The "strength of weak ties" among female baboons: fitness-related benefits of social bonds

3

4 ABSTRACT

5 Studies across a range of species have shown that sociability has positive fitness 6 consequences. Among baboons, both increased infant survival and adult longevity have been 7 associated with the maintenance of strong, equitable and durable social bonds. However, not 8 all baboon populations show these patterns of bonding. South African chacma baboons 9 (Papio ursinus) in the Drakensberg Mountains and De Hoop Nature Reserve show cyclical 10 variation in social relations across time, with strong bonds formed only during certain times 11 of the year. Using long-term data from the De Hoop baboons, we tested whether social 12 relations influence female reproductive success in our study group in a manner similar to 13 other baboon populations. Our results show that the number of strong bonds a female 14 maintained predicted birth rate, and that the number of weak bonds a female possessed 15 predicted infant 12-month survival and infant longevity. Fitness-related benefits of sociability 16 were, however, independent of female dominance rank, and there was no relationship 17 between the number of weak and strong bonds a female maintained. One possible explanation for the influence of weak as well as strong bonds in our study group may be that variation in 18 19 demographic and ecological conditions across populations may favor the use of different 20 social strategies by females. In our sample, weak bonds as well as strong bonds appear to be 21 instrumental to achieving fitness-related benefits.

24 INTRODUCTION

25 Social relationships, as identified through the quality and patterning of interactions among group members over time (Hinde 1979), can alleviate the negative effects of intra-26 27 group competition on individual fitness by improving the health, longevity, and offspring 28 survival of more sociable individuals (Armitage & Schwartz 2000; Silk et al. 2003, 2009, 29 2010; Smith & Christakis 2008; Cameron et al. 2009; Schülke et al. 2010). Social behavior is 30 therefore argued to be evolutionarily adaptive, with the most reproductively successful 31 animals those that are best able to navigate their social environment (Silk 2007; Brent et al. 32 2013).

33 Various measures have been used to describe the degree to which individuals are 34 integrated in to their social group; including social relationship (i.e., bond) strength, number, or a combination of these measures. Among primates, it has been argued that the maintenance 35 36 of a small number of strong and enduring social bonds has the largest impact on individual 37 fitness (Silk et al. 2003, 2009, 2010, Schülke et al. 2010). For example, both yellow (Papio 38 cynocephalus) and chacma baboon (*Papio ursinus*) females with strong and consistent bonds 39 to particular individuals experienced increased longevity and higher offspring survival than 40 females with fewer bonds (Silk et al. 2009, 2010). Observations from these same chacma baboons have also shown that females with more focused grooming networks experience 41 42 lower glucocorticoid levels, which was interpreted to suggest that social bonds reduce 43 chronic psychosocial stress, and so have an impact on individual fitness (Crockford et al. 44 2008; Wittig et al. 2008; although see Brent et al. 2014 for a criticism of the idea that stress 45 reduction can be viewed as the ultimate explanation for social relationship formation, rather 46 than a proximate factor influencing their maintenance). Collectively, these findings have led 47 to the suggestion that the value of sociability lies mainly in the formation of a small number

48 of strong and consistent social bonds, rather than the formation of a more extended social49 network.

50 Data from two other chacma baboon populations in South Africa, however, suggest 51 that such patterns may not be universal: bond stability was shown to fluctuate in a cyclical 52 fashion. Specifically, during the food-scarce season across two ecologically distinct 53 populations, females formed both "constant companionships" and "brief associations" (which 54 map approximately onto Silk and colleagues' notion of strong and weak bonds), whereas 55 during the food-abundant season of each year, females formed only brief associations and 56 "casual acquaintances" (Henzi et al. 2009). There was also some suggestion that females in 57 these populations formed strong bonds with others on a contingent basis: when strong bonds 58 between individuals dissolved and subsequently reformed, they were not necessarily between 59 the same animals.

