1	Physiological stress hormone levels and mating behaviour are negatively correlated i	in

2 male rhesus macaques (Macaca mulatta)

3

4 Richard McFarland (corresponding author)^{1,2}, Ann MacLarnon¹, Michael Heistermann³ and

5 Stuart Semple¹

6

7 ¹Centre for Research in Evolutionary and Environmental Anthropology, Roehampton

- 8 University, London SW15 4JD, United Kingdom (e-mail: a.maclarnon@roehampton.ac.uk;
- 9 s.semple@roehampton.ac.uk)
- 10 ² Brain Function Research Group, School of Physiology, University of the Witwatersrand,
- 11 7 York Road, Medical School, Parktown, Johannesburg 2193, South Africa. Tel:
- 12 +27(0)117172152 (e-mail: richard.mcfarland@wits.ac.za)
- ³ Endocrinology Laboratory, German Primate Centre, Kellnerweg 4, 37077 Gottingen,
- 14 Germany (e-mail: mheiste@gwdg.de)
- 15
- 16 Word count = 3170 (excl. References), Figures = 1, Tables = 2

17 Abstract

18

19 In order to further understanding of the factors that cause and mediate stress in social 20 animals, many studies have examined differences in male physiological stress levels 21 between mating and non-mating seasons, and related these differences to levels of male-22 male competition. Very few have explicitly tested whether variation in stress levels is 23 related to mating behaviour itself. We provide preliminary evidence of a negative 24 relationship between faecal levels of glucocorticoid metabolites and mounting frequency in 25 free-ranging male rhesus macaques (Macaca mulatta). This finding may help explain the 26 previous observation that male rhesus macaques show no difference in their levels of faecal 27 glucocortocoids between the breeding and non-breeding season, despite the former being 28 associated with elevated levels of aggression. Our study highlights the importance of directly quantifying mating behaviour when investigating the potential impact of 29 30 reproductive competition and seasonality on stress physiology. 31

32 *Keywords*: aggression; glucocorticoids; mating; stress

33 Introduction

35	Identifying the causes and consequences of stress, and the means by which it is mediated
36	among gregarious animals, represents a fundamental goal in the study of social behaviour
37	(Sapolsky, 2005). One topic of particular interest has been the exploration of physiological
38	stress levels among males, and how these relate to the intensity of reproductive
39	competition. Elevated testosterone levels among males in the breeding season promote
40	aggression, particularly related to male-male competition and mate-guarding (Wingfield et
41	al. 1990). The psychological (Sapolsky, 2005) and metabolic (Muller and Wrangham,
42	2004) costs of such aggression would be predicted to increase males' physiological stress
43	hormone levels during this season.
44	Such a relationship has been observed in a number of mammal species. For example
45	in Assamese macaques (Ostner et al. 2008) and bison (Mooring et al. 2006), higher
46	physiological stress levels, assessed through quantification of glucocorticoid (GC) levels,
47	were found in males in the breeding season compared with the non-breeding season. Such
48	differences are typically attributed to increased levels of male-male competition and
49	aggression during the period when mating occurs. In some species however, for example
50	ring-tailed lemurs (Gould et al. 2005) and rhesus macaques (Higham et al. 2013), no clear
51	differences in male GC levels linked to the breeding season were found, despite heightened
52	levels of aggression during this period. In yet others, such as yellow-pine chipmunks (Place
53	and Kenagy, 2005), males' GC levels were actually lowest during the breeding season. The
54	causes of these differences in findings are unclear, but one potentially important factor is
55	the impact of sexual behaviour on stress physiology.

