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A computational exploration of resilience and
evolvability of protein–protein interaction networks
Brennan Klein 1,2✉, Ludvig Holmér3, Keith M. Smith 4✉, Mackenzie M. Johnson 5, Anshuman Swain 6,

Laura Stolp 7, Ashley I. Teufel5,8,9 & April S. Kleppe 10,11✉

Protein–protein interaction (PPI) networks represent complex intra-cellular protein interac-

tions, and the presence or absence of such interactions can lead to biological changes in an

organism. Recent network-based approaches have shown that a phenotype’s PPI network’s

resilience to environmental perturbations is related to its placement in the tree of life; though

we still do not know how or why certain intra-cellular factors can bring about this resilience.

Here, we explore the influence of gene expression and network properties on PPI networks’

resilience. We use publicly available data of PPIs for E. coli, S. cerevisiae, and H. sapiens, where

we compute changes in network resilience as new nodes (proteins) are added to the net-

works under three node addition mechanisms—random, degree-based, and gene-expression-

based attachments. By calculating the resilience of the resulting networks, we estimate the

effectiveness of these node addition mechanisms. We demonstrate that adding nodes with

gene-expression-based preferential attachment (as opposed to random or degree-based)

preserves and can increase the original resilience of PPI network in all three species,

regardless of gene expression distribution or network structure. These findings introduce a

general notion of prospective resilience, which highlights the key role of network structures in

understanding the evolvability of phenotypic traits.
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Evolution by natural selection acts upon already existing
genetic material. Alterations like genetic mutations can
cause deleterious effects and are commonly selected

against1. However, emergence of evolutionary novelty is needed
for traits to evolve as the environment is constantly changing.
Thus, an evolutionary balancing act is needed to acquire bene-
ficial novelty and simultaneously avoid deleterious traits.

The evolutionary trajectory by which novel features may be
incorporated into already existing molecular systems is not well
understood. An extensive amount of research has been dedicated
to our understanding of protein sequence evolution, and what
may enable adaptation without disrupting already present bio-
logical functions. The functional divergence of genomes has been
explored by studying gene duplication2–4, de novo gene
emergence5–10, open reading frame extension11–13, and sequence
properties14,15, i.e., GC-content16 and codon usage17–19. While
there has been much focus on addressing wherefrom and how
novel sequence features emerge (e.g., gene duplication, de novo
gene emergence), limited attention has been given to how novelty
may become integrated into the cellular apparatus from a
systems-level perspective and what systems-level processes facil-
itate the incorporation of novel interactions.

Research of essential genes suggests that classification of gene
essentiality is context dependant and quantitative rather than a
static and qualitative feature20. In fact, what determines gene
essentiality and gene dosage-sensitivity has been suggested to be
dependant on genetic and cellular context, and in part reflected in
biological networks20–22. Whether a novel protein is deleterious
or beneficial depends not only on its own sequence features, but
also the environmental context of available interaction
partners23–26. It is, therefore, fundamental to understand how a
protein interacts with its proteomic surrounding.

Here, we examine the resilience of protein–protein interaction
(PPI) networks as the network changes. Biological resilience is a
measure of how tolerant a system is to perturbations27. This
notion of resilience is related to the system’s redundancy28; bio-
logical redundancy refers to two or more components performing
equivalent functions in a given biological system, such that
deactivation of one of them has negligible consequences on the
performance of the biological phenotype. Previous research has
shown that biological redundancy has a positive association to
network connectivity29,30 and may enable biological resilience by
increased tolerance to perturbations in PPI networks31. Here, a
perturbation is defined as an alteration; either adding or remov-
ing a protein of a given network. Adding or removing a protein in
a PPI network will alter the connectivity and therefore also the
network resilience.

“Network resilience”, as defined by Zitnik et al.31, describes the
extent to which random node isolation deteriorates network
structure (node isolation here being where all links are stripped
from the node, leaving it isolated from the rest of the network, see
Fig. 1a). Assuming that tolerance for novelty is linked to network
resilience, we aim to analyse which features affect resilience and
enable successful integration of novel proteins into PPI networks.
Essentially, we are asking to what extent biology may be shaped
by, or is making use of, the general properties of statistical net-
work science relating to attachment mechanisms in the devel-
opment of “resilient” protein interaction networks. To this end,
we use network science to computationally explore how novel
proteins may become integrated in PPIs. Specifically, we intro-
duce and apply a novel network measure referred to as the pro-
spective resilience. This involves introducing new proteins to a
network based on different attachment rules and measuring the
resulting network’s resilience compared to baseline. By measuring
the change in network resilience following the addition of new
nodes to the network, we are able to infer how robust a given

network structure is to incorporating novel proteins. We examine
the prospective resilience of PPI networks under three different
mechanisms for attaching novel proteins to the network. These
mechanisms include a random-attachment strategy, a degree-
based attachment strategy common in the generation of many
scale-free networks, and a biologically inspired gene expression-
based attachment strategy, as it has been suggested that protein
evolution and network topology are interlinked with protein
abundance (gene expression)32–36.

