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Abstract 

Decline in global carnivore populations has led to an increased demand for the assessment of 

carnivore densities in understudied habitats and the use of robust survey techniques to obtain 

these estimates. Furthermore, growing levels of anthropogenic disturbance can alter 

community structure and disrupt carnivore guild dynamics, thereby risking further population 

decline. This thesis examines the population status and intraguild dynamics of large carnivores 

in Kasungu National Park (KNP), Malawi. KNP is an example of a protected area that has 

experienced large-scale reductions in both carnivore and prey populations, whilst the miombo 

woodland of KNP has been identified as a habitat lacking baseline data on large carnivore 

density and behavioural ecology. Consequently, KNP is a novel site to 1) produce robust 

population estimates from an understudied habitat, and 2) improve understanding of niche 

partitioning strategies in a modified carnivore guild.   

Using the spotted hyaena (Crocuta crocuta) as a model species, Chapter Two reviews the 

current survey methodologies for estimating the population density of large carnivores. I 

advocate the wider application of spatial capture-recapture (SCR) techniques to estimate 

spotted hyaena density and provide recommendations for adopting these methods. In Chapter 

Three I provide a summary of the decline in protected area health and large carnivore 

populations in Malawi, before providing an overview of KNP and the sites’ importance to 

regional conservation efforts. I build on this in Chapter Four, using camera trap surveys and 

SCR modelling to estimate leopard (Panthera pardus) and spotted hyaena density in KNP 

between 2016 and 2018. Using a novel spatial partial identity model (SPIM), I also address the 

issue of uncertainty in individual identification from camera trap data. Density estimates were 

low across survey years, compared to estimates from sub-Saharan Africa, for both leopard (1.9 

±0.19 SD adults/100km2) and spotted hyaena (1.15 ±0.42 SD adults/100km2). In addition, the 

presence of lion (Panthera leo) and wild dog (Lycaon pictus) is limited to dispersing 
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individuals, highlighting the degradation of the protected area and the wider loss to the 

carnivore guild in KNP. 

In Chapter Five, using a combination of co-detection modelling, time-to-event analyses, and 

temporal activity patterns from camera trap data, I examine the spatiotemporal dynamics of 

leopard and spotted hyaena in KNP. I find that detection of leopard and spotted hyaena is 

significantly associated with the detection of preferred prey and competing carnivores, 

increasing the likelihood of species interaction. In addition, female leopards display temporal 

partitioning from both intra- and inter-specific competitors, which may affect overall fitness 

and result in increased exposure to sources of anthropogenic mortality. Using scat analysis 

techniques, Chapter Six compares the dietary niche overlap, as a proxy for intraguild 

competition, of leopard and spotted hyaena in KNP. Results show that leopard and spotted 

hyaena share relatively high levels of dietary overlap (Pianka’s overlap = 0.65), providing 

further evidence of the potential for interspecific competition between the two species.  

This study provides the first robust population estimates for leopard and spotted hyaena in KNP 

and evidence of a range of niche partitioning strategies adopted by large carnivores in a 

modified carnivore guild. The low population density estimates for leopard and spotted hyaena 

are a cause for conservation concern. These concerns are exacerbated by the mutual drivers of 

spatiotemporal behaviour, the high levels of dietary overlap, and low prey densities, which 

increase the risk of exploitation and interference competition and could have negative 

consequences for population demographics. Therefore, increasing prey populations will be 

essential to minimise levels of interspecific competition between large carnivores. In addition, 

continued monitoring of population density and intraguild dynamics will be critical for 

assessing the efficacy of ongoing conservation initiatives in KNP and other protected areas in 

Malawi under similar levels of anthropogenic pressure. 
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CHAPTER ONE: Introduction 

1.1 The role of large carnivores 

The order Carnivora consists of 250 terrestrial species that inhabit every major habitat on Earth 

and perform a critical role in regulating ecosystems (Hunter, 2018). Despite occurring at 

naturally low densities, carnivores are essential for maintaining biodiversity and ecosystem 

function by controlling herbivores and mesopredators through top-down interactions (Ripple 

et al. 2014; Hoeks et al. 2020). Indeed, large carnivores are historically valued for their role in 

managing herbivore populations (Fretwell, 1977; Oksanen et al. 1981). However, there is a 

growing body of literature indicating that large carnivores play a pivotal role in the delivery of 

wider ecosystem services (Schmitz et al. 2010; Letnic et al. 2012; Ford et al. 2014; Atkins et 

al. 2019), whilst also providing economic and social benefits on a global scale, particularly in 

the developing world (Naidoo et al. 2011; Ripple et al. 2014; Macdonald, C. et al. 2017; 

Braczkowski et al. 2018).   

1.1.1 Ecological role 

Whilst direct predation from large carnivores is a key regulator of prey populations (Dobson et 

al. 2006), predators also affect prey demography, and wider ecosystem function, through the 

consequences of prey risk avoidance strategies (Creel & Christianson, 2008; Schmitz et al. 

2010). For example, the presence of large carnivores in an environment creates a “landscape 

of fear”, where prey species adopt antipredator behavioural responses to minimise predation 

risk (Brown et al. 1999; Preisser et al. 2005). In these ecosystems, prey species either entirely 

avoid or minimise exposure time in resource-rich habitats, where the risk of predation is 

heightened (Creel et al. 2005; Laundré et al. 2010). These areas of suppressed browsing and 

grazing buffer lower trophic levels, preventing overconsumption from large herbivores and 

increasing heterogeneity in plant and tree species (Kuijper et al. 2013; Suraci et al. 2016; le 
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Roux et al. 2018). The resulting diversity of plant and tree species creates a gradient of food 

availability and vegetation cover, integral to managing predation risk and maintaining 

ecosystem function on a wider scale (Schmitz et al. 2010; le Roux et al. 2018). The loss of 

carnivores from an ecosystem often results in herbivore populations increasing and coincides 

with a reduction in risk-avoidance behaviour. Over time this can lead to trophic cascades that 

have wide-ranging impacts on prey and plant communities (Ripple et al. 2001; Terborgh & 

Estes, 2010; Ford et al. 2014; Winnie & Creel, 2017; Atkins et al. 2019). These trophic 

cascades have been observed in numerous landscapes, including the United States where the 

decline of cougar (Puma concolor) populations led to higher densities of mule deer (Odocoileus 

hemionus) and resulted in greater browsing intensity, increased bank erosion and decreased 

riparian biodiversity (Ripple & Beschta, 2006). Similarly, in Mozambique where civil war led 

to a widespread collapse in large carnivore populations, the diet and spatial use of bushbuck 

(Tragelaphus sylvaticus) was altered by the absence of predators, leading to changes in plant 

community structure and the suppression of common food plants (Atkins et al. 2019).     

Similar to the suppression of prey populations through risk-avoidance behaviours, large 

carnivores also limit the impact of mesopredators (mammalian carnivores of intermediate body 

size) on an ecosystem through intraguild competition (Prugh et al. 2009; Ripple et al. 2013; 

Newsome et al. 2017). The extirpation, or extensive population decline, of large carnivores 

from an ecosystem can lead to “mesopredator release”, whereby mesopredator numbers 

increase substantially in the absence of larger apex predators (Crooks & Soulé, 1999). The 

removal of large carnivores often means that mesopredators can achieve persistently high 

densities and, without the regulating effect of apex predators, this can drive the decline or 

extinction of prey populations; therefore, destabilising community structure and disrupting 

ecosystem services (Rayner et al. 2007; Beschta & Ripple, 2009; Brashares et al. 2010; Gordon 

et al. 2017). For example, Cunningham et al. (2018) reported that the extensive decline of the 
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Tasmanian devil (Sarcophilus harrisii) population, from a species-specific transmissible 

disease, led to increased foraging and scavenging opportunities for feral cats (Felis catus). 

Reduced suppression of feral cats has broad implications for protecting native vertebrate 

species, as feral cats are a key cause of species decline (Woinarski et al. 2015), whilst slower 

consumption of carrion increases the prevalence of disease-causing bacteria and potential risk 

of disease transmission in wildlife and livestock (Cunningham et al. 2018).  

The integral role that large carnivores play in ecosystem services means that large carnivores 

can also be regarded as indicator species for ecosystem health (Cardillo et al. 2005; Morrison 

et al. 2007). The naturally low densities of large carnivores, combined with their sensitivity to 

ecosystem disruption (e.g., habitat alteration, poisoning events, poaching and anthropogenic 

disturbance), often means that the disappearance of large carnivores from an environment is a 

precursor to wider biodiversity loss (Redford, 2005; Sergio et al. 2006; Kittle et al. 2017). For 

instance, Burton et al. (2011) highlighted the decline of lion (Panthera leo) observations in 

Mole National Park, Ghana, as an indicator of broader decline, both in the protected area and 

across the wider region. Conversely, in ecosystems where large carnivores have been restored, 

they are often attributed with aiding habitat restoration (Kuijper et al. 2013; Beschta & Ripple, 

2015), suppressing mesopredator and invasive species density (Derham et al. 2018; Sheehy et 

al. 2018) and contributing to the return of essential resources (e.g., carrion) and scavenger 

diversity (Wilmers et al. 2003; Sievert et al. 2018). Population monitoring of large carnivores 

and effective conservation management of the large carnivore guild, therefore, has the potential 

to prevent biodiversity loss, regulate ecosystem services and act as an indicator of overall 

environmental health (Sergio et al. 2006; Dalerum et al. 2008; Ripple et al. 2014). 
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1.1.2 Economic and social role 

Alongside the ecological merits of large carnivore presence, these species also provide 

economic and social benefits through a variety of direct and indirect methods (Ripple et al. 

2014). Likely the most common and direct way in which large carnivores provide economic 

value to a landscape, is tourism (Lindsey et al. 2007; Skibins et al. 2013). Due to their iconic 

nature and popularity in mainstream culture, the simple presence of large carnivores can 

provide economic benefits for tourism (Di Minin et al. 2013; van der Meer, Badza & Ndhlovu, 

2016). For example, jaguar (Panthera onca) ecotourism in the Brazilian Pantanal was 

estimated to generate a gross annual income close to US$7 million (Tortato et al. 2017), whilst 

the reintroduction of lions to Pilanesberg National Park, South Africa, generated US$9 million 

per year for the regional economy (McNeely, 2000). In addition, sustainable trophy hunting 

can provide a vital source of income when conducted under a regulated and evidence-based 

framework (IUCN, 2016; Booth et al. 2020). For instance, sustainable hunting of lion and 

leopard (Panthera pardus) in the Savé Valley Conservancy, Zimbabwe, generated over US$3 

million in gross income over a four-year period (Funston et al. 2013). As tourism and hunting 

are often significant contributors to local and national economies, the loss of carnivores and 

associated revenue can have a considerable impact on livelihoods (Dickman et al. 2011; 

Mossaz et al. 2015; IUCN, 2016).  

Large carnivore presence can also have indirect benefits for local economies and social welfare, 

including benefits to human health and pastoralism (O’Bryan et al. 2018). Previous research 

has highlighted that by predating stray dogs, leopards occupying the densely populated areas 

around Mumbai, India, provide valuable public health benefits by reducing dog bite incidents 

and rabies transmission, whilst saving local authorities US$18,000 per year in sterilisation and 

vaccination costs (Braczkowski et al. 2018). In agricultural landscapes, where large carnivores 

are often persecuted, there are positive aspects of human-carnivore coexistence that are often 



 Chapter One: Introduction 

6 
 

overlooked (Ripple et al. 2014; O’Bryan et al. 2018). For example, suppression of 

mesopredators and regulation of prey populations by large carnivores, as discussed previously, 

have been shown to reduce crop raiding (Brashare et al. 2010; Taylor et al. 2016; Thinley et 

al. 2018). For instance, Taylor et al. (2016) found that the presence and abundance of large 

carnivores in African protected areas was a more effective strategy for mitigating crop-raiding 

by baboons (Papio spp.) than human hunting of crop-raiders or changes in crop quality. Crop-

raiding can have wide-ranging implications, particularly in developing countries, as financial 

income is lost (often leading to alternative livelihoods being sought, including bushmeat 

poaching; Lindsey et al. 2013a) and human livelihoods are impacted as children are forced to 

miss school to defend crops from attack (Mackenzie et al. 2015). Top-down control of 

mesopredators and prey populations by large carnivores is, therefore, an important tool for 

mitigating human-wildlife conflict (Taylor et al. 2016). Furthermore, by reducing disease 

prevalence in ungulate populations (by targeted predation of infected prey), large carnivores 

actively mitigate disease outbreaks that can be passed on to domestic livestock and cause great 

expense to agricultural industries and pastoralists (Packer et al. 2003; Ostfeld & Holt, 2004; 

Tanner et al. 2019). 

Despite their potential benefits to agricultural landscapes, the presence of large carnivores in 

pastoral environments, or bordering protected areas, is often controversial and the negative 

impacts have been well documented (e.g., Woodroffe et al. 2005; Morehouse & Boyce, 2011; 

Kissui et al. 2019). Livestock depredation is the primary source of human-carnivore conflict 

and, as livestock loss has financial ramifications, it impacts the quality of peoples’ livelihoods 

(Kissui et al. 2019). For example, the average cost of livestock depredation per farmer in a 

Namibian conservancy was US$2,848 and, as average expenditure was US$1,708 per annum, 

continued livestock loss is likely to have severe financial implications (Verschueren et al. 

2020). The continued growth of human populations, combined with the decline in protected 
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area health and habitat fragmentation, means increasing levels of human-carnivore conflict are 

predicted (Inskip & Zimmermann, 2009). Therefore, despite the positive aspects of large 

carnivores in an economic and social context, there is a need for long-term solutions to mitigate 

human-carnivore conflict that are beneficial for people and wildlife (Dickman et al. 2011).  

1.2 Global decline of large carnivores 

Although large carnivore presence has wide-ranging ecosystem benefits, many large carnivores 

have experienced significant population declines and the continued reduction of their 

geographic ranges (Ripple et al. 2014; Wolf & Ripple, 2018). As a result of these global trends, 

80% of large carnivore species are now undergoing population declines and 64% of these 

species are threatened with extinction (Wolf & Ripple, 2018). Continued global alteration and 

fragmentation of habitats (Segan et al. 2016; Powers & Jetz, 2019) has resulted in large 

carnivores occupying, on average, only 47% of their historical geographical range (Ripple et 

al. 2014). In some cases, such as the Ethiopian wolf (Canis simensis), range contraction is as 

high as 99% of the species’ historical range (Wolf & Ripple, 2017).      

Decline in large carnivore populations can be attributed to numerous factors, including habitat 

destruction (Ripple et al. 2014; Espinosa et al. 2018), loss of natural prey (Wolf & Ripple, 

2016; Sandom et al. 2018), direct and indirect persecution (St John et al. 2018; Knox et al. 

2019; Loveridge et al. 2020), reduced habitat connectivity (McClure et al. 2017; Pitman et al. 

2017) and increased conflict with humans (Treves & Karanth, 2003; Henschel et al. 2011; 

Broekhuis et al. 2017). These threats vary among species and populations, with some threats 

occurring in localised areas of a species geographic range, whilst other limiting factors may 

extend beyond a species’ range, thereby preventing recolonisation (Ripple et al. 2014). 

Furthermore, the increasing pressures of climate change (Johnson et al. 2018; Rabaiotti & 
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Woodroffe, 2019) and human population growth (Geldmann et al. 2014; Jones et al. 2018) are 

likely to further intensify the risks posed to threatened large carnivores over time.   

The causes of large carnivore declines are often concurrent with global biodiversity loss, 

however, they are exacerbated for large carnivores due to their susceptibility to anthropogenic 

disturbance and habitat alteration (Cardillo et al. 2005; Maxwell et al. 2016). Most large 

carnivores occur at relatively low population densities, whilst their slow reproductive cycles 

and low infant survival rates make them highly susceptible to persecution and unable to quickly 

respond to population decline (Cardillo et al. 2005; Ripple et al. 2014). Furthermore, their 

wide-ranging behaviour and high food requirements, compounded by increasing human 

population densities and encroachment into protected areas, bring large carnivores into further 

conflict with humans and livestock, leading to increased persecution and vulnerability to 

extinction (Broekhuis et al. 2017; O’Neil et al. 2020). 

Owing to their naturally low densities and extensive ranging behaviour, large carnivores 

require substantial areas of contiguous, high-quality habitat for populations to persist (Di Minin 

et al. 2016; Wolf & Ripple, 2017). Isolated protected areas alone are often ineffective for large 

carnivore protection, with species requiring vast networks of connected habitat to ensure 

sufficient resource availability, maintain gene flow and alleviate the pressures of intraguild 

competition (Crooks et al. 2011; Lamb et al. 2020; Naude et al. 2020). However, large 

carnivores are particularly sensitive to the growing pressure of anthropogenic activities (e.g., 

livestock farming, poaching, infrastructure development) at protected area boundaries 

(Woodroffe & Ginsberg, 1998; Balme, Hunter & Slotow, 2010; Watson et al. 2014). Increased 

exposure to the risks of anthropogenic disturbance at reserve edges act as population sinks for 

large carnivores (Woodroffe & Ginsberg, 1998; Veldhuis et al. 2019). For example, jaguar 

density was up to 18 times higher in the core areas of Yasuní Biosphere Reserve, Ecuador, 

when compared to edge areas that were exposed to access roads and human settlements 



 Chapter One: Introduction 

9 
 

(Espinosa et al. 2018). The negative effects of anthropogenic pressure at reserve edges can also 

impact natal dispersal, blocking immigration and potentially leading to inbreeding within 

populations (e.g., Riley et al. 2014; Naude et al. 2020). If the detrimental impact of edge effects 

and population sinks cannot be balanced with reproductive rates and successful dispersal 

events, then carnivore populations can rapidly decline (Woodroffe & Ginsberg, 1998). For 

example, a collapse in the lion population in Gonarezhou National Park, Zimbabwe, was 

suspected to be from hazardous edge effects, including luring animals outside park boundaries 

for trophy hunting and the increased risk of snaring incidents closer to reserve edges (Groom 

et al. 2014).      

1.3 Large carnivore responses to anthropogenic disturbance 

In areas of high human encroachment and intensive poaching, carnivores are known to face 

extirpation (Woodroffe, 2000; Henschel et al. 2005; Atkins et al. 2019). As human populations 

rise, and anthropogenic pressures increase on protected areas, they create both biotic and 

abiotic challenges that impact carnivores negatively (Šálek et al. 2015). The extent to which 

large carnivores can persist in human-impacted landscapes differs between species and is 

largely dependent on the scale at which they interact with humans and their ability to adopt 

behavioural responses (Cardillo et al. 2005). For example, leopards across Africa and Asia can 

persist at relatively high densities, even in unprotected, human-dominated areas (Athreya et al. 

2013; Jacobson et al. 2016). As solitary generalists, exhibiting a diverse and adaptable dietary 

niche, leopards have a greater tolerance for persisting in the complex matrix of human-

dominated landscapes (Braczkowski et al. 2012; Athreya et al. 2016; Kumbhojkar et al. 2020). 

In comparison, social, group-living large carnivores, such as African wild dogs (Lycaon 

pictus), and larger-bodied species, such as tigers (Panthera tigris) and lions, often struggle to 

adapt in areas of increased human disturbance (Karanth et al. 2011b; Everatt et al. 2019; O’Neil 
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et al. 2020). These species have a greater reliance on large ungulate prey (Karanth et al. 2004; 

Hayward & Kerley, 2005) and, therefore, when the abundance of natural prey is depleted, they 

are likely to target livestock or increase their ranging behaviour, with both responses 

heightening the risk of exposure to anthropogenic sources of mortality (Fahrig & Rytwinski, 

2009; Lindsey et al. 2017; Everatt et al. 2019).   

 1.3.1 Spatiotemporal behaviour 

Increasing rates of anthropogenic disturbance can result in large carnivores altering their spatial 

use and temporal activity, often with the aim of maximising avoidance of human features and 

activities (Sévêque et al. 2020). Human activity has been observed to alter the spatiotemporal 

activity of several large carnivores, including cougars (Suraci et al. 2019), lions (Oriol-Cotterill 

et al. 2015), Amur leopards (P. pardus orientalis; Yang et al. 2018), spotted hyaenas (Crocuta 

crocuta; Kolowski et al. 2007) and brown bears (Ursus arctos; Parres et al. 2020). However, 

modifying spatiotemporal responses, and shifts away from natural patterns of activity, can have 

consequences for individual fitness, community dynamics and population persistence (Gaynor 

et al. 2018). For example, Amur tigers (Panthera tigris altaica) in areas of higher 

anthropogenic use reduced handling time and meat consumption on kills, whilst abandoning 

63% of kills due to disturbance from human activity (Kerley et al. 2002). The development of 

human infrastructure can also impact carnivore space use, often bringing carnivores into further 

conflict with humans or increasing exposure to sources of mortality (Barrueto et al. 2014). For 

example, despite sufficient prey availability and forest cover, Thompson et al. (2020) found 

that jaguar space use was significantly reduced in areas closer to human settlements, with 

consequences for dispersal and functional connectivity between populations. In addition, some 

aspects of human-altered landscapes, such as road networks, provide easy travel corridors and 

are used to delineate territories and aid social communication through scent marking sites 

(Rafiq et al. 2020a). This behaviour can increase the likelihood of vehicle collision, and Kerley 
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et al. (2002) found that survivorship and reproductive success were significantly reduced when 

Amur tiger habitat use incorporated primary road networks.   

 1.3.2 Interspecific competition and guild dynamics 

Whilst large carnivores may alter their spatiotemporal dynamics to avoid interaction with 

anthropogenic disturbance, the behaviour of one species is often part of an intricate community 

structure that can be impacted when species alter patterns of activity (Sévêque et al. 2020). In 

most ecosystems, the behavioural ecology and spatial distribution of carnivores is driven by 

competition for available resources and the risk of intraguild predation (Palomares & Caro, 

1999; Linnell & Strand, 2000; Caro & Stoner, 2003). Subordinate carnivores can reduce the 

detrimental effects of competition by diverging their use of one or more niche axes: spatially, 

adjusting their habitat use and home range size to limit encounters with dominant predators 

(e.g., Karanth et al. 2017; Marneweck et al. 2019); temporally, modifying their activity patterns 

to reduce times of overlap with competitors (e.g., Santos et al. 2019; Rasphone et al. 2020); 

and trophically, utilising different food resources (e.g., Hayward & Kerley, 2008). By 

partitioning their use of these three dimensions, complex carnivore communities with similar 

ecological requirements can facilitate coexistence (Caro & Stoner, 2003; Chesson & Kuang, 

2008). 

When the spatiotemporal behaviours of one or more species are influenced by anthropogenic 

disturbance, it can cause significant alterations to guild dynamics and, potentially, lead to 

population decline (Gaynor et al. 2018; Manlick & Pauli, 2020; Wilson et al. 2020). These 

more subtle and complex behavioural responses to anthropogenic disturbance have not 

received the same level of scientific investigation as the more direct implications of human 

impact, such as population decline and localised extirpation (Wang et al. 2015; Frey et al. 

2020). However, detecting these subtle shifts in large carnivore behaviour may provide early 
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indicators of species decline and allow more pre-emptive conservation management decisions 

(Frey et al. 2020; Wilson et al. 2020). Shifts in guild dynamics and niche partitioning have 

been observed in multiple landscapes and can have cascading effects on ecosystem health 

(Kuijper et al. 2016; Gaynor et al. 2018). For example, grey wolves (Canis lupus) in the Rocky 

Mountains increased their nocturnal activity in relation to disturbance and this, in turn, resulted 

in coyotes (Canis latrans) exhibiting higher levels of diurnal activity and expanding their 

spatial range (Frey et al. 2020). This could facilitate a form of mesopredator release, with 

coyotes benefiting from a reduction in top-down control and potentially increasing dietary 

overlap with other diurnal mesopredators (Frey et al. 2020).  

In addition to changing large carnivore dynamics through the alteration of species behaviour, 

human disturbance can lead to shifts in community dynamics by altering the composition of 

the guild itself (Heim et al. 2019). Large carnivores vary in their adaptability to anthropogenic 

disturbance, with rates of population decline often differing between species. Apex predators 

(e.g., lion, tiger) are unlikely to have evolved mechanisms for facilitating coexistence with 

other dominant predators (i.e., humans) and, as a result, are more likely to find adaptation to 

human-dominated landscapes challenging (Everatt et al. 2019). This can lead to increased rates 

of population decline for dominant species, for instance the lion population in Liuwa Plains, 

Zambia, declined to one individual, whilst the spotted hyaena population remained stable, 

likely due to their greater tolerance of human disturbance (M’soka et al. 2016). However, by 

altering the community assemblage and resulting shifts in activity and niche partitioning 

between competitors, essential ecosystem processes, such as top-down regulation or 

interference competition, can be impacted (Wang et al. 2015; Frey et al. 2020). For example, 

intensive pastoralist activity surrounding Rajaji National Park, India, led to a collapse in the 

competitively-dominant tiger population and, in turn, an increase in the subordinate leopard 

population (Harihar et al. 2011). However, upon removal of the surrounding pastoralist 
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community, the tiger population almost doubled in size, increasing competition with leopards. 

This shift in guild dynamics resulted in leopard density declining by almost 80% over five 

years, whilst increased competition for resources resulted in leopard diet shifting to livestock 

depredation (Harihar et al. 2011).  

 1.3.3 Diet and prey preference  

Poaching and trophy hunting can alter the abundance of available prey inside and outside 

protected areas (Lindsey et al. 2013a; Wolf & Ripple, 2016). Large carnivores are frequently 

impacted by unsustainable offtake of ungulate species, as the species targeted by poachers and 

hunters overlap with the weight range of large carnivore preferred prey (Henschel et al. 2011; 

Darimont et al. 2015; Wolf & Ripple, 2016). A global synthesis of available studies revealed 

that humans harvested shared prey at a rate of 1.9 times higher than all other predators 

combined (Darimont et al. 2015). The density and distribution of prey are often strong drivers 

of carnivore abundance (Rabelo et al. 2019; Ash et al. 2020; Searle et al. 2020) and how large 

carnivores respond to prey depletion is often indicative of their ability to persist in the face of 

wider anthropogenic change. In areas where prey species are exploited at unsustainable levels, 

large carnivores may be forced to target alternative sources of prey. For instance, Persian 

leopard (Panthera pardus saxicolor) in Iran were found to utilise wild boar (Sus scrofa) at 

higher levels than elsewhere across their range, as religious beliefs meant poachers avoided 

hunting suidae species (Ghoddousi et al. 2017). Whilst this adaptation aided leopard 

persistence, the reduction in dietary niche breadth and increased risk of hunting dangerous prey 

could still have long term impacts on population viability (Ghoddousi et al. 2017). 

Most carnivores display some degree of dietary breadth, however, there is growing evidence 

that the decline in large prey species is resulting in a shift towards smaller prey and dietary 

niche contraction (Wolf & Ripple, 2016; Creel et al. 2018). The depletion of larger prey, and 
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resulting increase in dietary overlap between carnivore species, can have wide ranging 

implications for conservation management. A review of large carnivore studies by Khorozyan 

et al. (2015) revealed that beyond a minimum threshold for prey biomass, livestock predation 

increases significantly. This, in turn, increases the likelihood of retaliatory killing and lowers 

tolerance of large carnivore presence (van Eeden et al. 2018; LeFlore et al. 2019). In addition, 

increased dietary overlap between dominant and subordinate competitors can lead to higher 

rates of interspecific competition, potentially limiting subordinate carnivores (e.g., African 

wild dog, cheetah Acinonyx jubatus) that facilitate coexistence through niche partitioning 

(Dröge et al. 2017; Creel et al. 2018). There may also be negative impacts incurred on energetic 

fitness, group survival and reproduction of carnivores when smaller prey items are targeted that 

are below optimal weight ranges, although this subject requires further investigation (Carbone 

et al. 1999; Woodroffe et al. 2007; Creel et al. 2018).  

1.4 Lack of population data for large carnivores and challenges for data 

collection 

Although there is a growing body of literature highlighting the global decline of large carnivore 

populations, the implementation of effective management strategies to combat this decline are 

reliant on robust and accurate population assessments (Balme, Hunter & Slotow, 2009; Tobler 

& Powell, 2013). Providing reliable estimates whilst establishing methodologies and analytical 

frameworks from which baseline assessments of population stability can be quantified, is 

crucial for effective monitoring and informing conservation priorities (Green et al. 2020). 

Despite their ecological, economic and social benefits, there are large areas where estimates of 

population size and ecological information are still lacking for large carnivores (Bauer et al. 

2015; Popescu et al. 2016; Jędrzejewski et al. 2018). For example, recent studies have 

highlighted the lack of accurate population estimates available for cheetah (Durant et al. 2017), 
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jaguar (Jędrzejewski et al. 2018), leopard (Jacobson et al. 2016), lion (Braczkowski et al. 

2020a) and snow leopard (Panthera uncia; Alexander et al. 2015; Suryawanshi et al. 2019) 

across their geographic ranges.  

Obtaining robust density estimates for large carnivores is challenging (Burton et al. 2015; 

Devens et al. 2018). Many of these species are cryptic, solitary and wide-ranging, making data 

collection time-consuming and costly (Balme, Hunter & Slotow, 2009; Burton et al. 2015; 

Midlane et al. 2015). Furthermore, naturally low densities of large carnivores often result in 

limited sample sizes, making inference difficult and subject to wide margins of error (Gardner 

et al. 2010; Royle et al. 2014). For instance, over a period of 17,204 trap nights and 14 camera 

trap surveys, Murphy et al. (2018) only recorded an average of 3.42 fosa (Cryptoprocta ferox) 

individuals per survey. In the absence of accurate and/or recent estimates, conservation 

practitioners are often consigned to using anecdotal evidence or best guesses to inform 

conservation management decisions (Rodrigues et al. 2006; Balme et al. 2014; Jędrzejewski et 

al. 2018). In some cases, such as tiger populations in India, even where intensive survey efforts 

are undertaken to assess population trends, there are concerns over sampling methods and the 

precision of data used to inform conservation policy decisions (Harihar et al. 2017; 

Gopalaswamy et al. 2019). 

1.4.1 Existing survey techniques 

Various techniques have been employed globally to estimate the abundance and density of 

carnivores, each with their own limitations (Wilson & Delahay, 2001; Balme, Hunter & 

Slotow, 2009; Midlane et al. 2015; Dröge et al. 2020). These techniques include the use of 

indirect signs, such as spoor and faecal counts (Webbon et al. 2004; Henschel et al. 2020), prey 

availability (Karanth et al. 2004; Hayward et al. 2007), questionnaire surveys (Mésochina et 

al. 2010), and more direct techniques, such as density estimates derived from the home ranges 
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of collared animals (Simcharoen et al. 2008; Devens et al. 2018), distance sampling 

(Hounsome et al. 2005; Durant et al. 2011) and acoustic playback surveys (Cozzi et al. 2013; 

Midlane et al. 2015). Critique of these methods and the efficacy of monitoring techniques is a 

central topic in conservation biology, as the most robust methods for estimating density are 

continually sought (Wilson & Delahay, 2001; Karanth et al. 2011a; Hayward et al. 2015).   

Whilst there is a general consensus that precise and robust estimates of population size are best 

obtained through long-term, intensive studies employing recently developed techniques, such 

as spatial capture-recapture modelling or genetic sampling, these considerations often have to 

be balanced with logistical and budgetary restraints (Bischof et al. 2020; Dröge et al. 2020). 

This trade-off between the precision of estimates and survey considerations, combined with the 

wide-ranging, cryptic behaviour of large carnivores, often means that indirect census 

techniques are employed (Jhala et al. 2011; Aebischer et al. 2020; Henschel et al. 2020). These 

methods are often cheaper to conduct and, as they do not rely on direct observation, can produce 

larger sample sizes (Balme, Hunter & Slotow, 2009; Funston et al. 2010). However, the use of 

indirect survey techniques, most notably track counts, are increasingly questioned as issues 

surrounding the precision of estimates, analytical approaches and detection probability, 

continue to be raised (Hayward et al. 2015; Stephens et al. 2015; Gopalaswamy et al. 2019; 

Dröge et al. 2020). These issues are exemplified by the ongoing debate over nationwide tiger 

surveys in India, where the use of indirect survey methods (track/faecal counts) is met with 

widespread criticism as spurious trends in tiger density continue to be reported (Karanth et al. 

2011a; Harihar et al. 2017; Gopalaswamy et al. 2019). The issue of effective monitoring and 

the limitations of survey methods are discussed further in Chapter Two, using a case study on 

spotted hyaena (see pages 31-67). 
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1.4.2 The emergence of camera trapping and spatial capture-recapture 

In recent years, the use of camera traps for density estimation has become increasingly popular 

(Burton et al. 2015; Agha et al. 2018; Green et al. 2020). The method’s minimal disturbance, 

combined with less labour-intensive survey requirements and the growing accessibility of 

equipment, has seen camera trapping become a preferred and rigorous method for density 

estimation, particularly for species that can be individually identified (Balme, Hunter & 

Slotow, 2009; Rovero & Zimmerman, 2016; Apps & McNutt, 2018). In addition to 

advancements in technology, which have improved camera trap performance (i.e., trigger 

speed, image quality) and product costs (Meek & Pittet, 2012), there have been developments 

in data management and image recognition software (Young et al. 2018). These factors have 

increased the feasibility, scale and potential applications of camera trapping for wildlife 

research, particularly for cryptic large carnivores (Forrester et al. 2017; Agha et al. 2018).  

Alongside technological and practical advances in camera trapping, analytical frameworks 

from which estimates of population density can be derived have also seen continued 

development (Karanth & Nichols, 1998; Rowcliffe et al. 2008; Efford & Fewster, 2013; Royle 

et al. 2014). Density estimation from camera trapping, such as with capture–recapture 

modelling, has become an increasingly integral process in wildlife ecology and species 

management (Kays & Slauson, 2008; Royle & Gardner, 2011). Early investigations using 

camera trap arrays to estimate population size were restricted to species uniquely identifiable 

from their pelage patterns and relied on closed model capture-recapture methods (Karanth & 

Nichols, 1998, Trolle and Kéry, 2003; Royle et al. 2009). Whilst capture-recapture modelling 

establishes the basic principles of photographic capture-recapture, identifying individuals from 

photographic captures and using the associated time and date stamp to form individual capture 

histories, these models do not incorporate the spatial component of density estimation (Royle 

et al. 2014). Therefore, capture-recapture models fail to account for spatially explicit biological 
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processes (i.e., individual movement) or the spatial distribution of the trap array (Royle et al. 

2018; Green et al. 2020). The exclusion of a spatial context from capture-recapture models 

results in critical limitations, most notably limiting the ability to precisely define an effective 

area sampled, thereby making density estimation an arbitrary process (Royle et al. 2018). In 

addition, individual encounter probability and trap-level variation infer spatial processes. For 

example, individuals on the periphery of a trapping grid have a lower probability of capture 

and heterogeneity in these processes is not accounted for in the capture-recapture framework 

(Karanth & Nichols, 1998; Efford, 2004).  

Spatial capture-recapture (SCR) models build on the technical limitations of conventional 

capture-recapture, incorporating the spatial information associated with individual capture 

histories and sampling devices to generate an explicit model of individual distribution across a 

defined state space (Efford, 2004; Royle et al. 2014; Sutherland et al. 2019). By relating the 

spatial context of individual encounters to explicit descriptions of spatial structure, whilst 

allowing for the integration of additional sources of data relating to spatial use (e.g., telemetry 

data) and landscape features (e.g., prey density, elevation), SCR provides a flexible framework 

to investigate ecological concepts, such as demography (Braczkowski et al. 2020b), resource 

selection (Broekhuis et al. 2020) and landscape connectivity (Sun et al. 2017). This flexible 

framework, combined with the potential for wide geographic sampling ranges and continued 

technological improvements, makes SCR modelling an important development in density 

estimation from camera trapping (Green et al. 2020). 

