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Abstract

The structural and functional brain characteristics associated with the excessive use of the

internet have attracted substantial research attention in the past decade. In current study,

we used voxel-based morphometry (VBM) and multiple regression analysis to assess the

relationship between internet addiction tendency (IAT) score and regional gray and white

matter volumes (rGMVs and rWMVs) and brain activity during a WM task in a large sample

of healthy young adults (n = 1,154, mean age, 20.71 ± 1.78 years). We found a significant

positive correlation between IAT score and gray matter volume (GMV) of right supramargi-

nal gyrus (rSMG) and significant negative correlations with white matter volume (WMV) of

right temporal lobe (sub-gyral and superior temporal gyrus), right sublobar area (extra-
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nuclear and lentiform nucleus), right cerebellar anterior lobe, cerebellar tonsil, right frontal

lobe (inferior frontal gyrus and sub-gyral areas), and the pons. Also, IAT was significantly

and positively correlated with brain activity in the default-mode network (DMN), medial fron-

tal gyrus, medial part of the superior frontal gyrus, and anterior cingulate cortex during a 2-

back working memory (WM) task. Moreover, whole-brain analyses of rGMV showed signifi-

cant effects of interaction between sex and the IAT scores in the area spreading around the

left anterior insula and left lentiform. This interaction was moderated by positive correlation

in women. These results indicate that IAT is associated with (a) increased GMV in rSMG,

which is involved in phonological processing, (b) decreased WMV in areas of frontal, sublo-

bar, and temporal lobes, which are involved in response inhibition, and (c) reduced task-

induced deactivation of the DMN, indicative of altered attentional allocation.

Introduction

The internet is a necessity in many lives [1]. More than half of the world’s population are inter-

net users [2, 3]. Excessive internet use is associated with negative psychological consequences

such as poor life satisfaction [4, 5], anxiety and aggression [6, 7], low self-esteem and depres-

sion [8, 9], and alcohol abuse [10, 11]. Physical health problems such as sleep problems [12–

14] and social functioning impairments such as poor academic performance [15, 16] are other

negative consequences of excessive internet use.

Excessive internet use has also been associated with impaired executive functions [17–21].

In addition, some studies have also indicated that internet users show working memory (WM)

deficits compare to individuals without such behaviors [19–22].

WM is a central component of executive functioning [23]. It has been suggested that WM

along with inhibition and shifting contribute to self-regulation [24]. Prior research suggests

that WM is a significant predictor of the ability to have proper response inhibition [25]. WM

deficits have been observed in individuals with hyperactivity and attention disorder and

impulsivity [26, 27], substance-dependent individuals, including cocaine- [28], alcohol- [29],

methamphetamine- [30] and opioid-dependent individuals [31]. WM load interferes with

individuals’ ability to filter out irrelevant distractors [32]. Also, there is evidence of significant

conjunction between WM and response inhibition in the left inferior frontal gyrus [33].

During cognitive tasks performance, the default-mode network (DMN) is deactivated [34].

DMN is a set of brain regions (posterior cingulate/precuneus, medial prefrontal cortex) con-

sidered a backbone of cortical integration [35–38]. Previous studies have revealed that task-

induced deactivations occur within regions of the DMN during cognitive WM tasks [39–43].

In addition, a reduced magnitude of task-induced deactivation in the DMN is a characteristic

of subjects with lower WM capacity and cognitive disinhibition [44, 45]. Global Workspace

Theory [46] has helped researchers understand how WM relates to the DMN. In brief, the the-

ory postulates that the central executive (CE) component of the WM model presides over cog-

nitive slave systems to orchestrate conscious cognitive control of distracting stimuli. The CE is

related to the executive control network and functions antagonistically to the DMN.

However, the relationship between characteristics of brain activity during a WM task and

the tendency of people to internet addiction (IA) has not been studied yet. One of the aims of

this study is to understand the characteristics of brain activity during a WM task associated

with IAT.
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Research has focused on internet addiction disorder (IAD) in pathological groups rather

than IAT in healthy people groups. Magnetic resonance imaging (MRI) studies have revealed

that internet addiction (IA) scores negatively correlate with GMVs in the anterior cingulate

cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC),

right middle frontal gyrus, supplementary motor area (SMA), cerebellum, left rostral anterior

cingulate cortex (rACC), and post-central gyrus (postCG) [47–49]. Lin, Zhou [50] also used

diffusion tensor imaging (DTI) to investigate white matter integrity in adolescents with IAD.

This study reported that people with higher IAD scores appeared to have lower white matter

integrity in the fronto-temporal pathway connected through the external capsule. Takeuchi,

Taki [51] have shown that video game time is associated with increased mean diffusivity (MD)

in the orbital frontal cortex and subcortical areas (putamen, pallidum, left hippocampus, cau-

date, right insula, and thalamus). Takeuchi, Taki [52] also demonstrated in a longitudinal

study that excessive internet use is associated with decreased verbal intelligence and a smaller

developmental increase in rGMVs and rWMVs, respectively across widespread brain areas in

children.

Moreover, functional magnetic resonance imaging (fMRI) studies have shown that the

most cortical dysfunctions in IAD are reported to be localized to the superior temporal gyrus

[53], cingulate cortex [54], cerebellum [55], and inferior frontal gyrus. In subcortical regions,

functional alterations were often found in the brainstem and caudate [56]. Previous task-

related fMRI studies on IAD have demonstrated differences in behavioral performance and

differences in brain activation during cognitive tasks such as cue-reactivity paradigms in

which subjects are exposed to internet or videogame stimuli to elicit a craving, probabilistic

guessing paradigms in which subjects bet using cards or colors to analyze neural reward sys-

tem dynamics in response to losses or wins, and cognitive control paradigms such as the

GO-NO-GO test for assessment of impulsivity and inhibitory control [56].