60 It is also possible that strong and weak bonds serve distinct roles. For example, McFarland & Majolo (2013) have shown that, in Barbary macaques (Macaca sylvanus), the 61 62 number of social bonds, but not their strength, predicted survival through a particularly harsh 63 winter. Similarly, McFarland et al. (2015) recently demonstrated that the number of social 64 bonds, but not their strength, predicted thermoregulatory efficiency among female vervet 65 monkeys (Chlorocebus pygerythrus). In both cases, the behavioral flexibility afforded by a 66 broader social network of weaker social bonds was suggested to provide physiological (i.e., 67 energetic and thermal) benefits and so similarly exert an impact on individual fitness. If 68 correct, this would suggest that, under some ecological circumstances, there is no simple 69 trade-off between the number and quality of social bonds: a few strong bonds may not 70 necessarily compensate for a large number of weak bonds if the two serve different functions. 71 Under such circumstances, it will pay individuals to invest the effort required to ensure as 72 many individuals as possible are incorporated into their networks in order to receive the

associated benefits of both strong and weak connections. That is, female reproductive success
may be influenced by the formation of a certain minimum number of bonds above some
threshold, rather than by their strength *per se*.

76 Given the above reasoning, we hypothesize that weak, as well as strong bonds, can 77 potentially have an impact on individual fitness, and that the relative importance of such 78 bonds may vary accordingly to ecological conditions. Here, we examine the effect of social 79 integration on three fitness-related traits in baboons (i.e., birth rate, 12-month infant survival, 80 and infant longevity), and assess the relative contribution of strong and weak social bonds as 81 defined by a composite sociality index (CSI: Silk et al. 2006). If the value of being sociable 82 lies in the formation of strong social bonds, then one would expect individuals to discriminate 83 in favor of fewer, stronger social relationships, and that these strong bonds would predict 84 reproductive success, as in other populations. If the value of sociability is linked to broader 85 social integration, however, then one would expect individuals to spread their social investment more evenly across the group, investing in a wider network of weaker social 86 87 bonds. If the latter is true, we would expect that the number of weak social bonds would also 88 predict aspects of reproductive success.

89

90 METHODS

91 **Data collection**

We used demographic data collected between May 1998 and August 2007 from all adult females living in a wild troop of chacma baboons on the De Hoop Nature Reserve, South Africa (34.43°S, 20.55°E). Across this study period, the number of adult females observed in the group ranged from 13 to 21 (median = 15), largely reflecting the maturation of females into the adult cohort. All females lived on a completely natural diet and were recognized individually from natural markings. Data were purely observational and non-invasive, and

were collected in accordance with the ethical guidelines of the Association for the Study of
Animal Behavior. All procedures were approved by the University of Lethbridge Animal
Welfare Committee (Protocol: 0702) and conformed to the legal requirements of South
Africa. Data are archived on Figshare (McFarland et al. 2017).
Instantaneous scan data used in the current study were collected between January

103 1999 and December 2006 (Altmann 1974). Data were collected every thirty minutes 104 throughout the day from all adult females that could be located within a ten-minute time-105 window. Data were collected on whether a female was engaged in one of four mutually 106 exclusive activities: grooming, resting, foraging or moving. Data were also collected on the 107 direction of grooming, the proximity of female group members, and the identities of all 108 grooming partners and nearest neighbors. In total, 37, 261 scans were collected over the 109 seven-year study period (mean = 1, 774 ± 1 , 135 SD scans/subject). Across this sample, we 110 observed 9, 920 dyadic measures of close-proximity, of which 2, 520 were dyadic grooming interactions. 111

112 We recorded the dates of birth (N = 47) and death (N = 18) of all infants born during 113 the study (range = 1-6 infants/female). Six of the 18 infant deaths occurred aged < 12 months, 114 and 10 deaths occurred aged < 24months. We excluded one female and her infant from the 115 analyses, as this mother died before her infant reached 12 months of age. Assessing this 116 infant's overall survival in relation to their biological mother's social behavior is therefore 117 invalid. We followed all infants born during this study, including those born in the final year 118 of data collection, for at least 12 months after birth to establish 12-month survival data. 119 We collected data *ad libitum* on the occurrences of all aggressive interactions 120 exchanged by adult females. In total, we recorded over 8,000 instances of aggression. These 121 data were used to calculate monthly David's scores for each individual, allowing average 122 ranks to be assigned to each female for each year of the study (De Vries et al. 2006).