The application of SCR with camera trapping data has steadily increased over the last decade 

(Agha et al. 2018; Green et al. 2020) and has become the standard method for estimating 

population density for multiple species of conservation concern (Royle et al. 2018, Sollmann, 

2018). This is particularly true for carnivores, with a review of camera trapping and SCR 

analysis by Green et al. (2020) finding that almost 91% of published articles relating to density 
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estimation were focused on carnivores. These studies have provided some of the first reported 

population estimates for threatened carnivore species (e.g., Kane et al. 2015; Suryawanshi et 

al. 2019). The development of SCR and advances in camera trapping have, therefore, provided 

conservation practitioners with a framework for robust assessment of carnivore populations, 

although this has largely focused on species that are individually identifiable to date, and the 

continued application and growing reliance on these methods is expected to continue (Burton 

et al. 2015). 

Recent studies have highlighted key assumptions within the analytical framework of SCR, 

particularly in its application to camera trap data (Royle et al. 2018; Green et al. 2020; 

Johansson et al. 2020). The most common issue when SCR models are applied to camera 

trapping data, is uncertainty regarding individual identification and the misclassification of 

photographs (Alexander et al. 2015; Augustine et al. 2018; Johansson et al. 2020). Individuals 

within a study population are often identified by variation in their unique pelage patterns (e.g., 

spots or stripes; Figure 1.1); however, these markings can often be difficult to differentiate, and 

the process of individual identification can be further hampered by issues such as, poor 

photograph quality, change in pelage patterns over time and partial identity (Foster & Harmsen, 

2012; Augustine et al. 2018). Erroneous identification of sampled individuals can alter 

population estimates: if observers misidentify known individuals as new individuals then these 

additional capture histories will inflate population estimates, and vice-versa if new individuals 

are incorrectly identified as known individuals. Johansson et al. (2020) highlighted the 

potential for observer error using a captive snow leopard population, with 12.5% of all capture 

occasions misclassified and the resulting density estimates inflated on average by 35%. This 

potentially common issue has led to speculation that, despite advances in SCR modelling, there 

could be widespread overestimation of threatened species (Foster & Harmsen, 2012; Choo et 

al. 2020; Johannson et al. 2020). 
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Figure 1.1. An example of individual recognition from unique pelage patterns. Here the unique spot 

patterns of a male leopard are compared, and two identifying features are highlighted (red circles). 

 

A recent review of SCR models and camera trapping by Green et al. (2020) also highlighted 

that the precision of density estimates using SCR techniques was limited, as less than a quarter 

of published studies reported high precision (coefficient of variation ≤ 20%) in their density 

estimates. These findings could limit the ability of SCR modelling to identify linear trends in 

density over time, with the likelihood of detecting population decline reduced when the 

precision of estimates is lowered (Green et al. 2020). However, it should be noted that estimates 

from SCR modelling often produce a higher degree of precision than most conventional 

methods, such as track counts and home range density estimation (e.g., Elliot & Gopalaswamy, 
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2017; Devens et al. 2018; Dröge et al. 2020). Furthermore, the benefits of individual 

recognition over multiple surveys, which are overlooked in indirect methods, provide 

additional metrics and early indicators of population decline, such as reduced survival rates 

and skewed sex ratios (Braczkowski et al. 2020b; Harihar et al. 2020).  

 1.4.3 Camera trapping and behavioural research 

The recent technological and analytical advances in camera trapping have also provided novel 

opportunities for quantifying behavioural traits and interspecific interactions for large 

carnivores (Rowcliffe et al. 2014; Frey et al. 2020). Aspects of large carnivore behaviour, such 

as daily activity levels, habitat use, movement (i.e., home range estimation) and spatiotemporal 

partitioning, that can be difficult to quantify in field studies, can all be investigated using 

camera traps and are becoming increasingly popular (Burton et al. 2015; Caravaggi et al. 2017). 

Previously employed methods for studying animal behaviour, for example, direct observations 

or VHF/GPS telemetry, have significant disadvantages when analysing behaviour, including 

limited sample sizes, the use of invasive techniques (e.g., live animal capture) and expensive 

operating costs (Hebblewhite & Haydon, 2010). In contrast, remote camera trapping provides 

a non-invasive opportunity for studying population and community-level processes, often 

across larger spatial and temporal scales than would be feasible with other methods (Burton et 

al. 2015; Cusack et al. 2017; Frey et al. 2020).      

1.5 Decline of large carnivores in Africa and the need for population assessment  

Throughout Africa, both inside and outside protected areas, there is a growing imbalance 

between large carnivore and human populations (Woodroffe, 2000; Jones et al. 2018). Across 

landscapes, populations of apex predators (e.g., lion, leopard, spotted hyaena, African wild 

dog, cheetah) are suffering substantial declines, due to poaching (Lindsey et al. 2013a; Wolf 

& Ripple, 2016), habitat loss (Riggio et al. 2013; Pitman et al. 2017), human-wildlife conflict 
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(Mkonyi et al. 2017; LeFlore et al. 2019) and disease (Woodroffe & Ginsberg, 1999; Canning 

et al. 2019). Simultaneously, human population density and population growth are increasing 

annually across Africa (Gerland et al. 2014). The expansion of anthropogenic impacts puts 

additional strain on protected areas, as encroachment on habitats and human-induced mortality 

increase (Hansen et al. 2013; Jones et al. 2018; Everatt et al. 2019).  

Large carnivores have suffered substantial range contractions across Africa, on average losing 

68.16% of their historical range (range = 27.2% - 93.7%, Wolf & Ripple, 2017). This is of 

great concern for the conservation management of large carnivores, as populations are 

increasingly restricted to protected area networks (Bauer et al. 2015; Pacifici et al. 2020). For 

example, the lion population across Africa has lost ~75% of its original habitat, and viable 

populations are now restricted to only a few large, protected areas, with all but four African 

countries observing a decline in population numbers (Riggio et al. 2013; Bauer et al. 2015). In 

many protected areas, common sources of prey, such as ungulates, are also targeted for the 

bushmeat trade (Lindsey et al. 2013a; Lindsey et al. 2017). This trade further intensifies the 

pressures on large carnivores, as carnivore prey preference overlaps significantly with target 

species for bushmeat poaching (e.g., Henschel et al. 2011), often forcing predators outside 

protected areas in search of prey and into further conflict with humans.        

Whilst the continued decline of large carnivore populations in Africa is widely acknowledged, 

large areas across the continent lack baseline data on population status, interspecific 

interactions, and ecological requirements (Bauer et al. 2015; Jacobson et al. 2016; Durant et 

al. 2017). This issue is particularly relevant in Africa, with Martin et al. (2012) highlighting 

that, based on land area, Africa is the second most understudied global region in terms of 

ecological research. This paucity of data on population status and ecological interactions, limits 

the efficacy of conservation initiatives at all levels (Delsink et al. 2013; Henschel et al. 2014). 

In addition, previous reviews have highlighted discrepancies between areas where research 
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effort has been focused and those in most urgent need of assessment (Balme et al. 2014; 

Pototsky & Cresswell, 2020). For instance, Henschel et al. (2014) observed that of the 463 

articles available on African lion up until 2005, there was not a single article that focused solely 

on the critically endangered West African population. The omittance of these data from large 

portions of the continent are largely due to logistical, financial, and political constraints 

(Pototsky & Cresswell, 2020). For example, civil war has meant that the population status of 

African wild dogs in Angola has only recently been updated for the first time in forty years 

(Overton et al. 2020), whilst logistical and financial difficulties meant that regionwide density 

estimates for lions in West Africa were also overlooked until recently, hampering effective 

management (Henschel et al. 2014).     

The paucity of accurate population data and ecological information for large carnivores across 

entire countries, major habitats and individual protected areas has hindered effective 

conservation management at all levels (Ray et al. 2005; Pitman et al. 2015). For instance, 

density estimates produced by Martin & de Meuleneur (1988) for African leopard across their 

range are still used in several countries (e.g., Mozambique, Namibia, Tanzania) to set hunting 

quotas (Strampelli et al. 2018). However, the estimates of Martin & de Meulenuer (1988) have 

been widely reported as inaccurate due to their model’s reliance on rainfall data and the 

omittance of key factors regarding leopard population dynamics, such as human-induced 

mortality and prey availability (Norton, 1990; Balme et al. 2010). Furthermore, recent studies 

have highlighted discrepancies between estimates used for justifying hunting quotas and the 

current status of leopard populations in corresponding protected areas (Strampelli et al. 2018; 

Trouwborst et al. 2020). Similar issues relating to the paucity of reliable data, standardised 

methods, and the efficacy of associated conservation policies, have been highlighted for lion 

(Lindsey et al. 2013b; Macdonald, D.W. et al. 2017; Braczkowski et al. 2020a), cheetah (Weise 

et al. 2017) and wild dog (Nicholson et al. 2020) across their geographic ranges. 
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Interspecific interactions and avoidance behaviour within the large carnivore guild play an 

integral role in maintaining ecosystem function and regulating trophic communities (Caro & 

Stoner, 2003; Ripple et al. 2014). The ecological impact and potential for cascading ecosystem 

effects are particularly strong in Africa, as the large carnivore guild is still relatively intact in 

comparison to most other parts of the world (Dröge et al. 2017). Yet, largely due to their cryptic 

nature and naturally low abundance, relatively little is known about niche partitioning and 

interspecific interactions between the African carnivore guild across large sections of their 

range and in diverse community assemblages (Havmøller et al. 2020b; Rafiq et al. 2020b). The 

extent to which large carnivores can display behavioural plasticity, adapting their position 

along niche axes to facilitate intraguild coexistence in response to shifting environmental 

factors, differs between species (Dröge et al. 2017; Everatt et al. 2019; Vogel et al. 2019). As 

pressure on African ecosystems intensifies, from sources such as resource availability (Rich et 

al. 2017; Creel et al. 2018), human activity (Gaynor et al. 2018; Green & Holekamp, 2019) 

and climate change (Rabaiotti & Woodroffe, 2019), further changes in spatiotemporal 

behaviour, diet and guild dynamics are predicted (Tilman et al. 2017; Shamoon et al. 2018). 

Understanding community dynamics, and the potential impact that shifts in these dynamics 

may have at a population level is, therefore, important for informing conservation management 

decisions and predicting potential alterations in community structure from changing 

environmental factors (Rafiq et al. 2020b).   

Without robust data on which to base management decisions, and the ability to effectively 

monitor population trends and identify drivers of decline, the continued reduction of carnivore 

populations across large sections of their geographical range will likely continue. There is, 

therefore, a need for further investigation into the status of regional carnivore populations, 

estimating population density alongside levels of interspecific competition and ecological 
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requirements, to promote a shift towards evidence-based conservation management 

(Sutherland et al. 2004; Balme et al. 2014; Durant et al. 2017).  

1.6 Aims of study 

This thesis has two distinct research themes: 1) the need for effective population monitoring of 

large carnivores at all levels of conservation management, and 2) examining levels of 

interspecific competition and mechanisms of coexistence in a large carnivore guild impacted 

by human disturbance (Figure 1.2). This study will assess the population status and intraguild 

dynamics between large carnivores in Kasungu National Park (KNP), Malawi, a miombo 

woodland and a site experiencing high anthropogenic disturbance. Further justification of study 

site selection and rationale is provided in Chapter Three. These data will be used to implement 

effective conservation management in KNP and can also be used as baseline data to inform 

conservation strategies across Malawi and miombo woodlands in south-central Africa. As one 

of the last viable protected areas in Malawi, effective management and protection of large 

carnivore populations in KNP is a regional conservation priority.   

This PhD thesis aims to: 

1. Critically evaluate the current survey techniques for estimating spotted hyaena 

density and provide recommendations for improved population monitoring. In 

Chapter Two I will review the current literature on spotted hyaena population 

estimates, evaluate available survey techniques and make recommendations to improve 

future estimates and population monitoring across the species’ range.  

2. Estimate the density of large carnivore populations in KNP, Malawi, using a 

spatial partial identity model in a spatial capture-recapture framework. In 

Chapter Four I estimate the density and conservation status of large carnivore 

populations in KNP. These estimates are novel at a local, national, and international 
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scale, as the first leopard density estimates for KNP, Malawi and a miombo woodland 

habitat. Estimates of the population status of spotted hyaena and other large carnivore 

species are the first published estimates for KNP and Malawi. 

3. Analyse the spatiotemporal dynamics of the remaining large carnivore 

populations in KNP and identify the drivers of habitat use. In Chapter Five I 

quantify the spatiotemporal dynamics between the remaining leopard and spotted 

hyaena populations in KNP. In the absence of other resident members of the large 

carnivore guild, this chapter considers how interspecific competition and intraguild 

dynamics may be altered and considers the potential conservation implications of 

adapting spatiotemporal behaviours.  

4. Determine the diet of leopard and spotted hyaena and assess levels of dietary 

overlap as a proxy for interspecific competition. In Chapter Six I aim to quantify 

the level of dietary overlap between leopard and spotted hyaena in KNP, whilst 

providing an initial insight into the dietary composition of both large carnivores. Large 

mammal species have declined in KNP, due to poaching pressure, and this chapter 

assesses the potential for interspecific competition when prey availability is reduced.   
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1.7 Structure of thesis 

Using the spotted hyaena as a model species, Chapter Two investigates the issues highlighted 

in sections 1.4 and 1.5 and evaluates the existing survey techniques to estimate large carnivore 

density. As the most abundant large carnivore in Africa, with an extensive geographic range, 

spotted hyaena are a good model species that exemplify the issues facing the wider carnivore 

guild. I review the literature available on spotted hyaena population estimates and critically 

evaluate the efficacy of current survey techniques for estimating population density. I advocate 

the greater utilisation of SCR methods and a unified framework to provide robust population 

estimates to effectively guide conservation management and policy decisions for the species.  

In Chapter Three I introduce my study site, KNP, Malawi, and provide a wider background 

on Malawi and miombo woodlands. Miombo woodland is the primary habitat in KNP and a 

habitat for which data is lacking on large carnivore population density and behavioural ecology. 

Malawi is under intense pressure from anthropogenic disturbance, with a high human 

population density and a reliance on natural resources. I provide a summary of the decline in 

both protected area health and large carnivore populations in Malawi, before providing an 

overview of KNP and its importance to regional conservation efforts.   

Chapter Four estimates population density for leopard and spotted hyaena in KNP between 

2016 and 2018. In this chapter I provide the first published density estimates for both leopard 

and spotted hyaena in Malawi, whilst also providing the first estimates of leopard density in a 

miombo woodland habitat. I present evidence on the current status of other large carnivores in 

KNP, notably the presence of dispersing lion and African wild dog. I evaluate the use of the 

spatial partial identity model (SPIM) for providing robust density estimates comparable to 

conventional SCR models. This study is the first to apply SPIM in an African ecosystem and 

one of the first published applications of this novel technique since its inception (Augustine et 

al. 2018). I show that SPIM offers improvement for estimating density where individual 
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identity is not always certain from single flank images, offering a preferable analytical 

framework to address the common issue of uncertain identity in camera trap datasets. 

Chapter Five assesses the spatiotemporal dynamics of the remaining leopard and spotted 

hyaena populations in KNP. Leopard and spotted hyaena persist at similar low densities in 

KNP, and in the absence of a resident lion population, I examine the intraguild dynamics of the 

remaining large carnivore guild and the drivers of habitat use. I show that the presence of 

leopard and spotted hyaena is driven by the presence of preferred prey species and this 

increases the likelihood of interaction between the large carnivore guild. In addition, I present 

further evidence of leopard temporal sexual segregation, a finding that has only recently been 

identified in the literature by Havmøller et al. (2020b). Examination of temporal activity rates 

suggests that female leopards are active for almost 20% longer of the daily cycle than sympatric 

carnivores, an observation that may have implications for individual fitness and survival rates.    

In Chapter Six I examine the diet of both leopard and spotted hyaena in KNP and assess the 

dietary overlap between the two species. Building on the results from Chapter Five, which 

assesses the level of interaction between leopard and spotted hyaena along the two niche axes 

of space and time, this chapter looks at the remaining niche axis, resource partitioning. Dietary 

segregation is a common strategy to facilitate coexistence in carnivore guilds where guild 

members cannot avoid spatiotemporal interaction (e.g., du Preez et al. 2017). This chapter 

reports the first insight into the dietary ecology of both species in KNP, whilst adding to the 

limited literature on dietary partitioning in sites of reduced prey abundance and high levels of 

anthropogenic disturbance.   

I conclude the thesis with Chapter Seven, synthesising the results of Chapters 2-6 and 

assessing the findings of these studies in the wider context of the existing literature. This 

chapter highlights some of the issues concerning large carnivore population recovery in KNP 



 Chapter One: Introduction 

29 
 

and considers potential management solutions to aid in species recovery. I provide 

recommendations for future monitoring of carnivore populations in KNP, whilst advocating 

similar research to be undertaken across the understudied protected areas of Malawi.
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Figure 1.2. A schematic diagram highlighting the structure of the thesis. Chapters that have been accepted or submitted for publication are displayed, along 

with respective journal outlets. 
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Abstract 

As apex predators with a regulating effect on interspecific competitors and prey demographics, 

monitoring of spotted hyaena (Crocuta crocuta) population trends can provide a reliable 

indicator of ecosystem health. Robust estimates of population density are, therefore, critical for 

effective conservation management. However, the ability of current survey techniques to 

monitor large carnivore population trends effectively are increasingly questioned. This has led 

recent studies to advocate increased application of spatial capture-recapture (SCR) methods to 

estimate population density for large carnivores. Therefore, we reviewed the literature 

regarding methods used to estimate population density for spotted hyaena between 2000 and 

2021. Our review found that SCR methods are currently underutilised for estimating spotted 

hyaena density, with only six published studies (12% of articles assessed) using an SCR 

approach. Call-in surveys were the most frequently used method, featuring in 43% of studies. 

However, 59% of studies that used call-in surveys could not estimate a site-specific calibration 

index. The calibration index estimates the distance and rate at which the focal species responds 

to audio lures and, as response rates are impacted by site-specific ecological and environmental 

factors, studies that could not calibrate this index are likely inaccurate. Further application of 

SCR techniques will allow more robust estimation of spotted hyaena density, reducing the wide 

confidence margins and potential overestimation that limit inference from existing survey 

methods. We advocate the use of SCR techniques to produce further estimates of spotted 

hyaena density and improve conservation management decisions. 
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2.1 Introduction 

Robust population estimates play a pivotal role in the implementation of effective conservation 

management strategies, reintroduction efforts and monitoring schemes (Hayward et al. 2015). 

As large carnivore populations continue to experience wide-scale declines (Ripple et al. 2014), 

robust methods for assessing density and population trends must be at the forefront of evidence-

based conservation management (Hayward et al. 2015; Elliot & Gopalaswamy, 2017). 

However, accurate data are often lacking for large carnivores, due to their cryptic behaviour 

and naturally low densities (Balme, Hunter & Slotow, 2009; Elliot & Gopalaswamy, 2017). In 

addition, available estimates are often outdated, overestimated or subject to wide confidence 

intervals (Braczkowski et al. 2020a). The paucity of reliable data can impact the management 

of target species and, inadvertently, have a cascading effect on the management of other 

vulnerable species. For example, intraguild competition can have a detrimental effect on 

threatened or reintroduced carnivores, such as cheetah (Acinonyx jubatus) and African wild 

dog (Lycaon pictus), so reliable density estimates for sympatric large carnivores can provide a 

valuable metric for reintroduction success (Darnell et al. 2014; Weise et al. 2015). 

2.1.1 Spotted hyaena: indicators of ecosystem health  

Spotted hyaena (Crocuta crocuta) are widespread, social carnivores that occupy a broad range 

of habitats in sub-Saharan Africa, from sparse deserts to montane woodlands and suburban 

areas (Holekamp et al. 2012; Yirga et al. 2014). As the most abundant large carnivore in Africa 

(Watts & Holekamp, 2008), spotted hyaena are routinely overlooked as a species of 

conservation concern. However, the spotted hyaena is often maligned and subject to high levels 

of persecution, particularly outside protected areas (Bohm & Höner, 2015). In addition, threats 

such as loss of natural prey, human-wildlife conflict and susceptibility to wire snaring and 

poisoning, are contributing to declines in spotted hyaena populations across Africa (Frank et 

al. 2011; Bohm & Höner, 2015; Wolf & Ripple, 2016; Loveridge et al. 2020). Loveridge et al. 
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(2020) highlighted that wire-snaring is a particular conservation concern, with spotted hyaena 

representing 92% of large carnivore snaring records in the Zimbabwean region of the Kavango-

Zambezi Transfrontier Conservation Area and, as such, the species’ conservation status 

warrants further attention.   

Spotted hyaena density varies greatly across their geographic range, from 0.85/100km2 in arid 

environments (Fouché et al. 2020) up to 165/100km2 in prey-rich East African savanna 

ecosystems (Watts & Holekamp, 2008). As a dominant member of the large carnivore guild, 

spotted hyaena play an integral role in ecosystem services by regulating prey numbers, 

providing carrion for scavengers, and influencing carnivore dynamics through interspecific 

competition (Périquet et al. 2015; Green et al. 2018). Furthermore, spotted hyaena exhibit high 

levels of behavioural plasticity that enable them to persist in landscapes where other carnivores 

cannot compete (Holekamp & Dloniak, 2010; Green et al 2019). High behavioural plasticity 

makes spotted hyaena good models for assessing environmental change and monitoring wider 

ecosystem health (Trinkel, 2009; Green et al. 2018; Green et al. 2019). For example, increasing 

spotted hyaena population density can be an early indicator of competitive release from the 

regulating effect of competition with lions (Panthera leo) and signify declining trends in 

sympatric carnivores (M’soka et al. 2016; Green et al. 2018).  

2.1.2 Current methods limit inference 

Uncertainty regarding estimates of population size or density often stems from underlying 

issues with the survey methodologies employed for large carnivores. The challenges associated 

with surveying elusive, wide-ranging and often nocturnal large carnivores, combined with the 

need for rapid and cost-effective survey methods, has led to extensive use of index-calibrated 

methods to survey large carnivores (Mills et al. 2001; Funston et al. 2010; Winterbach et al. 

2016). Index-calibrated methods assume a stable linear relationship between a measurable 
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index (e.g., number of tracks or scats per km searched) and true population density (Funston et 

al. 2010) and, as these methods tend not to rely on direct observations, they are quicker and 

cheaper to conduct than more labour-intensive methods such as camera trapping or search-

encounter techniques (Balme, Hunter & Slotow, 2009; Midlane et al. 2015).  

In Africa, the use of two index-calibrated methods, track counts and call-in surveys, have 

frequently been employed to estimate density for spotted hyaena and other large carnivores 

(Croes et al. 2011; Aebischer et al. 2020; Henschel et al. 2020). However, the capacity of 

index-calibrated methods to account for variance in detection probability and spatial 

heterogeneity, whilst overestimating the precision of the putative index to successfully predict 

true density, has led to concerns that these methods produce spurious estimates and wide error 

margins (Gopalaswamy et al. 2015; Belant et al. 2019; Dröge et al. 2020). In some cases, 

confidence intervals do not include the true population size (Belant et al. 2019; Dröge et al. 

2020) or are wide enough that inferences on population trends would be negligent as a basis 

for conservation management decisions (e.g., Bouché et al. 2016; Bauer et al. 2017). 

Consequently, numerous authors have cautioned against the widespread application of index-

calibrated methods to infer population trends and inform management and policy decisions 

(e.g., Rosenblatt et al. 2014; Gopalaswamy et al. 2015; Hayward et al. 2015; Dröge et al. 

2020).     

Call-in surveys, whereby acoustic lures (i.e., prey distress sounds or carnivore social calls) are 

played from a calling station and a calibration response index applied to estimate population 

size from the response rate (Mills et al. 2001), are commonly used to survey spotted hyaena 

and lion populations. Despite the popularity of this method, call-in surveys have several 

limitations that reduce the precision and inference of results (Elliot & Gopalaswamy, 2017; 

Dröge et al. 2020). The calibration index is a key assumption in call-in surveys that determines 

the distance at which animals respond to the acoustic lure (see Mills et al. 2001 for a description 
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of the required experiment). Conducting call-in calibration experiments is difficult in dense 

habitats or areas where animals are not well habituated (Bauer, 2007; Cozzi et al. 2013). As a 

result, researchers are often reliant on previous calibration estimates that may not accurately 

reflect their study site or population and, consequently, impact the precision of results (Kirsten 

et al. 2017). Furthermore, attempts to estimate response radius in areas of low density and 

restricted access can add further time constraints and financial costs, with potentially negative 

consequences for habituation (Midlane et al. 2015). 

2.1.3 Emergence of spatial capture-recapture 

In the last two decades, spatial capture-recapture (SCR) modelling has emerged as a reliable 

and robust technique from which to estimate population density (Efford, 2004; Borchers & 

Efford, 2008; Royle, Fuller & Sutherland, 2018). SCR methods utilise the spatial information 

associated with individual encounter history data to model the movement and distribution of 

individuals across a defined state space (Royle et al. 2014). The incorporation of a spatially 

explicit framework distinguishes SCR from conventional capture-recapture models, thereby 

addressing the challenges of buffering, heterogeneity in detection probability and trap-level 

variation that limited inference from traditional capture-recapture studies (Royle et al. 2014). 

SCR methods are commonly associated with camera trap data, where individuals are often 

identified through their unique pelage patterns, although these models can also be applied to 

DNA sampling, acoustic surveys and search-encounter methods, and have been used to 

estimate density for a wide-range of global taxa (e.g., Sutherland et al. 2016; Sun et al. 2017; 

López-Bao et al. 2018; Balme et al. 2019). As SCR models have developed to incorporate 

additional covariates (e.g., age and sex; Sollmann et al. 2011) and supplementary data (e.g., 

movement data from radio/GPS collars; Royle et al. 2013), the use of SCR has become the 

standard method for obtaining reliable population estimates for many species with unique 

identification features (Royle, Fuller & Sutherland, 2018). Despite the growing application and 
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sophistication of SCR models, recent studies have highlighted that SCR approaches have been 

underutilised for multiple large carnivore species, including lions (Braczkowski et al. 2020a), 

snow leopards (Panthera uncia; Alexander et al. 2015; Sharma & Singh, 2020) and wolves 

(Canis lupus; López-Bao et al. 2018).  

In this study we review and critically assess the literature on spotted hyaena population 

estimates and survey methodologies by 1) evaluating the survey methods used to estimate 

spotted hyaena density and their geographical distribution; 2) discussing the limitations of 

current spotted hyaena survey methodology; and 3) highlighting the potential for future 

utilisation of SCR methods, whilst identifying possible survey considerations within the SCR 

framework for estimating spotted hyaena density.  

2.2 Materials and Methods 

We followed the protocol of Braczkowski et al. (2020a) to conduct our literature review and 

searched for peer-reviewed articles on two comprehensive databases: Web of Science and 

Google Scholar. We used the following keyword combinations to search for peer-reviewed 

literature: “spotted hyaena” AND “density” OR “population size” OR “numbers”. We then 

repeated this process, replacing the keyword “spotted hyaena” with “Crocuta crocuta” 

(accounting for the English/US spelling hyaena/hyena) and the same density keyword 

variations. To remove bias in our search we limited the date range from 2000 to 2020, as SCR 

models were only developed towards the end of the 20th Century (Royle et al. 2014). We 

checked all search pages for the Web of Science results but limited our Google Scholar results 

to the first 100 articles. All articles were inspected, and excluded where: 1) there were no 

population estimates, 2) previous or unpublished estimates of density or population size were 

cited; and/or 3) the survey method used was not explicitly stated. For studies that matched our 

criteria, we recorded the survey method used to estimate population size or density and 

calculated the total proportion of articles each method featured in. Table 2.1 provides 
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definitions of survey methods documented in the literature to estimate spotted hyaena density. 

For studies that used call-in survey methods we also recorded if the study was able to calibrate 

a site-specific response rate. 

We assessed the spatial coverage of published estimates to determine any geographical 

preference for individual survey techniques. We recorded the country of each study and 

calculated the total number of studies per country. We documented the survey method used in 

each study and, using the geographic regions documented by the African Union (African 

Union, 2020), calculated the total number of times each method was used per region.  
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Table 2.1. Definitions of survey methods used to estimate spotted hyaena density and key literature that details each methodology. 

Survey method Definition Key literature 

Call-in survey  Audio lures (prey distress calls and/or carnivore social calls) are played through loudspeakers to attract large 

carnivores. The number of responding individuals are recorded and a calibration index applied, whereby the maximum 

distance a species will respond from is calculated.    

Mills et al. 2001; Ferreira 

& Funston, 2016. 

Track count Surveys are often road based and consist of driving transects at slow speeds. Tracks encountered are identified to 

species level, from which track density per 100km is calculated. Previously estimated models for substrate type and 

species (see key literature) are then applied to predict true density. 

Funston et al. 2010; 

Winterbach et al. 2016 

Spatial capture-

recapture (SCR) 

SCR models make use of the spatial location of encounter history data to determine an individual’s activity centre and 

uses these data to estimate the density of activity centres across a precisely defined polygon, known as the state space, 

which contains the trap array. Can be applied to several types of trapping data, e.g., camera trapping, DNA sampling, 

mist netting, cover boards/refugia. 

 

 

  

Borcher & Efford, 2008; 

Royle et al. 2014 
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Capture-recapture  Individually unique identifiers (e.g., pelage patterns, ear tags) are used to gather encounter history data. Abundance 

estimates are calculated based on the number of individuals captured and frequency of recaptures. Density can then 

be obtained by estimating an effective trapping area and dividing the abundance estimate by the sampled area. 

Otis et al. 1978; Karanth 

& Nichols, 1998 

Distance sampling Fixed-width transect surveys are conducted where target animals encountered are recorded, along with distance and 

angle from transect intercept. Density can then be calculated by modelling a fitted detection function, that can predict 

detection probability as a function of distance from the transect line. 

Buckland et al. 2015 

Total count Population size is estimated by counting all observed individuals over a specified length of time. Counts can use 

individual identification to limit the effect of double counting. 

Gese, 2001 
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2.3 Results 

We reviewed 144 published studies on spotted hyaena from 18 African countries, in 49 

different journals. We identified 51 studies, in 25 journals, that contained population estimates 

and detailed how these estimates were obtained (Appendix I).  

2.3.1 Preferred methods for population estimates  

Overall, six survey methods were used to estimate spotted hyaena population density. Of the 

52 studies assessed, 50 used one survey method (96% of studies) and two used mixed methods. 

Call-in surveys were the most frequently used method, featuring in 43% of the articles assessed 

(n = 22 studies; Figure 2.1). Of the 22 studies that used call-in methods, over half (59%) were 

unable to undertake their own calibration experiments to estimate site-specific response 

distances of spotted hyaena. Index-calibrated methods (call-in surveys and track counts) were 

used in 63% of studies (n = 33 studies). SCR methods were used in six studies, 12% of articles, 

with only one study published prior to 2019. Camera traps were used to estimate spotted hyaena 

density in five of the six SCR studies, with a search-encounter method used in one study. Of 

the six studies that used SCR methods, five of these studies had a multi-species focus, 

estimating density for spotted hyaena and at least one other species.    
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Figure 2.1. Survey methods used to obtain estimates of spotted hyaena density or population size and 

the proportion of reviewed articles that applied each survey method. Insert map shows the location of 

published studies from sub-Saharan Africa and the number of studies from each country where 

estimates were available. 

2.3.2 Spatial coverage of survey methods 

Density estimates were available for spotted hyaena populations in 14 African countries, 

representing 36% of spotted hyaena range states. Studies from East (49% of studies) and 

Southern (39% of studies) Africa accounted for the majority of available estimates (Table 2.2). 

There were six studies (12%) from the Central African region and no population estimates from 

West Africa. Call-in surveys or track counts were the most frequently used methods in all three 

regions (East, Central and Southern) where studies had been conducted. All population 

estimates using total counts and distance sampling were from East Africa, specifically in Kenya 

and Tanzania. Five of the six population estimates derived from SCR methods were conducted 

in Southern Africa.   



Chapter Two: Improving population estimates for spotted hyaena 

44 
 

Table 2.2. Number of times individual survey methods were used to estimate spotted hyaena density 

and/or population size by region and country. Individual survey methods include call-ins, track counts 

(Track), total counts of individuals (Total), Distance sampling (Distance), Spatial Capture-Recapture 

(SCR) and Capture-Recapture (CR). Note that the total number of times methods were used here (n = 

54) is larger than the number of published studies found in the review (n = 51 studies) as two studies 

used multiple methods.  

  Method 

Region/Country Call-in Track Total  Distance SCR CR 

East Africa 12 1 8 3 1 - 

Ethiopia 6 - - - - - 

Kenya 1 1 5 1 1 - 

Sudan 1 - - - - - 

Tanzania 3 - 3 2 - - 

Uganda 1 - - - - - 

Southern Africa 7 8 - - 5 2 

Botswana 2 3 - - 3 - 

Malawi - - - - 1 - 

Namibia 1 1 - - 1 1 

South Africa 3 2 - - - - 

Zambia - - - - - 1 

Zimbabwe 1 2 - - - - 

Central Africa 3 3 - - - 1 

Cameroon 2 2 - - - - 

Central African 

Republic 

1 1 - - - - 

Republic of Congo - - - - - 1 

TOTAL 22 12 8 3 6 3 
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2.4 Discussion 

Here we found that SCR methods are currently underutilised for estimating spotted hyaena 

density, compared to other available methods. However, with five of the six studies using SCR 

methods published since 2019, this may indicate a growing change in preferred survey 

methodology. Despite the increase in SCR-derived estimates for spotted hyaena, the number 

of published studies utilising SCR methods is still relatively low when compared to sympatric 

carnivores. For example, ~55% of published studies estimating leopard (Panthera pardus) 

density in sub-Saharan Africa, since 2000, used SCR methods (see Appendix II). Spotted 

hyaena population estimates are also limited to only 14 out of 39 African countries where the 

species is resident (Bohm & Höner, 2015), which evidences that just under two-thirds of range 

states lack baseline density estimates. Since spotted hyaena density varies considerably 

between habitats and with levels of anthropogenic disturbance (Yirga et al. 2017; Fouché et al. 

2020), there is a need for increased reporting of population estimates from understudied regions 

to inform local conservation management.  

2.4.1 Addressing issues with current survey methodologies 

Our review indicates that call-in surveys are the most frequently used method for estimating 

spotted hyaena density. However, calculating a site-specific calibration index to estimate 

response radius remains a significant challenge. This is highlighted here as over half the 

published studies were unable to conduct site-specific calibration experiments. In addition, 

some authors acknowledged that their calibration indices were unreliable and subject to wide 

confidence limits, owing to small sample sizes (e.g., Ogutu et al. 2005). Studies that could not 

conduct their own calibration experiment often relied on the estimates of Mills et al. (2001). A 

lack of animal habituation and logistical feasibility were often cited as key reasons for not 

undertaking the calibration experiment. Site-specific differences in habitat structure, 

competing carnivore densities and anthropogenic disturbance are likely to affect the local 
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response rate of spotted hyaena. Subsequently, it is unlikely these frequently cited calibration 

indices are widely applicable and corresponding estimates are likely to be inaccurate. 

Call-in surveys can also suffer from issues with habituation. For example, Belant et al. (2016) 

found that lions quickly become habituated to audio lures and habituation levels are not reduced 

by temporal and spatial variation in calls. As a result, calibration experiments may lower 

species response rates during survey periods. Habituation from repeated call-in surveys could 

also impact response rates over multi-season surveys, with a lower response rate potentially 

leading to incorrect assumptions of population decline over time (Belant et al. 2016). In 

addition, response rate to acoustic lures can also be reduced in areas where competing carnivore 

densities are skewed, or human activity is prevalent (Midlane et al. 2015; Kirsten et al. 2017). 

For example, areas of high lion density can limit the response rate of spotted hyaena (Kiffner 

et al. 2007; Kirsten et al. 2017), whilst cautious behaviour in areas of increased human 

disturbance can mean responding individuals are still potentially missed (Bauer, 2007). As 

such, call-in surveys are often of limited value for multi-species surveys and can be inaccurate 

in low density areas, where population estimates are often most urgently required. 

