and wi,j(p̃n(sj)) = δij for reflection, where δij is the
Kronecker delta. If the incoming ray direction with respect to the principle direction
associated to the maximum curvature is less than θ∗ then we implement transmis-
sion. When the incoming ray direction exceeds θ∗ then the direction of the ray
reflected with respect to the principle direction is used to determine whether this ray
corresponds to a reflection or transmission through the local interface. Note that
the incoming ray direction with respect to the principle direction is calculated from
p̃n(sj) = ηj sin(φn(sj)) by associating φn with its corresponding global direction and
using the scalar product of the global direction vector and the principle direction.

In the case of the aluminium ridge under consideration here with an incident wave
of angular frequency ω = 18000π, the bending wavenumber is k = 120.527 and the
maximal ky value may be calculated as 114.698, both to 6 significant digits. The

threshold incident ray direction is therefore θ∗ = tan−1(ky/
√
k2 − k2

y) ≈ 0.4π. Figure

4.6 shows the results of incorporating these curvature induced reflections compared
to a geodesic ray model with complete transmission across the ridge as considered
previously. The choice of damping parameter µ here corresponds to 0.5% hysteretic
structural damping whereby µ = 0.005k/2 ≈ 0.30132. One observes that the results
of both models are indistinguishable when θ0 = 0.39π as would be expected since
this choice of initial ray direction falls below the threshold value θ∗. However, for
θ0 = 0.41π the effect of the reflection model is evident since this value of θ0 exceeds
the threshold value. Note that the global directions for the simulations in this section
are all taken as Φl = 2π(l − 1)/L, l = 1, 2, ..., L and for the calculations shown in
Fig. 4.6, a choice of L = 200 ensures that the directions corresponding to θ0 = 0.39π,
θ0 = 0.41π and all the possible boundary reflection directions are included within the
basis. The computational cost for all four sub-plots is in the range 125s to 151s using
the MATLAB parallel computing toolbox to run on 16 cores with a 2.6GHz clock
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Fig. 4.7. Logarithm (base 10) of the interior energy densities for flexural wave motion excited
by a point source on a vehicle shock tower with damping coefficient µ = k/400. The six sub-plots
compare the results calculated using different numbers of ray directions in the direction basis as
follows: (a) and (d) L = 8, (b) L = 200, (c) L = 400, (e) L = 600 and (f) L = 1000. Top
row: geodesic flow model with complete transmission across the shell. Bottom row: model including
reflections due to the curvature.

speed. The times are again dominated by the linear system assembly (94s) and the
longer times here correspond to the lower sub-plots, owing to a longer pre-processing
time for calculating the local curvatures and principle directions.

4.3.2. Car shock tower. We now apply the above described models to a thin
aluminium shell with relevance to industrial applications, namely a shock tower model
taken from a Range Rover car. This example was also considered in Ref. [4], where
the directional dependence of the ray density was approximated using a Legendre
polynomial basis and the geometry induced reflections were modelled using plate
junction theory, rather than curved shell theory as proposed here. The material
properties are chosen to be the same as for the previous cylindrical ridge with constant
thickness throughout. We note that this is a simplification of the true model, which
is instead comprised of several regions where the thickness of the shell differs between
mesh cells [4]. Including this thickness variation is an area for future work, which
would also include devising a suitable direction basis for problems including refraction.

Figure 4.7 shows the results for the approximated ray density distribution (3.7)
calculated at the centroids of each of the K = 11623 triangular mesh cells used to
approximate the geometry. The excitation of the system is via a unit point source
that is visible on the front face of the shock tower and takes the form [12]:

(4.6) ρ0(sj , pj ; r0) =
k2 cos(θ0)e−µD(r0,sj)wj,0(sj)δ(pj − p0)

16πζ%ω3/2D(r0, sj)
,

where r0 ∈ R3 contains the Cartesian coordinates of the source location. In this case
the source point corresponds to a vertex of the mesh and so the weight function wj,0 is
essentially a visibility function for the mesh cells Ωj whose boundaries can receive rays
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directly from r0. In particular, assuming that r0 is not on a vertex connecting to a
free edge and that the region surrounding to the source point is flat and homogeneous
then wj,0(sj) = 0 unless either r0 ∈ Γj and sj is on a free edge or r0 6∈ Γj , but sj is
on an edge shared with a mesh cell whose boundary contains r0. In these latter two
cases, wj,0(sj) = 1. The choice of damping parameter µ again corresponds to 0.5%
hysteretic structural damping with µ ≈ 0.30132.