123 **Composite sociality index**

124 We used CSIs to measure the strength of the social bonds shared by all female group 125 members for each year of the study. Two behavioral measures were entered into the CSI: the 126 proportion of scans in which each female dyad was (i) grooming and (ii) in 5m close-127 proximity but not grooming. To control for the fact that not all females were present in the 128 study group for the same amount of time, these proportions were divided by the total number 129 of months that the two members of each dyad co-resided in the group. These adjusted dyadic 130 behavioral measures (x_i) were divided by the group's mean for these same measures (m_i) . 131 These values were summed across all group member dyads, and divided by two (i.e., the 132 number of behavioral measures entered into the index).

$$133 \quad CSI = \frac{\sum_{i=1}^{2} \frac{x_i}{m_i}}{2}$$

134 From the 942 potential female dyads present over the seven-year study period, 383 dyads 135 (41%) had a CSI score of zero -i.e., did not exchange grooming or maintain close-proximity 136 - and thus reflect the absence of a social bond. The number of strong and weak social bonds were calculated for the remaining 559 group member dyads. CSI values greater than one 137 138 were taken to represent relatively 'strong' social bonds, and CSI values smaller than one are 139 considered to represent relatively 'weak' social bonds, in line with Silk et al. (2006). 140 Following this definition, we calculated the total number of strong (N_{strong}) and weak (N_{weak}) 141 social bonds our study females shared over each year of the study. Our goal was to examine 142 the effect that strong and weak bonds had on individual fitness, so 'non-social' bonds (i.e., 143 dyads with a CSI score of zero) were excluded from the calculation of Nweak. 144 Our calculation of CSI using measures of grooming and proximity is the same as that used by Silk et al. (2006). It is important to note, however, that, in contrast to previous studies 145

146 on this topic (Silk et al. 2006, 2009, 2010; Schülke et al. 2010), we used CSI to identify the

147 total number of strong and weak bonds each of our females shared with their conspecifics,

148 rather than using the CSI measures to identify an individual's "top partners" (Silk et al. 2009, 149 2010; Schülke et al. 2010). Previous studies have tended to concentrate their analysis on the consistency and durability of a select number of social bonds, and have ignored the potential 150 151 influence of weak social bonds. The selection of a particular number or top percentage of 152 social bonds, regardless of their absolute strength, appears to be entirely arbitrary, however, as we could not identify any biologically meaningful criteria used to justify this choice in 153 154 previous work. In addition, this approach potentially could lead to a particular female's top 155 social partners being those with whom she shares weak social bonds, albeit durable and 156 consistent over time. It also means that one cannot identify females who are less sociable 157 from those that are not, given that all females are allocated three top partners regardless of 158 how frequently they interact. Such an approach would also preclude the possibility of 159 assessing the effect that both strong and weak social bonds have on individual fitness. 160 Restricting the analysis to a predetermined number of bonds therefore eliminates, by 161 definition, the possibility of examining variability in the number of social bonds, regardless 162 of strength, shared by females. Given these concerns, we decided not to identify the top three 163 partners, but simply use higher than average CSI scores and lower than average CSI scores to 164 identify strong and weakly bonded partners as a continuous measure. This approach allowed us to keep bond measures separate, and also means that our sociability measure reflects a 165 166 female's overall level of sociability.

167

168 Statistical analysis

A generalized linear regression was used to test whether N_{strong} predicted N_{weak} (N=122 baboon years of data from 21 females). Female ID nested inside Year was entered as a random effect to control for the fact that a single female was sampled across multiple years.

Three measures of reproductive success were estimated for each female: (i) birth rate: a binomial (yes/no) measure of whether each female gave birth each year or not, (ii) 12month infant survival: a binomial measure of whether a female's infant survived to 12 months or not, (iii) infant longevity: a binomial measure of whether a female's infant survived each subsequent year postpartum.

177Two mixed effects logistic regressions were used to test whether N_{strong} , N_{weak} , or178dominance rank predicted either birth rate (N=98 potential cycles for female conception) and17912-month survival (N=46 births). Female ID nested inside Year was entered as a random180effect in both models to control for the fact that a single mother could produce more than one181infant.

182 A time-dependent cox proportional hazards models with robust standard errors was 183 used to test whether Nstrong, Nweak, or dominance rank predicted 'yearly infant longevity' 184 (N=87 infant years). N_{strong}, N_{weak}, and dominance rank were calculated for each year of an 185 infant's life. We entered mother ID as a cluster option to control for the fact that a single 186 mother could produce more than one infant. All statistical analyses were performed in Stata 187 Statistical Software: Release 14 (StataCorp 2015). We follow Colquhoun (2014) in 188 describing outcomes as indicating weak (P ~0.05), moderate (P~0.01) or strong (P~0.001) evidence for effects. 189

190

191 **RESULTS**

We calculated yearly CSIs for all female group member dyads over the seven-year study period. The distribution of bond strengths was highly skewed to the left, with many dyads maintaining weaker social bonds (figure 1). N_{weak} was unrelated to N_{strong} ($\beta \pm SE =$ -0.06±0.12, Z=-0.53, P=0.597). Figure 2 illustrates the yearly number of strong and weak social bonds each of our females maintained over the duration of the study (figure 2).