Call-in surveys are an effective tool for confirming the presence of spotted hyaena, and other 

large carnivores, in understudied regions where conservation efforts have been restricted. For 

example, the presence of spotted hyaena and lion in Dinder National Park, Sudan, were recently 

confirmed through call-in surveys (Mohammed et al. 2019). Furthermore, we recognise that 

call-in surveys are beneficial for obtaining population estimates in areas that are logistically 

challenging for other survey methods, such as camera trapping. This is highlighted in our 

review by the sole use of call-in surveys in Ethiopia, where studies were conducted in peri-

urban areas that would make the use of other survey techniques difficult (Yirga et al. 2014; 

Yirga et al. 2017). Where call-in surveys are conducted, we suggest efforts are made to identify 

responding individuals (Trinkel, 2009). However, we appreciate that identifying and 
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documenting individuals at call-in surveys is difficult with cautious animals and low visibility 

habitats (Bauer, 2007). The collection of individual encounter data at call-in surveys would 

allow these data to be analysed in an SCR framework (Elliot & Gopalaswamy, 2017) if surveys 

were repeated, thereby improving precision, avoiding double counting, and accounting for 

imperfect detection. Going forward, we recommend that call-in surveys either adopt an SCR 

approach to data collection or the survey method is employed as an initial step to confirm 

species presence.  

Track counts were the second most popular method for estimating spotted hyaena density and 

were represented in almost a quarter of all published articles. Despite the popularity of track 

counts, derived population estimates often have wide confidence intervals and overstated 

precision (Elliot & Gopalaswamy, 2017; Belant et al. 2019; Dröge et al. 2020). Low precision 

stems from unmodelled detection probability and oversimplification of the variance in the 

relationship between track density and true population density in the initial linear equation 

(Gopalaswamy et al. 2015; Hayward et al. 2015; Dröge et al. 2020). Dröge et al. (2020) argued 

that track counts do not comply with IUCN guidelines for population monitoring, as estimates 

may not be accurate enough to monitor population trends over time. In addition, track counts 

are reliant on standardised methods and assumptions. A key assumption is that all animals in 

the surveyed region have the same probability of detection, regardless of environmental (e.g., 

prey availability, interspecific competition) or anthropogenic (increased human activity) 

variability (Elliot & Gopalaswamy, 2017; Henschel et al. 2020). In the case of spotted hyaena, 

this assumption is difficult to meet, with spotted hyaena behaviour known to be influenced by 

human activity (Boydston et al. 2003; Belton et al. 2016), areas of increased prey availability 

and competition with lions (Périquet et al. 2015). Violating the assumption of equal detection 

results in underestimation of density (Henschel et al. 2020), with knock on effects for 
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conservation management decisions. It is, therefore, difficult to make a strong case for the 

future use of track count surveys to monitor spotted hyaena populations.  

When analysed in an occupancy framework track counts are efficient and cost-effective for 

gathering large carnivore presence/absence data, including spotted hyaena. The limitations of 

track count data are better incorporated into model inference within occupancy models as they 

account for imperfect detection and allow the use of covariates to model heterogeneity in site-

use estimates (MacKenzie et al. 2017). Track count data have provided valuable insights into 

the distribution and drivers of site use for multiple large carnivore species in Africa (e.g., 

Everatt et al. 2014; Henschel et al. 2016; Petracca et al. 2019) and we encourage further use 

of occupancy models over index-calibrated density estimates (Dröge et al. 2020). However, 

efforts to estimate density from occupancy models are cautioned against due to variability in 

spatial use and home-range utilisation (Link et al. 2018; Rogan et al. 2019). 

Distance sampling and total count methods were used in 11 studies to estimate spotted hyaena 

density or population size, all of which were from Kenya and Tanzania, notable for their wide-

open grasslands and high visibility (Durant et al. 2011; Farr et al. 2019). Whilst these surveys 

were able to estimate spotted hyaena density, these models are reliant on open habitats and the 

study species being reasonably habituated to human presence (Durant et al. 2011). 

Furthermore, studies that conducted distance sampling in Kenya and Tanzania were able to 

observe spotted hyaena during daylight hours (Durant et al. 2011). Often spotted hyaena are 

more nocturnal in areas of anthropogenic disturbance (Kolowski et al. 2007). As such, the 

wider applicability of distance sampling and total counts appears limited, with low capture 

success in areas of reduced visibility (e.g., dense woodlands) and/or high levels of 

anthropogenic disturbance making robust estimates unlikely, or requiring intensive survey 

effort (e.g., Thorn et al. 2010; Burton et al. 2011). With ≥ 60 observations recommended for 

robust estimates from distance sampling (Buckland et al. 2015), and reliable data on observed 
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distance and angle necessary, these methods are not applicable across a considerable area of 

the spotted hyaena’s geographical range.  

Total counts were used in long-term studies in Kenya and Tanzania to assess temporal changes 

in demography and population size (Höner et al. 2005; Green et al. 2018). Whilst direct counts 

employed for spotted hyaena did incorporate individual identification, allowing for more robust 

estimates of population size and avoidance of double counting, the time and effort required for 

direct counts is better combined with long-term behavioural studies (Gese, 2001). Certainly, if 

the aim of conservation practitioners is to compare population trends between sympatric 

carnivores, total counts are not a replicable model as the survey method is not viable for more 

cryptic species, such as leopard and cheetah. 

2.4.2 Towards robust estimates with SCR 

The development of SCR models has overcome several of the issues that limit inference from 

conventional survey methods for spotted hyaena. Most notably, the incorporation of detection 

probability and survey effort into SCR models improves the precision of estimates, compared 

to the wide error margins associated with index-calibrated methods (Broekhuis & 

Gopalaswamy, 2016; Braczkowski et al. 2020a). However, a recent review by Green et al. 

(2020) found that some SCR density estimates from camera trapping lacked the necessary 

precision for monitoring population trends over time, with precision increasing when more 

individuals from the study population were captured. Inference from large carnivore survey 

methods is often hampered by naturally low densities and small sample sizes, leading to 

inaccuracies or cautious estimation of population size (Bauer, 2007; Winterbach et al. 2016). 

As small sample sizes are common in spotted hyaena studies (e.g., Mohammed et al. 2019; 

Fouché et al. 2020; Davis et al. 2021), by extracting the individual and spatial information 

from encounter history data, SCR models can be used to make effective use of limited datasets 
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and produce statistically robust estimates (Royle et al. 2014; Royle, Fuller & Sutherland, 2018). 

Furthermore, by accounting for the spatial location of captures, SCR models allow for 

estimation of fine-scale variation in density across landscapes (Gopalaswamy et al. 2012). 

Covariates of interest (e.g., prey density, illegal activity) can also be included in SCR models 

to investigate potential drivers of spatial distribution, providing a more comprehensive 

understanding of species density and distribution, thereby informing conservation management 

(Broekhuis & Gopalaswamy, 2016; Ramesh et al. 2017). 

Current preferred survey methods for spotted hyaena fail to capitalise on the benefits of 

individual identification, which can provide additional metrics for assessing population health 

(Braczkowski et al. 2020a). Information on animal movement, sex ratios and survival rates are 

embedded within individual encounter history data (Karanth et al. 2006). Key indicators of 

population decline, or recovery, can be assessed by monitoring key parameters derived from 

individual identification (Harmsen et al. 2017; Brackzkowski et al. 2020a). For example, 

Duangchantrasiri et al. (2016) used survival rates from repeated SCR surveys to determine the 

efficacy of increased law enforcement efforts for tiger (Panthera tigris) population recovery. 

Using sex-specific movement parameters and calculated sex ratios derived from SCR 

estimates, Braczkowski et al. (2020b) highlighted increased home range movements and male-

biased sex ratios as early indicators of potential collapse in lion population numbers.  

In addition, the SCR approach is flexible, lending itself to direct (e.g., search-encounter; 

Broekhuis & Gopalaswamy, 2016) and indirect (e.g., camera trapping; Rich et al. 2019) 

methods, allowing researchers to select appropriate methodologies for their study site and 

population. As spotted hyaena occupy a diverse array of habitats and display varying 

behavioural responses to anthropogenic disturbance (Belton et al. 2016; Yirga et al. 2017), the 

flexibility of applying SCR models to individual encounter history data provides a standardised 

framework to monitor the species throughout their range. For example, the open grassland 
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habitats of East Africa would be appropriate for search-encounter methods, as spotted hyaena 

are regularly encountered in daylight hours and distance sampling techniques are a viable 

approach. Furthermore, the dense vegetation and high levels of human disturbance documented 

in countries, such as Cameroon (Croes et al. 2011; Kirsten et al. 2017), would benefit from 

applying SCR models to frequently used indirect methods, like camera trapping or DNA 

sampling.  

SCR methods have been widely applied to estimate felid densities across Africa, with camera 

trap surveys routinely used to obtain encounter history data (e.g., Brassine & Parker, 2015; 

Kane et al. 2015; Balme et al. 2019). Spotted hyaena are widely distributed across sub-Saharan 

Africa and are likely caught as bycatch on camera trap surveys undertaken for sympatric 

carnivores (e.g., Williams et al. 2020). However, spotted hyaena population estimates are 

rarely reported from these surveys, despite data occasionally being used as covariates to make 

inferences about the behaviour or density of the focal species (e.g., Ramesh et al. 2017; Balme 

et al. 2019). Of the six studies using SCR methods to estimate spotted hyaena density, 83% of 

studies had a multi-species focus (e.g., O’Brien & Kinnaird, 2011; Rich et al. 2019; Davis et 

al. 2021; Vissia et al. 2021). Thereby highlighting that SCR estimates for spotted hyaena can 

be obtained from camera trap grids with a multi-species focus. Increased reporting of spotted 

hyaena density, from studies where they may have been previously overlooked, would be 

beneficial for the conservation management of spotted hyaena and interspecific competitors.  

One of the limitations of an SCR approach is the cost of equipment and/or survey effort (Balme, 

Hunter & Slotow, 2009; Rafiq et al. 2019; Braczkowski et al. 2020a). We acknowledge that 

call-in surveys and track counts are often cheaper to conduct (Balme, Hunter & Slotow, 2009). 

However, the improvements in precision and benefits of individual identification for long-term 

population monitoring means that SCR-derived estimates can provide a greater balance of 

accuracy and cost-effectiveness (Balme, Hunter & Slotow, 2009; Braczkowski et al. 2020a). 



Chapter Two: Improving population estimates for spotted hyaena 

52 
 

In addition, the multi-species SCR approaches of both Rich et al. (2019), using camera traps, 

and Rafiq et al. (2019), using tourist photographic records, demonstrate the ability of SCR 

techniques to survey multiple large carnivore species simultaneously, thereby optimising 

survey costs. In areas where there is high tourism demand, the citizen science approach of Rafiq 

et al. (2019) has shown that SCR estimates are obtainable at considerably reduced costs. Where 

a citizen science approach is not possible, a viable option for reducing camera trap survey costs 

is the utilisation of spatial partial identity models (Augustine et al. 2018) which can produce 

robust SCR estimates from partial identity samples obtained using single camera trap stations, 

instead of the conventional dual camera survey design (Davis et al. 2021). 

Sexing spotted hyaena, particularly from camera trap images, could be a potential constraint of 

SCR methods for estimating spotted hyaena density. Sex-specific variation in space use and 

movement result in differences in detection probability and, where possible, should be 

incorporated into candidate models (Sollmann et al. 2011). However, movement patterns 

between male and female spotted hyaena are known to differ (Boydston et al. 2005; Kolowski 

et al. 2007) and the species is notoriously difficult to sex. Therefore, incorrect classification 

could result in skewed sex ratios and reduced accountability for heterogeneity in the 

observation process. Consequently, any attempt to incorporate sex-specific variation should be 

reliant on agreement between multiple trained observers or, in the case of long-term research 

projects, the incorporation of maintained identification databases to ascertain sex. 

Alternatively, aging spotted hyaena based on their spot patterns and coat wear is relatively easy 

(e.g., age groupings in M’soka et al. 2016). As movement patterns also vary between age 

groups in spotted hyaena (Boydston et al. 2005), the incorporation of age classes into SCR 

models could improve model inference whilst accounting for variation in detection probability.    

A key assumption of SCR models is that individual activity centres are uniformly and 

independently distributed over the state space (a region that incorporates the study area and a 
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defined buffer which includes all potential activity centres for sampled individuals; Royle et 

al. 2014). However, this assumption is often violated in social, group-living carnivores (e.g., 

lions, wolves), potentially influencing precision and affecting the underlying state process 

model (Bischof et al. 2020). As spotted hyaena are social carnivores, living in clans ranging 

from 5-90 individuals (Holekamp et al. 2012), these assumptions represent a possible source 

of bias in SCR-derived estimates. Despite their close-knit social groups, spotted hyaena display 

fission-fusion dynamics, whereby clan members are often found alone or in smaller subgroups 

that are subject to compositional change, and, as such, individual encounter history data is often 

collected. For example, Stratford et al. (2019) found that 62% of recorded camera trap images 

of spotted hyaena were lone individuals. As individual movements represent a large proportion 

of encounter history data, the impact on precision and interval coverage will likely be reduced 

(see Bischof et al. 2020). Indeed, simulations by Lopez-Bao et al. (2018) have shown that SCR 

models can provide reliable outputs for species violating assumptions of dependence in activity 

centres. However, further development of SCR models that can incorporate fission-fusion 

dynamics and group association into the state point process are required (Elliot & 

Gopalaswamy, 2017; Bischof et al. 2020). 

2.5 Conclusions 

Call-in surveys and track counts are currently the preferred methods for estimating spotted 

hyaena density. However, the efficacy of these methods has recently been questioned for long-

term population monitoring (Gopalaswamy et al. 2015; Dröge et al. 2020; Elliot et al. 2020). 

In comparison, SCR methods have the potential to monitor population change and assess trends 

in survival (by including individual identification and movement parameters), whilst 

incorporating environmental attributes (e.g., prey density) and demographic covariates 

(Karanth et al. 2006; Braczkowski et al. 2020b). Index-calibrated methods account for almost 

two-thirds of available spotted hyaena estimates but often overestimate density or are subject 
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to wide confidence intervals, creating uncertainty in population size and stability (Braczkowski 

et al. 2020a; Dröge et al. 2020). We argue that there should be greater concern for the status of 

spotted hyaena populations across Africa and increased survey efforts for understudied 

populations. Similar to recent calls for greater utilisation of SCR methods in the conservation 

management of lion (Braczkowski et al. 2020a) and snow leopard (Sharma & Singh, 2020) 

populations. Here we recommend adoption of an SCR approach to estimate spotted hyaena 

density, providing a unified framework for population monitoring across the species’ 

geographic range.  
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CHAPTER THREE: Study site and background  

3.1 Malawi 

Malawi is a landlocked country situated in south-central Africa, bordered by Tanzania, Zambia, 

and Mozambique (Figure 3.1). It is classified amongst the world’s least-developed countries 

(FAO, 2013a), with 89.4% of the country living below the $3.10/day line (OPHI, 2020) and an 

economy heavily based on agriculture. Malawi has a total land area of 94,276km2, relatively 

small in comparison to other African countries. However, it also has one of the highest 

population densities in Africa that continues to grow annually (192/people per km2; World 

Bank Group, 2019). Malawi had an estimated population of 18.6 million people in 2019 and 

this is projected to double by 2038 (World Bank Group, 2020). 

A large proportion of the population relies on subsistence farming, for both income and food 

security, with 84% of the population living in rural areas (Schaafsma et al. 2018). Subsistence 

farming practices are impacted by climatic factors, such as drought and flooding, resulting in 

frequent food insecurity issues with more than one-third of the country unable to meet daily 

calorie requirements (Ecker & Qaim, 2011; Conway et al. 2015). As the population of Malawi 

continues to grow, wide-scale conversion of land for agriculture has increased outside protected 

areas (Schaafsma et al. 2018; van Velden et al. 2020). Furthermore, over 97% of Malawian 

households are reliant on illegally and unsustainably sourced biomass for domestic cooking 

and heating energy (Republic of Malawi, 2019). Conversion of land for agriculture and reliance 

on wood for fuel has resulted in Malawi experiencing the highest deforestation rate in Africa 

(Mapulanga & Naito, 2019). Widespread deforestation has exasperated food security risks, 

with continuing degradation of natural habitats reducing soil fertility and increasing the risk of 

flooding (Republic of Malawi, 2010).  
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Figure 3.1. A map of Malawi, indicating the main cities and towns and its location within south-central 

Africa. Inset map shows the location of Malawi within Africa. 

3.2 Miombo woodlands 

The predominant forest cover in Malawi is miombo woodland (Gondwe et al. 2019). A 

seasonally dry tropical woodland, miombo woodlands are characterised by trees of the genera 

Brachystegia, Julbernardia and Isoberlinia, and perform key ecological functions, such as 

carbon storage and nutrient cycling, in sub-Saharan Africa (Frost, 1996; Walker & Desanker, 

2004). Miombo woodlands form an extensive range across East and Central Southern Africa, 
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covering approximately 2.7 million km2 (Figure 3.2) and making up 10% of the continent’s 

vegetation cover (Ribeiro et al. 2012; Gondwe et al. 2019). Covering ten African nations, these 

woodlands extend from Angola in the west to Mozambique and Tanzania in the east. Miombo 

woodlands are considered one of the world’s richest biodiversity hotspots and have been 

identified as one of five global wilderness areas that should be prioritised for conservation 

(Mittermeier et al. 2003). However, as human population densities increase and the demand 

for land conversion for agriculture intensifies, widespread deforestation of miombo woodlands 

continues at an extensive rate (Walker & Desanker, 2004; Bone et al. 2016; Gondwe et al. 

2019). In Malawi, the annual rate of deforestation is between 1.0 - 2.8% (Republic of Malawi, 

2010), with Bone et al. (2016) estimating that, between 1972 and 2009, 36% of the country’s 

forest cover was lost. 

 

 

 

 

  

 

 

 

 

Figure 3.2. Key African vegetation zones with miombo woodlands displayed in dark green. Miombo 

woodland covers approximately 2.7 million km2. (Source: Ribeiro et al. 2012). 
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Despite the habitat’s extensive range, there is a paucity of available data on population 

estimates for large carnivores, and wildlife populations in general, within miombo woodlands 

(Frost, 1996; Caro, 1999; Balme et al. 2007; Hardouin et al. 2020; Strampelli et al. 2021). This 

is potentially due to the challenges associated with surveying miombo woodlands, with high 

tree density, thick canopy cover and tall seasonal grasses often making direct observation and 

site accessibility challenging (Caro, 1999; Kiffner et al. 2013; Hambrecht et al. 2019). In 

addition, the typically low biomass and density of large mammal species, compared to savanna 

communities, could also mean that miombo woodlands have been overlooked as a habitat of 

conservation importance (Frost, 1996; Waltert, Meyer & Kiffner, 2009). For example, miombo 

woodlands support only 20-30% of the ungulate biomass of savanna habitats with comparable 

rainfall (Frost, 1996). Subsequently, the lack of baseline estimates of large carnivore density 

in miombo woodlands makes species monitoring difficult and hampers effective conservation 

management. 

3.3 Decline in protected area health in Malawi 

There are currently 99 protected areas (PAs) in Malawi, including five national parks and four 

wildlife reserves, accounting for almost 23% of the terrestrial land area (World Bank Group, 

2018). However, severe under-funding, combined with high rates of deforestation and 

increasing anthropogenic pressures caused by a growing population, have resulted in wide-

scale declines in wildlife populations (Munthali & Mkanda, 2002; Lindsey et al. 2018; Briers-

Louw et al. 2019; van Velden et al. 2020). As one of the poorest African nations, the national 

parks and PAs have been severely underfunded over recent decades (Munthali & Mkanda, 

2002). Waterland et al. (2015) reported that the Department of National Parks and Wildlife 

Malawi (DNPW) had an annual budget of US$315,000 in 2014, approximately one-third of the 

department’s estimated minimum funding requirement (US$1,050,000). To put this into 

context, Packer et al. (2013) estimated that a budget between US$500/year and US$2,000/year 



Chapter Three: Study site and background 

73 
 

per km2 of protected area is required to conserve large carnivores effectively. With the 

combined size of Malawi’s five national parks being approximately 7,045km2, a minimum 

budget of US$3,522,500/year would be required in the national parks alone. These financial 

limitations have led to a widespread shortage of resources and equipment that has restricted the 

ability of DNPW to maintain park security and manage wildlife populations effectively 

(Munthali & Mkanda, 2002). For example, it was estimated that less than 10% of Parks and 

Wildlife Assistants (PWAs) had access to basic patrolling equipment (i.e., boots, water bottles, 

weapons and ammunition), whilst access to critical resources such as vehicles and computers 

were limited, or items were not in a functioning state (Waterland et al. 2015).    

This lack of infrastructure and resources has resulted in PAs being subject to high levels of 

poaching and habitat destruction that have resulted in population declines and localised 

extirpations (Abbot & Homewood, 1999; Munthali & Mkanda, 2002; Staub et al. 2013; Sievert 

et al. 2018). For example, black rhinoceros (Diceros bicornis) and cheetah were declared 

extinct in Malawi by the 1990s, although both have subsequently been reintroduced (Bhima & 

Dudley, 1996; Sievert et al. 2018). Malawi is also considered to be a hub for illegal wildlife 

crime activity, with wildlife populations inside Malawian PAs targeted for bushmeat poaching 

and the country used as a transit hub for neighbouring states (Waterland et al. 2015; van Velden 

et al. 2020). Outside PAs, the consumption and utilisation of wildlife has been unregulated by 

authorities, resulting in the depletion of many large mammal species, and isolating remaining 

populations inside PAs (Munthali & Mkanda, 2002). For instance, between 1986 and 1996, 

7,083 large mammals were officially reported to have been killed in Malawi, of which 22% 

were illegally poached inside PAs and 78% were killed for animal control outside PAs 

(Munthali, 1998). In addition, arable land comprises more than 40% of the total land area of 

Malawi (FAO, 2013b; Figure 3.3), leaving the majority of PAs isolated and restricting animal 

movements and gene flow (Munthali & Mkanda, 2002). 
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In recent years, the situation has begun to improve in some PAs across Malawi, with growing 

investment from local and international conservation organisations. For example, a public-

private partnership between the international non-governmental organisation African Parks 

(AP) and DNPW has seen AP take over management of four PAs in Malawi (Majete Wildlife 

Reserve, Liwonde National Park, Nkhotakota Wildlife Reserve, Mangochi Forest Reserve) and 

invest heavily in park security, community initiatives and the re-establishment of wildlife 

populations (Briers-Louw et al. 2019; van Velden et al. 2020). In addition, amendments to the 

National Parks and Wildlife Act in 2017, which substantially increased the penalties for 

wildlife crime and coincided with expanded national efforts to prevent illegal poaching, has 

strengthened attempts to protect PAs in Malawi. However, with only ~16% of protected land 

under private partnerships, and after decades of underfunding, the conservation efforts needed 

to restore Malawi’s PAs are sizeable. 

3.4 Conservation status and threats to large carnivores in Malawi 

Large carnivores have been the subject of widespread persecution in Malawi, particularly 

outside PAs. For example, Mésochina et al. (2010) reported that between 2006 and 2010 the 

equivalent of 20% of the Malawi lion population was eliminated by official Problematic 

Animal Control operations. Recent estimates have highlighted the widespread decline of lion 

populations in Malawi, with the nationwide population estimated at only 25 (Chardonnet, 

2002) and, more recently, 34 (Mésochina et al. 2010) individuals. The decline in the Malawi 

lion population is indicative of a wider decline in large carnivore populations across the 

country, for which most PAs are data deficient. Consumption of illegally sourced bushmeat is 

common in Malawi, reaching up to almost 40% of the population, and this has a considerable 

impact on remaining prey bases (van Velden et al. 2020). As the loss of wild prey is a key 

driver of carnivore decline (Jacobson et al. 2016; Wolf & Ripple, 2016), it is likely a significant 

contributing factor to population losses in Malawi. Coinciding with high rates of bushmeat  
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Figure 3.3. Map showing land cover in Malawi (2010-2011). Agricultural land cover is prominent 

outside of protected forested areas and limits habitat connectivity. (Data source: FAO, 2013b). 
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poaching, the use of illegal wire snares for poaching ungulate species is common in Malawian 

PAs (Mésochina et al. 2010). For example, since AP took over management of Liwonde 

National Park in 2015 they have removed over 40,000 snares from the park (African Parks, 

2021). Wire snares have been identified as a key cause of carnivore decline across Africa 

(Becker et al. 2013; Loveridge et al. 2020), and anecdotal evidence suggests that they have 

caused similar declines in Malawi (Figure 3.4). Habitat fragmentation and human-wildlife 

conflict have also contributed to large carnivore decline, as high human population densities 

surrounding PAs, and a continuing decline in forest cover (Gondwe et al. 2019), means that 

carnivores moving outside PAs are increasingly likely to encounter conflict (for example, 

Figure 3.5).  

Figure 3.4. An example of anecdotal evidence indicating the impact of wire snares on large carnivores 

in Malawi. Here a spotted hyaena in Kasungu National Park can be seen with a wire snare around its 

neck.  
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The issue of habitat fragmentation and landscape connectivity is likely exacerbated in Malawi 

due to the size of PAs, with only three PAs larger than 1,000km2 (Nyika National Park, 

3,200km2; Kasungu National Park, 2,316km2; Nkhotakota Wildlife Reserve, 1,800km2). 

Indeed, the size and relative isolation of Malawian PAs has been considered a limiting factor 

in the recovery of cheetah and wild dog populations in Malawi (DNPW, 2011). Large 

carnivores have extensive range requirements (Wolf & Ripple, 2018; Noonan et al. 2020), with 

their high energetic demands often meaning they move beyond reserve boundaries and come 

into further conflict with humans (Woodroffe & Ginsberg, 1998; Farhadinia et al. 2018). Shifts 

in prey availability and environmental productivity can result in these ranging behaviours 

expanding (Loveridge et al. 2009) and the impact of edge effects is often amplified in smaller 

PAs (Balme et al. 2010; Noonan et al. 2020). This is potentially a key factor in the decline of 

large carnivore populations in Malawi. For example, all large carnivores, besides spotted 

hyaena, were believed to be extirpated from Liwonde National Park (580km2; Sievert et al. 

2018). Whilst it has been speculated that Nyika National Park (Malawi’s largest PA) is the only 

area where a viable leopard population remains (Purchase et al. 2007; Briers-Louw et al. 2019). 

There is, however, a paucity of empirical data on the status and population density of large 

carnivores in Malawi, and conservation research has received little attention (Purchase et al. 

2007). In general, it is widely acknowledged that large carnivores have experienced significant 

declines across Malawi and, with the exception of spotted hyaena, remaining populations of 

large carnivores are thought to be restricted to PAs (Mésochina et al. 2010; Briers-Louw et al. 

2019). For example, in the Lower Shire Valley, large felids (i.e., lion and leopard) were 

restricted to Majete Wildlife Reserve by the 1970s and were considered extirpated from the 

region by the 1990s (Briers-Louw et al. 2019). However, the extent of these declines across 

Malawi is difficult to determine, as neither historic nor current population estimates are widely 

available or are subject to anecdotal evidence. As large carnivores can act as indicator species 
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for wider ecosystem health (Dalerum et al. 2008), estimating the current status of large 

carnivores in PAs across Malawi would be beneficial to assess ecosystem health and establish 

baseline estimates to evaluate the success of ongoing conservation initiatives. 

 

Figure 3.5. A leopard killed outside KNP in 2015, highlighting the problem that large carnivores face 

when moving outside protected areas. The leopard was less than 2km from the Kasungu National Park 

boundary. Image credit: Daniel Grove.      
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3.5 Kasungu National Park 

This study was conducted in Kasungu National Park (KNP), Malawi (central coordinates 

S12.9092°, E33.1689°), a 2,316km2 legally-protected area that encompasses a large part of the 

Kasungu Plateau. KNP forms part of the 30,621km2 Malawi Zambia Transfrontier 

Conservation Area (MZTFCA; Figure 3.6) that is of importance for biodiversity conservation 

in the Central Zambezian Miombo Woodland Ecoregion. The MZTFCA consists of Kasungu 

National Park, Nyika National Park and Vwaza Marsh Game Reserve in Malawi and Lukusuzi 

National Park, North Luangwa National Park and several game management areas in Zambia. 

KNP and Lukusuzi National Park, Zambia, form the Kasungu/Lukusuzi Transfrontier Area, 

allowing dispersal of wildlife species between the two parks.  

 

Figure 3.6. Map showing the location of Kasungu National Park and its position within the wider 

Malawi Zambia Transfrontier Conservation Area (MZTFCA). Inset displays the location of the 

MZTFCA in south-central Africa. 
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KNP is dominated by miombo woodland, comprising Brachystegia and Julbernardia spp. 

(Bhima et al. 2003). Three main rivers flow through the park (Dwangwa, Lingadzi and 

Liziwazi) that form an extensive river network and drainage system that intersperses closed 

canopy miombo woodland with seasonally wet grassland areas and isolated rocky inselbergs. 

The altitude ranges between 1,000m and 1,500m, and the mean annual rainfall is 780mm, with 

most rainfall occurring during the wet season between October and April (Bhima et al. 2003). 

KNP is largely unfenced, with the only erected fencing in the south-east of the park in a state 

of disrepair and bordered by unprotected land in both Malawi and Zambia. The area 

surrounding KNP consists of subsistence farming, charcoal burning and tobacco production, 

which is beginning to encroach into the protected area along park boundaries (Bhima et al. 

2003). No human settlements, besides national park authorities (operating from ten ranger 

camps inside the park), are permanently based in KNP and trophy hunting is not permitted in 

the park.  

Like other Malawian PAs, KNP has suffered from a lack of funding and resources that has 

resulted in high rates of poaching and a subsequent decline in wildlife populations (Munthali 

& Mkanda, 2002). A review of illegal wildlife crime in Malawi by Waterland et al. (2015) 

highlighted this lack of infrastructure, with only 46 PWAs deployed in KNP in 2014, tasked 

with covering an area of 2,316km2. This critical lack of on-the-ground presence has made 

historic law enforcement in KNP ineffective, with poachers able to target areas where patrols 

are unable to cover regularly (Waterland et al. 2015). The negative consequences of limited 

infrastructure and resources are exemplified by the decline in the KNP elephant (Loxodonta 

africana) population which, during the last aerial survey in 2014, was estimated to be just 46 

individuals (Macpherson, 2015). This is a decline of over 94% in just over two decades, with 

800 individuals estimated in 1993 (Bell et al. 1993; Bhima et al. 2003). The situation in KNP 

has been improved in recent years with the assistance of the International Fund for Animal 
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Welfare (IFAW), who have increased PWA numbers, provided PWA training, improved park 

fencing and increased financial and logistical support (IFAW, 2021).  

Historically, the large carnivore guild (lion, leopard, spotted hyaena, wild dog and cheetah) 

were known to be present in KNP (Nowell & Jackson, 1996; Woodroffe et al. 1997; Mills & 

Hofer, 1998 De Garine-Wichatitsky et al. 2001). However, it is believed that large carnivore 

populations have generally declined in KNP over recent decades. The lion population in KNP 

was estimated to be 40 individuals in the late 1980s (Morris, 2006 in Mésochina et al. 2010) 

but has undergone a significant decline, with a review by Mésochina et al. (2010) estimating a 

population of just 6 lions in the park. However, this estimate was based on anecdotal evidence 

from questionnaire surveys. Between 2006 and 2010, PWAs only reported seeing lion a 

maximum of once a year in KNP (Mésochina et al. 2010). Both Purchase et al. (2007) and 

Mésochina et al. (2010) hypothesised that lion presence in KNP was likely restricted to 

transient individuals from the Luangwa Valley, although information on lion movements is 

lacking for the region. Cheetah were known to be present in KNP until the late 1980s, with 

KNP representing the last remaining cheetah population in Malawi (DNPW, 2011). This 

population has since been declared extirpated, with no cheetah observed in KNP for over 

twenty years (DNPW, 2011; Durant et al. 2015). It is believed that wild dogs are still present 

in KNP, with an estimated population of 14 individuals (Woodroffe & Sillero-Zubiri, 2020). 

This population has fluctuated over recent years, as noted by Woodroffe et al. (1997), but at 

least one pack was observed in 2011 and seen in subsequent years, with the population 

considered transient across the MZTFCA (DNPW, 2011). Spotted hyaena and leopard are both 

known to be present in KNP, although information on population estimates and trends is 

lacking (Bohm & Höner, 2015; Jacobson et al. 2016). Purchase et al. (2007) stated that leopard 

populations appeared to be declining across other PAs in Malawi, including their extirpation 

from three PAs in the southern region, and that their status in KNP was unknown.  
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Large herbivores have also experienced significant declines, with widespread poaching in the 

early 2000s resulting in remaining populations of several large mammal species (e.g., zebra 

Equus quagga, eland Taurotragus oryx and buffalo Syncerus caffer) being translocated to 

Liwonde National Park, Malawi, as their safety could not be guaranteed in KNP (Munthali & 

Mkanda, 2002). Munthali & Mkanda (2002) raised concerns that by removing animals from 

already small populations there was a significant chance of inbreeding depression and further 

decline in large mammal populations in KNP. Aerial surveys conducted in 2014 add further 

evidence that large mammal populations are still significantly reduced in KNP, with reduced 

total counts of all species assessed since the previous survey (Macpherson, 2015). Whilst robust 

data on population estimates for large mammals are lacking for KNP, the decline in prey 

abundance has been considered a key limiting factor, preventing the recovery or reintroduction 

of large carnivore populations in the park (Mésochina et al. 2010; DNPW, 2011).   

The perceived decline in large carnivore populations in KNP, combined with the loss of natural 

prey and the general decline in protected area health, means assessing the status of remaining 

large carnivores in KNP should be a conservation priority for Malawi. As the second largest 

protected area in Malawi, and with wider connectivity to the MZTFCA, KNP is an important 

site for large carnivore conservation in the region. In addition, data gathered in KNP may be 

representative of wider species decline across Malawi, with most Malawian PAs under similar 

environmental pressures and miombo woodland the primary habitat across the country. Data 

from KNP can, therefore, act as a baseline for monitoring carnivore populations and wider 

ecosystem health in KNP, whilst also providing metrics that can be used in comparison to 

assess the status of other PAs across Malawi.  

Localised extirpation of lion populations is expected to increase over the coming decades, with 

the species predicted to survive in only the largest PAs across Africa and in small, intensively 

managed, fenced reserves (Bauer et al. 2015). Subsequently, the localised loss of the lion 
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population in KNP could offer a novel opportunity to test theories on guild dynamics and 

interspecific competition between remaining competitors (notably leopard and spotted hyaena). 

Alongside the broader socio-ecological issues of high human population density, habitat loss 

and declining prey populations, the issues facing KNP and Malawi are indicative of wider 

issues across Africa. Therefore, KNP could offer insights into how species respond to 

anthropogenic disturbance and alterations to the carnivore guild, whilst informing predictions 

for conservation management under increasing levels of environmental change. 
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Abstract 

Decline in global carnivore populations has led to increased demand for assessment of 

carnivore densities in understudied habitats. Spatial capture-recapture (SCR) is used 

increasingly to estimate species densities, where individuals are often identified from their 

unique pelage patterns. However, uncertainty in bilateral individual identification can lead to 

the omission of capture data and reduce the precision of results. The recent development of the 

two-flank spatial partial identity model (SPIM), offers a cost-effective approach which can 

reduce uncertainty in individual identity assignment and provide robust density estimates. We 

conducted camera trap surveys annually between 2016 and 2018 in Kasungu National Park, 

Malawi, a primary miombo woodland and a habitat lacking baseline data on carnivore 

densities. We used SPIM to estimate density for leopard (Panthera pardus) and spotted hyaena 

(Crocuta crocuta) and compared estimates with conventional SCR methods. Density estimates 

were low across survey years, when compared to estimates from sub-Saharan Africa, for both 

leopard (1.9 ± 0.19 SD adults/100km2) and spotted hyaena (1.15 ± 0.42 SD adults/100km2). 

Estimates from SPIM improved precision compared to analytical alternatives. Lion (Panthera 

leo) and wild dog (Lycaon pictus) were absent from the 2016 survey, but lone dispersers were 

recorded in 2017 and 2018, and both species appear limited to transient individuals from within 

the wider transfrontier conservation area. Low densities may reflect low carrying capacity in 

miombo woodlands or be a result of reduced prey availability from intensive poaching. We 

provide the first leopard density estimates from Malawi and a miombo woodland habitat, whilst 

demonstrating that SPIM is beneficial for density estimation in surveys where only one camera 

trap per location is deployed. The low density of large carnivores requires urgent management 

to reduce the loss of the carnivore guild in Kasungu National Park and across the wider 

transfrontier landscape. 
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4.1 Introduction 

Density estimation is an important tool for monitoring wildlife populations, which is critical 

for effective conservation management (Sollmann et al. 2011; Balme et al. 2019). Despite the 

ecological, economic and social importance of carnivores, basic data on population density and 

distribution are lacking across large areas of their geographic range (Ripple et al. 2014; Bauer 

et al. 2015; Jacobson et al. 2016). This is particularly true in Africa, despite well-reported 

declines across the continent (Ripple et al. 2014; Di Minin et al. 2016; Wolf & Ripple, 2016). 