Here, we analyze PPI networks with available data with respect
to gene expression, PPIs and network structure (see Fig. 2). We
examine the PPI networks of DNA repair, mismatch repair, DNA
replication, and the ribosome. We make use of publicly available
data (SNAP37 and KEGG38 databases), which are annotated and
experimentally verified, for three organisms: Escherichia coli
(prokaryote), Saccharomyces cerevisiae (unicellular eukaryote)
and Homo sapiens (multicellular eukaryote). We found that the
prospective resilience of many of these networks is greater when
node addition was based on the gene expression compared to the
other node attachment strategies.

Results
Network resilience and prospective resilience. In biological
terms, individual nodes represent individual proteins of the PPI
network, and we infer the biological resilience by inferring net-
work resilience. The network resilience, R, is an information
theoretic measure that describes the extent to which random node
isolation deteriorates network structure31. This deterioration is
determined by the growing number of connected components in
the network as links are removed. Recall, that a connected
component in a network is a subset of nodes for which any two
nodes are connected by at least one path and two nodes are in
different connected components if no path exists between them in
the network. It is computed iteratively, involving the incremental
isolation of (i.e., removal of all links to) more and more nodes in
the network. In biological terms, links represent protein inter-
actions, and the removal of links represents the removal of an
interaction between two proteins, yielding isolated and non-
interacting proteins. The number of nodes isolated is the fraction
f ¼ a

b of all nodes in the network (rounded to the nearest number
of nodes), where b is the total number of iterations and a
increases from 0 to b in steps of 1, i.e., if b= 100, we isolate 0%,
1%, 2%, ... 100% of the nodes. At each iteration, a modified
Shannon diversity measure,

HmshðGÞ ¼ � 1
log ðNÞ ∑

X

x¼1
pxlog px ð1Þ

is computed for the resulting network, where px ¼ jcx j
N , cx is a

connected component of the network, and N is the number of
nodes; px, therefore, is the probability that a randomly-selected
node is in the connected component cx. As f increases from 0 to 1,
the network becomes more and more disconnected until f= 1, at
which point the resulting network, Gf= 1, is a collection of N
isolated nodes (Fig. 1a, b). Consequently, the Shannon diversity of
these component size distributions increases with f (Fig. 1c). The
final value for resilience is then calculated as a discrete approx-
imation of the area under this curve:

RðGÞ ¼ 1� ∑
b

a¼0

HmshðGf¼a=bÞ
b

ð2Þ

where Hmsh(Gf) is the modified Shannon diversity of the network
after f fraction of nodes have been disconnected. In Supplemen-
tary Note S1, we break down the typical behavior of this resilience
measure. Particularly, we show that dense Erdős-Rényi networks
are more resilient than sparse ones (Supplementary Fig. S1),
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which conforms to the intuition that a complete network is the
most resilient network, with a value R(G)= 0.5. Note that this
measure was previously defined as ranging from 0.0 to 1.031, but
we show that the theoretical maximum is in fact 0.5 (see Sup-
plementary Note S1).

Here, we introduce a novel adaptation of this resilience
measure, which we refer to as the prospective resilience (PR). The
intuition behind this measure is to ask to what extent the
resilience of a given network changes following the addition of
new nodes into the network structure. In a biological context, this
models how a network responds to the introduction of new
proteins. Building on common modeling techniques for studying
network growth processes, the prospective resilience is obtained
by repeatedly adding new nodes to the network and calculating
the updated resilience of the resulting network. This yields a
vector of resilience values, {Rt+1(G), Rt+2(G), . . . , Rτ(G)}, corre-
sponding to the resilience of the network after the addition of
each of the τ new nodes to the network:

PRτðGÞ ¼ RtðGÞ
� �τ

t¼1 ð3Þ
Given that the prospective resilience is computed by adding

nodes to a network, the mechanism by which nodes are added
becomes an important consideration. In general, node attachment

mechanisms assign a probability that each incoming node, vt+1,
attaches its m disconnected links (often referred to as “dangling”
links) to nodes already in the network, vi∈V. This could be based
on random attachment, where each node, vi, has a uniform
probability pi ¼ 1

N of becoming connected to the incoming node,
vt+1. Similarly, a new node can add its m links preferentially
based on the degree (number of neighbors) of the nodes in the
network, pi∝ ki, where ki is the degree of node vi. This means that
the probability that vi will receive an incoming link is pi ¼ ki

2E,
where E is the total number of links in the network. Figs. 3a–d
show examples of different attachment mechanisms and how the
different mechanisms change the structural properties of the
original network (Fig. 3e–g).

