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Abstract 39 

Intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, 40 

immune responses and behaviour. Its dysregulation has been associated with metabolic, 41 

immune and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic 42 

regulation. Although proteomics is well suited for analysis of individual microbes, 43 

metaproteomics of faecal samples is challenging due to the physical structure of the sample, 44 

presence of contaminating host proteins and coexistence of hundreds of taxa. Furthermore, 45 

there is a lack of consensus regarding preparation of faecal samples, as well as downstream 46 

bioinformatic analyses following metaproteomics data acquisition. Here we assess sample 47 

preparation and data analysis strategies applied to mouse faeces in a typical mass spectrometry-48 

based metaproteomic experiment. We show that subtle changes in sample preparation protocols 49 

may influence interpretation of biological findings. Two-step database search strategies led to 50 

significant underestimation of false positive protein identifications. Unipept software provided 51 

the highest sensitivity and specificity in taxonomic annotation of the identified peptides of 52 

unknown origin. Comparison of matching metaproteome and metagenome data revealed a 53 

positive correlation between protein and gene abundances. Notably, nearly all functional 54 

categories of detected protein groups were differentially abundant in the metaproteome 55 

compared to what would be expected from the metagenome, highlighting the need to perform 56 

metaproteomics when studying complex microbiome samples. 57 

  58 
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Introduction 59 

The prokaryotic component of the gut microbiota has multiple roles, contributing to 60 

carbohydrate fermentation and maintenance of gut barrier integrity, as well as antimicrobial 61 

and immunomodulation activities [1,2]. In metabolically healthy humans and mice, the gut 62 

microbiota is predominated by two to three bacterial enterotypes [3-5]. These enterotypes 63 

display significant heterogeneity in terms of species number, composition and relative 64 

abundances depending on the location of the sample (upper vs lower gastroinstestinal tract) or 65 

the timing (circadian variations) [6,7]. The gut microbiota has recently been associated with 66 

conditions ranging from inflammatory bowel syndrome to Parkinson’s disease [8-11]. An 67 

increasing number of studies have reported associations between the gut microbiota and 68 

neurodevelopmental disorders [12-14]. This includes changes in the gut microbiota of Down 69 

syndrome individuals in comparison to non-trisomic individuals [15]. Given the established 70 

interaction between the host and the gut microbiota, a functional analysis of the gut microbiome 71 

may help in understanding its contribution to pathophysiology. 72 

In this context, approaches relying on nucleotide sequencing have so far been preferred by the 73 

scientific community due to lower experimental costs, higher data throughput and proven 74 

analytical workflows. While metagenomics assesses the genetic potential, metaproteomics 75 

investigates gene products (and therefore functions). However, metagenomics usually provides 76 

more in-depth information in comparison to metaproteomics, for example due to the higher 77 

dynamic range of detection. In particular, microbiome functional analysis can be performed 78 

using high-resolution mass spectrometry (MS), to measure either protein abundance or 79 

metabolite production [16-18]. Although bacterial MS-based proteomic approaches are well 80 

established, metaproteomic sample preparation is hindered by many challenges, such as 81 

physical structure of the sample, the presence of contaminating proteins and the coexistence of 82 

hundreds of microorganisms.  83 
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Many studies have reported increased protein identification due to laboratory optimisation for 84 

the analysis of metaproteome samples [19-23]. In humans, different sample preparation 85 

methodologies have been shown to result in significant changes in the taxonomic composition 86 

and functional activities represented [19,24,25]. Beyond sample preparation, the bioinformatic 87 

processing of metaproteomic data remains challenging, due to the choice of representative 88 

protein sequence database, elevated false discovery rate for peptide identification and the 89 

redundancy in protein functional annotation. Some of these challenges have already been 90 

addressed by published software packages, such as MetaProteomeAnalyzer [26] and MetaLab 91 

[27], which are all-in-one metaproteomic analytical workflows, or UniPept [28], which allows 92 

peptide-based taxonomic representation. In addition, the choice of protein sequence database 93 

has been shown to play a major role in protein identification from metaproteome samples, with 94 

notably matching metagenome-derived protein sequence databases displaying the best 95 

identification rate performance [29-32]. Previous studies have also investigated ways to 96 

determine taxonomic representation from metaproteome samples, which has been shown to 97 

differ between metagenome (bacterial presence) and metaproteome (bacterial activity) [32,33]. 98 

Here, we present a state-of-the-art MS-based workflow for the optimal metaproteome 99 

characterisation of murine faecal samples. We focused on a number of aspects that remain 100 

under-investigated in murine stool samples: (1) the impact of sample preparation methods, 101 

namely low speed centrifugation (LSC) and no LSC (nLSC), on protein identification and 102 

taxonomic representation; (2) the high false positive rates in searches involving very large 103 

databases; (3) the differences in taxonomic annotation of MS-identified peptides based on 104 

different software; and (4) the lack of assessment of the functional enrichment provided by the 105 

metaproteome compared to its matching metagenome potential.  106 
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Results 107 

Low-speed centrifugation increases peptide identification rates 108 

Our initial experiment involved the establishment of an optimal sample preparation workflow 109 

applied to the mouse faecal metaproteome. In this context, we assessed two sample preparation 110 

steps that are commonly employed in metaproteomic studies: 1) the usage of LSC [19,24,34] 111 

versus nLSC [24,35]; and 2) in-solution digestion [19,22] versus filter-aided sample 112 

preparation (FASP) [20,21] (Figure S1A, Table S1). The resulting LC-MS/MS data were 113 

processed using the MaxQuant software [36]. 114 

The number of peptide spectral match (PSM) identified per MS raw file in the LSC group was 115 

significantly higher with 26 % more identifications (Figure 1A). This was also observed at the 116 

peptide and protein group level, but to a lower extent for the latter. Approximately 15 % of 117 

protein groups were identified by a single peptide, while the median protein sequence coverage 118 

was 18.7 %. Such metrics are usually indicative of highly complex samples that are not 119 

completely covered by a single MS measurement under the stated parameters. 120 

In-solution digestion consistently outperformed FASP based on PSMs, peptides and protein 121 

groups identification (Figure 1B). Compared to other methods, in-solution digestion combined 122 

with the LSC procedure provided nearly twice as many PSM or peptide identifications and 123 

30 % more protein groups. Furthermore, there was much less variability in the number of 124 

peptides and protein groups identified across samples with this method. 125 

LSC aids in recovery of Bacteroidetes proteins, whereas nLSC favours Firmicutes and 126 

Deferribacteres proteins 127 

Peptides identified after LSC and nLSC were analysed to identify their phylogenetic origin. 128 

The lowest common ancestor was determined using the Unipept interface [37], which assigns 129 

peptide sequences to taxa. The most abundant superkingdom consisted of bacteria, among 130 
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which two taxa were highly represented in both LSC and nLSC, namely Bacteroidetes and 131 

Firmicutes (Figure 1C, Table S1). However, there were large differences in the number of 132 

peptides assigned to these two main bacterial phyla when comparing LSC and nLSC methods. 133 

Bacteroidetes accounted for 66 % and 37 % of peptides, whereas Firmicutes amounted to 18 % 134 

and 47 % of peptides in LSC and nLSC procedures, respectively. In addition, Actinobacteria 135 

and Deferribacteres showed a higher taxonomic representation in nLSC compared to LSC, 136 

whereas Verrucomicrobia showed an opposite trend. 137 

Based on peptides identification, Eukaryota was the second most abundant superkingdom and 138 

consisted mostly of metazoan hits. Under the assumption that these eukaryotic peptide 139 

sequences originated from the host, the proportion of Mus musculus proteins was investigated 140 

further using intensity-based absolute quantification (iBAQ) values. The LSC samples 141 

contained on average nearly two-fold more murine proteins (20.4 %) in comparison to nLSC 142 

samples (14.6 %) (Figure S1B). Such findings were surprising since the use of the LSC method 143 

was reported in a previous study to help with the removal of human cells [24]. We also 144 

investigated the presence of peptides from host diet and found very low levels of dietary 145 

peptides contamination (approximately 2 %), which was higher among LSC-prepared samples 146 