Although such combined behavioral and neuroimaging studies have shown that IAD is

associated with altered brain structure [56], but due to small sample sizes [57] and diversity in

empirical research methods and paradigms in neuroimaging studies [58] results are inconsis-

tent and often are not replicated. Also, previous studies have all focused on the group of people

with IAD, and the study of IAT in healthy people has been neglected. With a large sample size,

the current study focuses on the tendency of IA in healthy people to increase our knowledge

about the nature of the phenomenon of IA. For these reasons, future studies are warranted.

The purpose of this study was thus to investigate these issues by assessing the effects of IAT

on brain structure and activity during the n-back working memory task in a large sample of

healthy young adults. Knowledge of the brain structure and function abnormalities and associ-

ation between these abnormalities and IAT is helpful to identify possible interventions and

pharmacotherapies to treat IA.

On the basis of the previous studies, we hypothesized that higher IAT scores may be associ-

ated with structural abnormalities in the frontal and temporal lobe and subcortical areas

known to contribute to addiction vulnerability [50, 59–61]. We also hypothesized that lower

task-induced deactivation (TID) in the DMN during WM may be associated with a higher

IAT score. This hypothesis is based on previous findings that suggest that TID in the DMN is

associated with altered brain glutamatergic excitability and gamma aminobutyric acid

(GABA) inhibition [62], that the glutamatergic neurons play a critical role in the reward sys-

tem [63], and that glutamatergic and GABAergic abnormalities are primary neurobiological

characteristics in individuals with addiction [64–66]. We also hypothesized that lower TID in

the DMN during WM may be associated with a higher IAT score, which is supported by previ-

ous studies that showed reduced task-induced deactivation in the DMN during working mem-

ory tasks in psychiatric patients [67–69].
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Materials and methods

Participants

A total of 1,154 healthy right-handed young adults (666 men, mean age 20.79 years, standard

deviation = 1.89 years and 488 women, mean age 20.60 years, standard deviation = 1.61 years)

participated in this study as part of our ongoing project to explore the associations among

brain imaging characteristics, cognitive functions, aging, genetics, and daily habits. Indeed,

from our database, we used the data from 1,154 subjects that had questionnaire data about

internet dependence, fMRI imaging data, and behavioral data of the N-back task without

apparent artifacts.

All subjects were students from Tohoku University and neighboring universities and col-

leges in Japan. All but one of the subjects in this study were native Japanese speakers. However,

one foreign Asian student who was very proficient in Japanese and was determined to be

equipped to go through the experimental Japanese procedures like native Japanese speakers

was allowed to participate in this study. The removal of this one subject affects the results little.

They were recruited using advertisements on bulletin boards at Tohoku University or via e-

mail introducing the study. These advertisements and e-mails specified the exclusionary char-

acteristics in individuals regarding participation in the study, such as handedness, the exis-

tence of metal in and around the body, claustrophobia, the use of certain drugs, and a history

of certain psychiatric disorders and neurological diseases, and previous participation in related

experiments. A history of psychiatric and neurological diseases and/or recent drug use was

assessed using our laboratory’s routine questionnaire, in which each subject answered ques-

tions related to their current or previous experiences of any of the listed diseases and listed

drugs that they had recently taken. The questionnaire also asked the personal contact informa-

tion, age, birthday, the institutes they belong to, age, sex, weight, and height. The Edinburgh

Handedness Inventory [70] was also included in this routine questionnaire. We used the Edin-

burgh Handedness Inventory to evaluate handedness in subjects. Previous studies demon-

strated significant differences in brain morphology and activity patterns between right-

handers and left-handers [71–75]. For this reason, fMRI studies tend to exclude left-handers.

The scans were checked for noticeable brain lesions and tumors in this experiment, but no

subjects had such apparent lesions or tumors. These descriptions are mostly obtained from

our previously published work [76]. The participant’s socio-demographic characteristics are

presented in Table 1. The Ethics Committee of Tohoku University approved all procedures,

which were performed in accordance with relevant guidelines and regulations. Written

informed consent was obtained from each subject for the projects in which they participated.

Descriptions in this subsection are adapted from a previous study using similar methods [77].

Internet addiction tendency assessment

We used the Japanese version of Young’s IAT scale to assess condition severity [78]. This IAT

instrument consists of 20 items answered on a 1–5 scale from 1 = rarely to 5 = always. The

scale is self-administered and requires 5 to 10 minutes. IAT measures the impact of internet

use on people’s daily routine, social life, productivity, sleeping pattern, and feelings. The IAT

scale minimum and maximum scores are 20 and 100, with higher scores reflecting a greater

tendency toward internet addiction. The developer of this scale suggests that a score of 20–39

points is an average online user who has complete control over his/her usage; a score of 40–69

signifies frequent problems due to internet usage, and a score of 70–100 means that the inter-

net is causing significant problems [78]. The Japanese version of this scale has demonstrated

high reliability and validity [79].
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fMRI task

Functional MRI was used to map brain activity during working memory. The n-back task is a

widely used task consisting of 0-back (simple cognitive processing) and 2-back (working mem-

ory) conditions. In the 2-back task, subjects viewed a series of stimuli presented sequentially

(one of four Japanese vowels) and were instructed to judge if a target stimulus appearing 2 pre-

sentations earlier was the same as the current stimulus by pushing a button. In the 0-back task,

subjects were instructed to determine whether a presented letter was the same as the target

stimulus by pushing a button (Fig 1). We used a simple block design. Descriptions in this sub-

section were mostly adapted from our previous studies using similar methods [77, 80].