Figure 1. Frequency distribution of composite sociality index (CSI) scores across all adult female baboon dyads. CSI: 1=average, <1=weaker than average bonds (N=258), >1=stronger than average bonds (N=301). CSI scores of zero are not displayed (N=383).

202

- (B±SE=0.30±0.15, Z=2.03, P=0.042). Birth rate was unrelated to both Nweak
- (B±SE=0.19±0.16, Z=1.20, P=0.231) and dominance rank (B±SE=-0.05±0.07, Z=-0.69,

216

Figure 3. Survivorship curves illustrating the influence of (a) strong and (b) weak social bonds on infant longevity. For purposes of illustration, infants were categorized according to the number of bonds their mothers shared and clustered into the lower and upper half of the group distribution.

222

223 **DISCUSSION**

A strong emphasis has been placed on inter-individual variability in the maintenance of strong social bonds when attempting to partition the reproductive fitness benefits associated with social integration (Armitage & Schwartz 2000; Silk et al. 2003, 2009, 2010; Smith & Christakis 2008; Cameron et al. 2009; Schülke et al. 2010). Our findings agree with 228 previous work demonstrating an effect of bondedness on fitness-related traits, but add an 229 extra dimension by considering the influence of both weak and strong bonds. In our study 230 group, female chacma baboons invested in a broad network of weaker social bonds, with only 231 a few dyads displaying especially strong social relationships; a finding also reported in 232 yellow baboons (Silk et al. 2006). There was no relationship between the number of weak 233 and strong bonds that a female possessed, suggesting that, in our study, there is no necessary 234 trade-off between the number of weak versus strong bonds. That is, a larger number of strong 235 bonds does not preclude females from investing in a number of weak bonds, nor does it 236 suggest that females form weak bonds to compensate for a lack of strong bonds. Instead, it 237 may imply that, as suggested in the introduction, strong and weak bonds serve distinct 238 functions.

239 This result is also intriguing given that the time available for the servicing of social 240 relationships is limited (Dunbar et al. 2009; Marshall et al. 2012), and individuals that invest 241 more time in grooming particular individuals have been argued to do so at the expense of 242 generating a broader social network (Dunbar 1992). Our results suggest that this need not be 243 the case, although it is possible that the large variability seen across years in the number of 244 weak and strong bonds (figure 2) may reflect shifts in time budget demands within and 245 between females across time. In humans, Granovetter (1973) argued that the value of weak 246 ties (i.e., bonds) lay in the formation of bridges between individual social networks, enabling 247 connections between a wider range of people than strong ties. Comparable 'indirect 248 relationships' are also observed among non-human primates, in the sense that two animals 249 that do not themselves interact can be connected by a third with whom they do (Brent 2015), 250 albeit within networks generally restricted to group mates. Weak bonds between may 251 therefore increase overall levels of social integration by enhancing these indirect 252 relationships; something that can be tested using social network measures of centrality and

comparing these to the patterns of bondedness identified using CSI. That is, females with a
larger number of weak social bonds, as measured by CSI, should also occupy more central
positions in the social network as measured by, for example, alpha or eigenvector centrality
(Brent 2015).

257 With respect to reproductive success indicators, our results show that broad social 258 networks of relatively weak bonds provide fitness-related benefits, supporting similar 259 findings in our own previous work on baboons, macaques and vervets (Henzi et al. 2009; 260 McFarland & Majolo 2013; McFarland et al. 2015). Both infant survival to one year and 261 infant longevity were predicted by a female's number of weak social bonds, but were not 262 predicted by the number of strong bonds a female possessed. In addition, there was some 263 evidence to suggest that female birth rate was influenced by the number of strong bonds she 264 possessed, but was not related to weak bonds. In both cases, there was no influence of 265 dominance on these fitness-related traits.