56	A very few studies have explored the potential link between mating behaviour itself
57	(rather than mating season) and male stress hormone levels. For bison bulls a positive
58	relationship between number of copulations and GC concentrations was observed (Mooring
59	et al. 2006). Similarly, a subset of male rock hyraxes that sing, a territorial and sexual
60	behaviour observed primarily in the mating season, were observed to copulate more
61	frequently and have higher cortisol levels than those males that don't sing (Koren et al.
62	2008). In contrast to these two studies, among wild male olive baboons, males with higher
63	'copulatory success' (combining copulation and consortship) were observed to have lower
64	plasma cortisol levels shortly after anaesthetisation (Sapolsky, 1982).
65	Here we explore the relationship between GC levels and mounting frequency in
66	free-ranging male rhesus macaques (Macaca mulatta) during the mating season. We also
67	explore the link between GC levels and three behaviours previously linked to variation in
68	such levels among Old World monkeys: the receipt of aggression, which has been found to
69	be positively related to GC levels (Ostner et al. 2008), and the giving (Shutt et al. 2007) and
70	receipt (Gust et al. 1993) of grooming, which have been found to be negatively related to
71	these levels. Due to cortisol's important metabolic role (e.g. Muller and Wrangham, 2004)
72	we also explore the link between GC levels and the amount of time spent moving.
73	To our knowledge, this is the first study to explore simultaneously the relationships
74	among this set of variables in a non-human primate species. We predicted that due to the
75	stress associated with gaining access to, and mate-guarding females, male GC levels would
76	be positively associated with mounting frequency, the amount of aggression received, and
77	the amount of time spent moving. Due to the associated stress relieving benefits of

grooming we predicted that GC levels would be negatively associated with the frequency ofboth giving and receiving grooming.

80

81 Materials and methods

82

83 *Study animals*

84

85 This study was carried out on the free-living population of rhesus macaques inhabiting the 86 island of Cayo Santiago, Puerto Rico. Rhesus macaques live in multi-male – multi-female 87 groups (Teas et al. 1980) and are seasonal breeders (Herndon 1983). Cayo Santiago is home 88 to six groups in total, and males migrate between groups. Animals are provisioned daily 89 with monkey chow and water, and also forage freely on natural vegetation (Rawlings and 90 Kessler, 1986). Data collection took place between April and June 2007, which covers part 91 of the mating season of our study group (full mating season: April to September). Data 92 were collected on eight individually recognisable adult males living in a single group 93 (group V: total group size 92 animals, including 18 adult males and 21 adult females). The 94 eight study animals represent all of the non-natal males in group V that were present for the 95 entire study period. Natal males were excluded from our study to avoid the influence of 96 kinship on our findings; kinship can have a significant impact on the distribution of 97 grooming and agonistic behaviour in rhesus macaque groups (e.g. Bernstein and Ehardt 98 1985; Call et al. 1996).

99 The project was approved by the Institutional Animal Care and Use Committee of
100 the University of Puerto Rico, Medical Science Campus (reference number: A4350107).

102 Behavioural data collection

104 Behavioural data were collected by RM each day from 1000hrs until the field sited closed 105 at 1400hrs, following the collection of faecal samples from 0700-1000hrs (see below). Data 106 were collected in 15min continuous focal observations (Altmann 1974) using a Psion 107 Workabout with Observer v.5.0 software. The order of focal watches was randomized each 108 day to avoid biases in the times at which individual males were followed. During each focal 109 watch, data were collected on the occurrence of heterosexual mounts. It is important to note 110 that although we were unable to distinguish between ejaculatory and non-ejaculatory 111 mounts, the frequency of mounting and the occurrence of ejaculation are highly positively 112 correlated in this species (Mehlman et al. 1997). A mount was scored when pelvic thrusting 113 by the male was seen, which was taken to infer that intromission had occurred. All 114 aggression received by the subject from adults in the group was recorded, along with 115 information on whether the aggression was of low intensity (displace, visual or vocal threat, 116 short charge) or high intensity (chase, physical contact or escalated attack). The duration of 117 all bouts of grooming (i.e. one animal picking through the fur of another) given to or 118 received from other adults, and the duration of all bouts of moving (i.e. travelling when not 119 foraging), were also recorded. All animals were sampled once every one or two days of 120 data collection. In total 4548 minutes of focal observations were recorded, between 550-121 582min for each subject. Additional data on agonistic behaviour were collected *ad libitum* and combined with focal data for determination of the dominance hierarchy. Based on the 122

123 analysis of 558 dyadic interactions, MatMan revealed that the dominance hierarchy was

significantly linear (Landau's linearity index=1.0; p<0.001).