In this study, our focus was TID in the DMN. TID in the DMN occurs in mostly similar

areas regardless of whether the task is 2-back or 0-back, although there are differing magni-

tudes. Furthermore, differences in brain activity between patients with schizophrenia and con-

trol subjects were similar regardless of whether the task was a 0-back task or 2-back. These

included areas of DMN (i.e., subtracting the activity during the 0-back task from the brain

activity during the 2-back task substantially eliminates group differences) [44, 81]. Therefore,

we did not analyze the contrast of 2-back– 0-back, as was done in another study that focused

on TID in the DMN [44].

Image acquisition

The MRI acquisition methods were described in our previous study [82]. Briefly, all MRI data

were acquired using a 3 Tesla (3T) Philips Achieva scanner. Diffusion-weighted data were

acquired using a spin-echo Echo planar imaging (EPI) sequence [repetition time (TR) = 10293

millisecond (ms), echo time (TE) = 55 ms, field-of-view (FOV) = 22.4 centimeter (cm), 2×2×2

millimeter (mm)3 voxels, 60 slices, sensitivity encoding (SENSE) reduction factor = 2, number

of acquisitions = 1]. The diffusion weighting was isotropically distributed along 32 directions

(b value = 1,000 s/mm2). In addition, three images with no diffusion weighting (b value = 0 s/

mm2 or b = 0 images) were acquired using a spin-echo EPI sequence (TR = 10293 ms, TE = 55

ms, FOV = 22.4 cm, 2 × 2 × 2 mm3 voxels, 60 slices). For the n-back session, 174 functional

volumes were obtained [77]. High-resolution T1-weighted structural images were collected

Table 1. The socio-demographic characteristics of participants.

Variable Min Max M SD

Age (year) 18 27 20.71 1.78

Self-reported height 142 192 166.35 8.44

Self-reported weight 38 115 57.96 9.50

BMI 15.39 32.88 20.83 1.74

Family annual income a 1 7 4.19 1.56

parent years of education b 9 21 14.69 1.85

a Family annual income was classified as follows: 1, annual income below 2 million yen; 2, 2–4 million yen; 3, 4–6

million yen; 4, 6–8 million yen; 5, 8–10 million yen; 6, 10–12 million yen; 7, >12 million yen; the currency exchange

rate is approximately $1 USD = 120 yen.
b Parent average educational qualification (years of education) was classified as follows: 6 years, elementary school

graduate or below; 9 years, junior high school graduate; 11 years, graduate of a short-term school completed after

junior high school; 12 years, normal high school graduate; 14 years, graduate of a short-term school completed after

high school (such as a junior college); 16 years, university graduate; 18 years, Master’s degree; and 21 years,

doctorate.

https://doi.org/10.1371/journal.pone.0259259.t001
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using a magnetization-prepared rapid gradient echo sequence (T1WIs: 240 × 240 matrix,

TR = 6.5 ms, TE = 3 ms, FOV = 24 cm, slices = 162, slice thickness = 1.0 mm).

Preprocessing of structural data

Preprocessing of the structural and functional data was performed using Statistical Parametric

Mapping (SPM) software (SPM12; Wellcome Department of Cognitive Neurology, London,

UK) implemented in MATLAB (Mathworks, Inc., Natick, MA). For analyses, T1-weighted

structural images of each individual were segmented using the new segmentation algorithm

implemented in SPM12 and normalized to Montreal Neurological Institute (MNI) space to

yield images with 1.5 × 1.5 × 1.5 mm3 voxels using the diffeomorphic anatomical registration

through exponentiated lie algebra registration process implemented in SPM12. In addition, we

performed a volume change correction (modulation) [83]. Subsequently, generated rGMV

and rWMV images were smoothed by convolution using an isotropic Gaussian kernel of 8

mm full width at half maximum. These descriptions were mostly adapted from our previous

study using similar methods.

Pre-processing and data analysis for functional activation data

Pre-processing and data analysis of functional activation data were performed using SPM. The

following procedures for functional activation data analysis were reproduced from our previ-

ous study, as described previously [84]. From the images collected, fractional anisotropy (FA)

and mean diffusion (MD) maps were calculated [85]. In current study, these FA and MD maps

were used during preprocessing of BOLD images. Prior to analysis, individual BOLD images

were re-aligned and resliced to the mean BOLD image and then corrected for slice timing.

Also, the abovementioned mean BOLD image was then realigned to the mean b = 0 image as

previously described together with slice timing corrected images [77]. As the mean b = 0

image was aligned with the FA image and MD map, the BOLD image, b = 0 image, FA image,

and MD map were all aligned.

Fig 1. A schematic diagram of the procedures used for the N-back task.

https://doi.org/10.1371/journal.pone.0259259.g001
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All images were subsequently normalized using a previously validated two-step “new seg-

mentation” algorithm of diffusion images and a previously validated diffeomorphic anatomical

registration through exponentiated lie algebra (DARTEL)-based registration process [86]. This

normalization method was used for all diffusion images, including gray matter segments

(regional gray matter density [rGMD] map), white matter segments (regional white matter

density [rWMD] map), and cerebrospinal fluid (CSF) segments (regional CSF density

[rCSFD] map). Using the newly implemented segmentation algorithm in SPM8, the FA

images of each individual were segmented into six tissues (first new segment). In this process,

default parameters and tissue probability maps were used, except that affine regularization was

performed using the International Consortium for Brain Mapping (ICBM) template for East

Asian brains, and the sampling distance (the approximate distance between sampled points

when estimating the model parameters) was 2 mm.