With increasing anthropogenic pressures, rising human populations and high rates of poaching, 

the need for rapid status assessments in understudied areas is critical for carnivore conservation 

management and identification of species at high risk of decline (Jacobson et al. 2016; 

Rosenblatt et al. 2016; Elliot & Gopalaswamy, 2017).  

Obtaining robust density estimates for carnivores which are cryptic, wide-ranging and often 

solitary, is challenging (Balme et al. 2009a; Sollmann et al. 2011). Various techniques have 

been employed to estimate carnivore abundance and density, each with their own limitations 

(Balme et al. 2014; Midlane et al. 2015; Rogan et al. 2019). In recent years, density estimates 

derived from camera trapping, e.g., using capture–recapture modelling, have become 

increasingly important in wildlife ecology and species management (Royle et al. 2014; Rovero 

& Zimmerman, 2016). The development of spatial capture-recapture (SCR) models, 

incorporating the spatial location of captures and an explicit model of individual distribution 

across space, has resolved initial problems with capture-recapture modelling and allows more 

robust and accurate density estimation (Efford, 2004; Royle et al. 2009; Sollmann et al. 2011).  

Whilst SCR methods are among the most robust methods for density estimation, the 

fundamental requirement for all captured individuals to be identified with certainty is not 

always achievable (Link et al. 2010; Augustine et al. 2018; Augustine et al. 2019; Johansson 

et al. 2020). For example, when camera trap arrays are used to survey individually identifiable 



Chapter Four: Large carnivore densities in a miombo woodland 

96 
 

animals, common practice is to deploy two camera traps at each sampling location, ensuring 

both sides of the animal are photographed for bilateral identification (Henschel & Ray, 2003). 

However, in situations where field conditions are limited by circumstances, such as 

topography, financial resources, malfunctioning equipment or poor image quality, photographs 

of only one side may be available (Wang & Macdonald, 2009; McClintock et al. 2013; Alonso 

et al. 2015; Augustine et al. 2018). This leads to partial identification of some, or all, of the 

study population (Foster & Harmsen, 2012; McClintock et al. 2013). In these circumstances, 

researchers are often forced to omit data from analyses (e.g., Wang & Macdonald, 2009; 

Alonso et al. 2015; Rosenblatt et al. 2016; Strampelli et al. 2020; Mohamed et al. 2021), 

leading to the loss of valuable recapture data, and, potentially, introducing significant bias 

(Madon et al. 2011; Augustine et al. 2018). 

The recent development of spatial partial identity models (SPIMs; Augustine et al. 2018) offers 

an analytical alternative to conventional SCR for partially identified datasets, allowing the use 

of a larger proportion of recaptures, whilst reducing the negative bias associated with individual 

heterogeneity in capture probability (Augustine et al. 2018; Augustine et al. 2019). SPIMs use 

a Markov Chain Monte Carlo (MCMC) algorithm to reconstruct the true capture histories 

probabilistically, like previously developed partial identity models (McClintock et al. 2013). 

These partial identity models differ, however, as SPIMs incorporate the spatial location of 

individual captures to associate latent samples probabilistically, thereby reducing uncertainty 

in identity assignment (Augustine et al. 2018; Augustine et al. 2019). As uncertainty regarding 

partial identity samples is reduced, this allows for better estimation of density and movement 

parameters that are key to the SCR framework. Like conventional SCR methods, further 

variables including age, sex and morphological differences, can be incorporated into SPIMs to 

resolve partial identities further and improve precision (Augustine et al. 2019).  
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Miombo woodland is the dominant vegetation type across south-central Africa, totalling 2.7 

million km2 (Frost, 1996), yet baseline data on carnivore densities are lacking for this habitat 

type (Balme et al. 2007; Stein et al. 2016), and as a result species management may be 

ineffective. Malawi is predominantly covered by miombo woodland but is lacking robust 

assessments of large carnivore density which, consequently, hampers effective species 

management that could be used as an exemplar for other countries across south-central Africa. 

Malawi is experiencing some of the highest rates of environmental degradation, climate change 

and deforestation in Africa, due to high population density (Stevens & Madani, 2016) and 

increasing population growth (United Nations, 2019). Therefore, the paucity of carnivore 

density estimates within miombo woodlands, combined with increasing anthropogenic 

impacts, makes assessment of large carnivore populations in Malawi a conservation priority 

for effective species management in the region. 

In this study we estimate large carnivore density in Kasungu National Park (KNP), Malawi, 

using a spatial partial identity model in a spatial capture-recapture framework. KNP comprises 

miombo woodland that has been impacted by high rates of anthropogenic pressures, including 

poaching, which has severely reduced numbers of natural prey (Munthali & Mkanda, 2002; 

Bhima et al. 2003). The study presents the first robust estimate of leopard (Panthera pardus) 

density in a miombo woodland, alongside spotted hyaena (Crocuta crocuta, hereafter hyaena) 

density, and highlights the status of other large carnivore populations in this regionally 

important protected area. We discuss the implications of our findings for the management of 

carnivores in KNP, the potential for wider inference across miombo woodlands and the 

application of SPIMs for camera trap surveys.  
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4.2 Materials and Methods 

4.2.1 Study area 

The study was conducted in KNP, Malawi (central coordinates S12.9092°, E33.1689°; Figure 

4.1), a 2,316km2 legally protected area that encompasses a large part of the Kasungu Plateau. 

KNP is largely unfenced, with the only erected fencing in the south-east of the park in a state 

of disrepair and bordered by unprotected land in both Malawi and Zambia. KNP forms part of 

the 30,621km2 Malawi Zambia Transfrontier Conservation Area (MZTFCA), that is of 

importance for biodiversity conservation in the Central Zambezian Miombo Woodland 

Ecoregion. KNP and Lukusuzi National Park, Zambia, form the Kasungu/Lukusuzi 

Transfrontier Area allowing dispersal of wildlife species between the two parks.  

KNP is dominated by miombo woodland, comprising Brachystegia and Julbernardia spp. 

(Bhima et al. 2003). Three main rivers flow through the park (Dwangwa, Lingadzi and 

Liziwazi) that form an extensive river network and drainage system that intersperses closed 

canopy miombo woodland with seasonally wet grassland areas and isolated rocky inselbergs. 

The altitude ranges between 1,000m and 1,500m and mean annual rainfall is 780mm, with most 

rainfall occurring during the wet season between November and April (Bhima et al. 2003). The 

area surrounding KNP consists of subsistence farming, charcoal burning and tobacco 

production, which is beginning to encroach into the protected area along park boundaries 

(Bhima et al. 2003). No human settlements, besides national park authorities (operating from 

ten ranger camps inside the park), are permanently based in KNP and trophy hunting is not 

permitted in the park.  
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Figure 4.1. Map showing (a) the location of Kasungu National Park (KNP) within Malawi and (b) the 

location of KNP with reference to Lukusuzi National Park, Zambia, and an overview of the area covered 

for camera trap surveys represented in; (c) camera trap locations for the 2016 survey, (d) camera trap 

locations for the 2017 survey and (e) camera trap locations for the 2018 survey. 

 

Historically, large carnivores (lion (Panthera leo), leopard, hyaena, wild dog (Lycaon pictus) 

and cheetah (Acinonyx jubatus)) were known to be present in KNP (Nowell & Jackson, 1996; 

Woodroffe et al. 1997; Mills & Hofer, 1998). However, all have experienced declines in the 

past three decades, with cheetah declared extirpated (Durant et al. 2015) and an estimated 

fourteen wild dogs (Woodroffe & Sillero-Zubiri, 2020) and five lions (Mésochina et al. 2010) 

reported from anecdotal accounts and questionnaire surveys. African elephants (Loxodonta 

africana) declined from approximately 2,000 individuals in 1977 to 117 individuals in 2003, 

due to poaching (Bhima et al. 2003). Black rhinoceros (Diceros bicornis) were declared extinct 
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in KNP in 1985 (Bhima & Dudley, 1996) and all other large herbivores present in the park are 

believed to have suffered population reductions, due to illegal hunting, though data are lacking 

(Munthali & Mkanda, 2002; Bhima et al. 2003). 

4.2.2 Camera trapping 

Camera trap surveys were undertaken during the dry season (May to October) in 2016, 2017 

and 2018. Surveys were not completed during the wet season due to limited road access and 

tall grass causing multiple false triggers. A combination of motion-activated white flash camera 

traps (Cuddeback Models C and F; Cuddeback Inc., Wisconsin, USA) and infrared cameras 

(Bushnell Trophy Cam HD; Bushnell Corporation, Kansas, USA), were used during all 

surveys. Infrared cameras were partly used in 2016 and 2017, due to limited numbers of white 

flash cameras being available. All cameras used in 2018 were white flash. One camera trap was 

used at each sampling location to maximise the area surveyed with the limited numbers of 

cameras available, with 17, 50 and 25 trapping locations used per year, respectively (Fig. 1).  

Each trapping location was surveyed for 90 days in 2016 and 2018. In 2017, cameras were 

deployed at locations for 60 days then redeployed in new locations for a further 60 days, 

totalling 120 days of survey. These were considered adequate survey lengths for assuming 

demographic closure and to ensure suitable numbers of photographic captures for large 

carnivores (Royle et al. 2014; Dupont et al. 2019). 

We used a maximum camera spacing of 3-5km (Devens et al. 2018; Strampelli et al. 2020) to 

select camera locations prior to deployment, with placement focused on the KNP road network. 

No home range estimates are available for large carnivores in KNP, but a maximum spacing 

of 5km ensured that there were no gaps in the array large enough to encompass an average 

adult female leopard home range (30km2; Braczkowski et al. 2016). As female leopard home 

ranges are smaller than those of male leopards and hyaena, this spacing was considered 
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adequate for both species. We focused placement on roads in KNP, as carnivores are known to 

utilise road networks (Swanepoel et al. 2015; Braczkowski et al. 2016) and previous pilot data 

showed capture success was greater on roads than random placement. Final camera positions 

were selected as close to the pre-determined points as possible and chosen based on evidence 

of carnivore presence or in suitable habitat to maximise the probability of photographic 

captures (Henschel & Ray, 2003). Although the trap array size and camera locations differed 

each year, due to logistical reasons, SCR models are generally considered more robust to these 

changes than conventional capture-recapture models (Sollmann et al. 2011; Braczkowski et al. 

2016). Cameras were mounted on trees approximately 40-60cm above the ground and two 

metres from the road or game trail and operated continuously, with one image taken per trigger, 

and the minimum delay possible for each model. Each camera trap was visited every 10-14 

days to download images, check batteries and ensure all cameras remained operational, in 

accordance with standard camera trap survey procedures (Henschel & Ray, 2003).  

4.2.3 Density estimation and statistical analyses 

Individual leopard and hyaena were identified from photographs using their unique pelage 

patterns (Henschel & Ray, 2003). A database was maintained of identified individuals, with 

partial (single-flank) or complete (two-flank) identities, to build capture histories for SCR 

analysis. We initially identified individuals from left flank captures for both species, due to 

higher numbers of identified left flank individuals recorded during preliminary surveys. 

Complete identities were added where flanks were certain to come from the same individual 

(from baited stations outside of survey time, live captures, dual camera trap stations and 

multiple passes of a single camera trap). Leopards were sexed by visual determination of 

external genitalia, presence of the dewlap, frontal bossing and overall body size (Henschel & 

Ray, 2003; Devens et al. 2018). Any dependent cubs (determined by body size and/or 

simultaneous capture with an adult female) were excluded from analyses, due to their inclusion 
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leading to inflated density estimates and violating independent capture probabilities (Balme et 

al. 2019). Sexing was not possible for hyaena due to difficulties in determining sex from 

external genitalia and body size. Capture histories were developed for spatial captures and trap 

effort, with each day (24 hours) treated as a separate sampling occasion (Goldberg et al. 2015). 

Trap effort was measured through a binary matrix of active-inactive days, to improve estimates 

of detection probability, and included the spatial location of each camera station.  

Density was modelled using the package SPIM (Augustine, 2018) in R v.3.5.2 (R Development 

Core Team, 2018), to resolve the complete identity of individuals from single-flank samples 

probabilistically (see Augustine et al. 2018 for complete description of spatial partial identity 

model). A Bernoulli observation model was fitted and, for MCMC simulations, a single chain 

of 50,000 iterations per single session analysis was undertaken, with a burn-in of 1,000 

iterations and data augmentation of 100-130 individuals for leopard and 125-250 for spotted 

hyaena. Analyses were conducted with an increasing buffer width from 10,000 to 25,000 

metres (leopard) and 10,000 to 40,000 metres (hyaena), using 5,000 metre increments, until 

density estimates stabilised (Chase-Grey et al. 2013; Devens et al. 2018). Point estimates were 

calculated using the posterior mode and 95% intervals estimated using the highest posterior 

density interval. Model convergence of MCMC samples was assessed by examining trace plots 

and histograms for each parameter. Simulations were undertaken separately for each species 

and survey year, instead of incorporating a multi-session model, as this process is not currently 

implemented in the SPIM package.  

For comparison with SPIM, density estimates were modelled using the Bayesian package 

SPACECAP v1.1.0 (Gopalaswamy et al. 2012) in R v.3.5.2. Common practice with partial 

identities is to use the flank with the greater number of captures for density estimates (e.g., 

Rosenblatt et al. 2016: Strampelli et al. 2020), therefore, we developed single-flank capture 

histories for each year and species using the flank with the higher number of identifiable photos. 
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In addition, we modelled the capture histories where both flanks were known with certainty for 

each species and included, separately, the partial left and right flank images, for which we did 

not have complete identities. We then averaged the two, both-side plus partial sample models 

to attain mean density estimates for each species and year. We then compared the single-side 

and averaged both-side density estimates against the SPIM output and measured the 95% 

credible interval width to assess any gain in precision from using SPIM. Wherever possible, 

we kept MCMC settings as close to simulations in SPIM as possible, to aid comparison, and 

fitted a half-normal detection function, the trap response function and Bernoulli’s encounter 

model. We used a 1km2 pixel area to represent potential home range centres. Chain 

convergence was assessed using the Geweke diagnostic test, where z-scores between -1.6 and 

1.6 imply convergence was achieved. Model fit was also determined from Bayesian p-values 

provided in the SPACECAP output, with p-values close to 0.05 and 1 suggesting inadequate 

fit.  

4.3 Results 

4.3.1 Camera trap surveys 

A total of 17, 50 and 25 cameras were deployed in KNP during 2016, 2017 and 2018, 

respectively, at 92 locations across the three years (Table 4.1). Total sampling effort was 5,990 

trap nights with an average camera trap spacing of 3.35km (±0.94 SD) across all survey periods. 

Camera trap surveys yielded 274 leopard captures with an average of 91 (±37.54 SD) per year, 

ranging from 48 in 2016 to 114 in 2018. Using unique pelage patterns, 40 individual leopards 

(29 females, 8 males, 3 unsexed) were identified in KNP over the three survey years from left 

flank spot patterns (Table 4.2), of which 17 were complete identities (where both left and right 

flank were certified from the same individual). A further 14 leopards (all female), for which 

right side flank information could not be linked to a left side flank, were included in the 
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analyses to be resolved by the two-flank SPIM model. In addition, five dependent cubs, from 

four different females, were captured across survey years and were excluded from the analyses. 

Surveys yielded a total of 346 hyaena captures, with an average of 115 (±44.56 SD) per year, 

ranging from 64 in 2016 to 144 in 2017. Thirty-three individual hyaena were identified during 

the survey period from their left flank spot patterns, of which 19 were complete identities where 

both flanks were known. Seventeen unresolved right flank identities were also included in the 

analyses to be resolved by the two-flank SPIM models.
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Table 4.1. Summary of camera trap sampling effort between 2016-2018 in Kasungu National Park, Malawi. Survey duration is the time-period of the survey, 

with date showing the months surveyed in each year. The number of camera trap stations, total trap nights (calculated as the total number of nights camera traps 

were effectively working during the survey), mean and standard deviation of trap nights per camera and average camera trap spacing (km) is also given per 

survey year. 

 

Table 4.2. Capture success rates for leopard and spotted hyaena across three years of camera trap surveys in Kasungu National Park, Malawi. Number of 

identified individuals for each year includes individuals identified in previous years but excludes right-flank individuals that could not be linked to already 

known individuals. Capture rate is defined as the total number of captures, divided by trap nights and multiplied by 100. 

Sample year Survey 

duration (days) 

Date Camera trap 

stations 

Total trap 

nights 

Mean trap nights per 

camera (± SD) 

Average camera 

spacing (± SD) 

2016 90 May - August 17 1283 73 ± 16.85 2.83 ± 1.08 

2017 120 June - October 50 2630 52.6 ± 11.99 2.78 ± 0.31 

2018 90 June - September 25 2077 83.1 ± 15.41 4.43 ± 0.59 

Sample Year Total leopard 

captures 

No. of identified 

leopards 

Leopard capture 

rate (%) 

Total hyaena 

captures 

No. of identified 

hyaenas 

Hyaena capture rate 

(%) 

2016 48 9 3.7 64 13 5 

2017 112 18 4.2 144 18 5.4 

2018 114 23 5.5 138 25 6.6 



Chapter Four: Large carnivore densities in a miombo woodland 

106 
 

4.3.2 Density estimation 

Using SPIM the highest leopard density estimate for KNP was 2.11 adults/100km2 in 2016 

(Table 4.3), with an overall mean density estimate (derived from individual estimates from 

each survey year) of 1.9 (±0.19 SD) adults/100km2 (95% CI = 1.48 – 2.92/100km2). Density 

estimates from SPIM increased credible interval precision by 48, 40 and 68%, respectively, 

compared to the single-flank analyses. Credible intervals from SPIM also outperformed the 

averaged two-flank density estimates by 9% in 2018 and 35% in both 2017 and 2016, 

respectively. The average value of σ (the spatial scale parameter that determines the rate at 

which detection probability decreases with distance between an activity centre and a trap) was 

3,447 (±684 SD) metres. Buffer width stabilised at 15,000m for each survey year and the 

average state space was 2,361 km2 (±571 SD). Diagnostic statistics and trace plots suggested 

model fit and convergence was achieved in all models run in SPIM and SPACECAP (Table 

S1).   

The highest density estimate for spotted hyaena in KNP was 1.62 adults/100km2 in 2018 (Table 

4.4), with an overall mean density estimate of 1.15 (±0.42 SD) adults/100km2 (95% CI = 0.72 

– 1.82/100km2). The single-flank and both-flank plus partial identity models for 2016 did not 

converge in SPACECAP and were excluded from the model list. Density estimates obtained in 

SPIM increased credible interval precision by 27 and 25%, respectively, in comparison to the 

single-flank models. Estimates from SPIM and the averaged two-flank models produced 

similar results and levels of precision in 2018 and 2017. The spatial scale parameter, σ, was 

larger for hyaena than leopard, with an average value of 5,768 (±586 SD) metres. Buffer width 

stabilised at 20,000m in 2017 and 2018 and 40,000m in 2016. Average state space size was 

4,952km2 (±2134 SD). Diagnostic statistics and trace plots suggested model fit and 

convergence was sufficient for all other models run in SPIM and SPACECAP (Appendix III).
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Table 4.3. Posterior summaries of model parameters for leopards in Kasungu National Park from the spatial partial identity model (SPIM) compared with the 

single-flank model with the higher number of captures (Single) and the mean estimate from the both plus partial left side (B+L) and both plus partial right side 

(B+R) data sets. 

D is the density per 100 km2 with standard deviation (±SD) and 95% credible intervals (95% CI); σ is the detection function spatial scale parameter; and λ0 is the detection 

function baseline encounter rate. The width of credible intervals for D is measured to assess any gain in precision from using SPIM. 

 

 

Year Model D ± SD (95% CI) (D) CI width σ ± SD λ0 ± SD 

2018 SPIM 1.77 ± 0.30 (1.35 – 2.54) 1.19 3954 ± 343 0.012 ± 0.002  

 Mean (B+L, B+R) 2.22 ± 0.36 (1.65 – 2.86) 1.31 5195 ± 621 0.010 ± 0.003  

 Single 2.65 ± 0.63 (1.65 – 3.94) 2.29 4628 ± 888 0.006 ± 0.003 

2017 SPIM 1.81 ± 0.33 (1.21 – 2.50) 1.29 3718 ± 340 0.010 ± 0.002 

 Mean (B+L, B+R) 2.09 ± 0.42 (0.90 – 2.87) 1.97 4910 ± 729 0.006 ± 0.003 

 Single 2.21 ± 0.61 (1.20 – 3.35) 2.15 3741 ± 708  0.008 ± 0.004 

2016 SPIM 2.11 ± 0.79 (1.87 – 3.71) 1.84 2669 ± 554  0.009 ± 0.003  

 Mean (B+L, B+R) 1.80 ± 1.15 (0.72 – 3.54) 2.82 5115 ± 1806 0.006 ± 0.005 

 Single 3.38 ± 1.71 (0.86 – 6.68)  5.82 4127 ± 2670  0.006 ± 0.004 
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Table 4.4. Posterior summaries of model parameters for spotted hyaena in Kasungu National Park from the spatial partial identity model (SPIM) compared 

with the single-flank model with the higher number of captures (Single) and the mean estimate from the both plus partial left side (B+L) and both plus partial 

right side (B+R) data sets. 

D is the density per 100 km2 with standard deviation (±SD) and 95% credible intervals (95% CI); σ is the detection function spatial scale parameter; and λ0 is the detection 

function baseline encounter rate. The width of credible intervals for D is measured to assess any gain in precision from using SPIM.

Year Model D ± SD (95% CI) (D) CI width σ ± SD λ0 ± SD 

2018 SPIM 1.62 ± 0.27 (1.17 – 2.26) 1.09 5192 ± 391 0.011 ± 0.002 

 Mean (B+L, B+R) 2.15 ± 0.31 (1.67 – 2.78) 1.11 5971 ± 546 0.013 ± 0.003 

 Single 2.40 ± 0.41 (1.66 – 3.16) 1.5 5560 ± 791 0.007 ± 0.002 

2017 SPIM 1.01 ± 0.24 (0.61 – 1.47) 0.86 5749 ± 687 0.006 ± 0.001  

 Mean (B+L, B+R) 1.29 ± 0.24 (0.93 – 1.75) 0.82 7989 ± 1441  0.005 ± 0.001 

 Single 1.43 ± 0.32 (0.93 – 2.07) 1.14 6999 ± 1722 0.005 ± 0.002 

2016 SPIM 0.81 ± 0.44 (0.38 – 1.74) 1.36 6364 ± 2653 0.007 ± 0.004 
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4.3.3 Capture rates for other large carnivores 

Other large carnivores were rarely encountered during surveys. Cheetah were not recorded in 

any survey year. In 2017 one male lion and one male wild dog were recorded. The lion (likely 

the same individual from diagnostic features) was recorded on 11 sampling occasions at 8 

camera locations, whilst the wild dog was captured at 7 camera locations on 9 sampling 

occasions. Through unique pelage patterns it was confirmed that all images were of the same 

individual wild dog. In 2018 the same individual wild dog was recorded on 9 sampling 

occasions at 6 camera locations. Lion presence was not recorded during the 2018 survey.  

4.4 Discussion 

4.4.1 Leopard density 

The spatial partial identity model produced the first successful density estimates for a leopard 

population in Malawi and for a primary miombo woodland habitat. We estimated a mean 

density of 1.9 (±0.19 SD) adults/100km2 in KNP, with minor variation between the three years 

suggesting a stable trend in leopard density. Prior to this study, there were no estimates of 

leopard density from a primary miombo woodland habitat, with the only published estimate 

from a mosaic of five habitats where a single area of miombo woodland was surrounded by 

Afromontane forest and Afrotropical rainforest (Havmøller et al. 2019). Our estimates indicate 

leopard density in KNP is low, in comparison to studies from elsewhere in sub-Saharan Africa, 

and comparable to leopard densities in human-impacted areas (e.g., 2.49 leopards/100km2, 

Balme et al. 2010; 2.7 leopards/100km2, Henschel et al. 2011; 1.18 leopards/100km2, Devens 

et al. 2021) and more arid environments (e.g., 1.5 leopards/100km2, Stander et al. 1997; 1.0 

leopards/100km2, Stein et al. 2011; 1.2 leopards/100km2, Edwards et al. 2016).  

The majority of Malawian protected areas (PAs) are under similar environmental pressures to 

KNP, with bushmeat poaching and habitat loss prevalent (van Velden et al. 2020) and miombo 
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woodland the predominant forest cover (Gondwe et al. 2019). Our leopard density estimate for 

KNP can, therefore, be used as a baseline for PAs in Malawi. However, we encourage further 

survey efforts to understand the Malawi leopard population status and trends, which has 

received little conservation attention to date. The Malawi leopard population is thought to be 

largely restricted to PAs and reintroduction efforts have already been needed to restore leopard 

populations in Majete Wildlife Reserve (Briers-Louw et al. 2019). As one of only three PAs in 

Malawi that is over 1,000km2 in size, KNP likely represents one of the few areas where a viable 

leopard population can persist in Malawi at these low densities. Therefore, the KNP leopard 

population requires active conservation management to understand and mitigate threats and 

increase population numbers.  

Despite wide habitat tolerance and resilience to anthropogenic threats, habitat specialisation is 

likely to translate to important differences in leopard population density across landscapes 

(Balme et al. 2007). Miombo woodlands are regarded as relatively poor habitats for large 

mammals, with low biomass density and nutrient-poor soils, and this may reflect naturally low 

leopard densities (Frost, 1996; Waltert, Meyer & Kiffner, 2009). The potential for naturally 

low densities in miombo woodlands is likely further exacerbated in KNP by the decline in prey 

populations, a factor that has been identified as a key driver of leopard population decline 

(Henschel et al. 2011; Jacobson et al. 2016). However, as our results are from a single survey 

area, it is difficult to make inferences about the optimality of KNP and other miombo 

woodlands for leopard populations. Other regions, such as the miombo woodlands of southern 

Tanzania, where the size of protected areas is greater and substantial populations of large 

carnivores are known to be present (Abade et al. 2018; Havmøller et al. 2019), may hold higher 

densities of leopard and further surveys in these regions would allow for greater understanding 

of the importance and potential of miombo woodlands for leopards.  
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4.4.2 Spotted hyaena density 

We estimated a mean hyaena density of 1.15 (±0.42) adults/100km2 in KNP. Our estimate is 

comparatively low to other reported densities across sub-Saharan Africa (e.g., 89 

hyaena/100km2, Höner et al. 2005; 94 hyaena/100km2, Watts & Holekamp, 2008; 52 

hyaena/100km2, M’soka et al. 2016) and is over 95% lower than the only previously reported 

density of 31 hyaena/100km2 from a miombo woodland (Creel & Creel, 2002). Hyaena density 

in KNP is the lowest reported in a woodland habitat to date and is comparable to density 

estimates from arid environments (0.9 hyaena/100km2, Mills, 1990; 2 hyaena/100km2, Trinkel 

& Kastberger, 2005) and those recorded in Majete Wildlife Reserve, Malawi (2.62 

hyaena/100km2, Briers-Louw, 2017). However, Majete Wildlife Reserve benefits from higher 

levels of protection compared to KNP and hyaena prey species have been reintroduced over 

the past decade (Briers-Louw et al. 2019). It is likely that hyaena are found at low densities 

across Malawi, but whether these low densities are naturally occurring or due to the decline in 

protected area health over previous decades is difficult to ascertain due to a lack of previous 

estimates.  

The reduction in large mammal numbers (Munthali & Mkanda, 2002; Bhima et al. 2003) and 

the decline of competing carnivore populations in KNP suggests a period of high anthropogenic 

disturbance that is likely to have reduced large carnivore densities. The persistence of hyaena 

and leopard is potentially due to both species displaying higher levels of behavioural plasticity 

than other large carnivores, with a wide dietary niche and greater tolerance of human-impacted 

landscapes (Hayward, 2006; Hayward et al. 2006). Despite these high levels of behavioural 

plasticity, the near extirpation of competing large carnivores and reduction in natural prey is 

likely to result in increased levels of competition between remaining leopard and hyaena 

populations (M’soka et al. 2016). 
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Hyaena are competitively dominant over leopard (Balme et al. 2019), with at least 10% of 

leopard kills lost to hyaenas and the higher rates of kleptoparasitism suffered by female 

leopards known to negatively affect reproductive success (Balme et al. 2017). Leopard and 

hyaena are found at similar densities in KNP and with the loss of competing carnivores, most 

notably lion, and the reduction in natural prey, further research is needed to assess how this 

affects interspecific competition between the remaining large carnivore guild (Hayward & 

Slotow, 2009; M’soka et al. 2016). This is crucial to future management of large carnivore 

persistence in KNP and other areas of high anthropogenic disturbance (M’soka et al. 2016; 

Abade et al. 2018). 

Prey availability is known to influence hyaena population density (Höner et al. 2005; Périquet 

et al. 2015). Therefore, securing the remaining prey base and allowing prey populations to 

recover in KNP should encourage the hyaena population to recover naturally (M’soka et al. 

2016). High rates of reproductive success for hyaena in the absence of a resident lion population 

and the benefits of increased clan size for food acquisition (Kruuk, 1972) and cub survival 

(Watts & Holekamp, 2009) could lead to a rapid increase in the KNP hyaena population. 

Comparatively, leopard reproductive success is often naturally low (Balme et al. 2013) and 

further influenced by bottom-up processes in low productivity habitats (Stander et al. 1997) 

and in populations below carrying capacity (Owen et al. 2010). A growth in the hyaena 

population could, therefore, potentially lead to increased competition between the remaining 

carnivore guild and a subsequent decline in the KNP leopard population. Consequently, any 

conservation management interventions (such as increased law enforcement efforts or prey 

reintroduction/supplementation) in KNP should be closely monitored through annual camera 

trap surveys (Balme et al. 2009b).    
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4.4.3 Lion and wild dog presence 

Our results suggest that both lion and wild dog are no longer resident in KNP, highlighting the 

degradation of the protected area. It is likely that lion and wild dog in KNP are dispersing 

individuals, potentially from nearby populations in Zambia, as connectivity between Malawian 

PAs is largely restricted by high human population density and loss of forest cover (Gondwe 

et al. 2019). The presence of dispersing lion and wild dog in 2017 and 2018 demonstrates the 

ability of carnivores to move through the MZTFCA, a cause for optimism for future 

conservation management of the region. However, increasing anthropogenic pressure on 

dispersal corridors and protected area networks in Zambia may jeopardise future dispersal 

efforts (Watson et al. 2014), highlighting the need for increased planning and continued 

international collaboration to protect these corridors and the ecological functionality of the 

wider region. Furthermore, securing, and increasing, the remaining prey base in KNP is vital 

to support future dispersers and promote natural recolonisation or potential reintroduction 

efforts.  

4.4.4 Application of SPIM and survey considerations 

This study provides further evidence that the SPIM package can provide robust density 

estimates, comparable to conventional SCR methods, whilst improving precision for partial 

identity samples (Augustine et al. 2018; Greenspan et al. 2020).  As SCR methods are widely 

used to inform conservation management, and partial identity is a common problem for 

researchers, any gain in precision should be of broad interest (Augustine et al. 2018; Johansson 

et al. 2020). Our results show that in comparison with single-flank estimates, often the 

preferred and more conservative approach for partial identity samples, SPIM improves the 

precision of density estimates. We, therefore, recommend the use of SPIM for studies 
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deploying single camera stations or studies where partial identities constitute a large proportion 

of the data. 

Difficulties in sexing hyaena meant that sex could not be included as a covariate, which may 

have influenced our density estimates. However, the relatively small sample size for each 

survey year would have resulted in only a minor influence on sex-specific parameters and we 

are, therefore, confident in our estimates (Efford & Mowat, 2014; Mohamed et al. 2021). 

Similarly, for leopard, the small sample size of males to females (one male in 2016, four in 

2017) would likely have resulted in minimal difference in sex-specific parameters. 

Comparative studies with relatively small sample sizes for male and female individuals have 

found that the null model, whereby sex-specific parameters (detection rate and spatial scale) 

are not incorporated into model inference, had the highest model support, or produced similar 

estimates to other analytical methods (Chase-Grey et al. 2013; Devens et al. 2018; Balme et 

al. 2019; Strampelli et al. 2020). 

Whilst dual camera trap survey stations still provide the most accurate and effective way of 

collecting recapture data for complete identities of large carnivores, the development of SPIM 

(Augustine, 2018) and similar packages for partially identified datasets (McClintock, 2015), 

allows alternative survey design considerations for conservation management (Augustine et al. 

2018; Farhadinia et al. 2019). Robust, and often rapid, density estimates are key for species 

management (Bauer et al. 2015; Jacobson et al. 2016) and SPIM provides a cost-effective and 

accurate method for analysing camera trap data that deviates from the conventional dual camera 

trap survey design (Augustine et al. 2018). The potential to survey a protected area using half 

the number of camera traps used in conventional designs is highly advantageous for protected 

area managers, the majority of whom have limited budgets (Mansourian & Dudley, 2008). The 

use of SPIM also allows a wider survey area to be used, when camera numbers are limited, 
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resulting in a greater proportion of the population being sampled (Foster & Harmsen, 2012; 

Greenspan et al. 2020; Mohamed et al. 2021).  

Populations perceived to be at low densities are often in the most urgent need of assessment 

and require intensive survey efforts (Balme et al. 2009a; Sollmann et al. 2011). The potential 

gains in precision from using SPIM are greater for populations at low density, where single-

flank captures can be linked with increased certainty, and SPIM could, therefore, be beneficial 

to future survey efforts (Augustine et al. 2018). We recommend that the trade-offs between 

dual and single camera stations are considered on a case-by-case basis but the use of SPIM 

offers a novel solution to issues with camera trap survey design and analysis (Augustine et al. 

2018; Greenspan et al. 2020). We suggest further camera trapping efforts to estimate large 

carnivore populations in miombo woodlands and other understudied regions, coupled with the 

use of SPIM where necessary, to provide robust estimates for effective conservation 

management.  
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Abstract 

Effective conservation management requires an understanding of the spatiotemporal dynamics 

driving large carnivore density and resource partitioning. In African ecosystems, reduced prey 

populations and the loss of competing guild members, most notably lion (Panthera leo), are 

expected to increase levels of competition between remaining carnivores. Consequently, 

intraguild relationships can be altered, potentially increasing the risk of further population 

decline. Kasungu National Park (KNP), Malawi, is an example of a conservation area that has 

experienced large-scale reductions in both carnivore and prey populations, leaving a resident 

large carnivore guild consisting of only leopard (Panthera pardus) and spotted hyaena 

(Crocuta crocuta). Here we quantify the spatiotemporal dynamics of these two species and 

their degree of association, using a combination of co-detection modelling, time-to-event 

analyses, and temporal activity patterns from camera trap data. Detection of leopard and spotted 

hyaena was significantly associated with the detection of preferred prey and competing 

carnivores, increasing the likelihood of species interaction. Temporal analyses revealed sex-

specific differences in temporal activity, with female leopard activity patterns significantly 

different to those of spotted hyaena and male conspecifics. Heightened risk of interaction with 

interspecific competitors and male conspecifics may have resulted in female leopards adopting 

temporal avoidance strategies to facilitate co-existence. Female leopard behavioural 

adaptations increased overall activity levels and diurnal activity rates, with potential 

consequences for overall fitness and exposure to sources of mortality. As both species are 

currently found at low densities in KNP, increased risk of competitive interactions, that infer a 

reduction in fitness, could have significant implications for large carnivore demographics. 

Protection of remaining prey populations is necessary to mitigate interspecific competition and 

avoid further alterations to the large carnivore guild.  