125

126 Faecal sample collection and glucocorticoid analysis

127

128 Faecal samples (uncontaminated by urine) were collected over the study period between 129 0700 and 1000hrs, following methods described by Hodges and Heistermann (2003). To 130 minimise hormone degradation, faecal samples were collected immediately following 131 defecation, carried in a cool-bag containing ice-packs, and stored at -18°C after each day in 132 the field. In total we collected 12-16 faecal samples per male (average = 7 subjects 133 sampled/week) over the study period. Samples were imported to the UK under DEFRA 134 licence no. AHZ/2537/2007/3. GC analyses were carried out at Roehampton University 135 using standard protocols. 136 Faecal samples were analysed within four months of collection in the field; faecal 137 hormone levels have been shown to be stable over a number of years when frozen (Palme 138 2005). Faecal samples were homogenized and extracted twice according to the method 139 described by Ziegler et al. (2000). Extraction efficiency, assessed by recovery of 140 radiolabelled oestradiol, was 98% +/-12%. Faecal extracts were analysed for concentrations 141 of 11ß-hydroxy-etiocholanolone (3α , 11ß-dihydroxy-CM), a major metabolite of cortisol, 142 using a group-specific immunoassay. This measurement has been validated for assessing 143 adrenocortical activity in various primates (Heistermann et al. 2006), including rhesus 144 macaques (Hoffman et al. 2011). Serial dilutions of faecal extracts from different males 145 gave displacement curves parallel to those obtained for the standard solution. Sensitivity of

146	the assay at 90% binding was 1.2pg/well. Intra- and inter-assay coefficients of variation of
147	high and low value quality controls were 9.2% (n=17) and 8.3% (n=10; high), and 13.6%
148	(n=15) and 18.7% (n=10; low), respectively. All assay results were standardized for
149	differences in extraction volume and faecal weight, and are presented as ng hormone/g dry
150	faecal weight.
151	
152	Statistical analysis
153	
154	Associations between GC levels and behaviour have previously been explored by looking
155	at fine-grained temporal variation in these variables (e.g. Crockford et al. 2008; Arlet et al.
156	2009), by taking mean levels calculated over the study period (e.g. Gust et al. 1993; Ostner
157	et al. 2008), or in both of these ways (e.g. Higham et al. 2009). Data were analysed here
158	using both approaches, allowing comparison of our results with the broadest range of other
159	published work in this area.
160	Firstly, weekly means of faecal GC (FGC) levels were calculated for each male.
161	The lag for excreted cortisol metabolites to appear in faeces is approximately 30-46 hours
162	in macaques, including the rhesus macaque (Heistermann et al. 2006; Hoffman et al. 2011),
163	and excreted material accumulates over an extended period. With this in mind, it is not
164	possible to collect faecal samples matched with specific, short and infrequent events (e.g.
165	mounting). Following standard practice in studies of non-invasive primate endocrinology
166	(e.g. Engelhardt et al. 2005; Higham et al. 2009), weekly FGC values were calculated using
167	the faecal collection date minus two days, to reflect the lag in excretion time. For each male
168	weekly means were also calculated for all other variables. Generalised linear mixed models

(GLMMs) were performed in STATA v10.1 software (StataCorp 2007) to explore the
relationships between FGC levels and our behavioural variables (nesting week inside
individual as random factors). Our dependent variable, weekly FGC level, was transformed
using a square-root transformation to improve normality (Zar 1999). We entered mounting
(rate/min), high and low intensity aggression received (rates/min), grooming given and
received (s/min), moving (s/min) and rank as our independent variables.

175 We used model selection (Symonds & Moussalli 2011) to determine which 176 combination of behavioural variables (including rank) best explained the variability in 177 subject weekly FGC levels across the mating season. The strength of each model was 178 calculated according to its Akaike Information Criterion (AIC: Akaike 1974). The model 179 with the lowest AIC was selected as the one with the best fit. Using the forward method 180 (Pinheiro & Bates 2000) to select the 'best model', we first ran a series of GLMMs on the 181 dependent variable (i.e. weekly FGC level) with each predictor variable (i.e. rate of 182 mounting, grooming received, grooming given, high intensity aggression received, low 183 intensity aggression received, moving and rank) independently, and calculated their 184 respective AICs (table 1). A composite model was then built by progressively entering the 185 predictor variables from the above models in order of low to high AIC (giving six different 186 models; table 1). Based on the AIC difference criteria (Burnham & Anderson 2002; 187 differences in AIC between 0-2 = substantially equivalent, 4-7 = equivalent, >10 = non-188 equivalent), predictor variables were removed from the 'best model' if their inclusion did 189 not improve (i.e. lower) the AIC of the model by > 4. Likelihood ratio tests, using critical χ^2 190 values, were used to compare the relative strength of the 'best model' compared to the other 191 five models. GLMMs were performed in StataCorp (2007).