Next, we synthesize the FA image and the MD map. In this synthesized image, the area with

WM tissue probability > 0.5 in the aforementioned new segmentation process was the FA

image multiplied by −1. Hence, this synthesized image shows a very clear contrast between

WM and other tissues. The remaining area is the MD map.

We continued with the DARTEL registration process implemented in SPM8. During this

process, we used the DARTEL import image of the GM tissue probability map produced by

the second new segmentation process as the GM input for the DARTEL process. First, the raw

FA image was multiplied by the WM tissue probability map from the second new segmenta-

tion process within the areas with a WM probability > 0.5 (the signals from all other areas

were set to 0). Then, this FA image×the WM tissue probability map was coregistered and

resliced to the DARTEL import WM tissue probability image from the second segmentation.

The template for the DARTEL procedures was generated using imaging data from the 63 sub-

jects who participated in [77] and in the present study. Then, using this existing template,

DARTEL procedures were conducted. The parameters have been changed as follows to

improve the accuracy of the procedures. The number of Gauss–Newton iterations to be per-

formed within each outer iteration was set to 10. In each outer iteration, we used 8-fold more

timepoints than the default values to solve the partial differential equations. The number of

cycles used by the full multi-grid matrix solver was set to 8. The number of relaxation itera-

tions performed in each multi-grid cycle was also set to 8. The resultant synthesized images

were spatially normalized to Montreal Neurological Institute (MNI) space. The voxel size of

the normalized BOLD image is 3 3 3 mm3.

A design matrix was fitted to each participant with one regressor for each task condition (0-

, 2-back in the n-back task) using the standard hemodynamic response function. The design

matrix weighted each raw image according to its overall variability, to reduce the impact of

movement artifacts [87]. The design matrix was fit to the data for each participant individually.

After estimation, beta images were smoothed (8 mm full width half maximum) and taken to

the second-level or subjected to a random effect analysis. We removed low-frequency fluctua-

tions using a high-pass filter and a cutoff value of 128 s. The individual-level statistical analyses

were performed using a general linear model.

In the individual analyses, we focused on activation related to the condition (0-back or

2-back versus rest). The resulting maps representing brain activity during the working mem-

ory condition (2-back) and simple cognitive processing condition (0-back) for each participant

were then forwarded for group analysis.

The fMRI images with artifacts based on the visual inspection had been removed from the

images. Thorough instruction to prevent motion during the scan was given to educated partic-

ipants. Other exclusions based on motion parameters were not performed in this study.
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In a previous study, we validated normalization procedures of fMRI using diffusion tensor

images using SPM 8 [86]. Our internal preliminary survey also showed these procedures work

better using SPM8. Conversely, VBM procedures work better with SPM12. In other words, the

segmentation of the diffusion images obtained, which were part of our preprocessing proce-

dures of fMRI, were not adequate for SPM12. Misclassifications that were apparent by visual

inspection were systematically found when SPM 12 was used. In the second-level analysis, the

use of SPM8 or SPM12 does not affect the results of threshold-free cluster enhancement

(TFCE) based on permutation.

Generally, thorough instructions and thorough fixation by the pad were provided to pre-

vent head motion during the scan as much as possible, and we utilized the software to reduce

the impact of movements [87], as described in the subsection below.

Thus, we did not exclude any subject from the fMRI analyses based on excessive motion

that did not cause evident artifacts during the scan. The subjects were young adults and the

scan duration was very brief. Only the maximum movement of several subjects detracted from

the original point, and in one of the directions exceeded 3 mm. Removing these subjects from

analyses did not substantially alter the significant results of the present study.

Similarly, the subjects enrolled in the study were educated young adults, and thorough

instruction and sufficient practice was provided. Subjects whose responses were properly

recorded showed acceptable accuracies and only seven subjects showed accuracies lower than

80% in the 0-back or 2-back task (but accuracies were at least 50% or greater). Removing these

subjects also did not substantially alter the significant results of the present study.

Effects of interaction between sex and the score of Young’s IAT scale on

imaging measures

We also performed a supplementary investigation of the potential regions displaying signifi-

cant effects of interaction between the subject’s sex and score on the Young’s IAT scale (that is,

we investigated whether some regions showed sex-related differences in the correlations pat-

terns based on the Young’s IAT scale score). For this purpose, we performed whole-brain anal-

yses of covariance (ANCOVAs). The dependent variables in these analyses were same as those

in the whole-brain multiple regression analyses that were conducted to investigate the correla-

tion with score of Young’s IAT scale in each voxel across sexes. In these whole-brain ANCO-

VAs, sex was a group factor (using the full factorial option in SPM8), whereas and all other

covariates are same as those of the abovementioned whole-brain multiple regression analyses.

In addition, all covariates were modeled to enable unique relationships with imaging measures

(dependent variables) (using the interactions option in SPM8) for each sex. The interaction

between sex and scores on Young’s IAT scale were assessed using t-contrasts. Correction for

multiple comparisons was performed using the same method used in the whole-brain multiple

regression analyses.

Supplemental methods

Supplemental analyses of the comparison between subjects using Young’s IAT scale.

In accordance with the considerable literature available that classified subjects based on the

Young’s IAT scale score [88], we also divided subjects into two groups (IAT score�50 and

IAT score <50). This classification was used to compare dependent variables between those

who used the internet excessively and those who used it less frequently. We hypothesized that

excessive use of the internet would be associated with additional changes in brain structure

and functional characteristics. For this reason, we also conducted the supplemental analyses of
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comparisons between subjects who scored�50 using Young’s IAT scale and those who scored

<50 using Young’s IAT scale, on the basis of the criteria described previously [78].