From the biological perspective, we posited that a novel protein
entering a system is inevitably more likely to interact with
proteins that are more abundant in that system. This abundance
can be determined by the protein’s gene expression39,40. To this
end, we compare the random and degree-based attachment
mechanisms with attachment based on gene expression. This is
implemented exactly as for degree-based attachment; the
probability that node vi receives an incoming link is proportional
to vi’s gene expression (i.e., the gene expression of node vi divided
by the sum of the gene expressions of all nodes). New nodes

a

b

c

d

Fig. 1 Change in the Shannon diversity and network resilience. A visual intuition is provided to depict how network structure is associated with a
particular resilience value. a Network resilience is calculated by iteratively isolating fractions of nodes in the network, f, eventually leaving N isolated nodes.
b Following every iteration, the Shannon diversity of the component size distribution is calculated, in this case starting at f= 0 (one connected component),
and increasing until every node is disconnected, f= 1. c Increasing the fraction of nodes that have been isolated creates a curve of increasing entropy
values, which is used to compute the network resilience, as in Eq. (2). d An example of the prospective resilience of the network shown in (a). New nodes are
iteratively added to the original network, with m links attached randomly or preferentially based on the degree of nodes in the network.
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(novel proteins) will not have a known gene expression, and as
such, we assign them the average gene expression of the network.
Through this attachment rule, we explicitly couple insights from
network science to the biological properties of protein networks.

Protein–protein interaction networks. In this work, we explore
the notion of prospective resilience in biological systems. To do
so, we focus on PPI networks from three species: S. cerevisiae, E.
coli, and H. sapiens. In this section, we introduce the procedure
for generating these PPI networks.

Each protein in a species’ PPI network is represented by a
node. The links between nodes were then established wherever
there was evidence of PPIs in that species, based on data from the
SNAP database37,31. We identified proteins belonging to
respective PPI networks from data in ref. 38 and constructed
the ribosomal protein networks based on data from the SNAP
database37, which is a selected subset of the STRING database41.
SNAP consists of physical PPIs that are curated by experimental
verification. Note, the links in these networks are unweighted,

indicating that either a PPI has been established between two
proteins or has not, with no indication of strength of interaction
included.

Expression for S. cerevisiae came from NCBI GEO42,43, H.
sapiens from EMBL-EBI Expression Atlas44,45, and E. coli K12
from NCBI GEO42,46. See “Data sources” section for a detailed
description on how the networks were constructed and how their
associated gene expression data was collected. Visualisations of
these networks are shown in Fig. 2a–c, and several network
properties reported in Table 1. In Figs. 2d–f, distributions of gene
expression for each network are plotted as histograms and against
node degree. The distributions for all three species had heavy
tails, with small numbers of highly expressed proteins and a bulk
of proteins with relatively low expression. Across the three
networks included here, we see that nodes with similar gene
expression and degree tend to cluster together, however the
correlation between degree and gene expression itself varies
between species (Fig. 2g–i, with Spearman rank correlation
coefficients included).

Fig. 2 Ribosomal networks. These species have ribosomal interaction networks that span a range of different network structures. Node colors depict
detected communities in the networks. Nodes of a given color are more likely to connect to other nodes of that color. Node size is proportional to gene
expression. a S. cerevisiae ribosomal network. b E. coli ribsomoal network. c H. sapiens ribosomal network. d–f Gene expression distribution of ribosomal
networks for S. cerevisiae, E. coli, and H. sapiens respectively. g–i Gene expression (in transcripts per million, TPM) plotted against node degree for (S.
cerevisiae, E. coli, H. sapiens), respectively. To accentuate clusters of nodes that share degree and gene expression attributes, the points in these plots share
the same color as their corresponding nodes in (a–c). Node size is not included here to improve clarity.
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Prospective resilience in protein–protein interaction networks. We
computed prospective resilience under a number of different
scenarios in order to determine the conditions under which
networks would have the highest prospective resilience (i.e.,
which attachment mechanism is the most effective for max-
imizing the network’s prospective resilience). In each condition,
we calculate the prospective resilience by adding 20 new nodes to
each network. We varied the number of new links, m, that each
new node added to the network (m= 4, 8, and 16). Each simu-
lation was repeated 100 times and the means and standard
deviations were recorded from these runs. The resilience was
calculated with a rate of node isolation, b= 50 (see “Network
resilience and prospective resilience” section).

The results comparing the prospective resilience across the
three species and attachment mechanisms are shown in Figs. 4a–c
and in Supplementary Figs. S3j–l, S4j–l, and S5j–l, for the
ribosomal network, the DNA replication network, mismatch

repair network, and the protein export network, respectively. We
consistently found that the most effective mechanism for adding
new nodes to the networks was the attachment rule based on the
gene expression of nodes in the original network. See Supple-
mentary Note S3 for supplementary results.