192	Secondly, mean values over the total study period were calculated for each male for:
193	FGC levels, rate of mounting, rates of receiving low and high intensity aggression,
194	percentage time moving and percentage time giving and receiving grooming. We used
195	bivariate correlations to investigate (1) the relationships between FGC levels and each of
196	the behavioural variables, (2) the relationships between FGC levels and rank, and (3) the
197	inter-relationships of any variables found to be correlated with FGC levels. These analyses
198	were performed using IBM SPSS Statistics v20. As samples sizes were small and some
199	analyses used ranked data, Spearman's rank correlations were employed.
200	
201	Results
202	We found that a model with the inclusion of mounting and high and low intensity
203	aggression rates was the best fit model for weekly FGC levels (Model 2; $AIC = 410.39$, $d.f$
204	= 4, table 1 and 2). Using likelihood ratio tests, based on critical χ^2 values, we found model
205	2 to be a significantly better model than model 1 ($\chi^2 = 8.27$, $P < 0.05$) and not significantly
206	different from models 3 ($\chi^2 = 0.15$, ns), 4 ($\chi^2 = 0.12$, ns), 5 ($\chi^2 = 2.33$, ns) and 6 ($\chi^2 = 2.942$,
207	ns). Model 2 had fewer explanatory variables than models 3 to 6 and was thus considered

Bivariate correlations using means calculated for the whole study period showed that FGC levels were significantly negatively related to rate of mounting ($r_s = -0.850$, P = 0.007, fig. 1), low intensity aggression ($r_s = -0.970$, P < 0.001) and moving ($r_s = -0.786$, P = 0.02). These three behavioural correlates of mean FGC levels were themselves positively correlated (mounting and low intensity aggression: $r_s = 0.813$, P = 0.01; mounting and moving: $r_s = 0.874$, P = 0.01; low intensity aggression and moving: $r_s = 0.802$, P = 0.02). 215 Mean FGC levels were unrelated to the mean rate of receiving high intensity aggression (rs

216 = 0.098, P = 0.82), mean percentage time giving (r_s =0.143, P = 0.74) or receiving

grooming ($r_s = 0.214$, P = 0.61), or to rank ($r_s = -0.381$, P = 0.35). There was no significant

218 correlation between high intensity aggression and either low level aggression ($r_s = -0.110$, P

219 = 0.80) or mounting (r_s = -0.06, P = 0.89).

220

221 Discussion

222

223 Our results provide evidence of a negative relationship between mounting frequency and 224 physiological stress levels among free-ranging male rhesus macaques during the breeding 225 season. Before exploring these findings further, we feel it is important to flag up two 226 important caveats. Firstly, we were unable to collect behavioural data throughout the whole 227 day, and thus cannot exclude the possibility that individual males might vary in the 228 proportion of their mounts that occur during the data collection period (1000-1400 daily) 229 compared to outside of this time. Secondly, we did not distinguish between ejaculatory and 230 non-ejaculatory mounts (although frequency of mounting and occurrence of ejaculation are 231 highly positively correlated in this species; Mehlman et al. 1997). We feel, therefore, that 232 our results should be seen as preliminary, and hope that they will promote further, more 233 detailed investigation of the associations between mating behaviour and stress physiology. 234 Nevertheless, with these caveats in mind, the potential mechanisms underlying the negative relationship found between mounting frequency and physiological stress levels merit 235 236 discussion.

237 One possibility is that males that are more stressed are less likely to achieve mounts. 238 Indeed, studies of rodents indicate that stress can impact negatively on aspects of male 239 sexual behaviour including motivation and performance (e.g. Retana-Marquez et al. 1996). 240 Alternatively, more frequent mounting may reduce males' stress levels and/or their 241 reactivity to subsequent stressful events. There is evidence that oxytocin levels increase 242 during sexual arousal and following ejaculation (Bancroft 2005). This hormone may 243 suppress cortisol levels (Heinrichs et al. 2003); such stress-attenuating effects may underlie 244 the marked reduction in anxiety (a subset of stress) seen after mating in rats (Waldherr and 245 Neumann 2007) and lower blood pressure reactivity to stressful events which is seen 246 following recent intercourse in humans (Brody 2006).