For this comparison, we conducted multiple regression analyses in which all dependent

and independent variables of the main analyses remained the same, except that Young’s IAT

score was replaced by the dichotomized value (Young’s IAT scale�50 = 1, Young’s IAT scale

<50 = 0).

Supplemental region of interest (ROI) analyses of the associations between activity in

key nodes of the DMN and IAT scores. We conducted a supplemental partial correlation

analyses of the associations between mean beta estimates of functional ROIs of important

nodes of the DMN and IAT after controlling for covariates. In these analyses, ROI masks were

defined by the areas that are mostly significantly deactivated during the 2-back task using an

appropriate T score threshold that successfully segregated each area in the representative

DMN nodes for the 63 subjects from which the template of normalization was created (when

there were multiple clusters in one area, those that showed the strongest statistical values at the

peak were selected). The mean beta estimates of the 2-back task as well as the 0-back task

within each ROI were extracted. For these analyses, control variables were same as those of the

covariates in the whole-brain multiple regression analyses in the main text.

ROIs were medial prefrontal cortex (mPFC) (peak coordinate: x = −6, y = 57, z = −6, T

score threshold = 15, 425 voxels), posterior cingulate cortex (PCC)/precuneus (peak coordi-

nate: x = −6, y = −57, z = 12, T score threshold = 15, 305 voxels), left hippocampus (peak coor-

dinate: x = −27, y = −21, z = −24, T score threshold = 9, 27 voxels), right hippocampus (peak

coordinate: x = 24, y = −15, z = −27, T score threshold = 9, 66 voxels), left temporoparietal

junction (peak coordinate: x = −45, y = −72, z = 21, T score threshold = 7, 322 voxels), and

right temporoparietal junction (peak coordinate: x = 54, y = −69, z = 27, T score threshold = 7,

32 voxels).

Results with a threshold having p< 0.05, and corrected for the false discovery rate (FDR)

using the two-stage sharpened method [89], were considered statistically significant.

Statistical analysis

Statistical analyses of imaging data were performed with SPM8. Structural whole-brain multi-

ple regression analyses were performed to investigate associations of IAT scores with rGMV

and rWMV. Age, sex, and total intracranial volume calculated using voxel-based morphome-

try (for details of calculation see [90]) were added as covariates.

For the functional images, we used multiple regression analysis to investigate the relation-

ship between IAT score and brain activity levels during the 0-back, 2-back, and 2-back-0-back

tasks. Age, sex, n-back task accuracy, and n-back task reaction time were entered into the mul-

tiple regression model as covariates.

A multiple comparison correction was performed using TFCE [91] with randomized (5,000

permutations) nonparametric testing using the TFCE toolbox (http://dbm.neuro.uni-jena.de/

tfce/). We applied a threshold of family-wise error corrected at P< .05. SPM8 was used for

analyses because of better compatibility with TFCE software and our in-house scripts [52].

Results

Behavioral results

There was no significant difference in mean age between sexes, but independent sample t-tests

revealed a significant difference in the IAT score. Moreover, there was no significant difference

in 2-back accuracy and reaction time between sexes. The distribution of IAT scores by sex is

presented in Fig 2, and the t-test results are presented in Table 2.
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Furthermore, to investigate the relationship between IA and 2-back accuracy and 2-back

reaction time, Pearson’s correlations were conducted. There were no significant correlations

between IA and 2-back accuracy (r = 0.029, p = 0.33) and 2-back reaction time (r = −0.042,

p = 0.15).

Structural results

VBM revealed a significantly correlation between IAT score and rGMV of rSMG among the

entire cohort (Table 3 and Fig 3) as well as significant negative correlations between IAT score

and rWMVs of right temporal lobe (sub-gyral and superior temporal gyrus), right sublobar

region (extra-nuclear and lentiform nucleus), right cerebellum anterior lobe, cerebellar tonsil,

right frontal lobe (inferior frontal gyrus and sub-gyral), and pons (Table 4 and Fig 4).

fMRI results

Multiple regression analysis revealed that IAT scores were significantly and positively corre-

lated with brain activity during the 2-back task in the medial frontal gyrus, superior frontal

gyrus, and medial part of the ACC (Table 5 and Fig 5). This cluster of significant correlation

mostly belonged to areas that were deactivated during the 2-back task (Table 5).

Fig 2. Distribution of internet addiction tendency (IAT) scores.

https://doi.org/10.1371/journal.pone.0259259.g002

Table 2. Comparison of IAT scores between men and women.

Variable Sex M SD MD Df t p

Age Man 20.79 1.89 0.19 1152 1.87 0.062

Woman 20.60 1.61

Internet addiction tendency Man 41.32 13.10 2.70 1152 3.52 0.0001

Woman 38.62 12.58

Working Memory 2-back accuracy Man 0.99 0.030 -0.11 1152 -1.15 0.25

Woman 1.10 2.36

2-back reaction time (sec) Man 0.6688 1769.27 -41.78 1152 -0.387 0.698

Woman 0.6729 1862.29

Abbreviations: M, mean; SD, standard deviation; MD, mean differences; df, degree of freedom; sec, second.

https://doi.org/10.1371/journal.pone.0259259.t002
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Effects of interaction between sex and IAT score. There were only significant effects in

the interaction between sex and the score of Young’s IAT scale in the whole-brain analyses of

rGMV. The significant effects of interaction were found in the area around the left anterior

insula and left lentiform nucleus (p = 0.021, corrected, x, y, z = −24, 16.5, 9, TFCE score

1402.35, 3791 mm3 under the threshold of p< 0.05, corrected) (Fig 6). This interaction had a

positive correlation in women (r = 0.1822, p< .001) and no correlations in men (r = −0.054,

p = 0.163).