Degree-based and random attachment were on average less
effective at increasing the resilience of these networks (though
there is a slight improvement in S. cerevisiae in the case of
random attachment, a trend that disappears as more nodes are
added). In general, a higher positive slope indicated that the
attachment rule (along with the number of links that each new
node enters the network with) generated higher prospective
resilience. For information about the statistical differences
between the slopes of each curve in Fig. 4, see “Statistics of
prospective resilience and modularity” section and Supplemen-
tary Note S2. Note, it is observable that the confidence intervals
for the gene-expression mechanism tended to be tighter than for
random attachment and degree distribution. One straightforward
explanation for this is that the heavy tail of the gene expression
distribution (as compared to degree distribution and uniform
distribution associated with random attachment) would create
more similar patterns of attachment for newly added nodes in the
network, i.e., in each iteration being more likely to attach to the
same high gene expression nodes, thus more predictable results in
the prospective resilience analysis.

In order to put these results in a better context, we performed a
survey of resilience in random networks as the inference of network
resilience has been under-explored for random networks. In
Supplementary Note S1.1, we include several explanatory simula-
tions that offer a more comprehensive intuition about how this
measure behaves in networks. We highlight two main behaviors of

g

a cb

fe

d

Fig. 3 The effect of attachment mechanism on network structure. A visual depiction of the effect of adding nodes under different attachment
mechanisms. In each example, 10 nodes are added, connecting their m= 4 links to nodes in the original network (indicated by the black nodes). Node size
corresponds to its likelihood of gaining new links. a Example network, before node addition. b Example of uniform attachment. c Example of (simulated)
gene expression preferential attachment. d Example of degree-based preferential attachment. e–g Depicts the change in the original network’s degree
distribution after the addition of 10 nodes, under each attachment mechanism (uniform, gene expression, and degree based). The white bars are
transparent to show overlap. While these histograms highlight the change in a single network property (degree, k), one can imagine a number of structural
changes occurring following the addition of new nodes, depending on the attachment mechanism.

Table 1 Basic network measures.

Network property S. cerevisiae E. coli H. sapiens

Network size 145 55 105
Density 0.284 0.929 0.471
Average degree 40.82 50.18 48.93
Resilience 0.438 0.435 0.444
Modularity 0.182 0.0013 0.363

Network size is number of nodes/proteins. Network density is the fraction of the actual amount
of edges over the possible amount of edges. Average degree is the average number of edges per
node. Resilience and modularity are described in further detail in section “Network modularity”
and Supplementary Note S1.
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this measure: its dependence on the network density and the degree
heterogeneity of the network. We illustrated this further in the
context of Erdős-Rényi networks and preferential attachment
networks (Supplementary Notes S1.1 and S1.2).

Based on our analyses of random networks, adding more links
(therefore making the resulting network more dense) increased the
prospective resilience in each of the three networks. This is shown
by the different colored lines in Fig. 4, as well as in Supplementary
Figs. S3–S5. This holds regardless of the method of attachment. In
other words, given that links in these networks correspond to
interactions between proteins, our results suggest that a network’s
resilience is more likely to increase if novel proteins are highly
interactive and particularly if they are highly interactive with highly
expressed proteins that are already present in the network. Through
these results with random networks, as well as our additional
analyses on several PPI networks (Supplementary Figs. S3–S5), our
findings suggest that there is a key role that the interplay between
network structure and gene expression has for determining a
network’s structural resilience. As the results regarding resilience
appear independent of what PPI network one analyses, we chose to
focus on just one PPI network for the remaining analyses
(modularity and noise) as representative for all of them; the
ribosomal PPI network. The ribosome is the biggest of these PPI
networks, in addition of being curated by extensive previous
research47–50, giving it the strongest statistical power and reliability.

Resilience and modularity. We found that the gene expression-
based attachment mechanism was most effective at maximizing
the prospective resilience of the three networks included here.
This finding does not immediately account for the extent to
which this could have been due to higher-order, structural (i.e.,
not necessarily biological) properties of the network measured by
classical network metrics. Particularly, the networks showed
observably strong community structure, a property that can be
measured by some metric for modularity. We, therefore, tested
whether the observed results could be explained more straight-
forwardly by modularity using the common modularity metric
proposed by Newman and Girvan51:

Q ¼ 1
2m

∑
i;j

Aij �
kikj
2m

� �
δðci; cjÞ; ð4Þ

where m is the number of edges, Aij is the element of the adja-
cency matrix in row i and column j, ki is the degree of i, ci is the
module assigned to node i, and δ(x, y) is the Kronecker delta
function which is 1 if x= y and 0 otherwise.

In general, we refer to networks as being modular when they
consist of densely-connected clusters of nodes that connect more
to each other than to the rest of the network. We chose to analyse
modularity due to observations of strong modular structures in all
of the networks, especially in the case of H. sapiens (Fig. 2c).
Additionally, we note that the three networks have very different
initial levels of modularity (Table 1).