247 Such stress-reducing effects of sexual activity may explain the unexpected negative 248 association in our study between mean levels (over the whole study period) of FGC and 249 rates of receiving low intensity aggression. As it seems biologically improbable that 250 receiving aggression directly reduces FGC levels, this association may simply be a by-251 product of the positive correlation (over the whole study period) between rates of mounting 252 and receiving low intensity aggression. Similarly, the negative association between FGC 253 levels and the amount of time spent moving may also be explained by the positive 254 correlation between moving and mounting frequency. Our results suggest that males that 255 mount frequently may experience buffering against the associated costs (e.g. metabolic) of 256 increased aggression and movement (e.g. Muller and Wrangham, 2004), as well as 257 achieving high mating success. This may help explain why male rhesus macaques don't 258 show higher stress levels in the breeding season, compared to the non-breeding season

(Higham et al. 2013), despite it commonly being associated with high rates of aggression
(e.g. Wilson and Boelkins 1970; Mehlman et al. 1997).

Our study adds to the growing number exploring the relationships between male reproductive behaviour and physiological stress levels in mammals, and is one of the very few to quantify male mating behaviour directly. Amongst these, some find a positive association between mating behaviour (or an index thereof) and GC levels (Barrett et al. 2002; Mooring et al. 2006; Koren et al. 2008), while in others (Sapolsky 1982), including ours, the relationship is negative.

This disparity among studies may result from variation between species in factors such as the intensity of the breeding season, the degree of reproductive skew among males or the nature of male-female and male-male social relationships. Understanding how such factors influence stress levels among males is a key area for further research. Our study highlights the importance of investigating mating behaviour itself in future studies of the interactions between reproductive competition and stress physiology.

273

274 Acknowledgments

275

We thank Melissa Gerald, James Ayala and all the staff of the Caribbean Primate Research
Centre for their support. Thanks to Lauren Brent, Amanda Accamando, Constance Dubuc
and Véronique Martel for support in the field, and to Balbir Singh Josen and James Higham
for laboratory assistance. Lauren Brent, Bonaventura Majolo and Lewis Halsey provided
invaluable feedback on this manuscript. We are also grateful to Joris Koene and two
anonymous reviewers for useful comments on previous versions of this manuscript. The
project described was supported by Grant Number CM-5-P40RR003640-20 from the

283	National Center for Research Resources (NCRR), a component of the National Institutes of
284	Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily
285	represent the official views of NCRR or NIH.
286	
287	References
288 289	Arlet, M.E., Grote, M.N., Molleman, F., Isbell, L.A. & Carey, J.R. (2009) Reproductive
290	tactics influence cortisol levels in individual male gray-cheeked mangabeys
291	(Lophocebus albigena). Horm. Behav., 55, 210-216.
292	Bancroft, J. (2005) The endocrinology of sexual arousal. J. Endocrinol., 186, 411-427.
293	Barrett, G.M., Shimiu, K., Bardi, M., Asaba, S. & Mori, A. (2002) Endocrine correlates of
294	rank, reproduction, and female-directed aggression in male Japanese macaques
295	(Macaca fuscata). Horm. Behav., 42, 85–96.
296	Bergman, T.J., Beehner, J.C., Cheney, D.L., Seyfarth, R.M. & Whitten, P.L. (2005)
297	Correlates of stress in free-ranging male chacma baboons, Papio hamadryas
298	ursinus. Anim. Behav., 70, 703-713.
299	Bernstein, I.S. & Ehardt, T. (1985) Agonistic aiding: kinship, rank, age, and sex influences.
300	Am. J. Primatol., 8, 37-52.
301	Brody, S. (2006) Blood pressure reactivity to stress is better for people who recently had
302	penile-vaginal intercourse than for people who had other or no sexual activity. Biol,
303	Psychol., 71, 214-222.
304	Call, J., Judge, P.G. & de Waal, F.B.M. (1996) Influence of kinship and spatial density on
305	reconciliation and grooming in rhesus monkeys. Am. J. Primatol., 39, 35–45.