The idea that weak and strong social bonds serve different functions and, hence, the 266 267 relative importance of strong versus weak bonds might differ across ecological and 268 demographic contexts (including group-size effects) thus warrants more detailed 269 consideration. For example, the De Hoop baboons differ from the Kenyan and Botswanan 270 populations previously studied in a number of respects: they experience significant cold stress 271 (Weingrill et al. 2004), variable feeding competition throughout the year (Henzi et al. 2009), 272 low predation risk, and a moderate risk of infanticide. It may be the case, therefore, that the 273 value of weak social bonds to De Hoop females reflects their specific ecology, whereas 274 strong bonds alone enhance female reproductive success at other sites. Alternatively, as Silk 275 and colleagues' used a different analytical approach, and did not explicitly consider the 276 influence of weak bonds on female reproduction, it is possible that – given the similarities in 277 the distribution curves of bond strengths across populations (Silk et al. 2006) – weak bonds

may also augment strong bonds in these populations, and it is their combined effect that
influences reproductive success. That is, the use of an individual's "top-partners" as an
estimate of sociability potentially conflates strong and weak bonds, and analyses based on
particular strong bonds might actually represent a proxy for the combined effect of weak plus
strong social bonds.

283 We have shown previously that baboons at De Hoop and the Drakensberg tend to 284 form only weaker social bonds during the season of food abundance, and both strong and 285 weak social bonds when food was scarce (Henzi et al. 2009). The collinearity between social 286 bond strength and food abundance, therefore, makes it difficult to assess any effect of 287 sociability on individual fitness, independent of ecology. As baboons are not seasonal 288 breeders, however, there is no necessary or consistent link between the presence of infants 289 and recurrent ecological conditions that could, for example, influence survival to twelve 290 months. That is, even though ecological conditions may influence the formation of weak 291 versus strong bonds in some or other way, and these bonds influence fitness measures, any 292 such ecological effect is not an alternative explanation, but part and parcel of why sociability 293 exerts its fitness-related effects (Barrett et al. 1999; Barrett & Henzi 2002; Henzi et al. 2003; 294 Henzi & Barrett 2007). The link between ecology, bondedness and fitness-related traits is 295 undoubtedly complex, and it is also possible that ecology may directly influence infant 296 survival in ways that are not mediated by female sociality: further analyses designed to tease 297 out these possibilities is now possible, having established that social bondedness potentially 298 can be linked to female reproductive success.

The lack of any effect of strong social bonds on infant survival, and a weak influence on birth rate stands in contrast to other baboon populations, although it should be remembered that strong social bonds potentially carry costs as well as benefits. For example, social network position can influence the transmission of pathogens within a group. An

303 elevated risk of disease transmission is thought to be a major cost of group living, especially 304 for social species such as primates (Altizer et al. 2003; Nunn & Altizer 2006). Individuals 305 more centrally embedded in their social network, or those that possess a larger social 306 network, tend to be prone to greater pathogen load than those individuals that are more 307 socially isolated (MacIntosh et al. 2012; Rimbach et al. 2015; Wren et al. 2016). If possessing 308 more strong social bonds increases an individual's chance of pathogen transmission, due to 309 longer and more intense periods spent in close proximity, the formation of strong bonds may 310 not always exert a positive influence on female reproductive success: mounting an immune 311 response comes at an energetic cost that may impact female survival, fecundity and fertility, 312 and, if infants are similarly affected, offspring survival.

313 Having said this, and although increased pathogen load is often cited as being 314 detrimental to individual fitness (e.g., Lehman 1993), a more recent study suggests that 315 increased exposure to certain types of pathogen may actually enhance host resistance to 316 infection, and reduce the impact of infection on individual fitness (Ezenwa et al. 2016). In 317 these circumstances, strong social bonds/and or a wide social network may enhance females' 318 immune systems. This patterns of findings thus suggests that observed differences in the 319 formation and patterning of social relationships between species and populations, and their 320 differential effects on individual fitness-related traits, may reflect, not only ecological 321 differences in feeding competition and climatic factors, but also the prevalence of certain 322 pathogens.