 



Chapter Five: Intraguild dynamics of a modified carnivore guild 

 

130 
 

5.1 Introduction 

Global environmental change is driving the decline in large carnivore populations and can be 

attributed to numerous factors, including habitat destruction, loss of natural prey, reduced 

landscape connectivity and human-wildlife conflict (Ripple et al. 2014; Wolf & Ripple, 2016). 

Rising anthropogenic impacts increase pressure on species interactions through the loss of 

complex carnivore guilds, declines in natural prey and shrinking protected area networks (Jones 

et al. 2018; Sévêque et al. 2020). These factors can distort carnivore dynamics and ecosystem 

function through increased competition for resources (Creel et al. 2018; Manlick & Pauli, 

2020), reduced suppression of mesocarnivores (Brook et al. 2012; Prugh & Sivy, 2020), shifts 

in spatial use (Carter et al. 2019; Parsons et al. 2019) and changes in survival rates for dominant 

and subordinate competitors (M’soka et al. 2016; Elbroch & Kusler, 2018). These alterations 

in community assemblage and species dynamics can result in cascading trophic effects (Finke 

& Denno, 2005; Suraci et al. 2016; Winnie & Creel, 2017). As large carnivore dynamics have 

a key regulating effect on density and resource partitioning (Dröge et al. 2017; Groom et al. 

2017), understanding their ecological and anthropogenic drivers is critical for effective 

conservation management (Davis et al. 2018; Sévêque et al. 2020).  

The spatiotemporal dynamics of large carnivores have been widely investigated across sub-

Saharan Africa (e.g., Hayward & Slotow, 2009; Dröge et al. 2017; Balme et al. 2019; Rafiq et 

al. 2020b). However, few studies have examined the spatiotemporal dynamics of these species 

in habitats where competing guild members, most notably lion (Panthera leo), have been 

extirpated (M’soka et al. 2016). Lions are often the dominant competitor in African carnivore 

guilds, but due to their preference for larger prey items (>200kg; Hayward & Kerley, 2005), 

tendency for livestock predation, and social nature, they are often at greater risk of localised 

extinction than other large carnivores (Everatt et al. 2019), such as leopard (Panthera pardus) 

and spotted hyaena (Crocuta crocuta, hereafter hyaena). In the absence of lions, interference 
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competition between remaining members of the carnivore guild is predicted to intensify, which 

could lead to changes in dynamics and increase the risk of population decline (Périquet et al. 

2015; M’soka et al. 2016). Large carnivore behaviour is further driven by “bottom-up” 

processes, of which the abundance and distribution of preferred prey are primary regulators 

(Hayward et al. 2007; Wolf & Ripple, 2016). As large carnivores often share a degree of dietary 

overlap, any decline in prey abundance is also likely to disturb species dynamics through 

increased competition for food or the concentration of carnivore activity in areas of higher prey 

availability (Creel et al. 2018).  

How, and if, these altered environments impact species’ mechanisms of spatial use and 

temporal activity warrants further investigation. Malawi, in south-central Africa, offers a 

unique opportunity to study carnivore dynamics. Widespread persecution and the depletion of 

large prey species has led to the localised loss of resident lion populations, with the species 

restricted to either infrequent dispersing males or small isolated populations in fenced reserves 

(Mésochina et al. 2010; Briers-Louw et al. 2019; Davis et al. 2021). Malawi has one of the 

highest population densities in Africa (186 people/km2; National Statistical Office, 2019), with 

80% of the population dependent on natural resources (e.g., firewood) and agriculture for 

income, heating, and food security (Yaron et al. 2011; Schaafsma et al. 2018). Subsequently, 

Malawi has the highest deforestation rate in Africa (Mapulanga & Naito, 2019), whilst 

protected areas have been subject to widespread subsistence poaching (van Velden et al. 2020). 

Kasungu National Park (KNP) is a model example of a protected area in Malawi that has 

experienced these declines in carnivore and prey populations (Munthali & Mkanda, 2002; 

Davis et al. 2021). As the second-largest protected area in Malawi, comprised of miombo 

woodland, the primary habitat type across the country (Gondwe et al. 2019), and subject to the 

same environmental pressures as other reserves, KNP is a novel site to a) test theories on 
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resource and guild-based competition, and b) understand how species respond to anthropogenic 

disturbance.  

The loss of a resident lion population means that leopard and hyaena are the two dominant 

competitors in KNP. Both leopard and hyaena are known to display wide habitat preferences, 

have diverse diets, and persist in areas of high human disturbance (Holekamp & Dloniak, 2010; 

Jacobson et al. 2016). These behavioural traits allow leopard and hyaena to survive in areas 

where other apex predators cannot (Green et al. 2018; Loveridge et al. 2020). Localised 

extirpation of lion populations is expected to increase over the coming decades, with the species 

predicted to survive in only the largest protected areas across Africa and in small, intensively 

managed, reserves (Bauer et al. 2015). Consequently, understanding carnivore dynamics in 

areas of anthropogenic disturbance is important for predicting future alterations in carnivore 

guilds (Rafiq et al. 2020b). The intraguild dynamics of leopard and hyaena in KNP can, 

therefore, act as a model to inform conservation management under increasing levels of 

environmental change. 

Spatiotemporal dynamics between leopard and hyaena are complex, with findings varying 

between habitats and carnivore community assemblages. The availability of preferred prey is 

known to significantly influence the presence of both species (Périquet et al. 2015; Balme et 

al. 2019; Searle et al. 2020). In addition, leopard kills are subject to high levels of 

kleptoparasitism from hyaena (Balme et al. 2017a), which is known to affect reproductive 

success in female leopards (Balme et al. 2013). Hyaena are also a direct source of leopard 

mortality (Swanepoel et al. 2015). In some ecosystems, kleptoparasitism has resulted in leopard 

adopting either spatial (Ramesh et al. 2017; Comley et al. 2020) or temporal (Havmøller et al. 

2020b) avoidance strategies, although Ramesh et al. (2017) suggested that the spatial 

avoidance between leopard and hyaena was due to lion presence. Leopards also exhibit 

behavioural adaptations (i.e., tree-caching and dietary plasticity) to facilitate coexistence with 
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hyaena (Balme et al. 2019; Briers-Louw & Leslie, 2020). However, the spatiotemporal 

dynamics of leopard and hyaena are often overlooked (Vanak et al. 2013; Rafiq et al. 2020b), 

particularly in ecosystems where the carnivore guild has been depleted due to anthropogenic 

disturbance. The lack of understanding of coexistence strategies between leopard and hyaena 

in such area’s limits conservation management. 

We used data from camera trapping surveys to investigate the spatiotemporal dynamics of 

leopard and hyaena in KNP, a protected miombo woodland habitat where these species are the 

only remaining members of the large carnivore guild. We applied co-detection modelling 

(Cusack et al. 2017; Balme et al. 2019), time-to-event analyses (Cusack et al. 2017) and 

temporal overlap comparisons (Rowcliffe et al. 2014) to evaluate the impact of a range of 

interspecific, ecological, and anthropogenic parameters on carnivore activity. Availability of 

preferred prey has previously been highlighted as a significant driver of leopard and hyaena 

presence (Périquet et al. 2015; Searle et al. 2020), and accordingly, we predict that, a) detection 

of both species will increase in relation to prey detectability, b) this will result in significant 

rates of co-detection between leopard and hyaena, and c) the potential for high levels of spatial 

overlap between leopard and hyaena will result in leopard adopting temporal avoidance 

mechanisms to facilitate coexistence and avoid competition.   

5.2 Materials and Methods 

5.2.1 Study site  

KNP (central coordinates S12.9092°, E33.1689°; Figure 5.1) is a 2,316km2 protected area in 

the central region of Malawi. KNP is dominated by miombo woodland, consisting of 

Brachystegia and Julbernardia spp. (Bhima et al. 2003). Closed canopy miombo woodland is 

interspersed with seasonally wet grassland areas (locally known as dambos) and isolated rocky 
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inselbergs. The altitude ranges between 1,000 and 1,500m, and mean annual rainfall is 780mm 

(Bhima et al. 2003). 

In the early 2000s poaching was so prolific that populations of several remaining prey species 

were moved from KNP to Liwonde National Park, Malawi, as their survival could no longer 

be guaranteed in KNP (Munthali & Mkanda, 2002). Consequently, KNP has experienced a 

significant decline in large mammal (Munthali & Mkanda, 2002; Bhima et al. 2003) and 

carnivore populations (Davis et al. 2021). Lions, once known residents in KNP, are now 

restricted to dispersing individuals from the wider Malawi-Zambia Transfrontier Conservation 

Area (Mésochina et al. 2010; Davis et al. 2021) and cheetahs (Acinonyx jubatus), also 

previously known residents, have been extirpated (IUCN/SSC, 2015). Whilst lions are not 

strictly extirpated from KNP, they are not present at levels that would have an influence on the 

guild dynamics of resident carnivore populations. Leopard and hyaena are the only remaining 

resident large carnivore species in KNP, with densities in 2018 estimated at 1.77 

leopard/100km2 and 1.62 hyaena/100km2 (Davis et al. 2021). 
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Figure 5.1. Camera trap locations for surveys conducted in 2016, 2017 and 2018 in Kasungu National 

Park, Malawi. Inset maps show the area covered within Kasungu National Park and the location of 

Malawi within sub-Saharan Africa.    

 

5.2.2 Camera trap surveys 

Data were collected from camera trap surveys lasting 90-120 days between May and October 

over a three-year period (2016-2018; Figure 5.1). To maximise the detection probability of 

large carnivores, roads and major trails were prioritised for camera placement (Cusack et al. 

2015; Davis et al. 2021). One camera was deployed per station and stations were checked 

regularly to maintain camera function and data collection. All images were catalogued to 

species level and individual leopards were sexed using criteria outlined in Henschel & Ray 

(2003).  
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5.2.3 Co-detection modelling 

We used a co-detection modelling approach to assess predictors of leopard and hyaena 

detection (Cusack et al. 2017; Balme et al. 2019). Due to high rates of naïve occupancy for 

both species, data were unsuitable for co-occupancy analysis. The co-detection approach 

allowed the use of data from all survey years. We measured the detection and non-detection of 

leopard and hyaena as a binary response variable (“1” for detection, “0” for non-detection) for 

each camera trap station, using an occasion length of five days per sampling event. We chose 

the five-day sampling event to correspond with the timeframe for the time-to-event analysis 

(described below) and the low detection rates of both focal species resulting in zero inflation 

with a one-day sampling occasion. Binary responses were modelled as a function of different 

combinations of detection covariates using binomial generalised linear mixed-effect models 

(GLMM’s; Bolker et al. 2009; Cusack et al. 2017). 

Based on evidence from previous studies, we selected five covariates that could impact the 

likelihood of detection for both leopard and hyaena, incorporating interspecific, environmental, 

and anthropogenic factors (Table 5.1). We measured prey detection from camera trap data as a 

binary response variable and assumed that prey species selected differed for leopard and 

hyaena. As leopard diet in KNP has not been assessed, we selected known leopard prey species 

from a similar habitat type (Havmøller et al. 2020a), or species for which we had anecdotal 

evidence (from camera traps and opportunistic kill sites) of predation in KNP. The following 

were included as leopard prey species: common duiker (Sylvicapra grimmia), bushbuck 

(Tragelaphus sylvaticus), bushpig (Potamochoerus larvatus), warthog (Phacochoerus 

africanus), yellow baboon (Papio cynocephalus), porcupine (Hystrix africaeaustralis) and 

savanna hare (Lepus victoriae). Preliminary diet analysis for spotted hyaena in KNP identified 

common duiker, bushpig, savanna hare, warthog, bushbuck and kudu (Tragelaphus 
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strepsiceros) as the most frequent prey species and, as such, these species were selected for the 

hyaena prey covariate (Carnivore Research Malawi, unpublished data).   

Vegetation cover, hunting strategy and landscape features can all impact carnivore detection 

rates, as predators select areas optimal for increased prey density, heightened vulnerability to 

predation and their preferred hunting method (i.e., denser cover for ambush, open habitat for 

endurance; Balme et al. 2007; Watts & Holekamp, 2009). We used a binary variable for habitat 

type (Strampelli et al. 2018), where each camera site was designated as either “open”, where 

at least one side of the trail was bordered by open grassland, or “closed”, where both sides of 

the trail were bordered by miombo woodland. 

For distance-based covariates (i.e., distance to water, distance to park border) the Euclidian 

distance (km) between each camera trap and the chosen feature were extracted in QGIS 

v.2.18.16 (QGIS Development Team, 2020). As KNP has no buffer zone and no continual 

fencing, distance to park border was selected as a suitable covariate to test for human 

disturbance. Clearance for agricultural land and the lack of a buffer zone means human 

settlements often begin at the KNP park boundary (Munthali & Mkanda, 2002). We reasoned 

that distance to park border was, therefore, a suitable covariate to incorporate both the impact 

of edge effects (Woodroffe & Ginsberg, 1998) and the proximity to human settlements (Balme 

et al. 2010).   

GLMM’s were conducted in R v.3.6.3 (R Development Core Team, 2020), using package 

‘lme4’ (Bolker et al. 2009). We removed one camera trap that malfunctioned shortly after being 

set from the analyses. There was no significant collinearity (r < 0.5 for all pairwise 

comparisons) between continuous covariates and, therefore, none were excluded from model 

selection. We aggregated data from all survey years and included year as a random effect to 

compensate for temporal variability. Camera station ID was also fitted as a random effect to 
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control for repeated measures between sites (Cusack et al. 2017). All possible combinations of 

detection covariates were modelled for both leopard and hyaena, with only selected prey 

species differing between model sets (see Appendix IV for full candidate lists). We used an 

Information Theoretic Approach whereby models were ranked on their Akaike Information 

Criterion (AICc, corrected for small sample sizes) and models with ΔAICc < 2 considered to 

have strong support and selected for model averaging (Burnham & Anderson, 2002). From the 

final set of candidate models (ΔAICc < 2), average β-coefficient estimates were obtained using 

the ‘MuMIn’ package (Barton, 2020). Individual covariates were deemed significant when 

85% confidence limits did not pass through zero, following Arnold (2010). The importance of 

individual covariates for predicting large carnivore detection were assessed using the summed 

model weights (Σw) of all models in the final candidate set. There was no evidence of 

overdispersion (ĉ > 1.1) across models, which was calculated as the ratio of the sum of the 

squared Pearson residuals to the residual degrees of freedom (Harrison, 2014).
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Table 5.1. Detection covariates, with sampling range and mean, hypothesised to affect the likelihood of detection for leopard and spotted hyaena in Kasungu 

National Park, Malawi. The hypothesised effect on large carnivore detection is indicated, alongside supporting evidence for the predicted effect.  

a Effect on leopard detection 

b Effect on hyaena detection 

*hypothesised effect is based on habitat openness  

Covariate Source Sampling range (mean) Hypothesised effect  Supporting evidence 

Hyaena detection Camera trap 
1 (detection) 

0 (non-detection) 
                - a Swanepoel et al. 2015; Balme et al. 

2017a 

Leopard detection Camera trap 
1 (detection) 

0 (non-detection) 
  + b  Balme et al. 2017a 

Distance to water 

(km) 
GIS 

0.03 – 10.45 

(3.35) 
+ 

Watts & Holekamp 2009; Havmøller et 

al. 2019 

Distance to park 

border (km) 
GIS 

0.78 – 14.38 

(7.99) 
- 

Woodroffe & Ginsberg, 1998; Balme et 

al. 2010 

Preferred prey 

detection 
Camera trap 

1 (detection) 

0 (non-detection) 
+ Höner et al. 2005 ; Balme et al. 2019 

Habitat type* Observation 
1 (open) 

0 (closed) 

- a 

+ b 

Balme et al. 2007; Watts & Holekamp 

2009 
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5.2.4 Time-to-event analysis 

We used time-to-event analyses to examine leopard and hyaena response to sympatric 

carnivores and preferred prey species across survey seasons (Cusack et al. 2017; Balme et al. 

2019). Prey species were kept as defined for co-detection modelling. For each reference 

detection (defined as a photographic capture of a chosen species, e.g., leopard), we calculated 

the minimum time to capture the species of proximal interest (e.g., hyaena) at the same camera 

station. Any occasion where a reference detection was followed by another detection of the 

reference species was removed from the analyses. The calculated times between reference and 

proximal detections were then aggregated into 24-hour sampling intervals, with interval limits 

of five days before or after the reference detection (n = 10 days). For each 24-hour interval (n 

= 10 intervals) we then calculated an observed detection probability by dividing the number of 

proximal detections in each interval period by the total number of detections in the survey year 

for the species of proximal interest.    

Expected distributions of proximal detection were randomly simulated by sampling activity 

patterns and capture rates of the proximal species, to generate new dates and times, which were 

then compared to the original, unchanged, reference detections (Cusack et al. 2017). From 

1000 random iterations of proximal detection, we obtained expected values of detection 

probability for each 24-hour interval, which were then compared to the observed probability 

using standard two-tailed permutation tests, using the package ‘ade4’ (Dray & Siberchicot, 

2020). Analyses could not be conducted for the 2016 survey, or between leopard sexes, as 

sample sizes were too small.  

5.2.5 Temporal activity 

Camera trap images from all survey years were used to estimate daily activity levels 

(percentage of time spent active over the 24-hour daily cycle) and degree of temporal overlap 
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between large carnivore species and, for leopard, between individual sexes. Data for both large 

carnivore species were combined across survey years for the final analyses. We tested data for 

each species (and individual sexes for leopard) for differences between survey years to ensure 

no bias between individual years (Appendix V). To determine if activity patterns were 

significantly different to a random distribution over the circadian cycle, we performed a 

Hermans-Rasson test (Landler, Ruxton & Malkemper, 2019) on temporal data for both leopard 

and hyaena, using the package ‘CircMLE’ (Fitak & Johnsen, 2017). We used the time and date 

stamp from all photographic captures to determine animal activity. All models were fitted to 

clock time as surveys were conducted during the same survey period (between May-October 

each year) and daylight variance is limited at latitudes below 20° (Vazquez et al. 2019). To 

reduce bias and overrepresentation of activity at certain times of the day, only one photographic 

capture was used for analysis when time stamps were within 30 minutes of each other, unless 

unique pelage patterns confirmed different individuals were photographed. We performed 

analyses when species presented a minimum of thirty images accumulated in each survey year, 

as small sample sizes can bias activity estimations and misrepresent activity levels (Rowcliffe 

et al. 2014). We conducted analyses using the ‘overlap’ (Meredith & Ridout, 2016) and 

‘activity’ (Rowcliffe, 2019) packages in R v3.6.3 (R Development Core Team, 2020).    

Overall activity (i.e., the distribution of animal activity throughout the day) was estimated using 

the Kernel circular density function in ‘activity’ (Rowcliffe et al. 2014; Santos et al. 2019). 

Overlap of activity was quantified using the coefficient of overlap (Δ), which varies from 0 (no 

overlap) to 1 (complete overlap) (Santos et al. 2019). The Δ4 estimator was used for all species 

included in the analyses as all sample sizes were ≥75 and Δ4 is considered the most robust 

estimator for this sample size (Ridout & Linkie, 2009; Meredith & Ridout, 2014). To estimate 

confidence intervals for activity levels we simulated 10,000 smoothed bootstrap samples. 

Pairwise comparisons of bootstrapped activity patterns were then tested for significant 
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differences in the ‘activity’ package, using a Wald statistic on a chi-square distribution with 

one degree of freedom (Rovero & Zimmermann, 2016). 

5.3 Results 

5.3.1 Camera trap results 

We completed 5,990 camera trap nights across 92 camera trap stations in KNP between 2016 

and 2018, with 702 photographic captures of large carnivore species and 854 of prey species 

(Table 5.2). Sufficient sample sizes for temporal analyses were recorded for leopard and hyaena 

(> 30 captures in each survey year). The presence of one sub-adult male lion was recorded in 

2017, whilst one wild dog was recorded in 2017 and again in 2018 (determined by a unique 

pelage pattern), confirming the absence of resident lion and wild dog populations in KNP.
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Table 5.2. List of species detected and yearly and total counts from camera trap surveys between 2016 and 2018 in Kasungu National Park, Malawi. Capture 

totals are provided for all large carnivores recorded and the prey species of leopard and spotted hyaena that were chosen for spatiotemporal analyses.  

 

Order Scientific name Common name 2016 captures 2017 captures 2018 captures Total captures 

Carnivora Panthera pardus Leopard 48 116 115 279 

 Crocuta crocuta Spotted hyaena 113 148 133 

 

394 

 Panthera leo Lion 0 11 0 11 

 Lycaon pictus African wild dog 0 9 9 18 

Artiodactyla Sylvicapra grimmia Common duiker 22 42 63 127 

 Tragelaphus sylvaticus Bushbuck 4 7 7 18 

 Tragelaphus strepsiceros Greater kudu 1 6 17 24 

 Phacochoerus africanus Warthog 4 9 12 25 

 Potamochoerus larvatus Bushpig 13 48 36 97 

Lagomorpha Lepus victoriae Savanna hare 25 110 45 180 

Rodentia Hystrix africaeaustralis Cape porcupine 24 166 158 348 

Primates Papio cynocephalus Yellow baboon 5 23 7 35 
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5.3.2 Co-detection analyses 

Leopard 

Four models (ΔAICc < 2) were selected from the final set of 11 candidate models (combined 

AICc weights >0.95) for model averaging (Table 5.3). There was no evidence of overdispersion 

(ĉ = 0.90) in the most parametrised model. Detection of prey (β = 0.443 ± 0.162, 85% CI = 

0.210 – 0.676), proximity to water (β = 0.311 ± 0.110, 85% CI = 0.152 – 0.470) and detection 

of hyaena (β = 0.310 ± 0.178, 85% CI = 0.053 – 0.567) were positive predictors of leopard 

detection. Prey detection and proximity to water were the best predictors of leopard detection 

(Σw = 1.0 for both).  

Hyaena 

Five models (ΔAICc < 2) were identified for model averaging from the final set of 22 candidate 

models (AICc weights >0.95; Table 5.4). There was no evidence of overdispersion (ĉ = 0.93) 

in the most parametrised model. Detection of prey (β = 0.366 ± 0.163, 85% CI = 0.131 – 0.601) 

and leopard (β = 0.303 ± 0.182, 85% CI = 0.041 – 0.566) were positive predictors of hyaena 

detection and both terms had high model support (preferred prey, Σw = 1.00; leopard, Σw = 

0.78).  
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Table 5.3. Model selection for binomial generalised linear mixed models predicting the likelihood of leopard detection at camera stations in Kasungu National 

Park, Malawi, across all survey years (2016, 2017 and 2018) during a given 5-day sampling occasion. Models were ranked according to Akaike weights (Wi) 

based on the Akaike Information Criterion for small samples (AICc), cumulative model weight is also presented (Cum. Wi). Models with AICc differences 

(ΔAICc) < 2 were averaged and β-coefficient estimates, with associated standard error (SE ±), 85% confidence limits and summed model weights (Σw) 

presented. 

* Indicates parameter had a significant effect on leopard detection as 85% confidence limits exclude zero. 

 a number of parameters in the model. 

Model Ka AICc ΔAICc Wi Cum. Wi Log likelihood 

Hyaena + Prey + Water 6 1120.34 0.00 0.31 0.31 -554.13 

Prey + Water 5 1121.38 1.05 0.18 0.49 -555.67 

Hyaena + Prey + Water + Habitat 7 1121.91 1.58 0.14 0.63 -553.91 

Hyaena + Prey + Water + Border 7 1122.34 2.00 0.11 0.74 -554.12 

Prey + Water + Habitat 6 1123.01 2.68 0.08 0.82 -555.47 

Prey + Water + Border 6 1123.37 3.03 0.07 0.89 -555.65 

Hyaena + Prey + Water + Border + Habitat 8 1123.90 3.57 0.05 0.94 -553.89 

Prey + Water + Border + Habitat 7 1124.98 4.64 0.03 0.97 -555.44 

Hyaena + Water 5 1125.96 5.63 0.02 0.99 -557.96 

Hyaena + Prey 5 1126.85 6.51 0.01 1.00 -558.40 

 

Parameter β-coefficient SE ± Lower 85% Upper 85% Σw (%) 

Prey* 0.443 0.162 0.210 0.676 1.0 

Water* 0.311 0.110 0.152 0.470 1.0 

Hyaena* 0.310 0.178 0.053 0.567 0.75 

Border 0.017 0.108 -0.138 0.172 0.19 

Habitat -0.144 0.223 -0.465 0.177 0.15 
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Table 5.4. Model selection for binomial generalised linear mixed models predicting the likelihood of hyaena detection at camera stations in Kasungu National 

Park, Malawi, across all survey years (2016, 2017 and 2018) during a given 5-day sampling occasion. Models were ranked according to Akaike weights (Wi) 

based on the Akaike Information Criterion for small samples (ΔAICc), cumulative model weight is also presented (Cum. Wi). Models with AICc differences 

(ΔAICc) < 2 were averaged and β-coefficient estimates, with associated standard error (SE ±) and 85% confidence limits presented. Only the ten highest ranking 

models are presented here.  

*Indicates parameter had a significant effect on hyaena detection as 85% confidence limits exclude zero. 

a number of parameters in the model.

Model Ka AICc ΔAICc Wi Cum. Wi Log likelihood 

Prey + Leopard 5 1245.60 0.00 0.19 0.19 -617.78 

Prey 4 1246.48 0.87 0.12 0.31 -619.22 

Prey + Leopard + Habitat 6 1247.08 1.47 0.09 0.40 -617.50 

Prey + Leopard + Border 6 1247.35 1.75 0.08 0.48 -617.64 

Prey + Leopard + Water 6 1247.50 1.89 0.07 0.55 -617.71 

Prey + Habitat 5 1247.97 2.37 0.06 0.61 -618.96 

Prey + Border 5 1248.18 2.58 0.05 0.66 -619.07 

Prey + Water 5 1248.44 2.84 0.05 0.71 -619.20 

Leopard 4 1248.75 3.14 0.04 0.75 -620.36 

Prey + Leopard + Habitat + Water 7 1248.88 3.27 0.04 0.79 -617.39 

 

Parameter β-coefficient SE ± Lower 85% Upper 85% Σw (%) 

Prey* 0.366 0.163 0.131 0.601 1.00 

Leopard* 0.303 0.182 0.041 0.566 0.78 

Habitat 0.178 0.247 -0.178 0.533 0.16 

Border 0.060 0.121 -0.114 0.235 0.14 

Water -0.041 0.120 -0.213 0.131 0.13 
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5.3.3 Time-to-event analysis 

Leopard-hyaena 

Compared to expected detection probability distributions, hyaena were more likely to be 

detected in the 24 hours after a leopard event during the 2017 survey (p < 0.05; Figure 5.2). In 

2017, leopard capture events were significantly more likely when hyaena had been captured in 

the previous 24 (p < 0.01) and 48 (p < 0.05) hours. In the 2018 survey there was no significant 

bias in detection shown by either species. 

Leopard-prey 

Leopard detections were higher 24 (p < 0.05; Fig. 2) and 48 (p < 0.001) hours after, and 24 and 

48 hours (both p < 0.001) before a prey detection in 2017. Leopard detections were significantly 

higher 24 hours (p < 0.05) before and 48 hours (p < 0.05) after a prey detection in 2018. 

Hyaena-prey 

Hyaena response to a prey detection was comparable to leopard response in the 2017 survey, 

with increased detections 24 (p < 0.001; Fig. 2) and 48 (p < 0.05) hours after prey species 

detections. Hyaena detections were higher within 72 hours (p < 0.05) before a prey detection 

in 2017. Hyaena detections were higher than expected within 48 hours (p < 0.05) before prey 

species detection in 2018.
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Figure 5.2. The observed (red) and expected (grey) probability of detecting hyaena after a leopard capture in 2017 (a) and 2018 (b), leopard after a prey species 

capture in 2017 (c) and 2018 (d) and, hyaena after a prey species capture in 2017 (e) and 2018 (f), at the same sampling site within five days before and after in 

Kasungu National Park, Malawi. Asterisks (*) above expected distributions, obtained from 1000 random simulations of capture events for the corresponding 

species, indicate days for which observed detection rates were significantly different (p < 0.05) to expected values. Sample sizes, from which observed detection 

probabilities were calculated, are given for each year. 
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5.3.4 Temporal activity 

Overall activity (estimated proportion of time spent active over the daily cycle) was 0.57 (SE 

= 0.05) for leopard (both sexes), 0.46 (SE = 0.06) for male leopard, 0.65 (SE = 0.06) for female 

leopard and 0.42 (SE = 0.03) for hyaena (Table 5.5). The Hermans-Rasson test confirmed that 

both leopard and hyaena had activity patterns that were significantly different from random (p 

< 0.001 for all; Appendix VI). We observed an overlap average of Δ = 0.78 for leopard-hyaena, 

Δ = 0.9 for male leopard-hyaena, Δ = 0.73 for female leopard-hyaena and Δ = 0.82 for male 

leopard-female leopard (Figure 5.3). The lowest coefficient of overlap observed was between 

female leopard and hyaena. Leopard showed higher levels of diurnal activity with peaks at 

dawn and dusk, whilst hyaena showed higher levels of strictly nocturnal activity, with peaks 

before dawn and after dusk. 

 

Table 5.5. Estimates of proportion of time active for large carnivore species in Kasungu National Park, 

Malawi, estimated from the distribution of camera trapping photos over the daily cycle. N is the number 

of photographic captures and Estimate is the overall activity with standard error (SE) and 95% 

confidence intervals (95% CI). 

* Includes images of leopards that could not be sexed but identified to species level.

Species N Estimate SE 95% CI 

Leopard (both sexes)* 273 0.573 0.048 0.473 – 0.659 

Leopard (♂) 77 0.459 0.056 0.312 – 0.525 

Leopard (♀) 170 0.649 0.056 0.504 – 0.723 

Spotted hyaena 385 0.423 0.027 0.359 – 0.465 
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Figure 5.3. Temporal overlap in activity patterns between a) spotted hyaena and leopard (both sexes); b) spotted hyaena and male leopard; c) spotted hyaena 

and female leopard; d) male and female leopard. Temporal activity patterns are compiled from surveys conducted in Kasungu National Park, Malawi, between 

2016 and 2018. Coefficient of overlap (Δ) for each pairwise comparison is displayed, and shaded areas represent temporal overlap. 
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There was a 15% difference in overall temporal activity levels between leopard (both sexes) 

and hyaena in KNP (Wald χ2 = 7.39, df = 1, p < 0.01, Table 5.6). However, when individual 

leopard sexes were compared with hyaena, there was only a 4% difference in overall activity 

levels between male leopard and hyaena (Wald χ2 = 0.34, df = 1, p = 0.55). Female leopards 

were active for 23% more of the daily cycle than hyaena (Wald χ2 = 13.05, df = 1, p < 0.001) 

and nearly 20% more active than male leopards (Wald χ2 = 5.76, df = 1, p < 0.05).  

Table 5.6. Estimates of difference in activity between large carnivore species in Kasungu National 

Park, Malawi, from the distribution of camera trapping photos over the diel activity schedule. 

Bootstrapped activity patterns, with 10,000 smoothed bootstrap samples, were compared using Wald 

statistic (W) on a chi-square distriubtion with one degree of freedom in order to test for significance (P) 

at the 5% level. 

 

5.4 Discussion 

Spatiotemporal dynamics play an important role in facilitating coexistence between the large 

carnivore guild, yet little is known about these dynamics in human-altered landscapes (Sévêque 

et al. 2020). In protected areas where anthropogenic disturbance disrupts community structure, 

competition between remaining carnivores is predicted to increase (Périquet et al. 2015). We 

explored spatiotemporal partitioning between leopard and hyaena in a modified guild where 

they are the only competing large carnivores, providing a novel habitat in which to test theories 

on guild dynamics. Our results indicate that prey availability and the presence of competing 

Species Interaction Difference SE W P 

Leopard (both sexes) – Spotted hyaena 0.151 0.055 7.39 0.007 

Leopard (♂) – Leopard (♀) 0.190 0.079 5.763 0.016 

Leopard (♂) – Spotted hyaena 0.037 0.062 0.346 0.556 

Leopard (♀) – Spotted hyaena 0.227 0.063 13.048 < 0.001 
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carnivores positively influence the spatiotemporal dynamics of both leopard and hyaena. In the 

absence of a resident lion population and the depleted prey base in KNP, these shared drivers 

of spatiotemporal behaviour increase the likelihood of costly interactions and could have 

negative consequences for large carnivore demographics.  

Our findings show that prey detection is a significant predictor of detection for both hyaena 

and leopard, supporting our predictions and in accordance with previous studies (Höner et al. 

2005; Périquet et al. 2015; Ramesh et al. 2017; Searle et al. 2020). Leopard detection was also 

explained by proximity to water, as observed in previous studies (Balme et al. 2007; Havmøller 

et al. 2019). This finding supports our hypothesis that leopard space-use is primarily driven by 

prey presence in KNP, as prey species are commonly associated with riparian areas, and these 

areas provide adequate cover for the leopards’ preferred ambush technique (Balme et al. 2007). 

Confirming our prediction, co-detection and time-to-event analyses showed a mutually positive 

influence between hyaena and leopard, as recorded by Balme et al. (2019). Given their 

competitive dominance and propensity for kleptoparasitism (Balme et al. 2017a), the influence 

of leopard presence on hyaena space-use likely indicates the additional benefits of high 

spatiotemporal overlap for hyaena. In similar areas of Africa, where prey abundance is 

depleted, there is evidence that dietary overlap increases between large carnivores (Creel et al. 

2018). As prey presence was a significant predictor of leopard and hyaena detection, it may be 

that both species are responding to the same environmental cue (i.e., prey availability) resulting 

in increased co-detection rates.  

The high spatial overlap of leopard and hyaena in KNP, combined with mutual drivers of 

detection, is likely to increase interaction between the two species. Despite the inherent risk of 

interaction with dominant competitors (i.e., lion and hyaena), previous studies have shown that 

intraguild competitors often have little bearing on leopard spatiotemporal dynamics (Balme et 

al. 2017b; Miller et al. 2018; Strampelli et al. 2018; Rafiq et al. 2020b). In the absence of 
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spatiotemporal responses, leopards are often reliant on behavioural adaptability, such as tree-

caching and dietary plasticity, to support intraguild coexistence (Voigt et al. 2018; Balme et 

al. 2019). In KNP this is evident for male leopards, as we recorded high temporal overlap 

between male leopard and hyaena. This finding challenges our prediction that both leopard 

sexes would display temporal avoidance of hyaena, as observed by Havmøller et al. (2020b). 

In contrast, female leopards displayed different temporal activity patterns to hyaena. 

Kleptoparasitism from hyaena has been shown to negatively impact reproductive success of 

female leopard and female leopards suffer higher rates of kleptoparasitism, compared to males 

(Balme et al. 2017a). As such, increased interaction with hyaenas presents a greater risk for 

female leopards and could explain the temporal partitioning. Furthermore, male leopards are 

more likely to display tree-caching behaviour than female conspecifics (Stein et al. 2015; 

Balme et al. 2017a), which could facilitate greater coexistence with hyaena. Tree-caching 

would be less effective for female leopard due to the threat of intraspecific kleptoparasitism 

(Balme et al. 2017a) and this could lead female leopards to adopt the additional mechanism of 

temporal partitioning found in this study (Miller et al. 2018). 

Our results support Havmøller et al. (2020b), who recorded temporal differences between 

leopard sexes and increased levels of female diurnal activity compared to males. These findings 

highlight the importance of incorporating sex into pairwise behavioural comparisons. Increased 

interaction with male conspecifics heightens the risk of kleptoparasitism and infanticide for 

female leopards and observed temporal differences could be a mechanism to minimise these 

costly encounters (Balme et al. 2013; Swanepoel et al. 2015; Balme et al. 2017c). Miller et al. 

(2018) hypothesised that temporal segregation between leopard and interspecific competitors 

could increase at sites of reduced prey abundance, due to higher rates of resource sharing, 

which may explain the sex-specific and interspecific differences in temporal activity observed 

here. In addition, female leopards can exhibit wider dietary niches than male conspecifics, often 
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displaying more opportunistic feeding strategies and predating on smaller-bodied prey items 

(e.g., Voigt et al. 2018). The wider dietary plasticity of female leopards could be an additional 

mechanism to facilitate coexistence and further investigation of leopard sex-specific dietary 

specialisation in KNP would improve our knowledge of intraguild dynamics and niche 

partitioning strategies. 