306	Crockford, C., Wittig, R.M., Whitten, P.L., Seyfarth, R.M. & Cheney. D.L. (2008) Social
307	stressors and coping mechanisms in wild female baboons (Papio hamadryas
308	ursinus). Horm. Behav., 53, 254-265.
309	Engelhardt, A., Hodges, J.K., Niemitz, C. & Heistermann, M. (2005) Female sexual
310	behavior, but not sex skin swelling, reliably indicates the timing of the fertile phase
311	in wild long-tailed macaques (Macaca fasicularis). Horm. Behav., 47, 195-204.
312	Gould, L., Ziegler, T. & Wittwer, D. (2005) Effects of reproductive and social variables on
313	fecal glucocorticoid levels in a sample of adult male ring-tailed lemurs (Lemur
314	catta) at the Beza Mahafaly Reserve, Madagascar. Am. J. Primatol., 67, 5–23.
315	Gust, D.A., Gordon, T.P., Hambright, M.K., Wilson, M.E. (1993) Relationship between
316	social factors and pituitary: adrenocortical activity in female rhesus monkeys
317	(Macaca mulatta). Horm. Behav., 27, 318–331.
318	Heinrichs, M., Baumgartner, T., Kirschbaum, C. & Ehlert, U. (2003) Social support and
319	oxytocin interact to suppress cortisol and subjective responses to psychosocial
320	stress. Biol. Psychiatry., 54, 1389-98.
321	Heistermann, M., Palme, R. & Ganswindt, A. (2006) Comparison of different
322	enzymeimmunoassays for assessment of adrenocortical activity in primates based
323	on fecal analysis. Am. J. Primatol., 68, 257-273.
324	Herndon, J.G. (1983) Seasonal breeding in rhesus monkeys: influence of the behavioral
325	environment. Am. J. Primatol. 5, 197–204.
326	Higham, J.P., Heistermann, M. & Maestripieri, D. (2013) The endocrinology of male
327	rhesus macaque social and reproductive status: a test of the challenge and social
328	stress hypotheses. Behav. Ecol. Sociobiol., 67, 19-30.

329	Higham, J.P., MacLarnon, A.M., Heistermann, M., Ross, C. & Semple, S. (2009) Rates of
330	self-directed behavior and faecal glucocorticoid levels are not correlated in wild
331	female olive baboons (Papio hamadryas anubis). Stress, 12, 526-532.
332	Hodges, J.K. & Heistermann, M. (2003) Field endocrinology: monitoring hormonal
333	changes in free-ranging primates. In: J.M. Setchell & D.J. Curtis (Eds.) Field and
334	Laboratory Methods in Primatology: A Practical Guide. pp. 282-294. Cambridge
335	University Press, Cambridge.
336	Hoffman, C.L., Higham, J.P., Heistermann, M., Prendergast, B., Coe, C. & Maestripieri, D.
337	(2011) Immune function and HPA axis activity in free-ranging rhesus macaques.
338	Physiol. Behav., 104, 507-514.
339	Koren, L., Modady, O. & Geffen, E. (2008) Social status and cortisol levels in singing rock
340	hyraxes. Horm. Behav. 54, 212–216.
341	Mehlman, P.T., Higley, J.D., Fernald, B.J., Sallee, F.R., Suomi, S.J. & Linnoila, M. (1997)
342	CSF 5-HIAA, testosterone, and sociosexual behaviors in free-ranging male rhesus
343	macaques in the mating season. Psychiatry. Res., 72, 89-102.
344	Mooring, M.S., Patton, M.L., Lance, V.A., Hall, B.M., Schaad, E.W., Fetter, G.A., Fortin,
345	S.S. & McPeak, K.M. (2006) Glucocorticoids of bison bulls in relation to social
346	status. Horm. Behav., 49, 369–375.
347	Muller, M.N. & Wrangham, R.W. (2004) Dominance, cortisol and stress in wild
348	chimpanzees (Pan troglodytes schweinfurthii). Behav. Ecol. Sociobiol., 55, 332-
349	340.

350	Ostner, J., Heistermann, M., Schülke, O. (2008) Dominance, aggression and physiological
351	stress in wild male Assamese macaques (Macaca assamensis). Horm. Behav., 54,
352	613-619.