Note that unlike the cylindrical ridge considered in the previous section, here
there is no simple and consistent choice of local x-axis that can be applied in each
mesh cell to correspond to the global direction Φ1 = 0. Recall that for the ridge
example, the curvilinear coordinate x̃ takes the role of the x-coordinate and so the
global directions in each mesh cell can be chosen relative to x̃ (after projection onto
the mesh cell under consideration). Here we employ a more generally applicable
procedure that preserves the propagation directions on flat regions of the structure,
that is, for coplanar mesh cells. To this end we perform a rotation of the global
Cartesian coordinate frame (in R3) so that the rotated z-axis always corresponds to
a consistently defined normal vector across the whole surface Ω (the angle of rotation
for a given mesh cell is therefore the angle between the normal vector to that mesh
cell and the positive z-axis). Uniqueness of the rotation follows by defining the axis
of rotation to be the line formed from the intersection of the tangent plane to the
mesh cell with the plane z = 0. The global direction Φ1 = 0 then corresponds to the
rotated x-axis and the term global direction becomes a slight misnomer due to the
local rotations for non-coplanar mesh cells.

The top row of Fig. 4.7 shows the results of a geodesic flow model with complete
transmission across all mesh edges that do not represent a physical edge or hole in the
structure. One can gain some intuition from plot (a), which shows the model using
only L = 8 global directions in the direction basis. These 8 directions can be seen
emanating from the source point on the front face of the shock tower and some of
the early reflections from holes and the outer boundary can also be observed. Plots
(b) and (c) show the same model when the number of global directions is increased
to L = 200 and L = 400, respectively. The latter two plots appear identical by
eye demonstrating convergence of the method and show that the vibrational energy
spreads evenly across the shock tower from the source point. The energy is noticeably
higher in the vicinity of the source point due to the damping. The bottom row of
Fig. 4.7 shows the results of additionally including reflections due to the curvature in
the model. Plot (d) may be directly compared with plot (a) since only L = 8 global
directions are modelled and the colour scales are consistent. One observes that, as for
the cylindrical ridge, including curvature induced reflections leads to the localisation
of the vibrational energy on relatively flat regions of the structure. Plots (e) and (f)
show the same model when the number of global directions is increased to L = 600
and L = 1000, respectively. The latter two plots appear very similar in their structure,
providing evidence of convergence. The inclusion of curvature induced reflections in
the model therefore significantly increases the number of global directions that are
necessary for convergence to be observed in the simulations. The results in plots (e)
and (f) demonstrate that vibrational energy localises on relatively flat regions of the
shell and the curved ridges appear to suppress vibrations. This is consistent with
observations from the finite element simulations of the shock tower in Ref. [4].

The total computational cost for the results here ranges from 9 hours (L = 8) to
2.5 days (L = 1000) for non-optimised parallel MATLAB code running on 16 cores as
before. These times remain dominated by the linear system assembly, which ranges
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from 6.7 hours (for both L = 8 and L = 200) to 34 hours (for L = 1000). The linear
system solver now also takes a significant proportion of the computation time and
so we switched from the direct solver used previously (MATLAB backslash) to an
iterative solver (bicgstab as employed for large DEA problems in Refs. [4, 12]). The
linear solver times range between approximately 1 hour (L = 8) and 1 day (L = 1000).