Taken together, our findings are in line with previous work demonstrating the fitnessrelated benefits of sociability in female baboons. Our findings augment this previous work in a novel way, however, by showing that these benefits are not dependent on the formation of strong social bonds alone, but also reflect the influence of weak bonds. This suggests that females may reap long-term fitness-related benefits by forming strong and weak bonds in

ways that enable them to both embed themselves in strong, predictable network structures,
while at the same time, retaining the ability to use social bonds (of grooming and proximity)
to respond contingently to current circumstances. In other words, it seems reasonable to
suggest that females may be opportunistic in their formation of strong and weak bonds,
varying investment in partners across time in relation to shifts in group demography and
composition, as well in response to changes in reproductive state, health status and ecological
conditions.

335

336 ACKNOWLEDGMENTS

337 Thanks to Cape Nature Conservation for permission to work at De Hoop, and to all the

338 graduate students and field assistants who contributed to our long-term data-base. was

339 supported by NSERC Canada Research Chair and Discovery Programs; was supported

340 by the NRF (South Africa) and NSERC Discovery Grants during the writing of this

341 manuscript. We are grateful to one anonymous reviewer and, in particular, Lauren Brent for

invaluable feedback on earlier drafts of our manuscript.

343

344 **REFERENCES**

Akaike H. 1974 A new look at the statistical model identification. Automatic Control, IEEE
Transactions on 19, 716-723.

347 Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Cunnningham

348 AA, Dobson AP, Ezenwa V, Jones KE, Pedersen AB. 2003 Social organization and parasite

349 risk in mammals: integrating theory and empirical studies. Ann. Rev. Ecol. Evol. Syst. 517-

350 547.

Altmann J. 1974 Observational study of behavior: sampling methods. *Behavior* **49**, 227-266.

- 352 Armitage KB, Schwartz OA. 2000 Social enhancement of fitness in yellow-bellied
- 353 marmots. Proc. Natl. Acad. Sci. 97, 12149-12152.
- Barrett L, Henzi SP, Weingrill A, Lycett JE, Hill RA. 1999 Market forces predict grooming
- 355 reciprocity in female baboons. *Proc. Roy. Soc. Lond. B* 266, 665–670.
- 356 Barrett L, Henzi SP. 2002 Constraints on relationship formation among female primates.
- 357 *Behaviour*, **139**, 263-289.
- 358 Brent LJ. 2015 Friends of friends: are indirect connections in social networks important to
- animal behaviour? *Anim. Behav.* **103**, 211-222.
- Brent LJ. et al. 2013 Genetic origins of social networks in rhesus macaques. *Sci. Rep.* **3**.
- 361 Brent LJ, Chang SW, Gariépy JF, Platt ML. 2014 The neuroethology of friendship. Ann. N.
- 362 *Y. Acad. Sci.* **1316**, 1-17.
- 363 Cameron EZ, Setsaas TH, Linklater WL. 2009 Social bonds between unrelated females
- increase reproductive success in feral horses. *Proc. Natl. Acad. Sci.* **106**, 13850-13853.
- 365 Colquhoun D. 2014 An investigation of the false discovery rate and the misinterpretation of p
- 366 values. *R. Soc. Open. Sci.* **1**, 140216.
- 367 Crockford C. et al. 2008 Social stressors and coping mechanisms in wild female baboons
- 368 (Papio hamadryas ursinus). Horm. Behav. 53, 254-265.
- 369 De Vries H, Stevens JMG, Vervaecke H. 2006 Measuring and testing the steepness of
- dominance hierarchies. *Anim. Behav.* **71**, 585-592.
- 371 Dunbar RIM, Korstjens AH, Lehmann J. 2009. Time as an ecological constraint. *Biol. Rev.*
- **84**, 413–429.
- 373 Dunbar RIM. 1992. Time: a hidden constraint on the behavioural ecology of baboons. *Behav.*374 *Ecol. Sociobiol.* **31**, 35–49.
- Ezenwa VO, Ghai RR, McKay AF, Williams AE. 2016 Group living and pathogen infection
- 376 revisited. Curr. Opin. Behav. Sci. 12, 66-72.