(Figure S1C). As previously reported, we show that the majority of dietary proteins are absent 147 

or depleted during the initial solubilisation step of the faecal pellet, a step common to both 148 

procedures [38]. Overall, our results show that LSC and nLSC methods favour the recovery of 149 

different taxa, suggesting that both methods have merits and may be used in combination. 150 

LSC and nLSC methods are characterised by different protein abundance profiles 151 

We further investigated the overlap between the peptides or protein groups identified following 152 

either LSC and nLSC procedures (Figure 1D). In terms of peptides, only 27.7 % were 153 

identified with both procedures, the rest of the peptides being split equally into unique to LSC 154 

and nLSC methods. Similar results were observed at the protein groups level with 38.7 % of 155 
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protein groups being identified in both procedures. This was illustrated further through a 156 

principal component analysis (PCA), showing separation of samples based on centrifugation 157 

methods, as well as clustering of technical replicates (from cell lysis step) (Figure S1D). Label-158 

free quantitative (LFQ) comparison between LSC and nLSC procedures revealed an 159 

intermediate correlation (ρ = 0.44) (Figure S1E and F). Besides, LFQ correlation among the 160 

samples prepared via LSC was superior to samples prepared with nLSC (Figure S1G). Our 161 

findings indicate that while the two procedures have a poor identification overlap, the main 162 

differences may still result from biological variations. 163 

Using LFQ intensities, we then performed a t-test to identify which protein groups have 164 

different abundances between the two procedures. Out of 2,589 quantified protein groups, 365 165 

and 267 showed a significant increase and decrease in abundance between LSC and nLSC 166 

samples, respectively (FDR ≤ 0.01 and absolute fold-change ≥ 2.5) (Figure 1E, Table S1). We 167 

gained functional insights into these differences by performing an over-representation analysis 168 

of KEGG pathways using the clusterProfiler R package [39]. The over-represented pathways 169 

based on the up- or down-regulated protein groups were mostly similar (FDR ≤ 0.05) and were 170 

associated with core microbial functions, such as ribosome, carbon metabolism and carbon 171 

fixation pathways (Figure 1F, Table S1). The protein groups unique to LSC or nLSC showed 172 

over-representation of protein export in the LSC samples, whereas biosynthesis of amino acid, 173 

fatty acid degradation and bacterial chemotaxis were over-represented in the nLSC samples 174 

(Figure S1H). Protein differential abundance testing confirmed the divergence between LSC 175 

and nLSC procedures and was suggestive of broad taxonomic changes, rather than variation in 176 

functional activities. 177 

Two-step database search strategy shows a dramatic increase in false positive rate 178 

After measurement via liquid chromatography coupled to tandem mass spectrometry (LC-179 

MS/MS) and acquisition of LC-MS/MS raw data, the MS/MS spectra are searched against a 180 
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protein sequence database. One aspect of database search is the controversial use of a two-step 181 

search strategy [26,40-42], as opposed to the single-step search traditionally used in proteomics 182 

[30,43]. For two-step search approach, LC-MS/MS measurements are initially processed 183 

against a large protein sequence database with no FDR control (FDR ≤ 1%). Subsequently, the 184 

original database is filtered to retain only protein sequences that were identified during the first 185 

search. During the second database search, the measurements are processed against the reduced 186 

database with FDR control (e.g. FDR ≤ 0.01) [40]. To assess these search strategies, we 187 

searched a single HeLa cell LC-MS/MS file using MaxQuant software against a Homo sapiens 188 

protein sequence database supplemented with different number of bacterial protein sequences 189 

(Figure S2A). The HeLa measurement is used here as a proxy for a complex microbiome 190 

measurement, with the exception that the sample composition is known and from a single 191 

organism.  192 

We initially established a benchmarked standard by processing the HeLa measurement only 193 

against an H. sapiens database, which resulted in approximately 5,000 human (eukaryota) 194 

protein groups identified for the single-step search at FDR ≤ 0.01 (Figure 2A, Table S2). 195 

Notably, the same database used in a two-step search identified less than 1 % additional protein 196 

groups in comparison to a single-step search, despite nearly twice as much processing time. 197 

We then processed our HeLa measurement against the H. sapiens database supplemented with 198 

1×, 2×, 5×, 10× and 20× bacterial protein sequences, resulting in increasingly large databases 199 

(Figure S2A, Table S2). For the single-step database search against the 1:20 database, we 200 

observed a 10 % decline in the number of human protein groups identified, while 132 bacterial 201 

protein groups were identified (false positives). On the contrary, the 1:20 two-step database 202 

search resulted only in a 1 % decrease compared to the benchmarked standard. This processing 203 

also revealed a large number of bacterial protein groups identification (980 protein groups). 204 

Furthermore, the two-step search led to large number of MS/MS spectra to be assigned to 205 
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different sequences (or newly assigned) in comparison to the benchmarked standard (Figure 206 

S2B, Table S2); this phenomenon was much less pronounced when performing the single-step 207 

search. 208 

We then calculated the factual FDR for each processing approach using either the reverse hits 209 

or the reverse hits plus the bacterial hits (which in our case are false positives). For both the 210 

single-step and the two-step search, we obtained an FDR of 2.6 % when using only the reverse 211 

hits for FDR calculation (Figure 2B). However, when using the reverse hits plus the bacterial 212 

hits, we calculated a factual FDR of 8 % and 34 % for the single- and two-step search with 213 

1:20 database, respectively. This represents a dramatic increase in the rate of false positive 214 

identification when using two-step search, despite controlling for 1 % FDR. Notably, these 215 

false positive hits would remain unnoticed in a microbiome sample of unknown composition, 216 

thus highlighting the inherent problem associated with the two-step database search.  217 

Optimisations of the two-step database search cancels out its higher sensitivity 218 

To further assess database search strategies used by the metaproteomic community [26,30,40-219 

44], we retrieved a metaproteome dataset of known taxonomic composition that was published 220 

by Kleiner and colleagues [32]. This dataset consisted of 32 organisms of uneven abundances, 221 

including bacteria (25), archaea (1), eukaryotes (1) and viruses (5). We processed eight LC-222 

MS/MS measurements against a database containing the proteomes of these 32 organisms, 223 

which we supplemented with 0.5×, 1×, 2×, 5×, 10× and 20× bacterial protein sequences, 224 

resulting in increasingly large databases. We then compared the results obtained from single-225 

step search strategy against: (1) “two-step protein” search to keep identified proteins [40]; (2) 226 

“two-step taxa” search to keep identified taxa [30]; and (3) “two-step two sections” search to 227 

keep identified proteins after sectioned search [44]. While all search strategies resulted in 228 

similar accuracies, the “two-step protein” search maintained a high sensitivity even when using 229 

large databases (i.e. 20×) (Figure 2C and S2C). However, upon investigation of the factual 230 
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FDR (reverse hits plus the false bacterial hits), the “two-step protein” search resulted in twice 231 

as many false positive identifications compared to the single-step search (Figure 2D, Table 232 

S2). Similar results were also observed when focusing on the precision (Figure S2D). Our 233 

investigations revealed that the “two-step taxa” search behaved nearly identically to the single-234 

step search, whereas the “two-step two sections” search displayed performance in-between the 235 

first-step and “two-step protein” searches. 236 

Because, all assessed search strategies underestimated the real FDR, we attempted to identify 237 

any particularity of the false positive protein groups identification and thus focused on 238 

processings against the largest database (20×). We show that the median number of unique 239 

peptides (i.e. peptides that are uniquely assigned to a protein group) are 1 and 2 for the false 240 

and true positive hits, respectively (Figure S2E). We then compared results obtained using a 241 

post-processing filtering step requiring a minimum of 1 or 2 unique peptides per protein groups. 242 

Our results show that requiring a minimum of 2 unique peptides would efficiently control the 243 

FDR (≤ 1%) at the expense of a significant drop in protein identification (Figure 2E and S2F, 244 