Female leopard daily activity levels were 19% to 23% higher than those of male leopard and 

hyaena. These extended periods of diel activity may increase the likelihood of interaction with 

intraguild competitors and anthropogenic threats (e.g., road traffic, human activity), thus 

heightening exposure to potential sources of mortality (Rizzuto et al. 2018; Havmøller et al. 

2020b). The greater energetic costs imposed by higher activity levels may reduce reproductive 

success and overall fitness (Wilmers et al. 2017; Rizzuto et al. 2018), creating cascading 

demographic effects. Further research is required to assess the potential impacts of intraguild 

competition and depleted prey on female leopard fitness and reproductive success. 

There was no effect of proximity to park boundary or habitat type on detection of leopard or 

hyaena. These findings highlight the ability of both species to persist throughout the protected 

area, which is encouraging for local conservation management. We acknowledge that the 

coarse scale on which habitat was assessed here may not be sufficient to identify fine-scale 

habitat preferences. Previous studies have highlighted the higher tolerance of hyaena (Mkonyi 

et al. 2018) and leopard (Strampelli et al. 2018; Petracca et al. 2019) to human presence, 

compared to other large carnivores (Everatt et al. 2019). Our results provide further evidence 

of the species’ adaptability in areas of close proximity to human settlement. However, our 

temporal analyses suggest that hyaena activity is largely restricted to nocturnal movements, 

which is considered an early response to high levels of human disturbance (Kolowski et al. 

2007; Holekamp & Dloniak, 2010). 
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We acknowledge that our results are restricted to KNP and further efforts to quantify 

spatiotemporal behaviours in modified carnivore guilds would be beneficial to inform 

carnivore conservation management in human-altered landscapes. Malawi offers an interesting 

avenue for such studies, as several protected areas have seen similar reductions in large 

carnivore and prey populations (Mésochina et al. 2010; van Velden et al. 2020). In this study, 

camera trap placement was focused on roads and trails to optimise capture rates for large 

carnivores. Despite this, we are confident our findings are representative of carnivore habitat 

use in KNP, as road systems play an integral role in carnivore space use (Rafiq et al. 2020a). 

In addition, since large carnivore densities are low in KNP (Davis et al. 2021), it is also the 

only viable, non-invasive method for gathering large amounts of data to quantify carnivore 

behaviour (Rowcliffe et al. 2014). However, the use of road networks could have reduced prey 

species capture rates, as these areas increase exposure to predation risk and human activity, 

potentially underrepresenting aspects of observed predator-prey interaction (Oriol-Cotterill et 

al. 2015; Havmøller et al. 2020b).  

Camera trap density and length of sampling occasion for co-detection and time-to-event models 

could have reduced precision of estimates. Whilst overall detections were similar for leopard 

and hyaena in 2017 and 2018, interactive behaviours may be underrepresented in 2018 as only 

half the number of camera trap sites were deployed, due to logistical reasons. Although 

aggregating detection events into larger bins may impact the accuracy of parameter estimates 

(as models are sensitive to changes in temporal scale; see Cusack et al. 2017), this practice is 

commonly used for large carnivores that have naturally low detection rates (e.g., Abade et al. 

2018; Strampelli et al. 2018). Future studies could look to increase the density of camera traps 

deployed to yield higher capture rates and this may allow for shorter temporal scales to be used. 

However, given the low densities of large carnivores in KNP it is unlikely that an occasion 

length shorter than 24-hours could be applied. The deployment of GPS collars with high 
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sampling rates, as in Rafiq et al. (2020b), could be of greater benefit to gather fine-scale data 

on carnivore activity and encounter rates. 

Improved law enforcement efforts and ongoing reintroductions of prey species could increase 

prey abundance in KNP (IFAW, 2020). Under these conditions, and with the absence of a 

competing lion population, hyaena numbers could quickly rise, as observed by M’soka et al. 

(2016) in Liuwa Plains, Zambia. Conversely, leopard population recovery is gradual and 

reproductive success is naturally low (Balme et al. 2013; Balme et al. 2017c). Increased hyaena 

clan size would have direct benefits for food acquisition and hyaena cub survival (Höner et al. 

2005), potentially exacerbating current levels of interspecific competition. In response to 

increased competition, leopards are likely to adapt their spatiotemporal behaviour and may 

switch to smaller prey items (du Preez et al. 2017; Comley et al. 2020) or be forced into sub-

optimal habitat (e.g., low prey abundance, edge habitats; Vanak et al. 2013). Additional 

behavioural adaptations could have negative consequences for population recovery. For 

example, Comley et al. (2020) hypothesised that the decreasing leopard population in Selati 

Game Reserve, South Africa, was attributable to high levels of interspecific competition with 

the resident, much larger, hyaena population. As such, close monitoring of large carnivore 

densities and intraguild dynamics is required in KNP to assess the impact of ongoing 

conservation initiatives.     

We have shown that leopard and hyaena coexist in KNP, with male leopard and hyaena 

showing significant spatiotemporal overlap, whilst female leopards exhibit temporal 

partitioning to mitigate potential interactions with intra-and-interspecific competitors. Whether 

the behavioural responses of female leopards are sufficient to maintain reproductive success 

and long-term population viability, is unknown. Our results show that prey occurrence is a 

significant predictor of leopard and hyaena detection. Therefore, protecting remaining prey 

populations should be a management priority to conserve the resident carnivore guild. Further 
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understanding of the drivers of spatiotemporal behaviours can help alleviate the challenges 

caused by changing niches and shifts in carnivore community dynamics (Rafiq et al. 2020b). 

As protected areas are subject to increasing levels of anthropogenic disturbance (Jones et al. 

2018), further research of large carnivore spatiotemporal dynamics will be imperative to 

maintain carnivore coexistence and to implement effective long-term conservation strategies. 
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CHAPTER SIX: Dietary composition and niche overlap between 

competing large carnivores in Kasungu National Park, Malawi 

Abstract 

Intraguild competition is a key mechanism that can shape large carnivore community structure 

by suppressing subordinate competitors and altering niche partitioning strategies, potentially 

impacting population demographics. Large carnivores often compete for similar resources and 

assessing dietary overlap within carnivore guilds can be a reliable indicator of interspecific 

competition. Loss of natural prey, primarily from unsustainable human offtake, is a key factor 

in species decline and can heighten levels of competition between competing carnivores, as 

resources become increasingly limited. In Kasungu National Park (KNP), Malawi, the 

carnivore guild has been altered by high levels of anthropogenic disturbance, leading to 

reduced prey availability and a resident carnivore guild consisting of only leopard (Panthera 

pardus) and spotted hyaena (Crocuta crocuta). Using scat analysis techniques, the dietary 

composition and level of niche overlap between leopard and spotted hyaena were assessed. 

Leopard and spotted hyaena shared a high degree of dietary overlap between prey species (Oab 

= 0.65), whilst leopard showed a greater level of dietary specialisation. Dietary overlap and the 

potential for exploitation competition was higher for prey species within the small (< 19kg) 

and large (> 80kg) prey weight ranges (Oab > 0.95 for both). However, leopard and spotted 

hyaena utilised different prey species within the medium (19-80kg) prey weight range, thus 

reducing levels of competition. These results suggest there is strong potential for exploitation 

and interference competition between leopard and spotted hyaena, which could have a limiting 

effect on large carnivore population density. A focus on restoring large mammal prey 

populations in KNP will help to mitigate levels of interspecific competition and reduce the 

potential for exploitation competition between large carnivores.  
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6.1 Introduction 

Interspecific competition is an important component of ecosystem functionality that can alter 

community structure, species distribution and population dynamics (Caro & Stoner, 2003; 

Chesson & Kuang, 2008; Prugh & Sivy, 2020). For example, within carnivore guilds, 

competitive interaction with dominant guild members can have deleterious effects on 

subordinate carnivores, such as reduced individual fitness, lower reproductive rates, and 

population suppression (Palomares & Caro, 1999; Prugh et al. 2009). To reduce the potential 

for competitive interaction with dominant guild members, and the associated negative costs of 

competition, subordinate carnivores typically exhibit niche differentiation (Schoener, 1974). 

By partitioning their use of one or more niche axes (space, time and resource availability; 

Schoener, 1974), subordinate carnivores can facilitate coexistence with sympatric competitors 

(Sévêque et al. 2020).  

Where sympatric carnivores display spatiotemporal overlap, access to shared resources may be 

limited and, in large carnivore communities, this resource is often food. In response to 

exploitative competition with dominant guild members, subordinate competitors may exhibit 

dietary niche segregation and utilise different food resources (Schoener, 1983). Resource 

partitioning can limit the impact of competition, however, diverging use of any of the three 

niche axes can have implications for the survival and fitness of subordinate carnivores (du 

Preez et al. 2017). For example, dietary segregation can force subordinate carnivores to predate 

smaller, sub-optimal prey, with potential implications for overall fitness and group dynamics 

(Hayward & Kerley, 2008). In addition, resource partitioning can be further altered by 

anthropogenic disturbance (Smith et al. 2018; Manlick & Pauli, 2020; Sévêque et al. 2020), 

whereby a human-induced reduction in resource availability, such as the offtake of natural prey, 

can affect levels of intraguild competition, as carnivore guilds are forced to compete for 

increasingly limited resources (Creel et al. 2018). For example, increasing use of small prey 
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items by lion (Panthera leo) and spotted hyaena (Crocuta crocuta, hereafter hyaena) limited 

the potential for niche partitioning by cheetah (Acinonyx jubatus) and wild dog (Lycaon pictus) 

populations in Liuwa Plains, Zambia (Dröge et al. 2017).   

Large carnivores have experienced widespread population and geographic range declines over 

the last two centuries, largely due to increasing anthropogenic threats (Ripple et al. 2014; 

Ceballos et al. 2015; Wolf & Ripple, 2017). The local extirpation, or depletion, of natural prey 

from an environment, often caused by unsustainable human offtake, has been identified as a 

key factor in large carnivore population decline (Wolf & Ripple, 2016; Sandom et al. 2018). 

Due to the high metabolic demands associated with large body size, large carnivores require 

abundant mammalian prey to persist in an environment (Carbone & Gittleman, 2002; Creel et 

al. 2018). The reliance of carnivores on large prey has further driven population declines, with 

significant prey depletion either leading to localised extirpations (e.g., Maisels et al. 2001; 

Burton et al. 2011), or forcing carnivores to search for alternative food sources, often resulting 

in increased livestock predation (Khorozyan et al. 2015; Khan et al. 2018). Determining large 

carnivore dietary composition is, therefore, crucial for their effective conservation management 

and key to assessing their adaptability in the face of continuing environmental change 

(Havmøller et al. 2020).   

Here, the diets of sympatric leopard (Panthera pardus) and hyaena populations in Kasungu 

National Park (KNP), Malawi, are compared to determine the level of dietary niche overlap 

between the two species, as a proxy for intraguild competition. The dietary niche breadth of 

leopard and hyaena is diverse (Hayward, 2006; Hayward et al. 2006), and this dietary 

adaptability, combined with flexible hunting strategies and behavioural plasticity, has helped 

both species to persist in areas where other large carnivores have been extirpated (e.g., 

Loveridge et al. 2020). In most environments, hyaena and leopard are part of a wider carnivore 

guild that is competing for resources (e.g., Hayward & Kerley, 2008; Creel et al. 2018; Briers-
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Louw & Leslie, 2020), but in KNP this carnivore guild has been depleted, with the loss of 

resident lion, cheetah and wild dog populations (Mésochina et al. 2010; IUCN/SSC, 2015; 

Davis et al. 2021a). In addition, prey availability has been reduced in KNP through 

unsustainable levels of illegal poaching (Munthali & Mkanda, 2002; Mésochina et al. 2010). 

Previous studies have highlighted that a reduction in prey abundance, particularly of larger-

bodied prey species, can result in increased dietary overlap and reduced dietary niche breadth 

(Creel et al. 2018). As leopard and hyaena populations are known to be found at low densities 

in KNP (Davis et al. 2021a), determining if this reduction in prey abundance has impacted prey 

choice and dietary overlap is important for local conservation management.  

The dietary ecology of large carnivores has been well-studied in parts of east and southern 

Africa where the carnivore guild is largely intact (e.g., Hayward & Kerley, 2008; du Preez et 

al. 2017; Broekhuis et al. 2018; Comley et al. 2020). However, further information is needed 

on dietary overlap and interspecific competition between sympatric carnivores in disturbed and 

understudied habitats (Breuer, 2005; Rduch, 2016; Creel et al. 2018). The breakdown of 

carnivore community assemblages and decline of prey abundance is predicted to increase 

across African protected areas, as anthropogenic pressures continue to grow (Wolf & Ripple, 

2016; Jones et al. 2018; Sandom et al. 2018). Information on intraguild competition and dietary 

ecology in these human-disturbed environments will, therefore, be important for local 

conservation management and of wider relevance as these issues become more pertinent in 

African ecosystems. Using scat analysis techniques, this study assesses dietary composition 

and overlap between leopard and hyaena in KNP, a human-disturbed ecosystem with reduced 

prey availability and a modified carnivore guild. It is predicted that, a) leopard and hyaena will 

exhibit a high level of dietary overlap, and b) dietary overlap will be higher in the medium-

sized (19-80kg) prey weight group, as both leopard and hyaena preferentially select for prey in 

this weight range (Hayward, 2006, Hayward et al. 2006). 
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6.2 Materials and Methods 

6.2.1 Study area 

The study was conducted in KNP, a 2,316km2 legally protected area in the Central Region of 

Malawi. KNP is largely comprised of miombo woodland (Brachystegia and Julbernardia spp.), 

which is interspersed with a network of seasonally wet grasslands and isolated rocky 

inselbergs. Mean annual rainfall is 780mm, falling between November and April. Leopard and 

hyaena are found at similar density in KNP, with recent estimates of 1.77 leopard/100km2 and 

1.62 hyaena/100km2 (Davis et al. 2021a). Prey populations in KNP have been subject to high 

levels of subsistence poaching, which has reduced prey abundance (Munthali & Mkanda, 

2002). For example, an aerial survey conducted in 2014 estimated a 95% decline in buffalo 

(Syncerus caffer) numbers since 1992 and a 97% decline in the zebra (Equus quagga) 

population over the same time-period, with the zebra population estimated at just six 

individuals (Macpherson, 2015).  

6.2.2 Scat collection and analysis 

Scats from large carnivores were collected between May 2016 and January 2018 in KNP 

(Figure 6.1). For each sample collected, the species, location and date were recorded. Scats 

were identified based on diameter, segmentation, colour, shape, and presence of associated 

field signs (e.g., tracks), using the specifications in Stuart & Stuart (2000). Three methods were 

used to collect carnivore scats: opportunistic collection, walked transects and, for hyaena, 

monitoring of known latrine sites. Opportunistic collection of faecal samples along roads and 

trails was conducted throughout the study period (May 2016 – January 2018). Ten walked 

transects of 5km in length were designed to search the KNP road network for scats that could 

be overlooked whilst driving. The KNP road network was targeted for walked transect search 

protocols as large carnivores frequently use road systems as communication hubs (Rafiq et al. 
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2020). Hyaena scats were also collected at latrine and den sites, which were visited periodically 

throughout the study period. 

 

Figure 6.1. Map of Kasungu National Park, Malawi, indicating the location of all analysed scats (n = 

79) collected for the assessment of leopard and spotted hyaena diet. 

  

Faecal samples were sun-dried for 24 hours, before being soaked in warm water until 

malleable. Samples were washed over a sieve until the water ran clear, then the remaining 

contents were air-dried for at least 24 hours. Ten hairs from each scat were selected at random, 

with hairs spread across a grid and a random number generator used to select individual hairs 

from sampled squares. All samples were identified microscopically from their cuticle imprint, 

using the techniques developed by Keogh (1983). Microphotographs at 40x magnification were 
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taken at the base, middle and end of each follicle. Cuticle patterns were then identified to 

species level using the reference guide developed by Beveridge & van den Hoogen (2013) and 

from samples opportunistically collected from carcasses during the study period by Carnivore 

Research Malawi. Identifying bushpig (Potamochoerus larvatus) and warthog (Phacochoerus 

africanus) samples to species-level can be challenging from cuticle images, as cuticles are 

similar in structure (Beveridge & van den Hoogen, 2013). Therefore, these two species were 

considered as family suidae spp. to avoid misidentification. All leopard samples were identified 

following the same protocol to species-level by Carnivore Research Malawi and received as 

secondary data. For hyaena, cuticle images were sent to the author and subsequently identified 

to species-level. 

6.2.3 Dietary composition and biomass 

Leopard and hyaena dietary composition were determined using three methods: frequency of 

occurrence (FO), corrected frequency of occurrence (CFO) and relative biomass (R). FO was 

calculated as the number of occurrences of a single prey item divided by the total number of 

occurrences of all prey items (Klare et al. 2011). However, as FO can overestimate the 

importance of certain prey items, a CFO was calculated to account for multiple prey items 

occurring in a single scat (Henschel et al. 2005; Klare et al. 2011). CFO assigns a weighting 

of one to each scat, which is then split by the number of prey species identified per scat. For 

example, if four prey items were found in a scat then a weighting of 0.25 would be applied to 

each species present. CFO for each prey species is then expressed as a percentage by dividing 

the total occurrence across scats by the number of scats available (Karanth & Sunquist, 1995). 

Variation in the size of selected prey can limit inference from frequency of occurrence methods 

and overestimate the importance of smaller prey items in carnivore diet (Henschel et al. 2005; 

Klare et al. 2011). Estimating biomass consumption is, therefore, recommended over 
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conversion factors, particularly for carnivores with diverse diets (Chakrabarti et al. 2016; 

Lumetsberger et al. 2017). Previous studies have used linear regression models to estimate 

biomass consumption, often applying the model developed by Ackerman et al. (1984) for 

pumas (Puma concolor). However, failure to account for physiological constraints and 

carnivore feeding behaviour in these early biomass models led to significant bias and 

inaccuracies in biomass estimation (Wachter et al. 2012; Lumetsberger et al. 2017). Therefore, 

the non-linear biomass model developed by Chakrabarti et al. (2016) from lion and leopard 

feeding trials was used to calculate biomass consumed per scat: 

Y = 0.033 − 0.025exp−4.284 (X∕Z) 

where Y is the mass of prey consumed per collectable scat, X is the mean prey body mass, and 

Z is the mean carnivore body mass. As no correction factors have been developed to calculate 

biomass consumption for hyaena, and hyaena are similar in body-size to lion and leopard, the 

biomass model of Chakrabarti et al. (2016) was also used for hyaena calculations.  

Prey weights were calculated using 75% of the average adult female weight, derived from 

Kingdon (2015), as recommended in Hayward et al. (2007) and Chakrabarti et al. (2016). Mean 

carnivore body masses for leopard and hyaena were also derived from Kingdon (2015). The 

method provided in Chakrabarti et al. (2016) was used to calculate biomass consumed per scat 

(Y), total biomass consumed (B = Y x CFO) and relative biomass (R = (B/ΣB) x 100). Prey 

preference was not investigated here as reliable population estimates were not available for all 

prey species in KNP, with poor visibility limiting the efficacy of aerial counts for cryptic 

species (e.g., bushbuck, Tragelaphus scriptus) and low prey density resulting in limited sample 

sizes for ground transects. 
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6.2.4 Dietary overlap and niche breadth 

Dietary overlap was determined using Pianka's (1973) index: 

𝑂𝑎𝑏 =
∑ 𝑃𝑖𝑎𝑃𝑖𝑏𝑛

(∑𝑃𝑖𝑎
2
𝑃𝑖𝑏
2 )

1
2

 

where Oab is the degree of dietary overlap between species a and b; Pia is the relative frequency 

of the prey item i found in the scat of species a; Pib is the relative frequency of the prey item i 

found in the scat of species b; and n is the total number of prey items in a predator scat. The 

resulting values range from 0 (no overlap) to 1 (complete overlap) and, in accordance with 

similar studies of large carnivore diet, overlap is considered to be biologically significant when 

values exceed 0.60 (Mbizah et al. 2012; Comley et al. 2020). The degree of dietary overlap 

between leopard and hyaena was estimated for both the relative occurrence of all prey species 

and prey weight groups, using the classification of Pitman et al. (2012): small (< 19kg), 

medium (19-80 kg) and large (> 80 kg). Pianka’s index was calculated using the package ‘spaa’ 

(Zhang, 2016) in R v4.0.1 (R Core Development Team, 2020).  

Dietary niche breadths were calculated using Levins' index (Levins, 1968), standardised by 

Hurlbert (1978): 

𝐵𝑠 =
((1/∑𝑃𝑖

2) − 1)

(n − 1)
 

where Pi is the proportion of occurrence of each prey item i in predator diet P, and n is the 

number of prey taxa. Bs ranges from zero to one, with lower values indicating a more 

specialised diet and higher values indicating generalist diets. 
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6.3 Results 

A total of 151 (leopard, n = 41; hyaena, n = 107) large carnivore faecal samples were collected 

in KNP between May 2016 and January 2018, of which 79 were available for analyses (leopard, 

n = 39; hyaena, n = 40). Faecal accumulation curves showed that 90% of all prey species found 

in samples were detected after analysing 22 scats for both leopard and hyaena (Figure 6.2). 

Identification of hair samples was not possible in <1% and 12.75% of leopard and hyaena scats, 

respectively.  

 

Figure 6.2. Cumulative curves showing the proportion of species identified from scat analysis for 

leopard and hyaena in Kasungu National Park, Malawi. 

  

6.3.1 Dietary composition and biomass 

Twelve different prey items were recorded in leopard faecal samples, with a mean of 3.13 (SD 

± 1.10) prey items per sample. Based on CFO, the most frequently found prey items in leopard 

diet were common duiker (25.51%; Table 6.1), bushbuck (21.72%), puku (18.46%) and kudu 

(16.77%). 11 different prey items were recorded in hyaena faecal samples, with a mean of 2.65 
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(SD ± 0.92) prey items per sample. The most frequently identified prey items for hyaena, based 

on CFO, were kudu (25.43%), suidae spp. (21.05%) and common duiker (21.25%).  

Biomass calculations revealed that over 80% of leopard diet was comprised of bushbuck 

(23.06%; Table 6.1), common duiker (21.79%), puku (20.49%) and kudu (18.93%). For 

hyaena, kudu (28.71%), suidae spp. (22.78%), common duiker (16.80%) and reedbuck 

(11.18%) comprised approximately 80% of the biomass consumed. Medium-sized prey were 

the most important prey size group for leopard, contributing 46.25% of the biomass consumed 

(Figure 6.3). For hyaena, the medium (40.48%) and large (40.52%) prey size groups 

contributed equally to biomass consumption. 

 

Figure 6.3. The contribution (%) of prey size groups to the diet of leopard and spotted hyaena in 

Kasungu National Park, Malawi, based on relative biomass consumed. The prey size classes used were 

taken from Pitman et al. (2012). 
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Table 6.1. Frequency of occurrence (FO) and corrected frequency of occurrence (CFO) of prey species found in faecal samples of leopard and spotted hyaena 

in Kasungu National Park, Malawi. Biomass calculations, based on the models of Chakrabarti et al. (2016), are also presented, where Y is the biomass consumed 

per scat, B is the total biomass consumed in kg, and R is the relative contribution of individual prey items to overall biomass consumption. 

 Leopard (n = 39) Spotted hyaena (n = 40) 

Prey Species FO (%) CFO (%) Y B (kg) R (%) FO (%) CFO (%) Y B (kg) R (%) 

Bushbuck, Tragelaphus sylvaticus  29.82 21.72 1.65 35.73 23.06 4.89 5.48 1.94 10.64 5.60 

Common duiker, Sylvicapra grimmia  26.74 25.51 1.32 33.77 21.79 21.55 21.25 1.50 31.91 16.80 

Dwarf mongoose, Helogale parvula 1.54 2.10 0.45 0.95 0.61 - - - - - 

Eland, Taurotragus oryx - - - - - 4.89 4.23 2.14 9.07 4.78 

Elephant, Loxodonta africana - - - - - 0.29 1.25 2.15 2.68 1.41 

Kudu, Taurotragus strepsiceros  17.48 16.77 1.75 29.33 18.93 23.28 25.43 2.14 54.53 28.71 

Puku, Kobus vardonii 14.91 18.46 1.72 31.75 20.49 0.29 0.83 2.07 1.72 0.91 

Rodentia spp. 0.26 0.44 0.77 0.34 0.22 - - - - - 

Sable, Hippotragus niger  4.88 8.69 1.75 15.20 9.81 5.75 4.98 2.14 10.68 5.62 

Savanna hare, Lepus victoriae 0.26 0.44 0.71 0.31 0.20 4.02 3.75 0.81 3.04 1.60 

Southern reedbuck, Redunca arundinum  0.26 0.64 1.66 1.11 0.71 8.33 10.18 2.09 21.25 11.18 

Suidae spp. 0.26 0.44 1.65 0.75 0.49 26.44 21.05 2.06 43.27 22.78 

Vervet monkey, Chlorocebus 

pygerythrus 

- - - - - 0.29 1.25 0.92 1.15 0.60 

Yellow baboon, Papio cynocephalus 2.57 2.97 1.12 3.41 2.20 - - - - - 

Goat, Capra hircus 1.03 1.49 1.51 2.32 1.50 - - - - - 
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6.3.2 Dietary overlap and niche breadth 

Across all prey items, dietary composition overlapped significantly between leopard and 

hyaena (Oab = 0.65). When dietary composition was split by prey size groups, leopard and 

hyaena displayed significant levels of overlap for small (Oab = 0.97) and large (Oab = 0.95) prey 

items, but dietary overlap was lower for medium-sized prey species (Oab = 0.22). In total there 

were eight prey species found in both leopard and hyaena faecal samples: four species were 

preyed on exclusively by leopard and three by hyaena. Leopard exhibited a lower dietary niche 

breadth (Bs = 0.33) than hyaena (Bs = 0.43), indicating that leopard had a more specialised diet. 

6.4 Discussion 

Resource partitioning and niche differentiation are important strategies that allow carnivore 

communities to coexist (Caro & Stoner, 2003). For example, dietary partitioning is a common 

strategy that may facilitate sympatry between competing carnivores, reducing the potential for 

interspecific competition (du Preez et al. 2017). Nevertheless, competition for resources can 

increase levels of intraguild competition, which can be exacerbated when prey abundance is 

depleted, and, subsequently, amplifies incidents of direct interaction (Harihar et al. 2011). The 

results of this study confirmed the prediction that leopard and hyaena shared a significant level 

of dietary overlap in KNP (Oab = 0.65). Contrary to our prediction, overlap between leopard 

and hyaena was lower for medium-sized prey items (Oab = 0.22), with both predators utilising 

different prey species within this weight range. Dietary overlap was considerably higher in 

small (≤ 19kg) and large (> 80kg) prey weight groups (Oab > 0.95 in both), increasing the 

potential for exploitation competition. 

Dietary overlap between leopard and hyaena in KNP was in accordance with recorded levels 

in another Malawian protected area, Majete Wildlife Reserve (Oab = 0.61; Briers-Louw & 

Leslie, 2020). Although, in contrast with other studies across the species’ range, overall 
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estimates of dietary overlap in KNP were lower than previous comparisons (e.g., Oab = 0.91 in 

both Mbizah et al. 2012 and Comley et al. 2020). Chapter Five has previously shown that the 

spatiotemporal dynamics of leopard and hyaena in KNP are positively associated with the 

presence of prey and competing carnivores, thus increasing the likelihood of interaction (Davis 

et al. 2021b). The findings of Chapter Six, therefore, add further evidence of potentially high 

levels of competition between the two species. Increased competition for prey can lead to 

greater levels of interference and exploitation competition between predators (Harihar et al. 

2011; Périquet et al. 2015) and have direct consequences on population density, behaviour and 

survival (e.g., Mondal et al. 2012). As the dominant competitor, hyaena are a key source of 

kleptoparasitic behaviour across the leopards’ range and are responsible for stealing up to 10% 

of leopard kills (Balme et al. 2017). Kleptoparasitism can have negative effects on reproductive 

success and individual fitness (Krofel et al. 2012; Balme et al. 2017), whilst direct interaction 

with hyaenas is a source of mortality in leopard populations (Swanepoel et al. 2015). 

Subsequently, the potential for increased levels of competition and interaction between 

remaining leopard and hyaena populations in KNP is a cause for conservation concern.  

Despite high levels of dietary overlap, large carnivores can often mitigate intraguild 

competition by preferentially selecting prey in different weight groups (e.g., Andheria et al. 

2007; du Preez et al. 2017). Consumption of medium-sized (19-80kg) prey comprised over 

40% of the total biomass in both leopard and hyaena diet, however, the two carnivores utilised 

different prey species within this weight range, thus reducing levels of dietary overlap. Kudu 

were an important large-bodied prey item for both leopard and hyaena and was the only species 

>80kg that contributed more than 10% of the consumed biomass to the diet of either carnivore. 

In previous studies, hyaena have preferentially selected larger prey items (e.g., Hayward, 2006; 

Briers-Louw & Leslie, 2020). Therefore, increasing the abundance and diversity of larger prey 

species should be a management priority to mitigate interspecific competition between hyaena 
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and leopard. The recent reintroduction of waterbuck (Kobus ellipsiprymnus), a preferred prey 

of hyaena in previous studies (e.g., Rduch, 2016; Briers-Louw & Leslie, 2020), and the 

supplementation of other large mammal species in KNP (IFAW, 2020) should be seen as 

important first steps in this process. 

Bushbuck and common duiker were the most frequently selected prey by leopard in KNP, in 

accordance with the preferred prey species identified in a range-wide study by Hayward et al. 

(2006). The more specialised diet and narrower niche breadth of leopard, compared to hyaena, 

also concurs with the findings of recent studies (e.g., Briers-Louw & Leslie, 2020; Comley et 

al. 2020). In some human-disturbed environments where prey has been depleted, leopard have 

been found to switch to smaller-bodied prey species, such as rodents (e.g., Henschel et al. 2011; 

De Luca & Mpunga, 2018; Havmøller et al. 2020). However, the greater contribution of 

medium-sized prey to leopard diet, observed in this study, implies that this dietary switch has 

not occurred in KNP. Nevertheless, the importance of puku (average prey mass (kg): 47.25) in 

the leopard’s diet could be a result of geographic bias in scat sample collection. As puku prefer 

wetland and riverine habitats (Rduch & Jentke, 2021), the species is restricted to a core area of 

KNP centred around the permanent water at Lifupa Dam (Macpherson, 2015). Subsequently, 

puku are unlikely to feature in the diet of individual leopards outside of this core area, 

particularly leopards occupying territories around the boundaries of KNP. Future studies would 

benefit from increased sampling efforts around the park edges to improve estimates of dietary 

composition. 

Across their geographic range, hyaena prefer medium- to large-bodied prey in the 56-182kg 

weight category (Hayward, 2006; Holekamp & Dloniak, 2010). As medium- and large-bodied 

prey items contributed equally to the relative biomass consumption in hyaena diet in KNP, our 

results are largely in accordance with the range-wide review of Hayward (2006). The high 

occurrence of kudu and suidae spp. also corresponds with previous findings in Malawian 
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protected areas (Briers-Louw & Leslie, 2020), miombo woodlands (Rduch, 2016) and across 

the species’ geographic range (Hayward, 2006; Mbizah et al. 2012; Comley et al. 2020). The 

wider dietary niche breadth of hyena in KNP, compared to the resident leopard population, 

highlights the more unselective and flexible nature of hyaena predation, as observed in 

Hayward (2006) and Périquet et al. (2015). Whilst hyaena predation strategies are often 

adaptable, small prey items are not as frequently selected as other prey weight ranges 

(Holekamp & Dloniak, 2010). For example, Rduch (2016) and Comley et al. (2020) found that 

hyaena did not consume any prey items below 30kg in weight. In this study, small prey items 

comprised a significant proportion of consumed biomass in hyaena diet (~20%). This may 

indicate an increased reliance on small prey items in KNP, as has been observed in other studies 

where prey abundance has been depleted (e.g., Creel et al. 2018). There was a significant level 

of dietary overlap with leopard for small prey items (Oab = 0.97), with common duiker 

representing the majority of biomass consumed by hyaena within this weight range. As 

common duiker is a key prey species for leopard in KNP, further utilisation of small prey could 

increase levels of interspecific competition between the two species.      

The total number of scats available for analyses in this study could have limited inference. For 

example, Trites and Joy (2005) recommended a minimum sample size of 59 faecal samples to 

broadly describe a species’ site-specific diet. However, previous studies have found that ~30 

samples are sufficient to detect most prey items (e.g., Breuer, 2005) and as both sample sizes 

reached an asymptote, this study was adequate for providing an initial insight into dietary 

composition and overlap. Whilst all scats were collected and identified to criteria frequently 

used in dietary studies, there is potential for scats to be misidentified at species level (Morin et 

al. 2016). For example, Havmøller et al. (2020) used similar criteria to identify leopard scats 

in Tanzania through DNA metabarcoding, finding that 27.5% of collected samples originated 

from hyaena and serval (Leptailurus serval) or could not be identified to species level. 
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Misidentification of samples could lead to incorrect conclusions regarding prey preference or 

dietary niche breadth, potentially misinterpreting species’ dietary adaptability or levels of 

interspecific competition (Morin et al. 2016). As hyaena samples in our study were primarily 

collected from latrine sites, it is unlikely that these could be misidentified as leopard scats. In 

addition, the absence of other large carnivores (i.e., lion) in KNP means it is unlikely that 

hyaena faecal samples were incorrectly identified. However, it is acknowledged that, despite 

the use of standardised criteria, the issue of misidentification could limit inference from leopard 

scats, with both caracal (Caracal caracal) and serval present in KNP. It is recommended that 

future studies utilise the DNA metabarcoding approach of Havmøller et al. (2020), where 

logistical and financial restraints allow, to minimise the risk of incorrect scat classification and 

improving the certainty with which prey remains can be identified. 

Recent studies have indicated that leopard diet shows varying levels of specialisation, both 

between sexes and at the individual level (Voigt et al. 2018; Balme et al. 2020). Female 

leopards often demonstrate a wider dietary niche than male conspecifics but are more reliant 

on small prey items (Voigt et al. 2018). In contrast, male leopards often display a greater degree 

of specialisation and a preference for larger prey items (Pitman et al. 2013; Balme et al. 2020). 

Both foraging tactics, individual specialisation and targeting of smaller prey, can have negative 

consequences for population health. For example, Balme et al. (2020) found that males with 

more specialised diets occupied territories with fewer females, whilst cub productivity and 

survival to independence was lower than in areas with more generalist males. In addition, 

hunting smaller prey items can have implications for individual fitness and energy expenditure, 

as animals are forced to hunt more frequently, whilst balancing metabolic demands (Carbone 

et al. 2007; Creel et al. 2018). The low leopard population density in KNP (Davis et al. 2021a) 

and observed sex-specific temporal partitioning (Davis et al. 2021b), means that further 

research into dietary specialisation between leopard sexes could be beneficial to future 
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conservation management. These data could be collected using satellite collars on leopards and 

the investigation of GPS clusters of locations to identify kill sites (Martins et al. 2011; Pitman 

et al. 2014). However, these methods are often limited by small sample sizes and are biased 

towards larger prey items (Jansen et al. 2019). Alternatively, stable isotype analysis from 

whisker samples could be used (see Voigt et al. 2018) to determine sex-specific dietary 

specialisation. However, as both methods require live capture, their use in KNP could be 

logistically challenging and result in limited sample sizes.  

This study has shown that there is a high degree of dietary overlap between leopard and hyaena 

and provides a valuable understanding of large carnivore dietary ecology and overlap in KNP. 

These findings provide further evidence that interspecific competition between remaining 

carnivore populations could have negative consequences for local conservation management. 