Supplemental results

Supplemental analyses of the comparison between subjects using Young’s IAT scale.

The rGMV analysis revealed there were no significant correlations between rGMV and the

dichotomized value (Young’s IAT scale�50 = 1, Young’s IAT scale < 0). However, this analy-

sis revealed that subjects who scored�50 using Young’s IAT scale had a tendency of greater

rGMV in a similar area of significant correlation between rGMV and Young’s IAT scale (right

Inferior parietal lobule, x, y, z = 42, −49.5, 51, 1166 mm3 under the threshold of p< 0.001,

uncorrected).

The rWMV analysis revealed that subjects who scored�50 using Young’s IAT scale had

lower rWMV, with significant negative correlations between rWMV and the dichotomized

value (Young’s IAT scale�50 = 1, Young’s IAT scale< 0), in the left frontal white matter area

(p = 0.026, corrected, x, y, z = −21, 46.5, 6, 7395 mm3), in the right frontal white matter area

(p = 0.036, corrected, x, y, z = 31.5, 25.5, −1.5, 2333 mm3), and in the white matter area in the

cerebellum and the brain stem (p = 0.040, corrected, x, y, z = 19.5, −24, −30, 2749 mm3). These

Table 3. Brain gray matter regions with a significant positive main effect of IAT score on volume.

Anatomical area MNI coordinates TFCE value Corrected p value (FWE) Cluster size (mm3)

X Y z

Right supramarginal gyrus 63 -23 47 1193.41 0.044 250

Abbreviations: GM, gray matter: L, left: R, right; MNI, Montreal Neurological Institute; TFCE, threshold-free cluster enhancement.

https://doi.org/10.1371/journal.pone.0259259.t003

Fig 3. Regional gray matter volumes correlated with internet addiction tendency (IAT) score in young adults. (a)

The panels show the areas of significant positive correlation between IAT score and rGMV. The results shown were

obtained using a threshold of threshold-free cluster enhancement (TFCE) of p< 0.05 based on 5,000 permutations. A

significant positive correlation was found in the right supramarginal gyrus. (b) Scatterplot of the association between

IAT score and mean rGMV values of the significant cluster. IAT is positively correlated with mean rGMV of the

significant cluster in men (r = 0.10, p = 0.01), and in women (r = 0.099, p = 0.029).

https://doi.org/10.1371/journal.pone.0259259.g003
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significant areas are mostly included and overlapping with areas that had significant negative

correlations between continuous scoring values for Young’s IAT scale and rWMV. A corrected

p value threshold of p< 0.05 was used for all analyses.

The fMRI analysis revealed that there were no significant correlations. However, subjects

who scored�50 using Young’s IAT scale showed a tendency of greater brain activity during

the 2-back task in a similar area of significant correlation between brain activity during the

2-back task and Young’s IAT scale (mPFC, x, y, z = 3, 51, −6, 972 mm3 under the threshold of

p< 0.001, uncorrected).

These results suggest similar but weaker tendencies of the correlations of the dichotomized

value (Young’s IAT scale�50 = 1, Young’s IAT scale< 0) as compared with the significant

correlations between the continuous score of Young’s IAT scale and neuroimaging measures.

Table 4. Brain white matter regions with a significant negative main effect of IAT score on volume.

Cluster Lobe (L/R) Nearest WM area MNI coordinates TFCE value Corrected p value (FWE) Cluster size (mm3)

x Y Z

1 Temporal (R) Sub-Gyral 23 -53 15 1742.07 0.007 113825

Sublobar (R) Extra-Nuclear 24 -39 14 1635.53 0.008

Temporal (R) Superior temporal gyrus 42 -35 6 1615.76 0.008

2 Cerebellum posterior (R) Cerebellar tonsil 14 -47 -44 1621.78 0.008 42741

Brain stem (R) Pons 18 -35 -33 1618.07 0.008

Cerebellum anterior (R) cerebellum anterior lobe 21 -44 -39 1595.88 0.008

3 Frontal (R) Sub-gyral 27 21 -11 1368.78 0.015 10618

Frontal (R) Sub-gyral 30 27 0 1321.91 0.017

Frontal (R) Inferior frontal gyrus 32 36 -11 1176.26 0.026

4 Sublobar (R) Lentiform nucleus 26 2 -6 927.62 0.048 6.75

5 Sublobar (R) Lentiform nucleus 27 0 -5 926.90 0.048 6.75

Abbreviations: IAT, internet addiction tendency; L, left; MNI, Montreal Neurological Institute; R, right; TFCE, threshold-free cluster enhancement; WM, white matter.

https://doi.org/10.1371/journal.pone.0259259.t004

Fig 4. Regional white matter volumes correlated with internet addiction tendency (IAT) score in young adults. (a)

The panels show the areas of significant negative correlation between IAT score and rWMV. The results shown were

obtained using a threshold of threshold-free cluster enhancement (TFCE) of p< 0.05 based on 5,000 permutations.

