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As long-lived, slowly reproducing animals, primates face numerous ecological challenges to 13 

their survival and successful reproduction. The majority of primates live in groups, an adaptation 14 

widespread in the animal kingdom that can provide improved predator defense, food acquisition, 15 

and access to mating opportunities; all of which can contribute to an individual’s fitness. 16 

Compared to other animal taxa, however, primates are intensely social, spending a significant 17 

amount of time forming and maintaining social relationships within their group (Dunbar 1991). 18 

There is evidence to suggest that such relationships are evolutionarily adaptive: more socially 19 

integrated individuals experience improved rates of survival and reproductive success (Silk et al. 20 

2009; Schülke et al. 2010; McFarland & Majolo 2013; McFarland et al 2017). One argument for 21 

the adaptive value of social relationships is that they help offset the inevitable costs of  group-22 

living, which manifest in terms of increased competition for resources, such as food, safe spatial 23 

positions and mates.  The patterning of social life thus represents the negotiation of individual 24 

needs within constraints imposed by others. This, in turn, is argued to have selected for a high 25 

degree of developmental plasticity and behavioral flexibility among the anthropoid primates in 26 

particular. 27 

 28 

In addition to these social challenges, climatic variability is also known to exert strong selective 29 

pressures on ecology, behavior and physiology, and has similarly been argued to select for 30 

plasticity in the form of developmental norms of reaction, as well as individual behavioral 31 

flexibility. Most notably, it has been argued that selection for the ability to cope with and 32 

respond to rapid and extensive environmental change can explain patterns of hominin evolution, 33 

and the marked flexibility of humans compared to other animals (Potts 1998; Maslin et al. 2015). 34 

Understanding the scope and limits of primates’ ability to cope with environmental variability is 35 
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thus the focus of much socioecological research which, broadly speaking, attempts to answer the 36 

question of how primates solve their ecological problems with respect to the opportunities and 37 

constraints of social life. Such questions are becoming ever more pressing in the context of the 38 

imminent threat of global climate change to our planet’s biodiversity (Thompson et al. 2005; 39 

Wiederholt & Post 2010). Approximately 60% of species are now threatened with extinction, 40 

with 75% of primate species experiencing a declining population (Estrada et al. 2017). 41 

 42 

Our own research focuses on the behavioral and physiological strategies used by primates to deal 43 

with environmental variation, both via changes in resource availability and in terms of direct 44 

climatic effects. Specifically, we focus on the thermal physiology wild vervets (Chlorocebus 45 

pygerythrus), investigating whether social life compounds or ameliorates the demands made by 46 

the thermal environment. Vervet monkeys are ideal model organisms for a study of this type 47 

because they are obligatorily social, experience a wide temperature range in arid environments, 48 

and manifest a range of specialised behavioral thermoregulatory adaptations. To date, most 49 

studies on the thermal physiology of large mammals (which, generally speaking, means non-50 

rodent species) have focused on species that are either solitary or show limited sociality (Fuller 51 

et al. 2016). Unlike these species, group-living primates potentially face a compromise between 52 

the strategies that promote physiological homeostasis and those that optimise the benefits of 53 

group-living. Our study is unique, therefore, in allowing us to probe the intersection of our 54 

animals’ ecological and social strategies, the degree of flexibility they display, and what 55 

consequences this holds for survival and reproductive success. This, in turn, provides vital 56 

information concerning the long-term viability of vervets populations in the face of ongoing 57 

climate change.  58 
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 59 

Since 2008, we have been studying three groups of vervets on the Samara Private Game Reserve 60 

in the Nama Karoo, Eastern Cape, South Africa, combining behavioral, ecological, and body 61 

temperature data, to investigate individual differences in thermal competence, sociability and 62 

fitness-related traits. Samara is characterized as a high-altitude, semi-arid desert, with vervet 63 

presence mostly restricted to narrow strips of riparian Acacia karroo woodland along non-64 

perennial streams (Pasternak et al. 2013). The region experiences hot, wet summers (November – 65 