Although, it should be noted that a high degree of dietary overlap does not necessarily translate 

into increased levels of competition (Mbizah et al. 2012). Nevertheless, measures of dietary 

overlap do provide indirect evidence that competition is likely within the carnivore guild and, 

as direct measures of competition are often difficult to quantify in cryptic carnivore species, 

these metrics are often the only viable option to inform management decisions (Vanak & 

Gompper, 2009; Rduch, 2016). Ongoing efforts in KNP to restore large mammal prey 

populations and mitigate prey depletion (IFAW, 2020) will help to alleviate the pressures of 

interspecific competition observed in this study. Continued monitoring of large carnivore diets 

in KNP is recommended, as these data can provide a valuable indicator for levels of 

interspecific competition. Further research into individual specialisation and leopard sex-

specific diets will help to inform local conservation management and provide a wider insight 

into leopard dietary adaptation in human-disturbed environments.   
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CHAPTER SEVEN: Discussion  

7.1 Synopsis 

Large carnivores play an integral role in maintaining biodiversity and ecosystem functioning, 

whilst providing positive economic and social effects, such as tourism revenue and public 

health benefits (Ripple et al. 2014; O’Bryan et al. 2018). However, the continued decline in 

protected area health (Jones et al. 2018), increasing levels of human disturbance (Darimont et 

al. 2015) and the vulnerability of large carnivores to environmental change (Cardillo et al. 

2005) mean that they have suffered substantial population decline and geographic range 

contraction (Ripple et al. 2014; Di Minin et al. 2016). Despite widespread acknowledgement 

of large carnivore population decline, robust assessments of population density and guild 

dynamics are crucially lacking, particularly in areas of high human disturbance where these 

data are often most needed (Jacobson et al. 2016; Elliot & Gopalaswamy, 2017; Rafiq et al. 

2020b). Subsequently, studies that investigate the status and behavioural ecology of large 

carnivores in the context of elevated anthropogenic disturbance are necessary to inform 

effective conservation management (Balme et al. 2014; Sévêque et al. 2020). 

This thesis helps to fill two knowledge gaps identified as priorities for large carnivore 

conservation, 1) provide robust estimates of large carnivore population density in areas 

identified as data deficient, and 2) investigate large carnivore guild dynamics in areas of 

increased human disturbance. In Chapter Two, using spotted hyaena as a model species, I 

have provided a novel assessment of current survey methodologies for estimating large 

carnivore population density and provided a comprehensive argument for improving range-

wide population estimates through greater utilisation of SCR methods. Chapter Three has 

summarised the issues threatening protected areas in Malawi and provided a rationale for the 

selection of KNP as a study site. Chapter Four highlights the application of SCR to large 
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carnivores and provides novel estimates of both spotted hyaena and leopard density in KNP. 

Density estimates for spotted hyaena and leopard are the first for KNP and, for leopard, the 

first estimates in Malawi and a miombo woodland habitat, thereby addressing a key knowledge 

gap in the leopards’ geographic range. These baseline density estimates are a crucial first step 

for continued monitoring of large carnivore populations in KNP, providing an important metric 

for evaluating the impact of ongoing conservation initiatives. In addition, the application of 

SPIM (Augustine et al. 2018) in Chapter Four, addresses the issue of uncertainty in individual 

identification from single-station camera trap surveys, advocating the wider use of SPIM in 

areas that are currently data deficient for large carnivores. Chapters Five and Six have 

provided a valuable first insight into the intraguild dynamics of leopard and spotted hyaena in 

KNP, across the three niche axes of space, time and resource partitioning. The interspecific 

dynamics between leopard and spotted hyaena have previously been identified as an 

overlooked area of large carnivore dynamics (Vanak et al. 2013; Rafiq et al. 2020b) and, in the 

absence of a resident lion population, KNP has provided a novel site to investigate guild 

dynamics and behavioural responses to anthropogenic disturbance.  

In this chapter I will discuss the conservation implications and potential avenues for further 

research identified from this study, both in KNP and across the wider landscape.  

7.2 Status of large carnivores in KNP and the need for wider survey efforts 

7.2.1 Leopard density 

Chapter Four produced the first leopard density estimates for KNP, Malawi and a miombo 

woodland habitat. Between 2016 and 2018, leopard density was estimated at 1.9 (± SD 0.19) 

individuals/100km2, representing one of the lowest recorded density estimates for leopard in 

sub-Saharan Africa (Table 7.1). Leopard density in KNP is comparable to human-impacted 

landscapes and low-productivity habitats (e.g., Henschel et al. 2011; Devens et al. 2018; Mann 
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et al. 2020). However, as the KNP estimates are from a single survey area, and are the first in 

a miombo woodland, it is difficult to make inferences as to why estimates are low in KNP. 

Nevertheless, based on prior knowledge of the underlying drivers of leopard density and 

distribution, it is possible to make some predictions as to the underlying causes of the low 

estimates found in KNP. Habitat productivity is thought to be a key driver of leopard density 

(Balme et al. 2007; Jacobson et al. 2016) and miombo woodlands are a relatively low-

productivity habitat, supporting ungulate biomasses at only 20-30% of comparable savanna 

habitats with similar rainfall levels (Frost, 1996). Thus, leopard density in miombo woodlands 

is likely to be lower than comparable savanna habitats, where most available leopard density 

estimates are recorded. In addition, decline of wild prey is recognised as a major threat to 

leopard populations across their geographic range (Jacobson et al. 2016). For example, loss of 

wild prey to bushmeat hunters in the Congo Basin caused a 78% reduction in leopard 

population density in areas under the most intense poaching pressure (Henschel et al. 2011). 

Consequently, although leopard populations are likely to exist at naturally low densities in 

miombo woodlands, the observed decline of sympatric carnivores and large mammal 

populations in KNP (Munthali & Mkanda, 2002; Mésochina et al. 2010) suggests that 

anthropogenic pressures, such as bushmeat poaching and habitat loss, have contributed to the 

low leopard density. Protecting remaining prey species and increasing large mammal 

populations is, therefore, a key step in recovering the KNP leopard population.   
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Table 7.1. Published leopard density estimates (per 100km2), using SCR methods, from sub-Saharan Africa between 2010-present. The habitat type and 

protected status of the study site are provided, and estimates are in order from highest to lowest. Estimates from this study are in bold.  

Study Site Density
 

Protected area? Habitat Reference 

Okonjima Nature Reserve, Namibia 14.51 Yes Acacia thornveld Noack et al. (2019) 

Mpala Ranch, Laikipia County, Kenya 12.03 No Bushland/open woodland O’Brien & Kinnaird (2011) 

Sabi Sands Game Reserve, South Africa 11.8 Yes Savanna/woodland Balme et al. (2019) 

Phinda Game Reserve, South Africa 11.25 Yes Savanna/woodland Balme et al. (2010) 

Western Soutpansberg, South Africa 10.73 No Montane woodland Chase Grey et al. (2013) 

Western shores, St Lucia, South Africa 8.4 Yes Coastal savanna Ramesh et al. (2017) 

Farm matrix, Waterberg Biosphere, South Africa 6.59 No Mountain bushveld Swanepoel et al. (2015) 

Multiple (24) sites across South Africa 6.3a Yes Mixed habitats Rogan et al. (2019) 

Serengeti National Park, Tanzania 5.57b Yes Savanna/woodland Allen et al. (2020) 

Lapalala Wilderness, South Africa 5.35 Yes Mountain bushveld Swanepoel et al. (2015) 

Bubye Valley Conservancy, Zimbabwe 5.28 Yes Savanna/woodland du Preez et al. (2014) 

Welgevonden Game Reserve, South Africa 4.56 Yes Mountain bushveld Swanepoel et al. (2015) 

Udzungwa Mountains, Tanzania 4.22 Yes Mixed woodlands Havmøller et al. (2019) 

Western Soutpansberg, South Africa 3.65 No Montane woodland Williams et al. (2017) 

Phinda Game Reserve, South Africa 3.53b Yes Savanna/woodland Braczkowski et al. (2016) 

Bubye Valley Conservancy, Zimbabwe 2.79 Yes Savanna/woodland du Preez et al. (2014) 

Xonghile GR, Mozambique 2.6 Yes Sandveld Strampelli et al. (2021) 

Non-protected land, South Africa 2.49 No Savanna/woodland Balme et al. (2010) 

Kasungu National Park, Malawi 1.9 Yes Miombo woodland This study 

Ndumo Game Reserve, South Africa 1.6 Yes Savanna/woodland Ramesh et al. (2017) 

Little Karoo, South Africa 1.26 Both Semi-arid fynbos Mann et al. (2020) 

Western Cape, South Africa 1.18 Both Mixed habitats Devens et al. (2021) 

Eastern/Western Cape, South Africa 0.95a Both Mixed habitats Devens et al. (2018) 
a Mean density across multiple sites; b Mean density from multiple estimates.
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Encouragingly, despite the low population density in KNP, the minor variation between survey 

years suggests a stable trend in leopard density. I acknowledge that a three-year survey period 

is a relatively short time-period to make inferences on populations trends, however, previous 

studies have identified significant trends in leopard density across similar temporal scales. For 

example, using annual camera trap surveys, Williams et al. (2017) found that leopard density 

in the Soutpansberg Mountains, South Africa, decreased by 44% within a four-year survey 

period. Despite the apparent stable leopard density in KNP, the low-density estimate for 

leopard is of conservation concern, as the population is susceptible to stochastic events, 

poaching and other conflict with humans. KNP has been subject to high levels of historic 

poaching (Bhima et al. 2003; Macpherson, 2015) and evidence of both leopard poaching and 

other anthropogenic mortality were observed during the study (Figure 7.1). Leopard 

reproductive success is often naturally low and, as a result, population recovery can be a 

gradual process (Balme et al. 2013). However, increasing the prey populations and improving 

law enforcement should help to recover the KNP leopard population. In addition, further 

research assessing leopard survival rates and potential threats are advised. The loss of resident 

leopard populations from two PAs in Malawi, namely Majete Wildlife Reserve and Liwonde 

National Park (Briers-Louw et al. 2019), should serve as a warning that, despite their 

adaptability and resilience to anthropogenic threats, there is a risk of localised extirpation if 

conservation management cannot address the causes of decline.
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Figure 7.1. Evidence of leopard poaching and anthropogenic mortality in KNP. A) Two leopard skins 

that were recovered by KNP law enforcement in 2016. Image credit: Mike Labuschagne. B) Leopard 

killed in a village bordering KNP after killing livestock and attacking community members. Image 

credit: Amanda Harwood. 

 

Data from this thesis are the first empirical estimates for a leopard population in Malawi and 

challenge assumptions made by Martin and de Meulenuer (1988), who modelled previously 

published leopard estimates and mean annual rainfall to predict leopard densities across sub-

Saharan Africa. Using this predictive modelling approach, Martin and de Meulenuer (1988) 

estimated an average density of 0.10 leopards/km2 (10 leopards/100km2) in miombo woodlands 

and a country-wide population of 4,530 leopards in Malawi. The overly simplistic modelling 
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approach and accompanying estimates have been widely rejected in literature (Norton, 1990; 

Jenny, 1996) for omitting critical factors, such as anthropogenic mortality and prey availability, 

from the model and relying on the assumption that leopards occur at maximum potential 

densities in all available habitats (Balme et al. 2010). Results of this thesis add further evidence 

that these estimates need to be revised and, whilst Malawi does not have a trophy hunting 

industry, other countries (e.g., Tanzania/Mozambique) that comprise miombo woodland 

habitat and have been subject to high levels of anthropogenic disturbance, still utilise the Martin 

and de Meulenuer (1988) estimates to set trophy hunting quotas (Strampelli et al. 2020). 

Unsustainable trophy hunting is a primary threat to leopard populations (Jacobson et al. 2016) 

and a paucity of local population data is a key factor limiting the ability to set sustainable quotas 

(Balme et al. 2010). The results of Chapter Four suggest that the leopard density estimate of 

Martin and de Meulenuer (1988) for Malawi and miombo woodlands is likely to be inaccurate. 

I suggest that further surveys be conducted in miombo woodlands to encourage informed 

decision-making and provide evidence-based results for use in conservation management 

strategies (Balme et al. 2014; Strampelli et al. 2021). 

7.2.2 Spotted hyaena density 

Chapter Four estimated spotted hyaena density between 2016 and 2018 to be 1.15 (± SD 0.42) 

individuals/100km2, providing the first density estimate for KNP. Density estimates between 

survey years suggest a minor increase in the KNP spotted hyaena population between 2016 and 

2018. As highlighted in Chapter Two, SCR models have not been used to estimate spotted 

hyaena density as widely as they have for other sympatric and individually identifiable 

carnivores, such as leopard. Subsequently, the estimates presented here are some of the first to 

use SCR methods (Table 7.2). The estimates from this study are some of the lowest spotted 

hyaena density estimates in the available literature, comparable to arid environments (e.g., 
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Fouché et al. 2020; Table 7.2) and considerably lower than the only previously reported density 

of 31 hyaena/100 km2 from a miombo woodland (Creel & Creel, 2002). Prey availability has 

a strong regulating effect on spotted hyaena demographics and, where prey populations 

decrease, there is often a subsequent decline in spotted hyaena abundance (Périquet et al. 2015). 

For example, a 70% decline in the spotted hyaena population size in Ngorongoro Crater, 

Tanzania, between the mid-1960s and mid-1990s, was attributed to a substantial decline in 

preferred prey (Höner et al. 2005). Therefore, it is likely that the reduction in prey populations 

in KNP (Munthali & Mkanda, 2002; Macpherson, 2015) has limited the population density of 

spotted hyaena. As previously recommended, restoring and protecting prey populations in KNP 

will be the most effective measure to increase spotted hyaena density. 

Table 7.2. Spotted hyaena density estimates (per 100km2), using SCR methods, from sub-Saharan 

Africa. The habitat type and protected status of the study site are provided. Estimates from this study 

are in bold.  

a approximate density estimated from figure - actual estimate not provided. 

Chapter Four has added further evidence that estimates of multiple species are possible from 

camera trap surveys, in accordance with previous studies (O’Brien & Kinnaird, 2011; Rich et 

al. 2019). As highlighted in Chapter Two, camera trap surveys have been routinely used to 

estimate density for felid species. However, the use of SCR techniques to estimate spotted 

Study Site Density  Protected 

Status? 

Habitat Reference 

Central Tuli Block, 

Botswana 

14.9 Yes Riverine woodlands Vissia et al. 

(2021) 

Moremi Game 
Reserve, Botswana 

10.1 Yes Savanna grassland/mopane 
woodland 

Rich et al. (2019) 

Moremi Game Reserve 

and management areas, 

Botswana 

6.5a Yes Acacia and mopane woodlands Rafiq et al. 

(2019) 

Mpala Ranch, Kenya 4.93 No Savanna woodland O’Brien & 

Kinnaird (2011) 

Majete Wildlife 
Reserve, Malawi 

2.69 Yes Savanna woodland Briers-Louw 
(2017) 

Kasungu National 

Park, Malawi 

1.15 Yes Miombo woodland This study 

Tsauchab River Valley, 

Namibia 

0.85 No Arid savanna Fouche et al. 

(2020) 
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hyaena density, or provide estimates for multiple species, from camera trapping surveys has 

not been as widely adopted. For example, Green et al. (2020) found that 82% of density 

estimates in camera trap surveys were of felids and 91.6% of studies focused on only one 

species. In accordance with the recommendations in Chapter Two, I advocate that further 

efforts are made to report density estimates for multiple species when using camera trap survey 

techniques. In particular, SCR models have been underutilised for estimating spotted hyaena 

density and increased reporting of spotted hyaena density from camera trap surveys would be 

beneficial for the species’ conservation management. As spotted hyaena are widely distributed 

across Africa, and often occur at higher densities than sympatric carnivores (Watts & 

Holekamp, 2008; Rich et al. 2019), there is scope for increased reporting of density estimates 

from camera trap surveys, where the species could previously have been overlooked.   

Wire-snaring is a popular method used by bushmeat poachers to catch wild prey (Mudumba et 

al. 2021) and, as highlighted in Chapter Three, the method is prevalent in Malawian PAs. 

However, due to their non-selective nature, the deployment of wire snares can result in 

significant levels of by-catch and are increasingly viewed as a key source of mortality for large 

carnivores (Becker et al. 2013; Loveridge et al. 2020; Mudumba et al. 2021). For example, one 

in five adult male lions in South Luangwa National Park, Zambia, have been recorded as snared 

(Becker et al. 2013). This study recorded evidence of snared spotted hyaena in every survey 

year (Figure 7.2) and, therefore, it is likely that wire-snaring represents an important threat to 

large carnivores in KNP. Wire-snaring appears to be a particular threat to spotted hyaena, with 

spotted hyaena representing 92% of large carnivore snare records in the Zimbabwean section 

of the Kavango-Zambezi Transfrontier Conservation Area (Loveridge et al. 2020). Although 

there was no evidence of leopard being caught in wire snares in KNP, this could be due to their 

smaller body size, which makes it harder to break out of snares at the trap site (Loveridge et al. 

2020). There were insufficient data to investigate the demographic impacts of wire-snaring on 
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the KNP spotted hyaena population, and further investigation into the effect of snaring by-

catch on large carnivores would be beneficial, along with research into the spatial and temporal 

trends of wire-snaring activity. In addition, the recruitment of additional law enforcement 

personnel in KNP (IFAW, 2020) should allow more intensive snare patrols, which would help 

clear existing snares and assist in the identification of snaring hotspots to inform effective 

protocols. 

Figure 7.2. Evidence of wire-snare injuries on spotted hyaena during A) 2015; B) 2016; C) 2017, and 

D) 2018. Note that left-sided spot patterns on images A-C are of different individuals, indicating that 

wire-snare injuries are prevalent in the population.  
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7.2.3 Status of other large carnivores 

The results of Chapter Four suggest that lion and wild dog are no longer resident in KNP. 

Historic populations of lion and wild dog are known to have occurred in KNP (Woodroffe et 

al. 1997; Mésochina et al. 2010), suggesting a period of high anthropogenic disturbance that 

resulted in the loss of these resident populations. Lion and wild dog are both sensitive to 

anthropogenic disturbance, with their wide-ranging behaviour, dependency on large-bodied 

prey and social structure limiting their behavioural flexibility (Everatt et al. 2019; Creel et al. 

2020). This limited ability to persist in anthropogenically-impacted landscapes, when 

compared to leopard and spotted hyaena, could explain the decline of lion and wild dog 

populations in KNP.   

Evidence collected in this study of a single male lion in 2017 and the same individual wild dog 

in 2017 and 2018, highlights the potential for dispersing individuals to move through the 

MZTFCA. Wild dogs require vast areas of connected habitat and often exhibit long-range 

dispersal events (e.g., Davies-Mostert et al. 2012; Cozzi et al. 2020), with such movements 

facilitating recolonisation and supporting viable populations at national and international scales 

(Creel et al. 2020). Similarly, dispersal is key to maintaining genetic diversity in the Zambian 

lion population, one of the few remaining strongholds for the species (Curry et al. 2019). I 

recommend that protection of the dispersal corridor between KNP and Lukusuzi National Park, 

Zambia, is prioritised to ensure that connectivity between KNP and the wider MZTFCA is 

maintained. Connectivity to the MZTFCA is critical to encourage recolonisation in KNP and, 

alongside ongoing initiatives to restore prey populations and improve law enforcement, could 

help to recover large carnivore populations in KNP. In addition, further information on the 

status of large carnivores in Lukusuzi National Park would be beneficial, as the park is largely 
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data deficient and represents the key link between KNP and the wider network of Zambian 

PAs. 

7.2.4 Application of SPIM 

The use of SPIM in Chapter Four, to estimate density for leopard and spotted hyaena resulted 

in improved levels of precision. Compared to single-flank analyses, SPIM increased credible 

interval precision for leopard and spotted hyaena by 52% and 26%, respectively. Partial identity 

is a common problem for researchers (e.g., Rosenblatt et al. 2016; Mohamed et al. 2019; 

Strampelli et al. 2020) and, as density is a key metric used to inform conservation management 

decisions, any gain in precision should be of broad interest. In areas of low population density, 

single-flank captures can be linked with increased certainty (Augustine et al. 2018). 

Consequently, the benefits of SPIM are greater for large carnivore populations found at low 

densities, which are often populations in human-disturbed environments or areas in need of 

intensive conservation management. Furthermore, a review of SCR estimates from camera 

trapping methods by Green et al. (2020) suggested that researchers should try to maximise the 

number of individuals captured during surveys to increase the precision of estimates. SPIM 

could be a valuable tool in this respect, allowing researchers to deploy one camera per station, 

instead of the conventional dual-camera setup. This would effectively double the potential 

survey area that can be covered and, subsequently, sample a wider proportion of the study 

population. Estimating density for species of conservation concern is often hampered by the 

financial cost of robust survey methods (e.g., Alonso et al. 2015) and/or the difficulty of 

removing captured individuals from datasets that are already sparse (e.g., Mohamed et al. 

2019). Therefore, SPIM offers potential solutions to common methodological and analytical 

problems (Augustine et al. 2018). I recommend the use of SPIM for studies where partial 
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identities constitute a large proportion of the sampled population, or as a solution to logistical 

and/or financial limitations relating to camera trap deployment. 

Large carnivores often exhibit sex-specific variation in space-use and detectability (e.g., 

Swanepoel et al. 2015; Fabiano et al. 2020) and previous studies have shown that incorporating 

this variability into SCR models can improve inference (Sollmann et al. 2011). In addition, 

further covariates of interest (e.g., prey availability) can be incorporated into SCR analyses to 

estimate within-patch variation in density (Ramesh et al. 2017; Allen et al. 2020). However, it 

is not currently possible to incorporate these additional models in SPIM, with only the null 

model, where detection rate and space use are constant, available in the SPIM package. As 

such, researchers should consider the trade-off between addressing the problem of partial 

identity in sampled individuals and utilising the additional suite of demographic and 

environmental covariates that can be modelled in more conventional SCR packages. However, 

if partial identities constitute a large proportion of available samples, it is advisable to focus on 

producing a robust density estimate, rather than drawing potentially unreliable inferences from 

additional analyses where individual identities are left unresolved. It should also be noted that 

the SPIM package was only recently developed, and it is intended that additional models 

incorporating covariates of interest, open populations and multiple sessions will be added over 

time (B. Augustine, pers. comm.).   

7.2.5 The need for wider survey efforts 

The estimates in Chapter Four are the first density estimates for KNP and represent an 

important baseline for future conservation monitoring in the region. However, the majority of 

Malawian PAs are still lacking data on the status of large carnivore populations and would 

benefit from research to establish baseline density estimates. Alongside KNP, Nyika National 

Park (NNP) and Vwaza Marsh Wildlife Reserve (VMWR), in the northern region of Malawi, 



  Chapter Seven: Discussion 

   

   

214 
 

comprise the Malawian section of the MZTFCA. Of the protected areas in Malawi with the 

highest protected status (national parks and game reserves), NNP and VMWR represent 39% 

of the total protected land in Malawi. Comprising a significant portion of protected habitat in 

Malawi and representing vital connectivity links to Zambia and the wider MZTFCA, both NNP 

and VMWR are, therefore, important PAs for large carnivore conservation. However, the two 

PAs have been the subject of limited conservation research, particularly for large carnivores. 

Similar to KNP, miombo woodland is the dominant habitat in VMWR and NNP (at lower 

levels). Both PAs also have a similar carnivore guild to KNP, with resident populations of 

leopard and spotted hyaena and evidence of dispersing lion (Byrne et al. 2019; Harwood et al. 

2019; African Lion Database, 2020). Subsequently, NNP and VMWR offer important 

opportunities to, a) establish further baseline density estimates in Malawian PAs that are 

currently data deficient and of significant conservation value, b) provide additional density 

estimates in the understudied miombo woodland habitat, and c) further test the theories 

presented in this thesis on intraguild dynamics in a modified carnivore guild.  

NNP would also represent a feasible study site to test recommendations presented in Chapter 

Two regarding the application of SCR models to call-in data to produce spotted hyaena density 

estimates. As SCR models are reliant on individual identification, the challenge of identifying 

spotted hyaena at call-in stations is a potential barrier to this novel survey technique, as spotted 

hyaena can be cautious when approaching call-in stations (e.g., Bauer, 2007; Kirsten et al. 

2017). Whilst individual identification from call-in sites has been documented before (see 

Trinkel, 2009), to my knowledge, the application of SCR models to call-in data has not been 

tested. The open landscape of the Nyika plateau and personal observation of spotted hyaena 

response to audio playbacks in NNP could provide optimal conditions for trialling this novel 

method. A camera trap survey conducted simultaneously would be beneficial for comparing 
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SCR estimates from both methods, whilst also providing density estimates for leopard and 

other carnivores in NNP.   

7.3 Intraguild dynamics in KNP 

Niche partitioning between intraguild competitors (e.g., lion, leopard, spotted hyaena) requires 

further investigation, as contrasting results continue to emerge from different habitats (e.g., 

Hayward & Slotow, 2009; Balme et al. 2019; Havmøller et al. 2020b; Rafiq et al. 2020b). The 

localised loss of the resident lion population in KNP has offered a novel opportunity to test 

theories on guild dynamics and interspecific competition between remaining competitors, 

which is predicted to intensify and impact population demographics when community 

assemblage is altered (e.g., Périquet et al. 2015; M’soka et al. 2016). In addition, increased 

understanding of the spatiotemporal dynamics between leopard and spotted hyaena has been 

identified as a key knowledge gap in large carnivore guild dynamics (e.g., Rafiq et al. 2020b).  

In Chapter Five, using a combination of co-detection modelling, time-to-event analyses, and 

temporal activity patterns from camera trap data, I have shown that detection of leopard and 

spotted hyaena is positively associated with the detection of preferred prey and competing 

carnivores. Mutual drivers of spatiotemporal behaviour increase the likelihood of interaction 

between leopard and spotted hyaena, and the heightened risk of interaction with intra- and 

inter-specific competitors could explain the additional temporal partitioning behaviour 

displayed by female leopards in this study. The estimates of dietary overlap presented in 

Chapter Six provide further evidence of potentially high levels of interspecific competition 

between leopard and spotted hyaena in KNP. The results of Chapter Six show that leopard 

and spotted hyaena share a significant level of dietary overlap (Oab = 0.65). Dietary overlap 

was considerably higher in small (≤ 19kg) and large (> 80kg) prey weight groups (Oab > 0.95 

in both), increasing the potential for interference and exploitation competition in these prey 
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weight ranges. However, this was mitigated, to some extent, by the utilisation of different prey 

species within the medium-sized (19-80kg) prey weight range, causing a reduction in dietary 

overlap (Oab = 0.22). 

7.3.1 Conservation implications of intraguild dynamics  

The results of Chapters Five suggest that bottom-up factors (i.e., prey availability) have a 

regulating effect on large carnivore spatiotemporal behaviour in KNP, a finding that is in 

accordance with recent studies (e.g., Miller et al. 2018; Sogbohossou et al. 2018; Balme et al. 

2019). Furthermore, the results of Chapter Six highlight that almost two-thirds of leopard and 

spotted hyaena dietary composition overlap. Subsequently, as overlap is high along the three 

niche axes, there is a risk of exploitative and interference competition between leopard and 

spotted hyaena. Shared drivers of spatiotemporal behaviour and competition for prey may 

represent points of inter-and intra-specific carnivore conflict, which could have negative 

consequences on density and survival (Caro & Stoner, 2003; Dröge et al. 2017). As both 

leopard and spotted hyaena are found at low densities in KNP, as highlighted in Chapter Four, 

the potential for high levels of intraguild competition may be a limiting factor in population 

recovery efforts, particularly for leopard as the subordinate competitor (Allen et al. 2020). 

Previous studies have found that spotted hyaena have a strong competitive influence on leopard 

populations. For example, spotted hyaena were found to have a greater influence than lion on 

leopard ecology in both Sabi Sands (Balme et al. 2017; Balme et al. 2019) and Selati (Comley 

et al. 2020) Game Reserves, South Africa. As habitat generalists, spotted hyaena are often 

ubiquitous across PAs, making spatial avoidance of spotted hyaena difficult for competing 

carnivores (Balme et al. 2019). This seems apparent in KNP, with spotted hyaena detected on 

83% of camera traps between 2016 and 2018 and the detection of both leopard and spotted 

hyaena associated with the presence of similar preferred prey species and competing carnivores 
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(Davis et al. 2021b). Instead, leopards often utilise tree-caching (hoisting and consuming their 

prey in trees) to reduce the risk posed by kleptoparasitism (Balme et al. 2017), and this may be 

a strategy used by leopards in KNP to mitigate competition with spotted hyaena. This 

hypothesis seems more probable for male leopards, who displayed a higher level of temporal 

overlap with spotted hyaena than female conspecifics in KNP, and are known to hoist more 

kills than female leopards (Balme et al. 2017). However, the extent to which leopards exhibit 

hoisting behaviour varies between populations and the degree to which tree-caching is used in 

KNP is unknown (Sunquist & Sunquist, 2002; Balme et al. 2017). In addition, tree-caching can 

still incur food costs and a potential loss of individual fitness. For example, Tarugara et al. 

(2021) found that spotted hyaena were present at 82% of leopard feeding events and the 

presence of spotted hyaena caused leopards to reduce their feeding time.   

Detecting behavioural responses, such as alterations in spatial use or activity patterns, are often 

the first measurable reactions that animals show to anthropogenic disturbance and may be used 

as an early indicator of environmental stress (Ordiz et al. 2014; Gaynor et al. 2018). The 

increased levels of diurnal activity displayed by female leopards in Chapter Five, compared 

to male conspecifics and spotted hyaena, is in accordance with Havmøller et al. (2020b) and is 

only the second time sex-specific variation in activity has been documented for a leopard 

population. Furthermore, overall activity rates (time active over the diel cycle) for female 

leopards were ~20% higher than other large carnivores in KNP. These findings are interesting 

when compared to temporal activity in other large carnivore populations, where a shift towards 

nocturnal behaviour and a reduction in overall activity is often observed in areas of human 

disturbance and increased interspecific competition (e.g., Kolowski et al. 2007; Gaynor et al. 

2018; Patten et al. 2019; Frey et al. 2020).  
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As highlighted in Chapter Five, the additional mechanism of temporal partitioning adopted 

by female leopards could have negative consequences for individual fitness and population 

demographics. For example, the higher rates of diurnal activity observed in female leopards 

could risk further exposure to sources of anthropogenic mortality, such as road traffic accidents, 

and increased levels of human interaction (Havmøller et al. 2020b). Increased rates of adult 

mortality are often implicated in population sinks and ecological traps (e.g., Balme, Hunter & 

Slotow, 2010; van der Meer et al. 2013) and, as such, further research into the demographic 

effects of female leopard spatiotemporal behaviour in KNP would be beneficial. 

Niche partitioning and adaptive responses to interspecific competition often entail a food cost, 

such as reduced foraging time or limited access to certain prey sources (Oriol-Cotterill et al. 

2015; Hertel et al. 2016). Previous research has shown that leopard diets can be sex-specific 

(Voigt et al. 2018; Balme et al. 2020) and vary between habitats (Hayward et al. 2006; 

Havmøller et al. 2020a). Chapter Five has indicated that female leopards adapt their temporal 

behaviour in KNP, likely to minimise intra-and interspecific competition, and this could have 

implications on diet and foraging behaviour that were not identified in Chapter Six. For 

instance, diurnal hunting and increased exposure to higher levels of human activity can result 

in reduced handling time of prey items (e.g., Kerley et al. 2002) and can lead predators to 

increase kill rates, inferring higher energetic costs, to compensate for reduced consumption 

(Smith et al. 2015). Whilst Chapter Six was able to provide a first insight into the composition 

and dietary overlap of leopard and spotted hyaena in KNP, further investigation into leopard 

sex-specific foraging behaviour would increase our knowledge of dietary strategies in leopard 

populations under environmental and interspecific pressures.   
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7.3.2 Potential for competitive release of spotted hyaena population 

Current levels of interspecific competition and strategies for niche partitioning may be 

mitigated, in part, by the low densities of both leopard and spotted hyaena in KNP. Low 

population densities of competing carnivores have been suggested in previous studies (e.g., 

Creel & Creel 1996; Karanth et al. 2017; Hardouin et al. 2021) as a contributing factor that 

limits the pressure of interspecific competition. As discussed in Chapters Four and Five, 

ongoing conservation initiatives to boost prey populations and increase law enforcement efforts 

in KNP (IFAW, 2020) could provide the optimal conditions for competitive release of the 

spotted hyaena population. Previous studies have shown that spotted hyaena populations can 

fluctuate with prey availability (e.g., Höner et al. 2005; Périquet et al. 2015), and increased 

prey abundance also has benefits for cub survival and food acquisition (Watts & Holekamp, 

2009). In addition, lions often have a regulating effect on spotted hyaena populations, with 

exploitation and interference competition from lions limiting spotted hyaena clan size (Périquet 

et al. 2015). The effect of competitive release from lions has been documented in previous 

studies (see M’soka et al. 2016 and Green et al. 2018), with these studies suggesting that high 

densities of spotted hyaena were attributable to the decline of lion populations and reduction 

in interspecific competition. Therefore, it is possible that similar population trends will be seen 

in KNP, if the causes of spotted hyaena population decline (i.e., reduced prey availability, 

direct/indirect poaching pressure) can be addressed and the presence of lion in KNP remains 

limited. 

Predicting the impact of this hypothesised competitive release on sympatric carnivores and 

interspecific competition is difficult, as the impact on wider carnivore guild dynamics has yet 

to be investigated. However, the findings in Chapter Five, that the spatiotemporal dynamics 

of both leopard and spotted hyaena are driven by the presence of preferred prey and competing 
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carnivores, suggest that an increase in the spotted hyaena population would have negative 

consequences for the KNP leopard population. Further evidence to support this theory can be 

found in Comley et al. (2020), who suggested that the declining leopard population in Selati 

Game Reserve, South Africa, was attributable to increased competition from spotted hyaena, 

with spotted hyaena found at a density almost four-times that of leopard. Consequently, 

continued monitoring of large carnivore demographics and intraguild dynamics in KNP are 

necessary to evaluate the impact of ongoing conservation initiatives. I recommend that camera 

trap surveys are continued annually to monitor large carnivore densities, assess population 

trends and analyse how spatiotemporal dynamics develop. Furthermore, PAs across Africa are 

predicted to come under increasing anthropogenic pressures, and similar reductions in the large 

carnivore guild are expected (e.g., the loss of lion from many PAs; Bauer et al. 2015). 

Monitoring of large carnivore dynamics in KNP may, therefore, provide valuable insights that 

are applicable to wider conservation management, as guild dynamics are altered, and could 

help inform conservation efforts in PAs undergoing similar periods of recovery. 

7.3.3 Assessing seasonal variability in niche partitioning  

One limitation of the findings in Chapters Five and Six is that seasonal variability in niche 

partitioning was unaccounted for. In a review by Sévêque et al. (2020), only 28% of studies 

accounted for seasonal variation in niche partitioning, however, 75% of the studies that did 

account for seasonal variability found that it altered carnivore dynamics. Recent studies by 

Amorós et al. (2020) and Périquet et al. (2021) have found seasonal variation in the 

interspecific dynamics of lion and spotted hyaena and, therefore, it is possible that there are 

seasonal differences in the dynamics between leopard and spotted hyaena in KNP. Previous 

studies have found that interference competition and niche partitioning between the African 

large carnivore guild increases during the dry season, when resources are often scarcer (e.g., 



  Chapter Seven: Discussion 

   

   

221 
 

Vanak et al. 2013; Périquet et al. 2021). As this study primarily covered the dry season in KNP 

it is, therefore, conceivable that the niche partitioning strategies exhibited are to facilitate 

coexistence when competition and risk of interaction is most intense. Tall seasonal grasses and 

limited road access means that camera trapping is logistically difficult to undertake in KNP 

during the wet season and results in limited sample sizes (pers. obs.). Therefore, incorporating 

seasonal variation into future studies would likely entail the deployment of VHF or satellite 

collars, similar to studies by Vanak et al. (2013) and Périquet et al. (2021). However, the 

financial costs for a collaring study would likely be higher than a camera trap survey (e.g., 

Caravaggi et al. 2017) and, given the low densities of leopard and spotted hyaena in KNP, 

could also result in small sample sizes.  