Significant correlations were found in the sub-gyral area of the temporal lobe, superior temporal gyrus, extra-nuclear,

lentiform nucleus, right cerebellum anterior lobe, cerebellar tonsil, right inferior frontal gyrus, sub-gyral of frontal

lobe, and pons. (b) Scatterplot of the association between IAT score and mean rWMV values of the largest cluster. The

simple correlation coefficient between mean rWMV signal of the significant cluster and IAT score is −0.045. The

association may look weak, but the partial correlation coefficient of this association when age, sex, and total

intracranial volume were accounted for is − 0.108. IAT is negatively correlated with the mean rWMV of the significant

cluster 1 (r = -0.113, p = 0.003), significant cluster 2 (r = −0.108, p = 0.005), and significant cluster 3 (r = -0.119,

p = 0.002) in men. In addition, IAT has a slight negative correlation with the mean rWMV in cluster 1 (-0.104,

p = 0.021) in women.

https://doi.org/10.1371/journal.pone.0259259.g004
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Supplemental ROI analyses of the associations between activity in key nodes of the

DMN and IAT scores. After correcting for multiple comparisons, the partial correlation

analyses showed that the IAT score significantly and positively correlated with brain activity

(2-back) of the ROI of the mPFC, left hippocampus, and right hippocampus. Similar tenden-

cies were observed for the brain activity (2-back) of ROI of the PCC/precuneus, and for brain

activity (0-back) in the ROI of the left and right hippocampus (S1 Table).

Discussion

To the best of our knowledge, this is the first study to investigate the associations between

internet addiction tendency and brain activity during a working memory task in healthy

young adults. First, VBM showed a positive association of IAT score with GMV across the

supramarginal gyrus and negative associations of IAT score with rWMVs in the right inferior

frontal gyrus (rIFG) and sub-gyral frontal lobe, extra-nuclear, lentiform nucleus, right cerebel-

lum anterior lobe, cerebellar tonsil, sub-gyral temporal lobe, superior temporal gyrus, and

pons. These rWMV correlations with IAT score are consistent with our original hypothesis

that IAT is strongly associated with abnormal brain structures in fronto-striatal areas [59, 60].

However, cortical areas outside the frontal lobe were significant.

In this study, the association between IAT scores and brain activity during the WM task

was observed only in the anterior part of the DMN (the mPFC and contingent regions), but

Table 5. Brain regions exhibiting significant positive correlations with IAT score.

Anatomical area MNI coordinates TFCE value Corrected p value

(FWE)

Cluster size (mm3) Activated areas, deactivated

areas during the 2-back task�X Y Z

Left medial frontal gyrus -9 54 -3 737.44 0.014 23112 0%, 97.5%

Left superior frontal gyrus, medial part -9 54 6 728.89 0.015

Right anterior cingulate 6 39 6 675.55 0.019

Abbreviations: IAT, internet addiction tendency; L, left; MNI, Montreal Neurological Institute; R, right; TFCE, threshold-free cluster enhancement; WM, white matter.

�Percentage of voxels showing significant activation or deactivation (p< 0.05, false discovery rate (FDR) corrected at the voxel level) during the 2-back task among the

63 subjects sampled, from which the template of the diffusion image was created [86].

https://doi.org/10.1371/journal.pone.0259259.t005

Fig 5. (a) Regional brain activity correlates with internet addiction tendency (IAT) scores. Regions with significant

correlations between brain activity and IAT scores are overlaid on a single subject T1 image from SPM8. Results were

obtained using a threshold of threshold-free cluster enhancement (TFCE) of p< 0.05 based on 5,000 permutations.

IAT scores were significantly and positively correlated with brain activity during the 2-back task in the default-mode

network (medial frontal gyrus and anterior cingulum). (b) Scatterplot of the relationship between the IAT scores and

brain activity during the 2-back task in the default-mode network. IAT showing a positive correlation with regional

brain activity in men (r = 0.113, p = 0.003) and in women (r = 0.177, p = 0.001).

https://doi.org/10.1371/journal.pone.0259259.g005
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not in the posterior DMN. We added a supplemental ROI analyses that investigated the brain

activity of functional ROIs of important nodes based on the DMN and IAT scores (Supple-

mental Methods, Supplemental Results, and S1 Table). This analysis showed there was a signif-

icant positive correlation between brain activity defined by the IAT score and brain activity

observed in the mPFC and bilateral hippocampus. In addition, brain activity of the PCC/pre-

cuneus during the 2-back task, also showed a marginally insignificant positive correlation.

Thus, it is difficult to conclude that there is no correlation between the IAT score and brain

activity of the posterior DMN. Whether this relatively weaker result for the posterior DMN is

due to statistical fluctuation or other reasons remains unclear. However, previous studies have

demonstrated that reduced TID in the DMN during working memory tasks in the elderly or

psychiatric patients is seen in both the posterior and anterior parts of the DMN [44, 45]. Fol-

lowing our discussion, Moccia, Pettorruso [92] explained that the activity in some brain net-

works, including the ACC, is the basis of response inhibition in healthy individuals. Also,

deficits in response inhibition in individuals with substance use disorders and gambling disor-

der and relapse have been shown in previous studies. This study improves our understanding

of the common underlying neural mechanisms of IAT and other addictive behaviors within

this conceptual framework.

Moreover, our supplemental analysis revealed the tendency of positive correlation between

the mean brain activity of the cluster of significant correlation between the IAT score and

brain activity in the mPFC in this study. We also showed the accuracy of the 2-back task after

controlling for age, sex, and framewise displacement during the scan (partial correlation coeffi-

cient: −0.049, p = 0.096). However, reaction time during the 2-back task did not show such

tendencies. These findings suggest that the TID in the anterior part of the DMN is also associ-

ated with cognitive processes during working memory.

In the present study, the GMV of rSMG was significantly positive correlated with IAT

score, consistent with recent studies implicating the supramarginal gyrus in addiction [93, 94].