March) and cold, dry winters (June – August), with minimum and maximum temperatures 66 

ranging between -5 and 40 ºC (McFarland et al. 2014). This region of South Africa is also prone 67 

to intermittent periods of drought (Hoffman et al 2009). Vervets have inhabited the semi-arid 68 

karoo biome of South Africa since at least the 18th century, and despite these extreme 69 

environmental conditions, are found at high population densities, with higher than average group 70 

sizes compared to other vervet populations in Africa (Pasternak et al. 2013). The rapidity of 71 

change in arid-zone thermal environments offers an excellent and feasible opportunity to track 72 

the targets of natural selection for thermal competence. 73 

 74 

The majority of studies that have explored the effects of environmental variability on primates 75 

have tended to focus on the effect of climatic variables on behaviors crucial for survival (e.g., 76 

resting, foraging and social activity: Hill et al. 2003; Campos & Fedigan 2009; Korstjens et al. 77 

2010; Majolo et al. 2013; McFarland et al. 2014). Importantly, only a few studies have directly 78 

collected body temperature measurements from free-ranging primates (Brain & Mitchell 1999; 79 

Mzilikaze et al. 2006; Dausman et al. 2004; Nowack et al. 2010; Thompson et al. 2014). 80 

Although these studies have provided important insights, they have been restricted to few study 81 
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subjects, short study periods, or lacked detailed simultaneous data on the primates’ behavior, 82 

feeding ecology and environment. Moreover, most of these studies used skin or subcutaneous 83 

body temperature measurements, which can be significantly affected by ambient temperature, 84 

ultimately providing less accurate accounts of the effect of climate on core body temperature. 85 

Consequently, the existing literature provides limited insight into the effects of environmental 86 

variability on animal’s ability to thermoregulate efficiently. Our study of vervets is the first to 87 

use bio-logging technology to collect continuous long-term measurements of core body 88 

temperature from multiple individuals in a wild population, whilst simultaneously collecting 89 

detailed records of their behavior and ecology (McFarland et al. 2013). Bio-logging has allowed 90 

us to determine how efficiently a monkey regulates its body temperature (i.e., daily body 91 

temperature averages, amplitudes, minima and maxima) when exposed to environmental and 92 

social stressors. 93 

 94 

Like all mammals, vervet monkeys are homeothermic, and typically maintain a body temperature 95 

ranging between 37 and 39 ºC (Lubbe et al. 2014). Homeothermy is the ability to maintain a core 96 

body temperature within a narrow range when subjected to a wide range of environmental 97 

temperatures. This is achieved through a combination of autonomic and behavioral processes. 98 

Autonomic processes, involving the activation of pathways in the anterior hypothalamus to 99 

regulate the balance of heat production and loss, can be costly in terms of energy expenditure at 100 

low temperatures, and water loss (i.e., evaporative sweat) at high temperatures. To help alleviate 101 

these costs, animals can also engage in behaviors that help to keep their body warm or cold, such 102 

as changing posture or selecting appropriate microclimates. Vervets use various behavioral 103 

strategies in their attempt to buffer themselves from environmental variability. During warmer 104 
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periods, vervets spend significantly more time resting at the expense of feeding (McFarland et al. 105 

2014). To reduce the effect of the heat, vervets also seek out shade, hug cool river rocks, retreat 106 

into aardvark burrows, and spend time swimming (Fig. 1). In cooler conditions, vervets can be 107 

seen sun-basking or huddling with other group members, as they try to maximize heat gain, or 108 

minimize heat-loss, respectively (Fig. 1). Vervets devote significantly more time to feeding, at 109 

the expense of resting, as part of their attempt to meet the energetic demands of colder conditions 110 