Table S2). This investigation of different database search strategies applied to metaproteome 245 

samples further highlighted the limitations (i.e. factual FDR) of two-step searches, even 246 

following optimisation (i.e. sectioned search) or filtering. 247 

Unipept software provides the most accurate and precise taxonomic annotation 248 

Another important aspect of metaproteomic studies is the determination of taxonomic activity 249 

(protein biomass), which has been reported to differ from taxonomic representation derived 250 

from metagenomic studies [32,45]. While it is straightforward to compute taxonomic activity 251 

from the abundance of peptides (or proteins) of known taxonomic origin, there has not been an 252 

exhaustive assessment of software that can taxonomically annotate MS-identified peptides. 253 

Here, we assessed three software packages—i.e. Kraken2 [46,47], Diamond [21,48,49] and 254 

Unipept [28,30,50]—that are commonly used by the metaproteomic and metagenomic 255 
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communities. The taxonomic annotation performance of these software was evaluated on the 256 

dataset from Kleiner and colleagues [32].  257 

The Kraken2 software provided consistently higher percentage of peptides that could be 258 

taxonomically annotated (c.a. 18% peptides annotated to species level), followed by Unipept 259 

(5%) and Diamond (1%) (Figure 3A). However, Kraken2 also identified a very large number 260 

of taxa that were not present in the artificial samples from Kleiner and colleagues (Table S3) 261 

and thus would be false positive hits. Unsurprisingly, these false positive hits were 262 

characterised by low PSM counts in comparison to true positives (Figure S3A). This led us to 263 

assess these software packages in terms of accuracy, precision, sensitivity, specificity and F-264 

measure for taxonomic identification using a range of PSM count thresholds (Figure 3B and 265 

S3B-E). In this context, the Unipept software significantly outperformed Kraken2 and 266 

Diamond, especially with regard to the F-measure and precision. Notably, the implementation 267 

of a minimum PSM count threshold (i.e. between 1 and 5) resulted in accuracy, precision and 268 

specificity improvements for all software, but at the cost of a reduced sensitivity.  269 

Thus, without a PSM count threshold, we correlated the taxonomic abundance derived from 270 

each software annotation against the known input protein from Kleiner and colleagues’ 271 

artificial samples (Figure 3C). Overall, the Unipept software provided the highest correlation 272 

(Spearman ρ = 0.83), as well as at most taxonomic levels (including species). Interestingly, the 273 

dynamic range of taxon detection by MS spanned two orders of magnitude, with Salmonella 274 

enterica being approximately 230 times more abundant than Nitrosomonas europaeae (Figure 275 

3D, Table S3). Unipept was also the only software allowing identification of Nitrosomonas 276 

ureae, Paraburkholderia xenovorans and Nitrosospira multiformis. Importantly, none of the 277 

software could identify the five viral organisms present in the samples, the reason being 278 

technical since no peptide coming from those viral proteins was detected by MS. Finally, we 279 

assessed the impact of different database search strategies on taxonomic abundance derived by 280 
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the Unipept software (Figure S3F). Similarly to our findings from the previous section, the F-281 

measure metric highlighted the superiority of single-step strategy when it comes to taxonomic 282 

identification. Taken together, we show that, based on different metrics and samples of known 283 

composition, the Unipept software provides better taxonomic annotation in comparison to 284 

Kraken2 and Diamond. 285 

The complex microbial composition of faecal samples is best recapitulated by the 286 

Unipept software 287 

To check whether our results are also applicable to the microbial composition of faecal 288 

samples, we prepared samples using the LSC method from faeces collected in a cohort of 38 289 

mice. The resulting LC-MS/MS data were processed using a single-step search strategy against 290 

a matching metagenome protein database (with no knowledge of taxonomic composition). We 291 

initially annotated the MS-identified peptides using Kraken2, Diamond and Unipept, which 292 

revealed an overlap of 232 taxon (1.9%) between all three software. Such low overlap was 293 

largely driven by the suspected large number of false positive hits identified by Kraken2 294 

(10,203 uniquely identified taxon), as seen in the previous section. We then performed pairwise 295 

correlation between every samples combination within each software using taxonomic 296 

abundance (Figure S3G). While Diamond displayed a higher correlation (median spearman ρ 297 

= 0.71), this is likely driven by the small number of identified taxa, most of which at the 298 

taxonomic levels closer to the root (e.g. superkingdom, phylum) and is thus a poor performance 299 

estimate.  300 

To determine which taxa are likely true or false positive hits, we made use of the taxonomic 301 

composition foreknowledge (at the species level only) from the mouse microbiome catalogue 302 

[51]. With this approach, the Kraken2 software showed the best sensitivity (median = 0.17) 303 

compared to Unipept (0.13) and Diamond (0.03) (Figure S3H, Table S3). Based on precision 304 

and F-measure, Kraken2 performance collapsed, whereas Unipept software had median 305 
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precision and F-measure superior to 0.1 (Figure 3F and S3I). Using taxonomic foreknowledge, 306 

our findings suggest that the Unipept software provides superior predictive power for 307 

taxonomic annotation of faecal samples. 308 

Metaproteome to metagenome correlation highlights an over-representation in the 309 

core microbiome functions 310 

Multi-omic studies are now increasingly common in context of microbiome investigation to 311 

provide interconnected information, such as microbial presence and activity, genetic potential, 312 

gene expression and functional activity [52-55]. Due to the availability of matching 313 

metagenomic and metaproteomic data for our cohort of 38 mice, we assessed the correlation 314 

between gene and protein abundances. To deal with the intrinsic differences between the two 315 

datasets, the gene entries were grouped in a similar fashion as the protein groups (i.e. based on 316 

peptide identification) and the maximum expression was calculated per gene group. Here, we 317 

show that a majority of gene-protein pairs (91 %) have a positive correlation, with a median of 318 

0.39, the rest having a median negative correlation of ˗0.09 (Figure 4A, Table S4). Notably, 319 

3,519 gene-protein pairs displayed a significant positive correlation. In addition, we compared 320 

the distribution in gene abundances depending on whether the corresponding protein was 321 

identified by MS (Figure S4A). As expected, it shows that MS-based proteomics only 322 

identifies a subset of proteins towards the higher abundance. 323 

To identify the core pathways within our mice cohort, we performed an over-representation 324 

analysis of the significantly correlated gene-protein pairs (Figure 4B, Table S4). Among these 325 

pairs, there was an over-representation in carbon fixation, glycolysis-gluconeogenesis, citrate 326 

cycle and carbon metabolism pathways (KEGG) [56]. We further characterised the correlating 327 

genes and proteins and identified 20 over-represented gene ontology molecular functions 328 

(GOMF) that were involved in ADP, ribosome, carbohydrate and electron transfer (Figure 329 

S4B, Table S4). Our results confirm the central role of carbon fixation and general metabolism, 330 



14 

which are associated with bacterial energy production, in the murine faecal microbiome under 331 

the analysed conditions. 332 

The metaproteome is enriched in functionally active pathways compared to the 333 

matching potential encoded in the metagenome 334 

The metagenome corresponds to the microbiome’s genetic potential, whereas the 335 

metaproteome represents its truly expressed functional activities. Thereby, we compared the 336 

functional abundance derived from the metagenomic versus metaproteomic datasets within our 337 

cohort of 38 mice. To allow comparison, the KEGG level 2 categories were quantified and 338 

normalised separately for each omic datasets (Figure S4C, Table S4). Out of 55 KEGG 339 

categories, we found 15 and 37 to be significantly increased and decreased in abundance at the 340 

metaproteome level in comparison to the metagenome (FDR ≤ 0.05). In general, the 341 

metagenome-based quantification of KEGG categories was stable across categories, whereas 342 

large differences were observed for the metaproteome.  343 

To prioritise the KEGG categories, we selected eight categories differing significantly in terms 344 

of gene-protein correlation in comparison to the overall correlation (Figure 4C and S4D). 345 