5. Conclusions. A Petrov-Galerkin discretization of a phase-space boundary
integral equation for transporting wave energy densities has been presented that has
the property of preserving the direction of propagation across multi-component do-
mains in R2. The property relies on the existence of a consistent global direction set
and extends to curved surfaces when the geodesics can be used as a reference for the
global direction set. More generally, if the geometry is complex and the geodesics are
not known a-priori then one can define a transformation of the global direction set
into each mesh cell that can, at least, maintain the direction preservation property
within the flat regions of the shell. Numerical experiments have demonstrated that
the direction preservation property is important for accurately solving problems with
relatively simple ray dynamics, as well as for correctly capturing direction dependent
reflections due to curvature on thin shells. The global direction set for this work was
chosen to be equally spaced with rotational symmetry in each quartile, but we note
that there is freedom to choose these directions according to any problem specific
knowledge that you may have; for example, a geometry with some form of symmetry
or a structure with waveguides in particular directions. The method was also shown
to produce accurate results in the so-called ray chaos regime where the directional
dependence of the solution becomes smoothed. Finally, an example from industry was
considered, demonstrating the effectiveness of the method for simulating vibrational
energy distributions in geometrically complex shell structures.

One of the main advantages of the method proposed here is that the discretization
of the governing linear integral operator can be done without numerical integration;
the matrix entries for the associated linear system are computed using a single ana-
lytically calculated integral. These relatively simple calculations can be performed in
parallel many times, meaning that large and industrially relevant examples are within
reach. Comparing the methodology proposed here with existing DEA approaches, we
see that in this work we are able to accurately solve the highly directive problems that
are typically problematic for DEA with relatively small numerical models. We are also
able to accurately simulate the ray chaotic situations that existing DEA techniques
are able to model most efficiently, but with larger numerical models including many
ray directions. However, the computational cost of the proposed method scales only
linearly with the number of ray directions in the direction basis owing to the sparsity
of the projection onto this basis. This compares favourably with the quadratic (or
worse) scaling with the maximum degree polynomial in the direction basis for previ-
ous DEA approaches. The development of hybrid schemes including both orthogonal
polynomials and delta distributions in the approximation space to combine the ad-
vantages of both approaches could therefore be a promising area for future work.

Appendix A. From waves to rays. We consider frequency domain wave
equations of the form:

(A.1) ∆αu− (ik)2αu = 0,

in the large angular frequency regime ω � 1, where k = ω/c is the wavenumber
with c > 0, the wave speed. When α = 1 and c = const, the wave equation (A.1)
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corresponds to the Helmholtz equation. If instead α = 2 and c(k) ∝ k, then (A.1)
is the biharmonic wave equation for modelling flexural plate motion. The dispersion
property ω ∝ kα leads to seeking solutions in the form

u(r) = eiω(1/α)S(r)
∞∑
κ=0

Aκ(r)(iω)−κ

for large ω. Substitution into the wave equation (A.1) results in the Eikonal equation
at leading order O(ω2) for the phase function S:

|∇S| = ω(α−1)/2

c
=: η.

One then obtains a Hamiltonian system of ODEs (ray equations) for the trajectories
Y = (r,p) = (r,∇S) associated to the Hamiltonian

H(r,p) = |p|/η(r) = 1

via the method of characteristics.
For frequency domain wave problems governed by (A.1), it is the long-time evolu-

tion of the Hamiltonian system that is of interest, which is often studied in terms of the
associated (particle) density distribution f in phase-space. The density distribution
obeys a phase-space conservation law known as the Liouville equation:

(A.2)
∂f

∂t
(Y, t) +

∂Y

∂t
· ∇Y (f(Y, t)) = 0,

and the long-time behaviour may be conveniently studied in terms of the associated
stationary problem with ∂f/∂t ≡ 0. The method of characteristics yields an ex-
pression for the solution of (A.2) in terms of the Frobenius-Perron operator (1.2), and
consequently the stationary problem too by considering the density accumulated from
a continuous source in the long-time limit (1.3).
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