(McFarland et al. 2014). 111 

 112 

So far, we have established that vervet monkeys in the Eastern Cape are more prone to cold 113 

stress than heat stress (Lubbe et al. 2014; McFarland et al. 2015; Henzi et al. 2017).  Specifically, 114 

vervets display reduced thermoregulatory efficiency, experiencing lower, and increasingly 115 

hypothermic body temperatures, when temperatures are cold (i.e., the winter months). Moreover, 116 

we also see the greatest inter-individual variability in thermal competence at this time of year, 117 

and these effects become more pronounced as winter progresses and the energetic demands 118 

persist. The challenge of the cold is to minimize heat-loss to the environment whilst maximizing 119 

heat-gain and energy consumption. These problems are exacerbated at night, when vervets 120 

retreat to the trees and the risk of predation from land predators is highest (such predators present 121 

a significant risk at our study site, where vervets are exposed to black-backed jackal (Canis 122 

mesomelas), caracal (Caracal caracal) and several birds of prey: Pasternak et al. 2013; 123 

Ducheminsky et al. 2014). With minimal foraging capability, there is little a monkey can do to 124 

buffer itself against cold night-time temperatures. The only strategy available is to find another 125 

group member, and engage in huddling. Nocturnal huddling has been observed to be an 126 

important adaptation to a range of primate species living in temperate climates (Takahashi 1997; 127 
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Ogawa & Takahashi 2003; Li et al. 2010; McFarland & Majolo 2013). In line with these 128 

previous findings, our study has shown that thermal competence is positively predicted by an 129 

individual’s number of social partners (McFarland et al. 2015; Henzi et al. 2017); a finding we 130 

interpret as reflecting variation in the number of potential huddling partners an animal can call 131 

on in cold temperatures. Interestingly, for males, we also found that their tenure length in the 132 

troop explains some of the variance in thermoregulatory competence. This suggests that learning 133 

and selecting suitable microhabitats at night may also play a role in improving thermoregulatory 134 

efficiency (Henzi et al. 2017). In a tangential experimental study of the heat-transfer 135 

characteristics of vervet monkey pelts, we found that grooming behavior (Fig. 1) apparently 136 

minimizes heat loss by increasing the pelt’s insulative properties (i.e., loft), thus enabling 137 

animals to compensate for moderate environmental cooling, without increasing the demand of 138 

their metabolism (McFarland et al. 2016).  139 

 140 

During hot conditions, vervets show remarkable efficiency in keeping their body temperature 141 

stable, and avoid significant bouts of hyperthermia (Lubbe et al. 2014). It is not surprising that 142 

vervets cope better with heat given that, as noted above, they have more strategies for dissipating 143 

heat than conserving it. In addition to bio-logging the vervets’ temperature, we also use the same 144 

logging technology to measure environmental temperatures, and have found that, when vervets 145 

seek shade during the hottest part of the day, they select microclimates that can be up to twenty 146 

degrees cooler than direct exposure to the sun. Importantly, our vervets also have regular access 147 

to drinking water, which facilitates the sweat production necessary to dissipate heat in these 148 

conditions. Although largely a water-dependent species – vervets’ geographical distribution is 149 

restricted to riverine habitats or artificial water sources maintained by humans – vervets can 150 
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show remarkable resilience to periods of water unavailability, a circumstance not uncommon 151 

within their semi-arid, drought prone habitats. Prior to the beginning of our thermoregulation 152 

study (and partly the impetus for it), the vervets experienced a period of intense drought, during 153 

which there was very little free-standing water present in the troops’ territories (McDougall et al. 154 