Among the KEGG categories displaying higher abundance in the metaproteome compared to 346 

the metagenome were the membrane transport, translation, signalling and cellular processes, 347 

and genetic information processing. Conversely, transcription, carbohydrate metabolism and 348 

antimicrobial drug resistance exhibited lower abundance. The KEGG Orthology (KO) entries 349 

differing significantly in abundance between the metagenomes and metaproteomes were 350 

identified via t-test and used for gene set enrichment analysis (GSEA). GSEA revealed an 351 

enrichment of a number of overlapping KEGG pathways, with 19 and 6 pathways positively 352 

and negatively enriched, respectively (Figure 4D, Table S4). Interestingly, we found the 353 

ribosome pathway enriched in protein with increased abundance (between metaproteome and 354 

metagenome datasets), therefore highlighting the functional activation of this pathway (Figure 355 
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4E and S4E). Conversely, homologous recombination, DNA replication and mismatch repair 356 

were enriched in protein with decreased abundance, suggesting no or low activation of these 357 

pathways. Overall, our findings highlight the critical importance of metaproteomics to 358 

characterise microbiome samples particularly when it comes to their functional activity. 359 

Discussion 360 

Here, we investigate some key aspects of metaproteomic workflow applied to murine faecal 361 

samples in order to enhance protein identification, taxonomic and functional coverage. We 362 

focused on the assessment of (1) different sample preparation methods, (2) strategies to control 363 

for false positive rates during database search, (3) taxonomic annotation software for accurate 364 

MS-derived taxonomic representation and (4) the importance of metaproteomics to determine 365 

functionally enriched pathways. Our results led to an overview of the strengths and weaknesses 366 

of each assessed methods (Table 1) in the context of murine faecal metaproteomics. 367 

To the best of our knowledge this is one of the largest and most extensive comparisons 368 

undertaken to date, comprising over 40 different biological samples and over 50 LC-MS/MS 369 

runs. Overall, we reached identification rates that are similar to bacterial shotgun proteomics 370 

(ca. 20-40 %). In comparison to previous murine faecal metaproteomic studies, we identified 371 

more non-redundant peptides per samples (approximately 20,000 non-redundant peptides on a 372 

60 min gradient) [57,58]. Several parameters may have influenced such performance, among 373 

which are the use of a faster and more sensitive Orbitrap instrument (i.e. Q Exactive HF) 374 

[59,60] and a more representative protein sequence database (i.e. mouse metagenome catalogue 375 

or mouse matching metagenome) [51]. Importantly, the impact of mass spectrometer speed and 376 

sensitivity should not be overlooked in a typical metaproteomic measurements. Indeed, the 377 

type and model of MS instrument was among the parameters with the greatest impact on 378 

identification rates. Some of our initial investigation showed significant increase in peptide and 379 
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protein identification rate when using the Q Exactive HF (faster scanning, improved sensitivity) 380 

versus the Orbitrap Elite (data not shown, but downloadable from ProteomeXchange). 381 

Both LSC and nLSC methods have merits for the metaproteomic analysis of murine 382 

faecal samples 383 

Our study confirms previous observation with regard to increased peptides or proteins 384 

identification, which is dependent on laboratory preparation method and specifically the usage 385 

of differential centrifugation [24]. The LSC approach also leads to more consistent 386 

identifications and as a result fewer missing values, which is a general and extensive problem 387 

in metaproteomic datasets. Regarding the topic of reproducible protein identification and 388 

quantification, a recent metaproteomic study demonstrated the use of Tandem Mass Tag (TMT) 389 

approach in human stool samples [22]. 390 

Further investigation into taxonomic composition between LSC and nLSC revealed broad 391 

changes already at the phylum level. Notably, Bacteroidetes and Verrucomicrobia were 392 

enriched within LSC-prepared samples, whereas Firmicutes, Actinobacteria and 393 

Deferribacteres phyla were over-represented in nLSC samples. Such depletion or enrichment 394 

of several major bacterial phyla have previously been reported by Tanca and colleagues [24]. 395 

While Verrucomicrobia was found enriched by LSC in ours as well as Tanca’s study, 396 

Bacteroidetes, Firmicutes and Actinobacteria were enriched by opposite methods. Several 397 

reasons may explain these discrepancies, such as the host organism under study (i.e. Mus 398 

musculus versus Homo sapiens), different protein sequence database construction (i.e. mouse 399 

microbiome catalogue versus UniProtKB custom microbiome) and minimal biological 400 

variability (i.e. three biological sample here versus one in Tanca’s study).  401 

Additional comparison to the phyla detected by metagenomics in the mouse microbiome 402 

catalogue study tends to agree more with the nLSC approach [51]. However, the samples from 403 

that study were also prepared using a nLSC approach, which may explain the similarity. 404 
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Importantly, it has been reported that the removal of faecal particles may also lead to exclusion 405 

of proteins or organisms attached to these faecal debris [24], thus leading to a bias in the LSC 406 

approach. A limitation of our study lies in the use of murine faecal samples of unknown 407 

microbiota composition to assess different laboratory methods and their impact on taxonomic 408 

and protein representation. To bypass this issue, one solution would consist in assessing 409 

different laboratory methods against a mock microbial community (i.e. known composition), 410 

such as in the study by Kleiner and colleagues [32]. While such community sample can be 411 

purchased, these are mostly representative of the top 20 most abundant species within the 412 

human gut microbiome and are far from recapitulating the complexity of a faecal sample (>100 413 

microbial species) [61,62]. 414 

Our results at the protein level showed significant changes in abundance, which were indicative 415 

of broad taxonomic changes, more so than variation in functional activities. Importantly, recent 416 

studies have reported considerable changes in rodent microbiota depending on suppliers or on 417 

shipping batch, even for mice housed in identical environments [63,64]. Murine gut microbiota 418 

is also significantly different from other mammals, such as human [51]. In this context, our 419 

results on metaproteomic sample preparation may not translate to other of murine faecal pellets 420 

(e.g. young vs. old individuals) or other mammalian faeces (e.g. H. sapiens) and suggests that 421 

optimisation of sample preparation is needed for each cohort (or at least for each host 422 

organism). Similarly, the murine faecal pellets used in this study originated exclusively from 423 

male and thus display a bias against female murine microbiome. Previous studies have reported 424 

differences in microbial composition between male and female, which in turn impacts hormone 425 

levels, disease progression and gene expression of the host [65-67]. In the future, our results 426 

should be confirmed using a mixed gender murine cohort.  427 

Notably, both sample preparation approaches have advantages, and the choice may ultimately 428 

come down to which bacterial phylum is under investigation [25]. Another option, which would 429 
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need to be tested and depends on faecal pellet size, consists in splitting each faecal sample and 430 

performing LSC and nLSC in parallel. Following implementation of both faecal pre-processing 431 

approaches, the resulting samples could be pooled, processed using the in-solution digestion 432 

workflow and measured by LC-MS/MS. This alternative avoids an increase in sample size and 433 

measurement time, but maximises the recovery of different taxon (and proteins). The splitting 434 

of faecal material is also relevant for multi-omics investigation, as reported in a recent swine 435 

multi-omic study [68], and a murine dual metagenomics-metabolomics project [69]. In this 436 

context, to implement metaproteomics and metabolomics of the same samples, the faecal 437 

material must be collected fresh and quickly stored at -80 °C. At the time of preparation, 438 

samples can be split and their respective laboratory workflows can be pursued separately. 439 

Single-step database search allows optimal control of false discovery rate  440 

Currently, many metaproteomic studies use two-step database searches as a way to boost 441 

identification rates [40-42]. However, we demonstrate that this type of search dramatically 442 

underrepresents the number of false positives, due to the use of a decoy search strategy that is 443 

unsuitable in this context. Our results elaborate on a previous study by Muth and co-workers, 444 

who also emphasised the drawbacks of using a two-step search together with decoy strategy 445 

[70]. Using a single human LC-MS/MS measurement, our findings were so extreme that the 446 

number of false positives was equal or greater to the number of false negatives, with FDR 447 

outside of any accepted range (i.e. factual FDR > 0.1). 448 

Using metaproteome samples of known composition, we expanded our investigation of search 449 

strategies by including “two-step taxa” and “two-step two sections”. The “two-step two 450 

sections” approach, implemented according to Kumar and colleagues [44], provided a middle 451 

ground in performance between the “two-step protein” and single-step search strategies, but at 452 

the expanse of much longer processing time. Nonetheless, our results confirmed the inability 453 

of two-step searches to control the FDR, including in context of metaproteomic samples. We 454 
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argue that the use of a two-step search should be avoided whenever possible and replaced by 455 

alternative strategies, such as taxonomic foreknowledge or using matching metagenomes [45]. 456 