Also in accord with functions in addiction, this region is responsible for phonological process-

ing [95] and our recent study revealed that frequent internet use in children is associated with

a decrease in verbal intelligence [52]. In most previous studies, however, there was a negative

correlation between GMV volume and addiction [35–39], while our current study found posi-

tive correlations between IAT and GMV in the left caudate. These discrepancies among studies

Fig 6. Interaction between sex and internet addiction tendency (IAT) scores. (a) Whole-brain analyses of rGMV

show significant effects of interaction between sex and the score of Young’s IAT scale. Results were obtained using a

threshold of threshold-free cluster enhancement (TFCE) of p< 0.05 based on 5,000 permutations. The significant

effects of interaction were found in the area around the left anterior insula and left lentiform. This interaction is

positively correlated in women (r = 0.171, p = 0.001), and not correlated in men (r = −0.051, p = 0.189). (b) Scatterplot

of the mean rGMV of the significant cluster of sex interaction effects in the left basal ganglia and left anterior insula.

https://doi.org/10.1371/journal.pone.0259259.g006
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may be due to differences in sample groups. Our sample group included only university stu-

dents, who are of above average intelligence and would use the internet more frequently for

learning and education. Another possible explanation is greater internet accessibility in recent

years (via smart phones, Wi-Fi, etc.). The possible mechanisms are diverse. For example, the

development of the smartphone and accessibility Wi-Fi have made it easy to use the internet

under the condition of dual tasks (e.g., engaging in the internet while walking), which might

lead to changes in functions and structures of attention-related areas in the users. Faster inter-

net speed might allow faster access to the verbal and visual information, which may in turn

lead to structural changes in relevant brain areas in users. However, these explanations are

speculative and require future study.

Our study also revealed negative correlations between the IAT score and rWMV in frontal,

temporal and sublobar areas, regions responsible for response inhibition, visuospatial/visuo-

motor functions, and reward system functions. These findings are consistent with our hypoth-

esis that IAT would correlate with WMVs in fronto-striatal areas. As stated, fronto-striatal

circuits are critical for the emergence of addictive behaviors. Previous studies have demon-

strated contributions of the right inferior frontal gyrus rIFG to addiction [96, 97] likely

through critical functions in response inhibition, decision making, target detection, and inhib-

itory control [98]. Impulsive responses are inhibited by engaging frontal–basal ganglia path-

ways involving the rIFG, striatum, pre-supplementary motor area (pre-SMA), and

subthalamic nucleus (STN) [99]. Previous studies have well documented the underlying role of

the IFG in addiction [100].

This finding from our study suggests that the tendency to IA may have a common under-

pinning with other substance abuse disorders.

The cortex is connected to the subthalamic nucleus via a hyperdirect pathway as well as by

a slower indirect pathway in which cortical outputs are first sent to the striatum, then passed

to the globus pallidus pars externa, and finally to the STN [101]. Previous studies have shown

that both the hyperdirect and indirect basal ganglia pathways are critical for response inhibi-

tion [99, 102]. Thus, negative correlations between IAT score and rWMVs of frontal, temporal,

and sublobar areas may reflect poor response control for internet use.

There was also a negative correlation between IAT score and WMVs of right temporal lobe

(sub-gyral and superior temporal gyrus). This result is consistent with previous findings indi-

cating that addiction is associated with abnormalities in the cerebral cortex, including the tem-

poral cortex. For instance, Fortier et al. [103] showed that alcoholism in adults is itself linked

to a decrease in cortical thickness in the temporal, frontal, and occipital cortical regions and

these changes correlated positively with the severity of abuse. Further, significant negative cor-

relations between rWMVs and IAT scores were found in the sublobar regions and lobes of the

cerebellum. Moulton, Elman [104] posited that the cerebellum, as an intermediary between

motor function and reward, motivation, and cognitive control systems would have important

roles in the etiology of addiction. Also, some studies showed a correlation between subjective

craving among heroin dependents and brain activities in the superior temporal gyrus region

[105].

These negative correlations between regional WMVs and IAT scores may reflect reduced

myelination or loss of WM integrity within these pathways. As detailed in our previous studies

[85, 86], changes in myelination, glial cell number, glial cell size, and the number of axon col-

laterals can all influence WMV. Therefore, decreased regional WMV may reflect reduced mye-

lination, glial cell number/size, and (or) axonal number, which in turn impedes both regional

neural transmission and neural transmission among networks. Thus, decreases in these physi-

ological components in fronto-striatal pathways, right temporal lobe, sublobar regions,
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cerebellum lobe, and ensuing transmission deficits may lead to impaired response inhibition

and visuospatial/visuomotor and reward system dysfunction. The present findings thus

advance our understanding of WM dysfunction in IAT among young adults. More intense

IAT is associated with WMV reductions in core brain regions responsible for response inhibi-

tion, visuospatial/visuomotor functions, and reward.

It has been reported that addictive behaviors usually onset in young adult age. This is

explained by several reasons, including dramatic physical, cognitive, and psychosocial changes

occurring at that time [106]. So, the results of this study are also important and innovative in

that our knowledge about the neurological underpinnings of addictive behaviors in young

people increased.

Conclusions

In conclusion, we demonstrate significant association of IAT severity with both white and gray

matter volumes, as well as with DMN activity during a working memory task. Internet addic-

tion tendency is characterized by increased gray matter volume in the rSMG brain region.

This region is responsible for phonological processing, decreased rWMVs in brain regions

involved in inhibition, visuospatial/visuomotor functions, and the reward system. Moreover,

IAT is correlated with reduced TID of the DMN. Collectively, our findings suggest that IAT

may share neural mechanisms with other types of addiction.

Limitations and further research

This study has several limitations. First, the cross-sectional design precludes establishment of

causal relationships between IAT and changes in specific brain structures and activity patterns

during a WM task. Second, as this study cohort consisted only of healthy young adults at a rel-

atively high educational level, these findings may be extrapolated to the general population.

Age, intellectual ability, education level, and general health can also strongly influence brain

structures and increase sensitivity of the analyses [107].
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