2010). As a consequence, there was a marked increase in aggression over access to the little 155 

water that was present, despite these being small seepage points that offered little reward. More 156 

interesting, however, is what happened at the point when all free-standing water dried up 157 

completely. One of our troops was observed to leave their territory on the day after all the free-158 

standing water dried up, venturing away from the river, along an exposed ridge unoccupied by 159 

any other vervet troops. They then returned to the river approximately 750m from their territory 160 

boundary, bypassing the ranges of four other groups, and entering an area containing a series of 161 

large pools. Our supposition is that the animals were led there by a male immigrant returning to 162 

his former territory. The willingness of other group members to follow this male, along with the 163 

intense aggression over largely unproductive water sources, suggests that vervets perceive direct 164 

access to water as crucial. In another of our groups, the loss of standing water did not prompt 165 

immediate movement in search of water. Instead, the group persisted without water for over a 166 

month by targeting succulent plants and licking dew from rocks and grass. Eventually, this group 167 

similarly followed an immigrant male to the water outside of their home territory. Visits by the 168 

two troops were then both regular and frequent, and the monkeys finally began sleeping at the 169 

new site. During this period, we observed no drought-related deaths, but it is clear that, had the 170 

monkeys not discovered a source of free-standing water, their survival would have been 171 

compromised. In this respect, the ability to observe and copy the behavior of animals with a 172 

broader experience of the surrounding area reflects another benefit of sociality. 173 
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 174 

Understanding how social influences on thermoregulation tie into vervet social dynamics is a 175 

topic we are now exploring in more detail. The Samara vervets display some interesting 176 

differences in their social behavior compared to the classic studies from Amboseli, which may be 177 

related to larger group sizes at our site (Henzi et al. 2013). Specifically, Samara females show 178 

clear grooming and proximity preferences for certain individuals, but these patterns are not easily 179 

explained by the standard organizing principles of rank and kinship: our females do not groom 180 

up the hierarchy, nor do they favor adjacently ranked females (i.e., those who are likely to be 181 

kin). There is no relationship between females’ spatial proximity to each other and their 182 

probability of grooming (i.e., females do not simply groom whichever animal happens to be 183 

convenient). We have, however, shown that females use grooming strategically to secure safe 184 

spatial positions within the group: animals with larger grooming networks were less exposed to 185 

predation risk, from which they benefitted both reduced vigilance and increased foraging time 186 

(Josephs et al. 2016). It is also apparent, however, that there are large fluctuations in group size 187 

over time at our site, which reflect variation in climatic conditions—periods of drought result in 188 

increased rates of adult and infant mortality—and social patterns may thus vary accordingly. It 189 

may be that female social strategies vary in accordance with both group size and prevailing 190 

environmental conditions to produce cyclical patterns of variation over time: a possibility our 191 

long-term data will allow us to investigate more thoroughly.  192 

 193 

To date, the adaptive value of sociability among primates has often been attributed to more 194 

sociable individuals being better able to deal with chronic social stress, which has a positive 195 

impact on reproduction (Silk 2007; Brent et al. 2013). Collectively, our research on vervets 196 
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suggests that climatic variability can also present a significant source of stress to primate groups, 197 

and that more sociable individuals are better equipped to deal with such challenges. If more 198 

sociable animals are better able to minimize the metabolic costs of thermoregulation, it is 199 

probable that they are not only more likely to survive extreme environmental events, but these 200 

savings in maintenance costs mean they also have more energy to invest in reproduction. Our 201 

work therefore contributes to the growing body of evidence suggesting that sociability and 202 

behavioral flexibility are evolutionarily adaptive traits, and are likely to play an important role in 203 

promoting the ongoing viability of populations living in highly-variable, extreme environmental 204 

conditions (Henzi et al. 2009; Henzi et al. 2013; McFarland & Majolo 2013; Young et al. 2014; 205 

McFarland et al. 2014, 2015; Young et al. 2017; Henzi et al. 2017; McFarland et al. 2017). 206 

 207 
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Figure legends 307 

Figure 1. Behavioral responses of wild vervet monkeys to climatic variability.  308 

 309 

*left to right: drinking, swimming, rock-hugging, resting in shade, grooming, feeding, huddling, and sun-basking. 310 