Here, we examine whether we observe similar results to those
in section “Prospective resilience in protein–protein interaction
networks“ if we instead look at the change in the networks’
modularity following the introduction of new nodes. To do this,
we computed the modularity of the network after each addition
of new nodes. Full details of the analysis are found in section
“Network modularity”. We found that the behavior of prospec-
tive modularity did not resemble the observed trends for
prospective resilience (Fig. 5). In fact, node addition affected
the prospective modularity of each network differently, with no
discernible pattern between the different networks. As such,
modularity was ruled out as an explanatory measure for network
resilience. In conclusion, the modular structure of the networks
included here did not drive their prospective resilience.

Noise and protein networks. We previously observed that gene
expression was moderately correlated with node degree while
gene expression-based attachment performed better than degree-
based attachment. Here, we examine how decoupling of gene
expression from the network topology affects the prospective
resilience of the network. In other words, we probe to what extent
the performance of gene expression-based attachment is influ-
enced by the distribution (i.e., Figs. 2d–f) of gene expression
values and its potential to create novel network structure, rather
than any relationship between the gene expression values and the
PPI network’s existing topology. To do this, we randomly shuffled
the gene expression values across the network and re-ran the
prospective resilience simulations. We did this for different
amounts of shuffling. For example, at 20% shuffling, the gene
expression values for a randomly chosen 20% of the proteins

ba c

Fig. 4 Prospective resilience of three ribosomal networks. As more nodes are added (horizontal axes), the resilience of the resulting network changes
(vertical axes). The color of each curve corresponds to the number of new links that each new node enters the network with, and the line style
(solid, dashed, or dotted) corresponds to the three different node attachment mechanisms. a Prospective resilience of S. cerevisiae ribosomal network.
b Prospective resilience of E. coli ribosomal network. c Prospective resilience of H. sapiens ribosomal network. Ribbons around each curve correspond to
their 95% confidence intervals.
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(network nodes) were subject to a random permutation, while the
remaining 80% of proteins retained their original gene expression.
At 100% noise the gene expression values were randomly
assigned to nodes across the network.

We observe, in each of the three networks, that elevated shuffling
of gene expression increased prospective resilience (Figs. 6a–c). In
other words, biological noise simulated as random distribution of
expression, increases prospective resilience. It makes sense that
some noise would increase the prospective resilience; resilience
increases as networks becomes more dense, and shuffling the gene
expression values may increase the chance that a given low-degree
node receives a link from an incoming node. However, increasing
noise always increased the prospective resilience. This can be
explained by the fact that the simulations reported here do not
consider the biological limitations that a real protein interaction

network would face (e.g., gene dosage imbalance); our simulations
only address the resilience of the network structures.

Therefore, we conclude that the effect of the uneven
distribution of gene expression (and its limited association with
degree) on the preferential attachment mechanism promotes new
hubs (higher degree nodes) of connectivity in the network, which
increases the network’s prospective resilience. The greater the
novelty in the network structure created by this mechanism (i.e.,
the less correlation between degree and gene expression) the
greater the network’s prospective resilience (Table 2).

Discussion
This study used new network scientific methods to undertake a
systems approach to understanding how novelty is incorporated

ba c

Fig. 5 Prospective modularity of three ribosomal networks. As a comparison measure, we also examine how the modularity of the network changes
following the addition of new nodes. The color scheme and line styles are the same as in Fig. 4. a Prospective modularity of S. cerevisiae ribosomal network.
b Prospective modularity of E. coli ribosomal network. c Prospective modularity of H. sapiens ribosomal network. Crucially, we do not find any evidence that
the prospective resilience results observed in Fig. 4 are being driven by the change in the networks' community structures, as the plots here show highly
divergent patterns, suggesting that there is a more distinct mechanism underlying prospective resilience.

a b c

Fig. 6 Prospective resilience and randomized gene expression. We examine if specific gene expression is driving the high prospective resilience of the
expression-based attachment rule or if merely attaching nodes based on a shuffled gene expression distribution could bring about these results. Each new
node joins with m= 5 for S. cerevisiae and E. coli, and m= 6 for H. sapiens. These values were selected so that the slope of the prospective resilience would
be closest to 0.0 when the gene expression was not shuffled (0% shuffled). See Table 2 for how the correlation between a node’s degree and its gene
expression changes as noise increases. a Prospective resilience of S. cerevisiae ribosomal network. b Prospective resilience of E. coli ribosomal network.
c Prospective resilience of H. sapiens ribosomal network. Notably, we find that the prospective resilience of the networks increases simply by increasing the
fraction of nodes with shuffled gene expressions.
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into protein–protein interaction (PPI) networks. We accom-
plished this by adapting a measure of network resilience to
characterize the prospective resilience of multiple PPI networks.
We found that the prospective resilience of the many of the
networks examined was greatest when node addition was based
on the gene expression of the proteins in the original networks.
This suggests that the distributed levels of gene expression among
proteins facilitates or enables the system of interacting proteins to
receive and incorporate new proteins. It also suggests an
important correspondence between the structure and biological
properties of protein networks.