7.4 Summary of recommendations 

Chapter Seven has reviewed the findings of this study and the conservation implications for 

KNP and the wider region. A summary of the recommendations and potential avenues for 

future research in KNP and the wider region are as follows: 

• Continued monitoring of large carnivore population densities and intraguild dynamics 

in KNP are necessary to evaluate the efficacy of ongoing conservation management 

strategies (e.g., IFAW, 2020) and the potential impact of these initiatives on carnivore 

demographics. Efforts to increase prey populations in KNP and improve law 

enforcement efficacy should provide a more secure habitat for large carnivores. As 

previously discussed, these conditions could be beneficial for the spotted hyaena 

population in KNP and lead to competitive release in the absence of a resident lion 

population. Competitive release of spotted hyaena would likely be detrimental to the 

KNP leopard population, whilst skewed carnivore demographics could also have 

negative consequences for dispersing carnivores or potential reintroductions (e.g., 
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Weise et al. 2015). I recommend that annual camera trap surveys are undertaken to 

closely monitor carnivore demographics. Annual surveys would allow close monitoring 

of changes in density, whilst additional metrics that could hint at population changes 

(e.g., skewed sex ratios, increased movement parameters; Braczkowski et al. 2020) 

could also be monitored.   

• Maintaining a sufficient prey base in KNP will be an important tool for mitigating the 

potentially negative consequences of interspecific competition between leopard and 

spotted hyaena. Initial efforts to supplement and reintroduce prey species in KNP began 

in 2020 (IFAW, 2020) and the continued restoration of these prey populations is vital 

to large carnivore recovery. In addition, the depleted prey base in KNP has been 

identified as a key limiting factor in potential reintroduction efforts of other large 

carnivores (i.e., lion, Mésochina et al. 2010; cheetah and wild dog, DNPW, 2011). 

Continued restoration of prey populations in KNP will, therefore, be beneficial to any 

potential reintroduction initiatives.  

• Further research on individual/sex-specific dietary specialisation, survival, and 

encounter rates of the KNP leopard population would be beneficial to future 

conservation management. The findings of this study have highlighted that the 

spatiotemporal responses of female leopards to conspecific and interspecific 

competitors could have implications of conservation concern. In addition, recent studies 

(Voigt et al. 2018; Balme et al. 2020; Havmøller et al. 2020a) have demonstrated 

individual, sex-specific, and habitat-specific variation in leopard dietary preferences, 

and further investigation of these issues in human-disturbed landscapes would help 

inform wider conservation management.  

• With PWA numbers increasing in KNP (IFAW, 2020), additional snare deployment 

teams would be beneficial to remove existing snares within the park. Snares were 
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observed on spotted hyaena in all three survey years (2016-2018) and further research 

on the demographic impact of wire-snaring would be beneficial. Snares also represent 

a threat to dispersing carnivores, that exhibit wide ranging behaviour (e.g., Fattebert et 

al. 2013; Cozzi et al. 2020), and prey populations (Mudumba et al. 2021). 

Consequently, the removal of existing snares would help to increase prey populations 

and safeguard dispersing carnivores from the wider MZTFCA.  

• Connectivity between KNP, Lukusuzi National Park (Zambia) and the wider MZTFCA 

must be maintained to facilitate the dispersal of large carnivores. Anthropogenic 

activity around national parks and game management areas in Zambia has been shown 

to restrict the movement of large carnivores (Lindsey et al. 2014; Rosenblatt et al. 

2014), whilst habitat connectivity between Zambian PAs is also in decline (Watson et 

al. 2015). As leopard have also been documented to range over vast areas when 

dispersing (e.g., Fattebert et al. 2013), maintaining connectivity will be vital for all 

large carnivores in KNP. In addition, increased collaboration between Malawian and 

Zambian authorities would be beneficial when formulating conservation strategies. 

• Surveys to evaluate the status and population density of large carnivores in the other 

PAs of Malawi are crucially needed, as most PAs are data deficient and evidence-based 

conservation management is, therefore, limited. This study has highlighted NNP and 

VMWR as two sites that should be prioritised, as these PAs have transfrontier links and 

cover an extensive area that is optimal for large carnivore conservation. However, forest 

reserves in Malawi, that do not receive the same level of legal protection as national 

parks and game reserves, that are still known to contain small populations of large 

carnivores, such as Mangochi Forest Reserve, should also be prioritised for assessment.  
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7.5 Conclusions 

Results from this study are indicative of wider large carnivore population decline and help to 

support a growing body of literature highlighting that concern for large carnivore conservation 

is growing (Ripple et al. 2014; Di Minin et al. 2016; Jacobson et al. 2016; Sandom et al. 2018). 

Encouragingly, alongside this thesis, large carnivore populations in understudied habitats are 

beginning to receive greater conservation attention (e.g., Strampelli et al. 2018; Harris et al. 

2019; Havmøller et al. 2019; Mohammed et al. 2019; Petracca et al. 2019; Braczkowski et al. 

2020a). Addressing these knowledge gaps, whilst applying robust survey techniques, will 

ensure that conservation decision-making is driven by evidence-based data on population status 

and localised threats (Hayward et al. 2015; Braczkowski et al. 2020b). In addition, further 

efforts to understand large carnivore guild dynamics, the drivers of spatiotemporal use, and 

prey preferences in human-disturbed landscapes, will become increasingly relevant as 

anthropogenic change continues to modify ecosystems and alter community assemblages 

(Dirzo et al. 2014; Sandom et al. 2017). 

The review of spotted hyaena survey methods, presented in this thesis, has made a 

comprehensive argument for a unified SCR framework under which reporting of spotted 

hyaena populations can be improved. This study has provided important baseline density 

estimates for leopard and spotted hyaena in an understudied area of the species’ geographic 

range, and highlighted the status of other large carnivore guild members in KNP. These 

findings have demonstrated the use of SPIM and the applicability of these novel models to 

resolve issues of uncertainty in camera trap data, whilst increasing the precision of density 

estimates. As SPIM is most applicable to areas of low population density, it is hoped that SPIM 

can be further utilised in understudied and disturbed habitats, where logistical and financial 

limitations may have previously restricted efforts to survey large carnivores (Davis et al. 



  Chapter Seven: Discussion 

   

   

225 
 

2021a). The intraguild dynamics described in this thesis have highlighted the potential for 

increased interaction and competition for resources between sympatric competitors and the 

possible conservation implications of these interactions (Davis et al. 2021b). The findings of 

this study indicate that the current intraguild dynamics in KNP are likely to have negative 

consequences for leopards, and in particular female leopards. Therefore, further research into 

leopard behavioural responses and levels of individual fitness will benefit conservation 

management. Furthermore, there is a pressing need to expand survey efforts in other PAs in 

Malawi and establish similar baseline estimates of large carnivore density, whilst improving 

knowledge of guild dynamics in these human-disturbed environments.  

The human population of Malawi is predicted to double within the next twenty years (World 

Bank, 2020). Subsequently, large carnivore populations and Malawian PAs are likely to come 

under increasing anthropogenic pressures. The current status of large carnivore populations in 

KNP, the second largest protected area in Malawi and a site of importance to the wider 

transfrontier landscape, is of conservation concern (Davis et al. 2021a). The recovery of large 

carnivore populations is often a gradual process, owing to their slow life-history traits (Ripple 

et al. 2014). As such, the window to protect and restore large carnivores in KNP is diminishing. 

However, the strengthening of environmental laws, continued investment by local and 

international conservation organisations, and ongoing restoration efforts, will hopefully help 

to secure KNP and increase large carnivore populations. The results of this study act as a first 

insight into the status and behavioural ecology of large carnivores in KNP, and provide 

important metrics from which the efficacy of ongoing conservation initiatives can be measured. 

Large carnivores can offer a crucial indicator of protected area health and provide valuable 

ecosystem services (Ripple et al. 2014). Consequently, their continued monitoring, both in 

KNP and across Malawi, should be an integral component of future conservation management 

efforts.
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Appendices 

Appendix I 

Table A1. Literature reviewed on spotted hyaena (Crocuta crocuta) population estimates and survey methods used since 2000. 

Authors Journal Year Title Method Country 

Aebischer, T. et al. Biological 

Conservation 

2020 Apex predators decline after an influx of pastoralists in former Central 

African Republic hunting zones 

Mixed (Track 

count/call up) 

Central 

African 
Republic 

Ahlswede, S. et al. African Journal 

of Ecology 

2019 Using the Formozov–Malyshev–Pereleshin formula to convert 

mammal spoor counts into density estimates for long‐term 
community‐level monitoring 

Track count Namibia 

Bauer, H. African Journal 

of Ecology 

2007 Status of large carnivores in Bouba Ndjida National Park, Cameroon Call up Cameroon 

Bauer, H. et al. African Journal 
of Ecology 

2015 Large carnivore abundance in the Benoue Ecosystem, North Cameroon Track count Cameroon 

Cozzi, G. et al. Biodiversity 

Conservation 

2013 Density and habitat use of lions and spotted hyenas in northern Botswana 

and the influence of survey and ecological variables on call-in survey 

estimation 

Call up Botswana 

Creel, S. & Creel, 

N.M. 

Book 2002 The African Wild Dog Call up Tanzania 

Croes, B.M. et al. Biological 

Conservation 

2011 The impact of trophy hunting on lions (Panthera leo) and other large 

carnivores in the Bénoué Complex, northern Cameroon 

Track count Cameroon 

Davis, R.S. et al. Journal of 

Zoology 

2020 Spatial partial identity model reveals low densities of leopard and spotted 

hyaena in a miombo woodland 

SCR Malawi 

Dunnink, J.A. et al. Oryx 2019 A socio-ecological landscape analysis of human-wildlife conflict in northern 

Botswana 

Track Botswana 

Durant, S.M. et al. Journal of 

Applied Ecology 

2011 Long-term trends in carnivore abundance using distance sampling in 

Serengeti National Park, Tanzania 

Distance 

sampling 

Tanzania 

Farr, M.T. et al Ecological 

Applications 

2019 Multispecies hierarchical modeling reveals variable responses of African 

carnivores to management alternatives   

Distance 

sampling 

Kenya 
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Ferreira, S.M. & 
Funston, P.J. 

African Journal 
of Wildlife 

Research 

2016 Population estimates of spotted hyaenas in the Kruger National Park, South 
Africa 

Call up South Africa 

Fewster, R.M. Biometrics 2011 Variance Estimation for Systematic Designs in Spatial Surveys Distance 

sampling 

Tanzania 

Fouché, J. et al. African Journal 

of Ecology 

2020 Density estimates of spotted hyaena (Crocuta crocuta) on arid farmlands of 

Namibia 

SCR Namibia 

Funston, P.J. et al. Journal of 

Zoology 

2010 Substrate and species constraints on the use of track incidences to estimate 

African large carnivore abundance. 

Track count South Africa 

Funston, P.J. et al. PLoS One 2013 Insights into the Management of Large Carnivores for Profitable Wildlife-

Based Land Uses in African Savannas 

Track Zimbabwe 

Graf, J.A. et al. Acta 

Theriologica 

2009 Heterogeneity in the density of spotted hyaenas in Hluhluwe-iMfolozi Park, 

South Africa 

Call up South Africa 

Green, D.S. et al. Biodiversity 

Conservation 

2019 Anthropogenic disturbance induces opposing population trends in spotted 

hyenas and African lions 

Total counts Kenya 

Green, D.S. et al. Philosophical 

Transactions B 

2019 Can hyena behaviour provide information on population trends of sympatric 

carnivores? 

Total counts Kenya 

Groom, R.J. et al Oryx 2014 Surveys of lions Panthera leo in protected areas in Zimbabwe yield 

disturbing results: what is driving the population collapse 

Call up Zimbabwe 

Henschel, P. et al. African Journal 

of Ecology 

2020 Census and distribution of large carnivores in the Tsavo national parks, a 

critical east African wildlife corridor 

Track count Kenya 

Henschel, P. et al. Journal of 

Mammalogy 

2014 The status of savanna carnivores in the Odzala-Kokoua National Park, 

northern Republic of Congo 

Capture 

recapture 

Republic of 

Congo 

Höner, O.P. et al. Journal of 

Animal Ecology 

2012 The impact of a pathogenic bacterium on a social carnivore population Total counts Tanzania 

Höner, O.P. et al. Journal of 

Animal Ecology 

2002 The response of spotted hyaenas to long‐term changes in prey populations: 

functional response and interspecific kleptoparasitism 

Total counts Tanzania 

Höner, O.P. et al. Oikos 2005 The effect of prey abundance and foraging tactics on the population 

dynamics of a social, territorial carnivore, the spotted hyena 

Total counts Tanzania 

Keeping, D. Animal 

Conservation 

2014 Rapid assessment of wildlife abundance: estimating animal density with 

track counts using body mass–day range scaling rules 

Track count South Africa 

Keeping, D. et al. Biological 

Conservation 

2018 Can trackers count free-ranging wildlife as effectively and efficiently as 

conventional aerial survey and distance sampling? Implications for citizen 
science in the Kalahari, Botswana 

Track count Botswana 
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of Ecology 

2007 Response of lions (Panthera leo LINNAEUS 1758) and spotted hyaenas 
(Crocuta crocuta ERXLEBEN 1777) to sound playbacks 

Call up Tanzania 

Kirsten, I. et al. African Journal 

of Ecology 

2017 Lion (Panthera leo) and spotted hyena (Crocuta crocuta) abundance in 

Bouba Ndjida National Park, Cameroon; trends between 2005 and 2014 

Call up Cameroon 

Mbise et al. Global Ecology 
and 

Conservation 

2020 Do carnivore surveys match reports of carnivore presence by 
pastoralists? A case of the eastern Serengeti ecosystem 

Call up Tanzania 

Mbizah, M.M. et al.  South African 

Journal of 
Wildlife 

Research 

2012 Diet of four sympatric carnivores in Save Valley Conservancy, Zimbabwe: 

implications for conservation of the African wild dog (Lycaon pictus) 

Track count Zimbabwe 

Mills, M.G.L. et al. Animal 

Conservation 

2001 Estimating the size of spotted hyaena (Crocuta crocuta) populations through 

playback recordings allowing for non-response 

Call up South Africa 

Mohammed, A.A. et 

al. 

African Journal 

of Ecology 

2019 Lion and spotted hyaena abundance in Dinder National Park, Sudan Call up Sudan 

M'soka, J. et al. Biological 

Conservation 

2016 Spotted hyaena survival and density in a lion depleted ecosystem: The 

effects of prey availability, humans and competition between large 
carnivores in African savannahs 

Mark-resight Zambia 

O'Brien, T.G. & 

Kinnaird, M.F. 

Ecological 

Applications 

2011 Density estimation of sympatric carnivores using spatially explicit capture–

recapture methods and standard trapping grid 

SCR Kenya 

Ogutu, J.O. et al. Journal of 
Zoology 

2005 The effects of pastoralism and protection on the density and distribution of 
carnivores and their prey in the Mara ecosystem of Kenya 

Call up Kenya 

Ogutu, J.O. et al. PLoS One 2017 Wildlife Population Dynamics in Human-Dominated Landscapes under 

Community-Based Conservation: The Example of Nakuru Wildlife 
Conservancy, Kenya 

Total counts Kenya 

Omoya, E.O. et al. Oryx 2013 Estimating population sizes of lions Panthera leo and spotted hyaenas 

Crocuta crocuta in Uganda's savannah parks, using lure count methods 

Call up Uganda 

Rafiq, K. et al. Current Biology 2019 Tourist photographs as a scalable framework for wildlife monitoring in 
protected areas 

Mixed (SCR, 
track, call in) 

Botswana 

Rich, L.N. et al Biological 

Conservation 

2019 Sampling design and analytical advances allow for simultaneous density 

estimation of seven sympatric carnivore species from camera trap data 

SCR Botswana 

Stratford, K. et al. African Journal 
of Ecology 

2019 Dyadic associations reveal clan size and social network structure in the 
fission–fusion society of spotted hyaenas 

Capture 
recapture 

Namibia 
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Trinkel, M. Canadian 
Journal of 

Zoology 

2009 A keystone predator at risk? Density and distriubtion of the spotted hyena 
(Crocuta crocuta) in the Etosha National Park, Namibia 

Call up Namibia 

Vissia et al. Journal of 

Zoology 

2021 Co-occurrence of high densities of brown hyena and spotted hyena in central 

Tuli, Botswana 

SCR Botswana 

Watts, H.E. & 

Holekamp, K.E. 

Journal of 

Mammalogy 

2009 Ecological Determinants of Survival and Reproduction in the Spotted Hyena Total counts Kenya 

Watts, H.E. & 

Holekamp, K.E. 

Journal of 

Zoology 

2008 Interspecific competition influeces reoroduction in spotted hyenas Total counts Kenya 

Yirga, G. et al. Mammalian 

Biology 

2013 Spotted hyena (Crocuta crocuta) coexisting at high density with people in 

Wukro district, northern Ethiopia 

Call up Ethiopia 

Yirga, G. et al. Momona 

Ethiopian 
Journal of 

Science  

2014 Status of Lion (Panthera leo) and Spotted Hyena (Crocuta crocuta) in 

Nechisar National Park, Ethiopia 

Call up Ethiopia 

Yirga, G. et al. Mammalian 

Biology 

2014 Local spotted hyena abundance and community tolerance of depredation in 

human-dominated landscapes in Northern Ethiopia 

Call up Ethiopia 

Yirga, G. et al. Mammalian 

Biology 

2017 Densities of spotted hyaena (Crocuta crocuta) and African golden wolf 

(Canis anthus) increase with increasing anthropogenic influence 

Call up Ethiopia 

Yirga, G. et al. European 

Journal of 
Wildlife 

Research 

2011 Peri-urban spotted hyena (Crocuta crocuta) in northern Ethiopia: diet, 

economic impact, and abundance 

Call up Ethiopia 

Yirga, G. et al. Wildlife 
Research 

2015 Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps 
across Tigray, northern Ethiopia 

Call up Ethiopia 

 

 

 

 

 



         

263 
 

Appendix II 

Table A2. Literature reviewed on leopard (Panthera pardus) population estimates and methods used to estimate density in sub-Saharan Africa 

between 2000 and 2021. 

Authors Year Title Journal Method Country 

Aebischer et 

al. 

2020 Apex predators decline after an influx of pastoralists in 

former Central African Republic hunting zones 

Biological 

Conservation 

Track CAR 

Allen et al. 2020 Counting cats for conservation: seasonal estimates of 

leopard density and drivers of distribution in the Serengeti 

Biodiversity and 

Conservation 

SCR Tanzania 

Balme et al. 2019 Big cats at large: Density, structure, and spatio-temporal 

patterns of a leopard population free of anthropogenic 

mortality 

Population Ecology SCR South Africa 

Balme et al. 2009 Impact of conservation interventions on the dynamics and 

persistence of a persecuted leopard (Panthera pardus) 

population 

Biological 

Conservation 

CR South Africa 

Balme et al. 2010 Edge effects and the impact of non-protected areas in 

carnivore conservation: leopards in the Phinda–Mkhuze 

Complex, South Africa 

Animal Conservation CR South Africa 

Balme et al. 2009 Evaluating Methods for Counting Cryptic Carnivores Journal of Wildlife 

Management 

CR/Track/GPS South Africa 

Bauer et al. 2015 Large carnivore abundance in the Benoue Ecosystem, 

North Cameroon 

African Journal of 

Ecology 

Track Cameroon 

Boast & 

Houser 

2012 Density of large predators on commercial farmland 

in Ghanzi, Botswana 

South African Journal 

of Wildlife Research 

Track Botswana 

Braczkowski 

et al. 

2016 Scent Lure Effect on Camera-Trap Based Leopard Density 

Estimates 

PLoS One SCR/CR South Africa 

Chapman & 

Balme 

2010 An estimate of leopard population density in a private 

reserve in KwaZulu-Natal, South Africa, using 

camera-traps and capture–recapture models 

South African Journal 

of Wildlife Research 

CR South Africa 
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Chase Grey et 

al. 

2013 Evidence of a High Density Population of Harvested 

Leopards in a Montane Environment 

PLoS One SCR South Africa 

Croes et al.  2011 The impact of trophy hunting on lions (Panthera leo) and 

other large carnivores in the Bénoué Complex, northern 

Cameroon 

Biological 

Conservation 

Track Cameroon 

Davis et al. 2020 Spatial partial identity model reveals low densities of 

leopard and spotted hyaena in a miombo woodland 

Journal of Zoology SCR Malawi 

Devens et al. 2021 Estimating leopard density across the highly modified 

human-dominated landscape of the Western Cape, South 

Africa 

Oryx SCR South Africa 

Devens et al. 2018 Counting the spots: The use of a spatially explicit capture–

recapture technique and GPS data to estimate leopard 

(Panthera pardus) density in the Eastern and Western Cape, 

South Africa 

African Journal of 

Ecology 

SCR/GPS South Africa 

du Preez et al.  2014 To bait or not to bait: A comparison of camera-trapping 

methods for estimating leopard Panthera pardus density 

Biological 

Conservation 

SCR Zimbabwe 

Dunnink et al. 2019 A socio-ecological landscape analysis of human–wildlife 

conflict in northern Botswana 

Oryx Track Botswana 

Edwards et al. 2016 Leopard density estimates from semi-desert commercial 

farmlands, south-west Namibia 

African Journal of 

Ecology 

CR Namibia 

Funston et al. 2013 Insights into the Management of Large Carnivores for 

Profitable Wildlife-Based Land Uses in African Savannas 

PLoS One Track Zimbabwe 

Funston et al. 2010 Substrate and species constraints on the use of track 

incidences to estimate African large carnivore abundance 

Journal of Zoology Track South 

Africa/Zimbabwe 

Havmoller et 

al. 

2019 Reserve size and anthropogenic disturbance affect the 

density of an African leopard (Panthera pardus) meta-

population 

PLoS One SCR Tanzania 

Henschel et al. 2020 Census and distribution of large carnivores in the Tsavo 

national parks, a critical east African wildlife corridor 

African Journal of 

Ecology 

Track Kenya 

Henschel et al. 2011 Leopard prey choice in the Congo Basin rainforest suggests 

exploitative competition with human bushmeat hunters 

African Journal of 

Ecology 

SCR Gabon 
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Keeping 2014 Rapid assessment of wildlife abundance: estimating animal 

density with track counts using body mass–day range 

scaling rules 

Animal Conservation Track South Africa 

Keeping et al. 2018 Can trackers count free-ranging wildlife as effectively and 

efficiently as conventional aerial survey and distance 

sampling? Implications for citizen science in the Kalahari, 

Botswana 

Biological 

Conservation 

Track Botswana 

Mann et al. 2020 A leopard's favourite spots: Habitat preference and 

population density of leopards in a semi-arid biodiversity 

hotspot 

Journal of Arid 

Environments 

SCR South Africa 

Maputla et al. 2013 Calibrating a camera trap–based biased mark–recapture 

sampling design to survey the leopard population in the 

N'wanetsi concession, Kruger National Park, South Africa 

African Journal of 

Ecology 

CR South Africa 

Miller et al. 2018 Lions and leopards coexist without spatial, temporal or 

demographic effects of interspecific competition 

Journal of Animal 

Ecoogy 

SCR South Africa 

Noack et al. 2019 Leopard Density Estimation within an Enclosed Reserve, 

Namibia Using Spatially Explicit Capture-Recapture 

Models. 

Animals SCR Namibia 

O'Brien and 

Kinnaird 

2011 Density estimation of sympatric carnivores using spatially 

explicit capture–recapture methods and standard trapping 

grid 

Ecological 

Applications 

SCR Kenya 

Rafiq et al. 2019 Tourist photographs as a scalable framework for wildlife 

monitoring in protected areas 

Current Biology SCR/Track Botswana 

Ramesh et al. 2017 Low leopard populations in protected areas of Maputaland: 

a consequence of poaching, habitat condition, abundance of 

prey, and a top predator 

Ecology and Evolution SCR South Africa 

Rich et al. 2019 Sampling design and analytical advances allow for 

simultaneous density estimation of seven sympatric 

carnivore species from camera trap data 

Biological 

Conservation 

SCR Botswana 

Rogan et al. 2019 The influence of movement on the occupancy–density 

relationship at small spatial scales 

Ecosphere SCR South Africa 
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Rosenblatt et 

al. 

2016 Effects of a protection gradient on carnivore density and 

survival: an example with leopards in the Luangwa valley, 

Zambia 

Ecology and Evolution CR Zambia 

Searle et al. 2021 Leopard population density varies across habitats and 

management strategies in a mixed-use Tanzanian landscape 

Biological 

Conservation 

SCR Tanzania 

Stein et al. 2011 Leopard population and home range estimates in north-

central Namibia 

African Journal of 

Ecology 

CR Namibia 

Strampelli et 

al.  

2020 Leopard Panthera pardus density in southern Mozambique: 

evidence from spatially explicit capture–recapture in 

Xonghile Game Reserve 

Oryx SCR Mozambique 

Swanepoel et 

al. 

2015 Density of leopards Panthera pardus on protected and 

non-protected land in the Waterberg Biosphere, South 

Africa 

Wildlife Biology SCR South Africa 

Swanepoel et 

al. 

2015 Functional Responses of Retaliatory Killing versus 

Recreational Sport Hunting of Leopards in South Africa 

PLoS One SCR South Africa 

Tarugara et al. 2019 Cost-benefit analysis of increasing sampling effort in a 

baited-camera trap survey of an African leopard (Panthera 

pardus) population 

Global Ecology and 

Conservation 

CR Zimbabwe 

Williams et al. 2017 Population dynamics and threats to an apex predator 

outside protected areas: implications for carnivore 

management 

Royal Society Open 

Science 

SCR South Africa 

* Methods: Capture-recapture (CR); use of GPS/satellite/VHF collars (GPS); Spatial capture-recapture (SCR); Track count surveys (Track). 
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Appendix III 

Table A3. Geweke diagnostic statistics and Bayes p-values generated in SPACECAP for the 

single-flank and both plus partial sample models for leopard and spotted hyaena in Kasungu 

National Park, Malawi. 

 

 

 

 

 

 

 

 

 

Year Model sigma lam0 beta psi N Bayes P-value 

2018 Leopard - Single 0.65 -1.16 1.29 1.69 1.52 0.55 
 Leopard - Both + Left -0.93 0.72 -0.36 -0.73 -0.61 0.78 
 Leopard - Both + Right 0.36 -0.76 0.88 0.87 0.73 0.83 
 Hyaena – Single -0.01 0.19 -0.44 -0.37 -0.27 0.75 
 Hyaena - Both + Left 1.06 -0.53 0.51 0.61 0.01 0.9 
 Hyaena - Both + Right 0.7 0.05 -0.33 -1.55 -1.53 0.87 

2017 Leopard – Single -1.57 0.56 -0.39 -0.48 -0.42 0.65 
 Leopard - Both + Left 0.81 -1.03 1.43 1.15 1.47 0.74 
 Leopard - Both + Right 0.8 -0.22 0.11 0.2 -0.05 0.76 
 Hyaena – Single 1.04 -0.47 0.11 -1.23 -1.23 0.54 
 Hyaena - Both + Left -0.42 0.61 0.19 -0.34 -0.23 0.62 
 Hyaena - Both + Right 1.16 -1.57 0.95 -0.49 -0.7 0.63 

2016 Leopard - Single -0.61 -1.09 0.09 0.66 0.68 0.59 
 Leopard - Both + Left -0.1 0.8 -1.08 -0.8 -0.82 0.63 
 Leopard - Both + Right 1.51 -1.28 1.06 -1.58 -1.55 0.71 
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Appendix IV  

Table A4.1. Overall summaries of binomial generalised linear mixed models predicting the 

likelihood of leopard detection at camera stations in Kasungu National Park, Malawi, across 

all survey years (2016, 2017 and 2018) during a given 5-day sampling occasion. Each model 

log-likelihoods (logLik), number of parameters (K), delta AICc (ΔAICc), AICc weight (Wi), 

and cumulative AICc weights (Cum. Wi) are presented. 

 

Model K AICc ΔAICc Wi Cum. Wi Log 

likelihood 

Hyaena + Prey + Water 5 1117.88 0.00 0.29 0.29 -553.91 

Prey + Water 4 1118.88 1.00 0.17 0.46 -555.42 

Hyaena + Prey + Water + Habitat 6 1119.47 1.59 0.13 0.59 -553.70 

Hyaena + Prey + Water + Border 6 1119.86 1.98 0.11 0.70 -553.89 

Prey + Water + Habitat 5 1120.51 2.64 0.08 0.78 -555.23 

Prey + Water + Border 5 1120.85 2.97 0.06 0.84 -555.40 

Hyaena + Prey + Water + Border 

+ Habitat 

7 1121.44 3.56 0.05 0.89 -553.67 

Prey + Water + Border + Habitat 6 1122.47 4.59 0.03 0.92 -555.20 

Hyaena + Water 4 1123.57 5.69 0.02 0.94 -557.77 

Hyaena + Prey 4 1124.37 6.49 0.01 0.95 -558.17 

Water 3 1124.94 7.06 0.01 0.96 -559.46 

Hyaena + Water + Habitat 5 1125.26 7.38 0.01 0.97 -557.60 

Hyaena + Water + Border 5 1125.32 7.44 0.01 0.98 -557.63 

Prey 3 1125.32 7.44 0.01 0.99 -559.65 

Hyaena + Prey + Border 5 1126.20 8.32 0.01 1.00 -558.08 

Hyaena + Prey + Habitat 5 1126.37 8.49 0.00 1.00 -558.16 

Water + Border 4 1126.66 8.78 0.00 1.00 -559.31 

Water + Habitat 4 1126.67 8.79 0.00 1.00 -559.32 

Hyaena + Water + Border + 

Habitat 

6 1126.96 9.08 0.00 1.00 -557.44 

Prey + Border 4 1127.13 9.25 0.00 1.00 -559.55 

Prey + Habitat 4 1127.32 9.45 0.00 1.00 -559.65 

Hyaena + Prey + Border + Habitat 6 1128.19 10.31 0.00 1.00 -558.06 

Water + Border + Habitat 5 1128.35 10.47 0.00 1.00 -559.15 

Prey + Border + Habitat 5 1129.13 11.25 0.00 1.00 -559.54 

Hyaena 3 1130.32 12.44 0.00 1.00 -562.15 

Hyaena + Border 4 1131.80 13.92 0.00 1.00 -561.88 

Hyaena + Habitat 4 1132.33 14.45 0.00 1.00 -562.15 

Border 3 1133.04 15.16 0.00 1.00 -563.51 

Habitat 3 1133.61 15.73 0.00 1.00 -563.80 

Hyaena + Border + Habitat 5 1133.80 15.92 0.00 1.00 -561.87 

Border + Habitat 4 1135.04 17.16 0.00 1.00 -563.50 
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Table A4.2. Overall summaries of binomial generalised linear mixed models predicting the 

likelihood of spotted hyaena detection at camera stations in Kasungu National Park, Malawi, 

across all survey years (2016, 2017 and 2018) during a given 5-day sampling occasion. Each 

model log-likelihoods (logLik), number of parameters (K), delta AICc (ΔAICc), AICc weight 

(Wi), and cumulative AICc weights (Cum. Wi) are presented. 

 

 

  Model K AICc ΔAICc Wi Cum. Wi Log 

likelihood 

Leopard + Prey 4 1243.14 0.00 0.18 0.18 -617.55 

Prey 3 1244.02 0.88 0.11 0.29 -619.00 

Leopard + Prey + Habitat 5 1244.61 1.47 0.09 0.38 -617.28 

Leopard + Prey + Border 5 1244.88 1.75 0.07 0.45 -617.42 

Leopard + Prey + Water 5 1245.02 1.89 0.07 0.52 -617.49 

Prey + Habitat 4 1245.51 2.37 0.05 0.57 -618.74 

Prey + Border 4 1245.72 2.59 0.05 0.62 -618.84 

Prey + Water 4 1245.98 2.84 0.04 0.66 -618.97 

Leopard 3 1246.29 3.16 0.04 0.70 -620.14 

Leopard + Prey + Water + Habitat 6 1246.40 3.27 0.03 0.73 -617.17 

Leopard + Prey + Habitat + 

Border 

6 1246.41 3.27 0.03 0.76 -617.17 

Leopard + Prey + Water + Border 6 1246.77 3.63 0.03 0.79 -617.35 

Prey + Habitat + Border 5 1247.26 4.13 0.02 0.81 -618.61 

Prey + Water + Habitat 5 1247.41 4.27 0.02 0.83 -618.68 

Leopard + Habitat 4 1247.62 4.48 0.02 0.85 -619.79 

Prey + Water + Border 5 1247.68 4.54 0.02 0.87 -618.81 

Leopard + Border 4 1247.96 4.83 0.02 0.89 -619.97 

Leopard + Prey + Water + Habitat 

+ Border 

7 1248.20 5.06 0.01 0.90 -617.05 

Leopard + Water 4 1248.23 5.10 0.01 0.91 -620.10 

Habitat 3 1249.01 5.87 0.01 0.92 -621.49 

Prey + Water + Habitat + Border 6 1249.16 6.02 0.01 0.93 -618.54 

Border 3 1249.28 6.15 0.01 0.94 -621.63 

Leopard + Habitat + Border 5 1249.35 6.22 0.01 0.95 -619.65 

Leopard + Water + Habitat 5 1249.47 6.34 0.01 0.96 -619.71 

Water 3 1249.66 6.52 0.01 0.97 -621.82 

Leopard + Water + Border 5 1249.90 6.76 0.01 0.98 -619.92 

Habitat + Border 4 1250.69 7.56 0.00 1.00 -621.33 

Water + Habitat 4 1250.96 7.82 0.00 1.00 -621.46 

Leopard + Water + Habitat + 

Border 

6 1251.20 8.07 0.00 1.00 -619.57 

Water + Border 4 1251.27 8.14 0.00 1.00 -621.62 

Water + Habitat + Border 5 1252.64 9.50 0.00 1.00 -621.29 
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Appendix V  

Table A5.1. Estimates of difference in activity between years and sexes for leopard in Kasungu 

National Park, Malawi. Bootstrapped activity patterns, with 10,000 smoothed bootstrap 

samples, were compared using Wald statistic (W) on a chi-square distriubtion with one degree 

of freedom in order to test for significance (P) at the 5% level.  

 

Table A5.2. Estimates of difference in activity between years for spotted hyaena in Kasungu 

National Park, Malawi. Bootstrapped activity patterns, with 10,000 smoothed bootstrap 

samples, were compared using Wald statistic (W) on a chi-square distriubtion with one degree 

of freedom in order to test for significance (P) at the 5% level.  

 

 

Species Interaction Difference SE W P 

Leopard (both sexes) 2016 – Leopard (both sexes) 2017 0.09 0.10 0.79 0.37 

Leopard (both sexes) 2016 – Leopard (both sexes) 2018 <0.001 0.10 <0.001 0.99 

Leopard (both sexes) 2017 – Leopard (both sexes) 2018 -0.09 0.09 1.11 0.29 

Leopard (male) 2016 – Leopard (male) 2017 0.04 0.14 0.09 0.76 

Leopard (male) 2016 – Leopard (male) 2018 0.04 0.14 0.09 0.76 

Leopard (male) 2017 – Leopard (male) 2018 <0.001 0.10 <0.001 0.99 

Leopard (female) 2016 – Leopard (female) 2017 -0.09 0.12 0.63 0.43 

Leopard (female) 2016 – Leopard (female) 2018 -0.10 0.11 0.75 0.39 

Leopard (female) 2017 – Leopard (female) 2018 -0.002 0.11 <0.001 0.98 

Species Interaction Difference SE W P 

Spotted hyaena 2016 – Spotted hyaena 2017 0.08 0.06 1.91 0.16 

Spotted hyaena 2016 – Spotted hyaena 2018 0.06 0.05 1.40 0.24 

Spotted hyaena 2017 – Spotted hyaena 2018 -0.01 0.05 0.06 0.80 



   

   

   

271 
 

Appendix VI  

Table A6. Summary of Hermans-Rasson uniformity test to assess if a random activity pattern 

was exhibited over a circadian cycle for leopard (both sexes and individual) and spotted hyaena 

in Kasungu National Park, Malawi. The number of samples (N) is presented, alongside the 

Hermans-Rasson test statistic (T) and the p-value (P), where a p-value below 0.05 shows 

activity patterns were significantly different from a random distribution. The number of 

iterations was set to 10,000 samples for all tests. 

Species N T P 

Leopard (both sexes) 273 545.7 < 0.001 

Leopard (♂) 77 149.8 < 0.001 

Leopard (♀) 170 343.1 < 0.001 

Spotted hyaena 385 737.8 < 0.001 

 

 

 