Accurate taxonomic annotation of murine faecal samples can be generated by the 457 

Unipept software 458 

Previous studies have shown that it is possible to derive taxonomic representation from MS-459 

identified peptides of known taxonomic origin [32,33,71]. However, to the best of our 460 

knowledge, there has not been a comparison of software for the taxonomic annotation of 461 

peptides with unknown origin. Here, we compared three software packages, namely Kraken2 462 

[46], Diamond [48] and Unipept [28], which use different algorithms to perform such 463 

taxonomic annotation. Using metaproteome samples of known composition, as well as 464 

metaproteome samples from 38 murine faeces, we determined that the Unipept software 465 

provided superior performance (i.e. precision, sensitivity). Notably, Unipept is very user-466 

friendly, fast and was designed to work on MS-identified peptides [28]. Whereas, Diamond 467 

and Kraken2 have both been designed to work on full protein/gene sequences or nucleotide 468 

sequencing reads (as opposed to peptides), which may have contributed to their lower 469 

performance [46,48]. Our assessments (i.e. sensitivity, specificity) were based on exact 470 

taxonomic identity and ignored hits from closely related taxon, which may have negatively 471 

affected the performance estimates of Kraken2 [46]. While, Unipept was clearly the optimal 472 

taxonomic annotation software for MS-identified peptides, it is currently limited to UniProt 473 

proteins, NCBI taxonomic hierarchy and trypsin cleavage. 474 

The metaproteome shows an enrichment in functionally-active pathways compared to 475 

the matching metagenomic potential 476 

Here, we observed an overall positive correlation between gene and protein abundances derived 477 

from metaproteome and matching-metagenome analysis. This was previously reported in a 478 



20 

longitudinal study of metaproteome/metagenome fluctuations from one individual with 479 

Crohn's Disease [52]. In our case the significantly correlated entries were associated with core 480 

bacterial metabolic functions, such as carbon and energy metabolism or electron transfer 481 

activity [72]. Despite such correlations, we also reported extensive differences in quantified 482 

functions between metagenomics and metaproteomics. Notably, with regard to genetic 483 

information processing (KEGG level 2), the ribosome pathway was over-represented in entries 484 

with higher abundance in metaproteomes, whereas pathways associated with DNA repair, 485 

replication or recombination were over-represented in entries with increased abundance in 486 

metagenomes. However, several studies have shown positive correlation between 487 

metatranscriptomics and metaproteomics at the gene or function levels. For example, a 488 

microbial community study from wastewater treatment plant [73] revealed overall positive 489 

correlation in functional categories abundance between transcripts and proteins. In another 490 

multi-omics study of the gut microbiome of human diabetic patients [55], while a positive 491 

correlation was observed between transcripts and proteins, this correlation did not translate to 492 

the derived functional profiles. 493 

Here we highlight the main advantage of metaproteomics, which captures functionally active 494 

pathways, as opposed to the genetic potential represented by metagenomics [74]. Thus, these 495 

approaches are complementary to each other and can provide a more comprehensive 496 

understanding of a biological system [54]. 497 

Conclusion 498 

To conclude, in this study we present an integrated analytical and bioinformatic workflow to 499 

improve protein identification, taxonomic and functional coverage of the murine faecal 500 

metaproteome. LSC combined with in-solution digestion provided the highest identification 501 

rates, although leading to a potential enrichment in specific taxa. We also show that fast and 502 
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accurate MS data processing can be achieved using a single-step database search. Taxonomic 503 

annotation can be generated directly from MS-based peptide identification using the Unipept 504 

software. While protein and gene abundances displayed an overall positive correlation, the 505 

metaproteome showed a significant functional enrichment compared to its metagenomic 506 

potential; thus, emphasizing the need for more metaproteomic studies for adequate functional 507 

characterisation of the microbiome.  508 

Methods 509 

Animals and faecal samples collection 510 

Mouse faecal pellets, obtained from a small cohort of six male wild-type B6EiC3SnF1/J mice, 511 

were used to compare sample purification and protein extraction methodologies from faeces 512 

(Figure S1A). A larger cohort of 38 mice (male euploid and trisomic Ts65Dn) was used to 513 

obtain mouse faeces, for further assessment of the data analysis workflow. Mice were housed 514 

and faeces were collected following the experimental procedures evaluated by the local Ethical 515 

Committee (Barcelona Biomedical Research Park, Spain). Faecal pellets were collected fresh, 516 

placed at -20 °C and stored at -80 °C until analysis. 517 

DNA extraction and whole-genome sequencing 518 

Whole genome analysis was performed on the mouse cohort used for data analysis assessment. 519 

In brief, DNA was extracted from faecal samples using the FastDNA SPIN Kit (MP 520 

Biochemicals) and following manufacturer’s instructions. DNA concentration was measured 521 

using a Qubit fluorometer (Invitrogen) and samples were shipped frozen to the Quantitative 522 

Biology Centre (QBiC) at the University of Tuebingen for whole genome sequencing. 523 

Sequence data were generated on an Illumina HiSeq 2500 instrument (chemistry SBS v3 plus 524 

ClusterKit cBot HS) and processed as described previously [75] but with minor modifications 525 
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that follow. Supplied sequence data were checked using fastQC v0.11.5 [76]. Data were 526 

trimmed with Trim Galore! (--clip_R1 10 --clip_R2 10 --three_prime_clip_R1 10 --527 

three_prime_clip_R2 10 --length 50; Babraham Bioinformatics). Mouse DNA within samples 528 

was detected by mapping reads against the mouse genome (GRCm38). Mouse-filtered read 529 

files (with an average of 3.58 ± 0.08 Gb sequence data per sample) were used for all subsequent 530 

analyses. Kraken2 2.0.8-beta [46] with the pre-compiled Genome Taxonomy Database [77] 531 

Functional annotation was achieved by mapping centroid protein sequences generated as 532 

described before [46,75] using the eggNOG-mapper software (v.1.0.3) [78] and associated 533 

database (v.4.5).  534 

Sample treatment, cell lysis and protein extraction 535 

Mouse faecal pellets obtained from wild-type B6EiC3SnF1/J mice were used to compare 536 

sample initial preparation methodologies (Figure S1A).  537 

For the LSC procedure, faeces (~50 mg) were resuspended in phosphate buffer (50 mM 538 

Na2HPO4/NaH2PO4, pH 8.0, 0.1 % Tween 20, 35x volume per mg) by vortexing vigorously 539 

for 5 min using 4 mm glass beads (ColiRollersTM Plating beads, Novagen), followed by 540 

incubation in a sonication bath for 10 min and shaking at 1,200 rpm for 10 min in a 541 

Thermomixer with a thermo block for reaction tubes. Insoluble material was removed by 542 

centrifugation at 200 × g at 4 °C for 15 min. The supernatant was removed and the remaining 543 

pellet was subjected to two additional rounds of microbial cell extraction. After merging 544 

supernatants, microbial cells were collected by centrifugation at 13,000 × g at 4 °C for 30 min. 545 

The pellet was resuspended in 80 µL sodium dodecyl sulfate (SDS) buffer (2 % SDS, 20 mM 546 

Tris, pH 7.5; namely pellet extraction buffer) and heated at 95 °C for 30 min in a Thermomixer. 547 

The resulting suspension was divided into two parts to obtain technical replicates for the rest 548 

of the sample preparation workflow. Protein extraction was performed by cell homogenization 549 

using 0.1 mm glass beads (100 mg, SartoriusTM Glass Beads) for each replicate and the 550 
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FastPrep-24 5G instrument (MP) at 4 m/s or BeadBug microtube homogenizer (BeadBug) at 551 

4,000 rpm. Three cycles of homogenization including 1 min bead beating, 30 sec incubation at 552 