We also undertook a survey of how network resilience behaves
in random and preferential attachment networks, and highlighted
its dependence on the density and degree heterogeneity of the
network (see Supplementary Note S1). These simulations con-
textualize the analyses that we performed for ribosomal networks
and provide a platform for further use of the metric in a more
theoretical sense.

We compared the prospective resilience to a meso-scale net-
work structural measure (which we refer to as the prospective
modularity) to determine if the observed increases in resilience
were due to the more widely studied property of community
structure51. No clear trend between prospective resilience and
prospective modularity was found between the networks (Fig. 5).
This supports the hypothesis that there remains a crucial role of
gene expression specifically in the resilience of a PPI network.

In a biological setting, network resilience infers biological
redundancy. We assume that novel proteins can be integrated
into existing PPI networks if they do not cause the network to
become disconnected, and instead add to the network redun-
dancy. We find that likelihood of a novel protein being integrated
is dependent on the existing topology of PPI and internal con-
nectivity, but also gene expression. The results of our node
attachment analysis imply that novel proteins are able to be
integrated if they (i) are interactive with many existing proteins,
or (ii) primarily interact with proteins that are more abundant
(inferred by gene expression)52.

We also found that shuffling gene expression tends to further
increase resilience. The heavy tails of the gene expression dis-
tributions may indicate that (i) the most important factor for
increasing resilience is the creation of new hubs of connectivity
(new nodes strongly connecting to a few existing nodes), and (ii)
these new hubs are more effective in increasing resilience if cre-
ated randomly in the network and not correlated with the already
established topology. Interestingly, a heavy-tailed (log-normal)
factor of attachment has been recently demonstrated as an
accurate explanation of the degree distributions across various
complex networks53, lending credence to the idea of gene
expression as (at least part of) such an explanatory mechanism in
PPI networks. If gene expression influences the evolution of the
PPI networks, then it necessarily needs to have an amount of
correlation with the existing degree distribution of the network.

Thus, even though we observe that the completely randomised
gene expression across the network yields a more resilient net-
work, given enough time, the network connectivity would evolve
to correlate with the new gene expression values of the corre-
sponding proteins. Then, more noise would be required to
increase the network resilience.

In an evolutionary trajectory of a PPI network, we would thus
expect to see a trade-off between the topological influence of gene
expression (i.e., correlation between gene expression and protein
node degree) and the emergence of novelty through biological
noise (i.e., weakened correlation between node degree and gene
expression). Arguably, this is reflected in the weak to moderately
strong correlations found in Fig. 2g–i. This conforms to classic
theoretical notions of the usefulness of noise in biological
systems54,55. In light of research in population genetics, species
with small effective population size are observed to undergo a
higher mutation rate due to imperfect selective constraint1. In
fact, it has been suggested that weakly deleterious mutations
induce secondary selection for stabilizing protein–protein inter-
actions and that biological complexity is a side-effect of non-
adaptive processes21,56. Accordingly, species with small effective
population size (e.g., multicellular eukaryotes) should have a
higher interactome resilience and complexity due to higher
exposure to noise, whereas species with large effective population
size (e.g., bacteria) should have a smaller and less resilient
interactome. This was observed by Zitnik et al.31 who studied
resilience of species interactomes; vertebrae and other multi-
cellular eukaryotes display a higher interactome resilience than
unicellular eukaryotes and bacteria do31. However, whether
interactome resilience is a feature selected for per se rather than a
consequence of induced biological noise is ambiguous57,58. Fur-
ther research is needed to establish to what degree noise is a
contributing factor to PPI network resilience. Ultimately, resi-
lience is not the only factor to consider in PPI network evolution,
but it is informative of how well the PPI network may tolerate
perturbations (e.g., mutations).

Our findings suggest that novel proteins might enter PPI net-
works and interact broadly as generalists. Previous research
suggests how many proteins, i.e., enzymes, begin as generalists
with many interacting partners, and later evolve more specialized
interactions52,59, whereas ribosomal proteins may have evolved
toward multiple functions while primarily acting as stabilizers of
rRNA60. Indeed, our results seem to corroborate the “constructive
neutral evolution”61, in that new nodes added to the network may
not initially affect the resilience but over time contribute to the
network’s complexity. Under this interpretation, novel proteins
may be initially conserved in the network, simply by being tol-
erated and adding to the network resilience, as suggested in
research on de novo genes62.

A recent phylogenetic inference of the evolutionary trajectory
of the ribosomal PPI network—from bacteria to eukarya—found
that novel interactions reinforced existing links or connected

Table 2 Spearman rank correlation, ρ, between the degree and gene expression of a network at different levels of noise.