- 377 Frère CH, Krützen M, Mann J, Connor RC, Bejder L, Sherwin WB. 2010 Social and genetic
- interactions drive fitness variation in a free-living dolphin population. *Proc. Natl. Acad. Sci.* **107**, 19949-19954.
- 380 Granovetter MS. 1973 The strength of weak ties. *Am. J. Sociol.* **78**, 1360-1380.
- 381 Henzi SP, Barrett L, Gaynor D, Greeff J, Weingrill T, Hill RA. 2003 The effect of resource
- 382 competition on the long!term allocation of grooming by female baboons: Evaluating
- 383 Seyfarth's model. *Anim. Behav.* **66**, 931–938.
- Henzi SP, Barrett L. 2007 Coexistence in female-bonded primate groups. *Adv. Study Behav.*37, 43-81.
- 386 Henzi SP, Lusseau D, Weingrill T, van Schaik CP, Barrett L. 2009 Cyclicity in the structure
- 387 of female baboon social networks. *Behav. Ecol. Sociobiol.* **63**, 1015-1021.
- 388 Hinde RA. 1979 Towards understanding relationships. London: Academic Press.
- 389 Lehmann T. 1993 Ectoparasites: direct impact on host fitness. *Parasitol. Today* 9, 8–13.
- 390 Marshall HH, Carter AJ, Rowcliffe JM, Cowlishaw G. 2012 Linking social foraging
- 391 behaviour with individual time budgets and emergent group-level phenomena. *Anim. Behav.*
- **84**, 1295-1305.
- 393 McFarland R, Majolo B. 2013 Coping with the cold: predictors of survival in wild Barbary
- 394 macaques, *Macaca sylvanus*. *Biol. Lett.* **9**, 20130428.
- 395 McFarland R, Fuller A, Hetem RS, Mitchell D, Maloney SK, Henzi SP, Barrett L. 2015
- 396 Social integration confers thermal benefits in a gregarious primate. J. Anim. Ecol. 84, 871-
- 397 878.
- 398 McFarland R, Murphy D, Lusseau D, Henzi SP, Parker JL, Pollet TV, Barrett L. 2017 Data
- 399 from: The strength of weak ties among female baboons: fitness-related benefits of social
- 400 bonds. Figshare. (http://dx.doi.org/10.6084/m9.figshare.1572325).

- 401 Nunn C, Altizer SM. 2006 Infectious diseases in primates: behavior, ecology and evolution.
- 402 Oxford: Oxford University Press.
- 403 Schülke O, Bhagavatula J, Vigilant L, Ostner J. 2010 Social bonds enhance reproductive
- 404 success in male macaques. *Curr. Biol.* **20**, 2207-2210.
- 405 Silk JB. 2007 The adaptive value of sociality in mammalian groups. *Phil. Trans. R. Soc. B*
- 406 **362**, 539-559.
- Silk JB, Alberts SC, Altmann J. 2003 Social bonds of female baboons enhance infant
 survival. *Science* 302, 1231-1234.
- 409 Silk JB, Altmann J, Alberts SC. 2006 Social relationships among adult female baboons
- 410 (Papio cynocephalus) I: variation in the strength of social bonds. Behav. Ecol. Sociobiol. 61,
- 411 183–195.
- 412 Silk JB, Beehner JC, Bergman TJ, Crockford C, Engh AL, Moscovice LR, Wittig RM,
- 413 Seyfarth RM, Cheney DL. 2009 The benefits of social capital: close social bonds among
- 414 female baboons enhance offspring survival. *Proc. R. Soc. B* 276, 3099-3104.
- 415 Silk JB, Beehner JC, Bergman TJ, Crockford C, Engh AL, Moscovice LR, Wittig RM,
- 416 Seyfarth RM, Cheney DL. 2010 Strong and consistent social bonds enhance the longevity of
- 417 female baboons. *Curr. Biol.* **20**, 1359-1361.
- 418 Smith KP, Christakis NA. 2008 Social networks and health. Annu. Rev. Sociol. 34, 405-429.
- 419 StataCorp. 2015 Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.
- 420 Weingrill T, Gray DA, Barrett L, Henzi SP. 2004 Fecal cortisol levels in free-
- 421 ranging female chacma baboons: relationship to dominance, reproductive state and
- 422 environmental factors. *Horm. Behav.* **45**, 259-269.
- 423 Wittig RM et al. 2008. Focused grooming networks and stress alleviation in wild female
- 424 baboons. *Horm. Behav.* **54**, 170-177.
- 425

426

427 HIGHLIGHTS

- Baboon birth rate is positively predicted by the number of strong bonds shared.
- 12-month infant survival is positively predicted by the number of weak bonds shared.
- Infant longevity is positively predicted by the number of weak bonds shared.
- There is no simple trade-off between the number and quality of social bonds.
- Social strategies are linked to ecological and demographic variability.