95 °C, and 30 sec centrifugation at 13,000 × g were performed. The homogenate was diluted 553 

with 800 µL MgCl2 buffer (0.1 mg/mL MgCl2, 50 mM Tris, pH 7.5) and centrifuged at 554 

13,000 rpm for 15 min. Proteins from the supernatant were precipitated overnight in acetone 555 

and methanol at ˗20 °C (acetone:methanol:sample with 8:1:1 ratio). Protein pellets were 556 

resuspended in 120 µL denaturation buffer (6 M urea, 2 M thiourea, 10 mM Tris, pH 8.0) for 557 

downstream use. 558 

For the nLSC procedure, mouse faeces (~25 mg) were homogenised directly in 150 µL pellet 559 

extraction buffer as described above with the following changes. A bead mixture of 0.1 mm 560 

glass beads (100 mg), 5 × 1.4 mm ceramic beads (Biolab products), and 1 × 4 mm glass bead 561 

was used for five cycles of homogenisation to break-up the faecal material.  562 

Protein digestion 563 

Following extraction, protein amount was quantified using Bradford assay (Bio-Rad, Munich, 564 

Germany) [79] and two methods were compared to digest proteins extracted from LSC or nLSC 565 

procedures. 566 

The in-solution digestion method was performed as follows. Proteins (20 µg starting material) 567 

were reduced in 1 mM dithiothreitol (DTT) and alkylated in 5.5 mM iodoacetamide at room 568 

temperature (RT) for 1 h each. Proteins were pre-digested with LysC at RT for 3 h using a 569 

protein to protease ratio of 75:1. Samples were diluted nine-fold with 50 mM ammonium 570 

bicarbonate and digested overnight with trypsin (Sequencing Grade Modified Trypsin, 571 

Promega) at pH 8.0 using a protein to protease ratio of 75:1.  572 

Filter-aided sample preparation (FASP) was performed as previously published [80]. Briefly, 573 

proteins (10 µg starting material) were reduced in 0.1 M DTT for 40 min at RT. The reduced 574 

samples were added to the filter units (30 kDa membrane cut off) and centrifuged at 14,000 × g 575 
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for 15 min. All further centrifugation steps were performed similarly unless otherwise noted. 576 

Samples were then washed with 2X 200 µL urea buffer (100mM Tris/HCl, pH 8.5, 8M urea) 577 

and centrifuged. Proteins were incubated in 50 mM IAA for 20 min at RT in the dark. After 578 

alkylation, samples were centrifuged and washed three times with 100 µL urea buffer. This was 579 

followed by three wash steps with 50 mM ammonium bicarbonate (ABC) for 10 min. Proteins 580 

were digested overnight at 37 °C using trypsin digestion (Sequencing Grade Modified Trypsin, 581 

Promega) at pH 8.0 using a protein to protease ratio of 100:1. On the following day, the peptides 582 

were centrifuged into fresh tubes at 14,000 × g for 10 min. An additional 40 μL ABC buffer 583 

was added to the filter units and this solution was also centrifuged to increase the peptide yield.  584 

To stop the digestion from either in-solution or FASP workflows, the samples were acidified 585 

to pH 2.5 with formic acid and cleaned for LC-MS/MS measurement using Empore C18 disks 586 

in StageTips [81]. 587 

LC-MS/MS measurements 588 

Samples were measured on an EASY-nLC 1200 (Thermo Fisher Scientific) coupled to a Q 589 

Exactive HF mass spectrometer (Thermo Fisher Scientific). The samples prepared for the 590 

sample purification and protein extraction methodologies assessment were all measured in 591 

duplicates to assess instrument reproducibility. Peptides were chromatographically separated 592 

using 75 μm (ID), 20 cm packed in-house with reversed-phase ReproSil-Pur 120 C18-AQ 593 

1.9 μm resin (Dr. Maisch GmbH).  594 

Peptide samples generated as part of the laboratory method optimisation (LSC vs. nLSC, FASP 595 

vs. in-solution) were eluted over 43 min using a 10 to 33 % gradient of solvent B (80 % ACN 596 

in 0.1 % formic acid) followed by a washout procedure. Peptide samples generated as part of 597 

the data analysis assessment (metaproteome vs. metagenome) were eluted over 113 min using 598 

a 10 to 33 % gradient of solvent B (80 % ACN in 0.1 % formic acid) followed by a washout 599 

procedure.  600 
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MS1 spectra were acquired between 300-1,650 Thompson at a resolution of 60,000 with an 601 

AGC target of 3 × 106 within 25 ms. Using a dynamic exclusion window of 30 sec, the top 12 602 

most intense ions were selected for HCD fragmentation with an NCE of 27. MS2 spectra were 603 

acquired at a resolution of 30,000 and a minimum AGC of 4.5 × 103 within 45 ms.  604 

LC-MS/MS data processing 605 

Raw data obtained from the instrument were processed using MaxQuant (version 1.5.2.8) [36]. 606 

The protein sequence databases used for database search consisted of the complete Mus 607 

musculus Uniprot database (54,506 sequences) and frequently observed contaminants (248 608 

entries), as well as the mouse microbiome catalogue (~2.6 million proteins) [51] for the raw 609 

data from laboratory method optimisation samples or the matching metagenome gene 610 

translation (~1.5 million proteins) for the raw data from data analysis assessment samples. A 611 

FDR of 1 % was required at the peptide and protein levels. A maximum of two missed 612 

cleavages was allowed and full tryptic enzyme specificity was required. Carbamidomethylation 613 

of cysteines was defined as fixed modification, while methionine oxidation and N-terminal 614 

acetylation were set as variable modifications. Match between runs was enabled where 615 

applicable. Quantification was performed using label-free quantification (LFQ) [82] and a 616 

minimum peptide count of 1. All other parameters were left to MaxQuant default settings.  617 

Comparison of sample preparation methods 618 

Unless stated otherwise, the analyses described below were performed in the R environment 619 

[83]. To compare the different centrifugation, digestion and lysis methods, we counted for each 620 

sample the number of peptide and protein groups with intensities and LFQ intensities superior 621 

to zero, respectively. We tested for significant differences between methods using unpaired t-622 

tests via the ggplot2 package [84]. Quantified peptides and protein groups were checked for 623 

overlap between the centrifugation methods using the VennDiagram package. The proportion 624 
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of host (Mus musculus) proteins was computed by summing up all host proteins iBAQ values 625 

and then dividing by the total iBAQ per sample. The centrifugation methods were evaluated 626 

using an unpaired t-test. 627 

The taxonomy representation, for the centrifugation methods, was done via the Unipept online 628 

software (v. 4.5.1) [37]. The quantified peptides (intensity superior to zero) were imported into 629 

Unipept with I-L not equal. The Unipept result were used to count the number of non-redundant 630 

peptides assigned to each taxonomic node.  631 

For the differential protein abundance analysis (between LSC and nLSC), the MSnBase 632 

package was used as organisational framework for the protein groups LFQ data [85]. Host 633 

proteins, reverse hit and potential contaminant proteins were filtered out. Protein groups were 634 

retained for further analysis only if more than 90 % of samples within either LSC or nLSC 635 

group had an LFQ superior to the first quartile overall LFQ. Significantly changing proteins 636 

were identified using paired t-test. Significance was set at an adjusted p-value of 0.01 following 637 

Benjamini-Hochberg multiple correction testing, as well as a minimum LSC/nLSC fold-change 638 

of ±1.5. The over-representation and GSEA testing of KEGG pathways were done for the 639 

significantly up- and down-regulated proteins as well as for the proteins uniquely identified per 640 

group via the clusterProfiler package based on hypergeometric distribution (p-adj. ≤ 0.05) [39].  641 

Single- versus two-step search assessment using HeLa cell line sample 642 

HeLa cells were prepared for LC-MS/MS measurements using published method [86]. Briefly, 643 

cells were grown in DMEM medium and harvested at 80 % confluence. Proteins were 644 

precipitated using acetone and methanol. Proteins were reduced with DTT and digested with 645 