S. cerevisia E. coli H. sapiens

Noise ρ p-value ρ p-value ρ p-value

0.0% 0.55 1.06e−16 0.27 4.47e−02 0.75 2.78e−20

20.0% 0.44 1.03e−10 0.23 4.47e−02 0.61 4.04e−12

40.0% 0.33 2.18e−06 0.16 1.72e−01 0.45 1.23e−06

60.0% 0.22 1.84e−03 0.11 3.07e−01 0.31 1.47e−03

80.0% 0.11 1.22e−01 0.06 4.04e−01 0.15 1.21e−01

100.0% −0.0 5.17e−01 −0.0 4.78e−01 -0.0 4.95e−01

The table displays the correlation after Noise % has been introduced to the network. The Spearman correlation was run over the mean from 1000 iterations.
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previously unconnected nodes60. The study did not report on
network density, but suggested evidence toward increased net-
work connectivity over evolutionary time contingent on emerging
C-terminal sequence extensions next to globular domains. Pre-
vious research of protein evolution found protein substitutions to
be contingent on prior epistatic substitutions, next to other
sequence factors63,64. Taken together, it is worthwhile to explore
the role of contingency, network resilience, noise, and gene
expression combined when analysing the evolutionary trajectories
of PPI networks.

Subsequent and systematic analyses of the prospective resi-
lience of other species’ ribosomal networks (not to mention gene
pathway networks, metabolic networks, etc.) will allow
researchers to form more precise hypotheses about other possible
mechanisms—especially ones relating gene expression, pairwise
protein interactions and overall PPI network topology—which
might be driving the results we observe and delineate here. In
addition, it would be useful to explore how prospective resilience
changes under other biologically-informed methods for introdu-
cing proteins into PPI networks, as well as networks with
weighted connections between proteins. For example, the net-
work connections used here indicate presence or absence of
interaction, but there are circumstances where the measured
interaction strength between proteins could be used to define
weighted network connections. Novel proteins, e.g., duplicates of
existing proteins, may have their attachment probabilities formed
based on the interaction strength that the original protein has
with other proteins. Additionally, as is the case in ribosomal
complexes, proteins also interact with mRNA or other molecules
not typically included in PPI data. Ultimately, we view this work
as a first step toward understanding the stability of a network’s
resilience to novel information and as such, we examined
unweighted networks to highlight the importance of the presence
or absence of connections in a network. Prospective resilience is a
measure that can describe networks in general; it is particularly
meaningful in the study of biological systems, but since complex
systems are often described as recapitulating common properties
across different domains, this network measure can be used in
any system that undergoes and incorporates novel information.

Methods
Data sources. We make use of publicly available data of protein interaction
networks from Zitnik et al. Full interactomes were obtained from their website
(SNAP) for 3 model organisms: Saccharomyces cerevisiae, Homo sapiens, and
Escherichia coli str. K1237. According to the documentation about the SNAP
dataset, “In this study, however, we specifically focus on physical interactions and
thus we exclude functional (indirect) associations from the analysis. We combine
the following protein–protein interaction data: (a) Experimentally supported
interactions... and (b) Human expert-curated interactions.”31,37.

We additionally gathered gene expression data for each of the species studied.
Expression data for S. cerevisiae came from the wildtype data accessible on the
NCBI GEO database (accession: GSE52119)42,43. The GTEx Consortium45

collected H. sapiens gene expression data for various tissues, which was accessed via
the EMBL-EBI Expression Atlas44. We utilized expression reported in the spleen as
it was the tissue where most of the genes in the ribosomal network were expressed.
Gene expression for S. cerevisiae and H. sapiens was reported in transcripts per
million (TPM) by original sources. Wildtype gene expression data for Escherichia
coli str. K12 substr. MG1655 (NCBI:txid511145) was obtained from the NCBI GEO
database (accession: GSE48829)42,46. Meysman et al. originally reported expression
as count data; we converted from counts to transcripts per million (TPM) with
custom R scripts and gene lengths for Escherichia coli str. K12 retrieved from
UniProt65 in June 2019. To convert to TPM, we first divided the read counts by the
length of each gene (in kilobases) to get reads per kilobase (RPK). The sum of all
RPK values was divided by one million to produce a scaling factor, which was then
multiplied by each protein’s RPK to produce their expression in TPM.

Network resilience. A network, G, consists of N nodes, V= {v1, v2,…, vN}, con-
nected byM links, E= {(vi, vj): vi, vj∈V}. The resilience of a network is based on an
information theoretic analysis of the distribution of the sizes of connected com-
ponents in G31. A connected component may be defined as follows. If there exists a
path of links between two nodes, vi and vj, in G, then they are in the same

connected component, cx, of G. Otherwise vi and vj are in separate components, cx
and cy, say, of G. If vi has no links, and thus no paths from itself to any other node
in G, then vi is an isolated component of G. From this, we see that G is composed of
X disjoint connected components, fcxgXx¼1, of varying sizes such that∑X

x¼1 jcxj ¼ N .
We can then confer a notion of probability to each component proportional to its
size, px= ∣cx∣/N, such that if we chose a node at random from G it would have
probability px of coming from component cx. Resilience is then measured through a
modified Shannon diversity of the connected component size distribution in the
presence of node isolation31, as follows:

HðGf Þ ¼ � 1
log ðNÞ ∑

X

x¼1
pxlog px ð5Þ

This value is minimal, H(Gf)= 0, when the network consists of a single
connected component where paths exist between all node pairs, since log 1 ¼ 0,
and maximal, H(Gf)= 1, when the network consists only of isolated components
—HðGÞ ¼ �log ðN�1Þ=logN ¼ 1. Through simulating the removal of a fraction of
randomly-selected nodes, f, in a given network by removing all links to those nodes
and leaving them as isolated components, we are left with a new network, Gf. Then
the entropy of the connected component distribution will increase with increasing
f. With an increasing fraction of randomly isolated nodes, f, the entropy of the
number of connected components will increase until f= 1.0, at which point there
are N disconnected nodes (isolated components), reducing the network to the
maximal case of H, as previously noted. We show an example of this process, as f
increases, for an arbitrary simulated network (Figs. 1a–d). The resilience, R(G) of a
network, G, is then defined as follows:

RðGÞ ¼ 1� ∑
1

f¼0

HðGf Þ
rf

ð6Þ

where rf is the rate of node isolation such that f 2 0
rf
; 1rf

; 2rf
; :::;

rf
rf

n o
. In this work,

we default to a value of rf= 100, which means that the calculation of a network’s
resilience involves iteratively isolating 0%, 1%, 2%, ..., 100% of the nodes in the
network. For each value of f, we simulate the node isolation process 20 times.

Structural modularity measure
Network modularity. Networks are often analyzed by their community structure—
that is, to what extent do nodes in a network connect to other similar nodes,
whether in their structural properties or specific attributes51,66–68. There are a
number of different ways to detect community structure in networks, from algo-
rithmic optimization to statistical/inferential to dynamical approaches66,69,70 (e.g.,
the color of the nodes in the networks in Fig. 2a–c was determined by one such
approach68). Regardless of the community detection approach, each method out-
puts a partition that maps each node to a given community. The modularity of a
given partition is a number that scores the extent to which it captures nodes’
tendencies to connect to other nodes in their same community at the expense of
nodes in other communities51. While imperfect, this measure endows us with a
powerful intuition for assessing higher-order network properties; namely, a net-
work with high modularity partitions is likely to have obvious clusters of nodes,
structurally separated from other parts of the network.

Prospective modularity. Here, we use the notion of modularity in an attempt to give
possible explanations for the network mechanisms behind the observed trends in
the prospective resilience of the ribosomal networks studied in this work. In par-
ticular, we define prospective modularity in the same vein as our prospective
resilience measure to compare how node addition impacts resilience and mod-
ularity. The prospective modularity (PM) of a network is defined as the change in
modularity following the addition of new nodes to a network (note the precise
similarities between this measure and the prospective resilience). The addition of a
new node, vt+1 with m disconnected links, to a network, Gt, at time, t+ 1 will likely
change the modularity of the network. More specifically, by re-running a com-
munity detection algorithm on the resulting network, Gt+1, and calculating the
modularity of the resulting partition, we can observe the stability of this partition
over time and ask whether the modularity will increase or decrease. Further, by
varying the node-addition mechanism (adding nodes randomly, preferentially
based on degree, or preferentially based on gene expression), we can observe the
different effects that network structure and gene expression has on the prospective
modularity of a given network.

Statistics of prospective resilience and modularity. In order to determine the
extent to which the curves in Fig. 4 differ from one another, we perform a series of
statistical tests. The curves represent the average of 10 independent simulations for
each condition. We utilize all existing simulation data here. For each value of m in
each species, we perform an ANCOVA for each pair of attachment methods. We do
a Bonferri-correction to correct for multiple testing and obtain a significance cutoff
at p= 0.0166. Additionally, we calculate Cohen’s d from the F-statistic presented by
the ANCOVA. The p-values and effect size (Cohen’s d) for each comparison are
presented in Supplementary Table S1. Almost all of these slope comparisons are
statistically significant. We do the same pairwise ANCOVA and effect size com-
parisons for the curves in Fig. 5 and report the outputs in Supplementary Table S2.
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For S. cerevisiae, E. coli, and H. sapiens, the majority of slopes are significantly
different and show significant differences for larger values of m.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this work are available at https://github.com/jkbren/presilience71 and in
Supplementary Data 1. Supplementary Data 1 is a .json file that includes data for
reproducing Figs. 4–6. Network data for recreating Fig. 2 is found at https://github.com/
jkbren/presilience, and is stored as .graphml files in the /data folder; G_eco.graphml is
the E. coli network, G_hsa.graphml is the Homo sapiens network, and G_sce.graphml is
the S. cerevisiae network. Figs. 1 and 3 are generated from simulations, which can also be
found at https://github.com/jkbren/presilience.

Code availability
Software and reproducibility materials—including Python code with examples—can be
found at https://github.com/jkbren/presilience71.
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