353 Palme, R. (2005) Measuring fecal steroids - Guidelines for practical application, *Ann. N.Y.*

354 *Acad. Sci.*, 1046, 75–80.

- 355 Place, N.J. & Kenagy, G.J. (2000) Seasonal changes in plasma testosterone and
- glucocorticosteroids in free-living male yellow-pine chipmunks and the response to
 capture and handling. J. Comp. Physiol. B., 170, 245–251.
- 358 Retana-Marquez, S., Dominguez-Salazar, E. & Velazquez-Moctezuma, J. (1996) Effect of
- acute and chronic stress on masculine sexual behavior in the rat.
- 360 *Psychoneuroendocrinology*, 21, 39–50.
- Sapolsky, R.M. (1982) The endocrine stress–response and social status in the wild baboon.
 Horm. Behav., 16, 279–292.
- 363 Sapolsky, R.M. (2005) The influence of social hierarchy on primate health. *Science*, 308,
 364 648-652.
- Shutt, K., MacLarnon, A., Heistermann, M. & Semple, S. (2007) Grooming in Barbary
 macaques: better to give than to receive? *Biol. Lett.*, 3, 231-233.
- 367 StataCorp. (2007) Stata Statistical Software: Release 10. College Station, TX: Stata Press.
- 368 Symonds, M.R.E. & Moussalli, A. (2011) A brief guide to model selection, multimodel
- inference and model averaging in behavioural ecology using Akaike's information
 criterion. *Behav. Ecol. Sociobiol.*, 65, 13–21.
- 371 Teas, J., Richie, T., Taylor, H. & Southwick, C. (1980) Population Patterns and Behavioral
- 372 Ecology of Rhesus Monkeys (*Macaca mulatta*) in Nepal. In: D. Lindenburg (Ed.)

- 373 *The Macaques: Studies in ecology, behavior, and evolution.* pp. 247-262. San
- 374 Francisco: Van Nostrand Reinhold Company.
- Waldherr, M., Neumann, I.D. (2007) Centrally released oxytocin mediates mating-induced
 anxiolysis in male rats. *Proc. Nat. Acad. Sci. USA*, 104, 16681–16684.
- 377 Wilson, A.P. & Boelkins, R.C. (1970) Evidence for seasonal variation in aggressive
- behaviour by *Macaca mulatta*. Anim. Behav., 18, 719-724.
- 379 Zar, J.H. (1999) *Biostatistical Analysis*. New Jersey: Prentice Hall.
- 380 Ziegler, T., Hodges, K., Winkler, P., Heistermann, M. (2000) Hormonal correlates of
- 381 reproductive seasonality in wild female Hanuman langurs (*Presbytis entellus*). Am.
- *J. Primatol.*, 51, 119-134.

385 glucocorticoid levels

Variables included	AIC	D.F
Individual models		
High intensity aggression	428.12	
Low intensity aggression	428.92	
Mounting	430.16	
Moving	437.48	
Rank	438.17	
Grooming given	440.73	
Grooming received	441.48	
Composite models		
(1) High intensity aggression; low intensity aggression	418.66	1
(2)* High intensity aggression; low intensity aggression; mounting	410.39	2
(3) High intensity aggression; low intensity aggression; mounting;	410.54	3
moving		
(4) High intensity aggression; low intensity aggression; mounting; rank	410.51	3
(5) High intensity aggression; low intensity aggression; mounting;	412.72	3
grooming given		
(6) High intensity aggression; low intensity aggression; mounting;	413.32	3
grooming received		

386 *denotes best fit model

388 Table 2. Results of the 'best model' GLMM for the relationship between faecal

389 glucocorticoid levels and behavioural variables (N = 62)

	$\beta \pm SE$	Ζ	Р	95% CIs
High intensity aggression	70.75 ± 181.29	0.39	0.696	-284.57 to 426.07
Low intensity aggression	$\textbf{-59.52} \pm 94.86$	-0.63	0.530	245.44 to 126.39
Mounting	-19.33 ± 9.72	-1.99	0.047	38.39 to 0.28
Random effects				

Subject ID nested inside week: estimated variance = 7.81

390

392 Figure Legends

- 393
- 394 Figure 1. The relationship between mean faecal glucocorticoid concentration and mean
- 395 mounting frequency