Lys-C and trypsin. Peptides were purified on Sep-Pak C18 Cartridge. 646 

Sample was measured as described in the LC-MS/MS measurements section but for a few 647 

changes. Peptide sample was eluted over 213 min using a 7 % (0 min), 15 % (140 min) and 648 
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33 % (213 min) gradient of solvent B (80 % ACN in 0.1 % formic acid) followed by a washout 649 

procedure. The top 10 most intense ions were selected for HCD fragmentation.  650 

Raw data were processed as described in the LC-MS/MS data processing section with a few 651 

alterations. Match between runs was disabled. The protein sequence databases used for 652 

database search consisted of the complete Homo sapiens Uniprot database (93,799 sequences), 653 

frequently observed contaminants (248 entries), as well as the mouse microbiome catalogue 654 

(~2.6 million proteins) [51]. Several processings were performed differing in the number of 655 

microbiome catalogue entries included, which led to an increase in database size of 0×, 1×, 2×, 656 

5×, 10× and 20× compared to the H. sapiens database alone. These processings also differed 657 

in the database search strategies used, namely single- or two-step search [40].  658 

Identified MS/MS, peptides and protein groups were assigned to kingdom of origin (conflicts 659 

were resolved to Eukaryota by default). To compare the different database search strategies, 660 

we counted the number of identified MS/MS, non-redundant peptides and protein groups 661 

associated to each kingdom (as well as reverse hits and potential contaminants). We also 662 

calculated the FDR based solely on reverse hits or together with bacterial hits (factual FDR) in 663 

order to investigate the true number of false positives. 664 

Database search strategies assessment using known microbiome samples 665 

We used the samples generated by Kleiner and colleagues, specifically the uneven organisms 666 

preparation described in the earlier publication [32]. This dataset contained LC-MS/MS 667 

measurements (N = 8) that we processed as described in the LC-MS/MS data processing 668 

section with a few alterations. Match between runs was disabled. The protein sequence 669 

databases used for database search consisted of the proteome of all 32 organisms present in the 670 

synthetic samples (“uneven database” = 122,972 sequences), frequently observed contaminants 671 

(248 entries), as well as the mouse microbiome catalogue (~2.6 million proteins) [51]. Several 672 

processings were performed differing in the number of microbiome catalogue entries included, 673 
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which led to an increase in database size of 0×, 0.5×, 1×, 2×, 5×, 10× and 20× compared to the 674 

“uneven database” alone. These processings also differed in the database search strategies used, 675 

namely single-step search, “two-step protein” search to keep identified proteins [40], “two-step 676 

taxa” search to keep identified taxa [30], and “two-step two sections” search to keep identified 677 

proteins after sectioned search [44].  678 

Identified protein groups were assigned to database of origin, namely “uneven database” or 679 

mouse microbiome catalogue database. For each sample, this allowed computation of the 680 

number of (1) true positive hits, must be hits from the “uneven database”; (2) false positive 681 

hits, must be hits from the mouse microbiome catalogue; (3) false negative hits, the total 682 

identified protein count in the “uneven database” (total from 8 samples) minus the true 683 

positives; and (4) true negative hits, the total protein count in the mouse microbiome catalogue 684 

minus the false positives. This allowed calculation of the accuracy, precision and sensitivity 685 

for each increase in the database size. We also calculated the factual FDR based on reverse hits 686 

together with mouse microbiome catalogue hits in order to investigate the true number of false 687 

positives. 688 

Using only the processings against the largest database (20×), we filtered our data for protein 689 

groups with a minimum of one or two unique peptides. The true positive count and factual FDR 690 

were calculated (and compared) for each combination of search strategy and filtering, as 691 

described in the previous paragraph. 692 

Taxonomic representation of known microbiome samples 693 

We also used the uneven samples generated by Kleiner and colleagues [32] to investigate the 694 

taxonomic representation derived from MS-identified peptides. The gold-standard processing 695 

was used, with single-step database search against the proteome of all 32 organisms present in 696 

the synthetic samples (“uneven database” = 122,972 sequences). MS-identified peptides were 697 

submitted to (1) Kraken2 (v. 2.1.1) [46], (2) Diamond (v. 2.0.9) [48], or (3) Unipept online (v. 698 
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4.5.1) [28] software for taxonomic assignments. The protein sequences from Uniprot 699 

(swissprot and trembl) were used as database for each software. The Diamond alignment was 700 

performed using sensitive and taxonomic classification mode. The Unipept online analysis was 701 

done via the metaproteome analysis function with I-L not equal. The Kraken2 k-mer analysis 702 

was carried out in translated mode using back-translated peptide sequences (back-translation 703 

done with EMBOSS backtranseq). For each software approach, the complete taxonomic 704 

lineage (NCBI) was retrieved per peptide and the lowest common ancestor was determined.  705 

For each sample, we determined and computed the number of taxa that are (1) true positive 706 

hits, must be an identified taxon used for the preparation of the synthetic samples; (2) false 707 

positive hits, must be an identified taxon not used for the preparation of the synthetic samples; 708 

(3) false negative hits, the total number of taxa used for the preparation of the synthetic samples 709 

minus the true positives; and (4) true negative hits, the total number of taxa (with at least one 710 

Uniprot protein) minus the true and false positives. This allowed calculation of the accuracy, 711 

precision, specificity, sensitivity and F-measure for different PSM count thresholds. Taxa were 712 

then quantified per sample based on the different software approaches by summing the peptide 713 

intensities and then normalised to percentage of total peptide intensities. At each taxonomic 714 

level, the Spearman's rank correlation was calculated between the expected taxon 715 

representation in the uneven samples and the taxa representation determined from each 716 

software.  717 

To investigate the taxonomic identification in context of different database search strategies, 718 

we performed the taxonomic annotation via Unipept for all uneven data processings described 719 

in the above section. We then carried out all steps described in the previous paragraph in order 720 

to compute the F-measure per search strategy and database size. 721 
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Taxonomic representation of faecal microbiome samples 722 

All subsequent sections use the faecal samples from a 38 mice cohort. These were prepared via 723 

LSC and in-solution protein digestion, as described above. The resulting peptide mixtures were 724 

measured on a Q Exactive HF mass spectrometer and processed against the matching 725 

metagenome gene translation, as described above.  726 

The MS-identified peptides in this dataset were taxonomically annotated with Kraken2, 727 

Diamond and Unipept, as described above. Taxa were quantified as described above (sum of 728 

peptide intensities). The Spearman's rank correlation in taxon representation was calculated for 729 

each pairwise combination of samples within software.  730 

For each sample, we determined and computed the number of species that are (1) true positive 731 

hits, must be an identified species reported in the mouse microbiome catalogue; (2) false 732 

positive hits, must be an identified species not reported in the mouse microbiome catalogue; 733 

and (3) false negative hits, the total number of species reported in the mouse microbiome 734 

catalogue minus the true positives. This allowed calculation of the precision, sensitivity and F-735 

measure for each samples and annotation software. 736 

Metagenome to metaproteome correlation 737 

All subsequent sections use the faecal samples from a 38 mice cohort. These were prepared via 738 

LSC and in-solution protein digestion, as described above. The resulting peptide mixtures were 739 

measured on a Q Exactive HF mass spectrometer and processed against the matching 740 

metagenome gene translation, as described above. For direct comparison between metagenome 741 

and metaproteome, the identified genes were collapsed into groups identical to protein groups 742 

composition from mass spectrometry. Each gene groups abundance was calculated as the 743 

highest gene abundance within that group. Each gene groups and corresponding protein groups 744 

abundances were correlated across samples using Spearman's rank correlation from the stats 745 

package. Significance was set at an adjusted p-value of 0.05 following Benjamini-Hochberg 746 



31 

multiple correction testing. The GSEA testing of KEGG pathways and Gene ontologies were 747 

performed via the clusterProfiler package based on hypergeometric distribution (p-adj. ≤ 0.05) 748 

[39] following z-scoring of Spearman rho estimate per KEGG orthologies. 749 

Functional KEGG categories representation 750 

For each sample, the protein groups iBAQ values were summed per KEGG category (level 2) 751 

on the basis of KEGG orthology annotation. The same approach was also undertaken for gene 752 

count. The KEGG category abundance were normalised for differing number of KO entries per 753 

category and for variation between samples; this was done separately for metagenome and 754 

metaproteome. Differences in KEGG category abundance between metagenome and 755 

metaproteome were tested using paired t-tests from the stats package. Significance was set at 756 

an adjusted p-value of 0.01 following Benjamini-Hochberg multiple correction testing. 757 

Significantly changing KEGG categories were prioritised based on gene groups to protein 758 

groups correlation (see section Metagenome to metaproteome correlation), whereby the 759 

Wilcoxon rank-sum test was used to identify KEGG category containing KO entries whose 760 

correlation differ from overall distribution (adjusted p-value ≤ 0.05). 761 

To investigate further these selected KEGG categories, the protein groups iBAQ and gene 762 

count were used as described in the previous paragraph to derive KO normalised abundance 763 

and t-test results. Using the KO entries from each selected KEGG categories, separate GSEA 764 

testing of KEGG pathways were performed via the clusterProfiler package based on 765 

hypergeometric distribution (p-adj. ≤ 0.05). 766 
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Tables 1019 

Table 1: Performance comparison of different sample preparation and data analysis 1020 

steps. In bold are the best methods according to assessed criteria: peptide/protein count, 1021 

host/dietary contamination, Firmicutes or Bacteroidetes representation, time efficiency, FDR, 1022 

identification rate, taxon-assigned peptides and number of taxonomic identification precision. 1023 

The performance status is displayed using minus sign for poor, equal sign for similar/no 1024 

difference or plus sign for good performance. 1025 
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Search strategy 

Single-step -      + + -     

Two-step protein +      - -- +     

Two-step sections +    -- - +   

Two-step taxa -    - + -   

Taxon 
quantification 

Kraken2        +     + -- 

Diamond        --     - - 

Unipept        +     + + 

 1026 

Figures 1027 

Figure 1: Low speed centrifugation impacts protein identification and taxonomic 1028 

representation. A) Number of MS/MS spectra, peptides and protein groups per samples for 1029 

the comparison between LSC (red) and nLSC (blue) methods. B) Number of identified MS/MS 1030 
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spectra, peptides and protein groups per samples for the comparison between LSC-in solution 1031 

digestion (red), LSC-FASP (grey), nLSC-in solution digestion (blue) and nLSC-FASP (orange) 1032 

methods. A-B) Represented significance results correspond to t-test on N = 12 (A) or N = 6 1033 

(B): * p- value ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. C) Hierarchical representation of Unipept-1034 

derived taxonomy (down to phylum level) for the peptide identified in the LSC and nLSC. The 1035 

barplot represent the taxonomic abundance for LSC (red) and nLSC (blue) methods based on 1036 

peptide counts (only for taxon identified with 3 or more peptides). D) Overlap in the overall 1037 

identified peptides or protein groups between the LSC and nLSC methods. (E) Volcano plot of 1038 

the protein abundance comparison between LSC and nLSC approaches. Significant protein 1039 

groups based on paired t-test from N = 12 with FDR ≤ 0.01 and absolute fold-change ≥ 2.5. (F) 1040 

KEGG pathways over-representation testing for the protein groups that significantly increase 1041 

(red) or decrease (blue) in abundance between LSC and nLSC sample preparation approaches. 1042 

Fisher exact-test threshold (gold dotted line) set to adjusted p-value ≤ 0.05. 1043 

Figure 2: Two-step database search in combination with target-decoy strategy leads to a 1044 

dramatic increase in false positive rate. A) The protein groups count is shown for single- or 1045 

two-step search strategies across increasingly large protein sequence databases. Counts are 1046 

colour-coded per category, with eukaryote (grey), bacteria (red), contaminant (blue) and 1047 

reverse (orange) hits. B) The FDR is calculated for single- or two-step search strategies across 1048 

increasingly large protein sequence databases. The FDR is calculated based on reverse hits only 1049 

(circle shape) or reverse plus bacterial hits (triangle shape). C & D) The sensitivity (C) and 1050 

factual FDR (D) based on protein groups identification across increasingly large protein 1051 

sequence databases. The compared database search strategies are single-step (blue), two-step 1052 

taxon filtering (grey) and two-step protein filtering without (red) or with (orange) database 1053 

sectioning. Lines represent the median (and the shading corresponds to the standard error) from 1054 

N = 8 LC-MS/MS runs. E) The true positive count based on protein groups identified with a 1055 
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minimum of one (shaded colouring) or two (unshaded colouring) unique peptides for the largest 1056 

database (i.e. 20). The compared database search strategies are single-step (blue), two-step 1057 

taxon filtering (grey) and two-step protein filtering without (red) or with (orange) database 1058 

sectioning. Bars and numbers indicate the median count, while error bars correspond to the 1059 

standard deviation, from N = 8 LC-MS/MS runs. The overall maxima of true positive count 1060 

based on single-step search is indicated as a horizontal dotted line (gold). 1061 

Figure 3: Unipept software provides the most precise taxonomic annotation of MS-based 1062 

peptide identification. A) Percentage of taxon-annotated peptides at each taxonomic level for 1063 

the comparison between Kraken2 (red), Diamond (grey) and Unipept (blue) software. B) 1064 

Assessment of the impact of the minimum number of PSM count per taxon onto the F-measure 1065 

for taxonomic annotation. The F-measure was compared between Kraken2 (red), Diamond 1066 

(grey) and Unipept (blue) software. C) Heatmap representing the correlation (Spearman ρ) in 1067 

taxonomic abundance between sample input protein (expectation) and different taxonomic 1068 

annotation software (i.e. Kraken2, Diamond and Unipept). The correlation was performed 1069 

overall, as well as for each taxonomic level. D) Organisms pooled in artificial samples are 1070 

ranked based on the protein material input, as displayed in the left-most barplots (x-axis in 1071 

log10 scale). The proteome size (ORFs) for these organisms on UniProt web resource is 1072 

displayed in the right-most barplot (x-axis in log10 scale). The heatmap compares the taxon 1073 

identification across samples between Kraken2, Diamond and Unipept. A-D) Samples from the 1074 

study by Kleiner and colleagues, with N = 8. E) Overlap in the overall identified taxa between 1075 

the Kraken2 (red), Diamond (grey) and Unipept (blue) software. F) A comparison of the F-1076 

measure distribution for taxonomic annotation between the Kraken2 (red), Diamond (grey) and 1077 

Unipept (blue) software. Each point represents an individual mouse. E-F) Samples from this 1078 

study using mouse faecal material, with N = 38. 1079 
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Figure 4: Functionally active pathways derived from the metaproteome differs from the 1080 

metagenome potential. A) Correlation is shown between each protein groups (metaproteome) 1081 

and corresponding gene “groups” (metagenome) abundances. Correlation was tested using 1082 

Spearman’s rank correlation and p-value was adjusted for multiple testing using Benjamini-1083 

hochberg correction. Significantly positively correlating protein/gene groups are in red colours, 1084 

while significantly negatively correlating protein/gene groups are in green colours (adjusted p-1085 

value ≤ 0.05). B) GSEA of KEGG pathways based on ranking of the protein/gene groups 1086 

correlation. Pathway node colour corresponds to GSEA results adjusted p-value and node size 1087 

matches the number of protein/gene group assigned to the pathway. C) Comparison in the 1088 

proportion of selected KEGG functional categories (level 2) between metaproteome (red) and 1089 

metagenome (grey). Paired t-test p-values are indicated (N = 38). D) GSEA of KEGG pathways 1090 

based on ranking of t-test results from KEGG orthology proportion between metaproteome and 1091 

metagenome. KEGG pathways are colour-coded based on KEGG functional categories (level 1092 

2). Only significantly over-represented KEGG pathways are shown with adjusted p-value ≤ 1093 

0.05. E) Interaction network between KEGG orthologies and KEGG pathways for the KEGG 1094 

functional category “Protein families: genetic information processing”. Pathway node size 1095 

corresponds to number of KEGG orthologies associated to it. KEGG orthologies are colour-1096 

coded based on directional adjusted p-value from the t-test comparison between metaproteome 1097 

and metagenome. 1098 
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