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Continuous Scoring of Depression from EEG
Signals via a Hybrid of Convolutional Neural
Networks

S. Hashempour, R. Boostani, M. Mohammadi, and S. Sanei, Senior Member, IEEE

Abstract— Depression score is traditionally determined
by taking the Beck depression inventory (BDI) test, which is
a qualitative questionnaire. Quantitative scoring of depres-
sion has also been achieved by analyzing and classifying
pre-recorded electroencephalography (EEG) signals. Here,
we go one step further and apply raw EEG signals to a
proposed hybrid convolutional and temporal-convolutional
neural network (CNN-TCN) to continuously estimate the BDI
score. In this research, the EEG signals of 119 individuals
are captured by 64 scalp electrodes through successive
eyes-closed and eyes-open intervals. Moreover, all the sub-
jects take the BDI test and their scores are determined. The
proposed CNN-TCN provides mean squared error (MSE) of
5.6411.6 and mean absolute error (MAE) of 1.731+0.27 for
eyes-open state and also provides MSE of 9.53+2.94 and
MAE of 2.324-0.35 for the eyes-closed state, which signifi-
cantly surpasses state-of-the-art deep network methods. In
another approach, conventional EEG features are elicited
from the EEG signals in successive frames and apply
them to the proposed CNN-TCN in conjunction with known
statistical regression methods. Our method provides MSE
of 10.81+5.14 and MAE of 2.414-0.59 that statistically out-
perform the statistical regression methods. Moreover, the
results with raw EEG are significantly better than those with
EEG features.

Index Terms— Beck depression test, CNN, EEG, TCN,
Deep Learning.

[. INTRODUCTION

EPRESSION, with more than 264 million individuals

involved globally, is a significant public health issue
that extensively exerts influence on people’s quality of life
[1]. This mental disorder encompasses various physical and
mental manifestations, including sleep disruption, low self-
esteem, discouragement, appetite changes, poor concentration,
and in chronic cases, suicide ideations [2]. Early diagnosis
of depression is crucial for more effective treatment [3], [4].
The revised Beck Depression Inventory (BDI-II) is frequently
used for depression screening by specialists [5]. This test
contains 21 questions, which aim to evaluate the feedback and
symptoms of depressed patients. The score of this test can be
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discretely varied from O to 63 [6]. It should be pointed out that
the BDI-II test is qualitative and does not stem from strong
physiological basis. Since depression affects the secretion of
neurotransmitters in the human brain, it is logical to expect
that it influences the neurons’ electrical activity, recorded
using electroencephalography (EEG). This signal, records the
detailed physiological functions of the brain and contains rich
temporal information that can be decoded and interpreted
with various conventional feature extraction techniques. EEG
analysis is used for the diagnosis of different brain diseases
like bipolar manic depression (BMD) [7], [8], seizure [9], sleep
disorder [10], schizophrenia [11], anxiety [12], Alzheimer’s
[13].

To differentiate between the patients with depression and
normal subjects, Subha et al. [14] estimated several EEG
features like relative wavelet energy (RWE), sample entropy
and applied them to a two-layer feedforward artificial neural
network (ANN). They reported 98.11% classification accuracy.
Ahmadlou et al. [15] presented a wavelet-chaos methodology
for characterizing the EEG signals captured by the scalp elec-
trodes located on the frontal brain lobe of patients diagnosed
with major deep depression (MDD). They applied Higuchi
and Katz fractal dimension to an enhanced probabilistic neural
network classifier. They achieved 91.3% accuracy to distin-
guish MDDs from the healthy subjects. In another attempt,
Ahmadlou et al. [16] extracted nonlinear EEG features, se-
lected the most discriminative ones and applied this subset of
features to logistic regression to categorize healthy subjects
from depressed ones. Faust et al. [17] extracted both wavelet
packet coefficients and entropy features from the EEG of
depressed patients and control subjects. The selected features
were classified using the probabilistic neural network classifier,
which yielded 98.20% and 99.50% accuracy for the scalp elec-
trodes located on the left and right hemispheres, respectively.
Acharya et al. [18] extracted several nonlinear features such
as detrended fluctuation analysis (DFA), fractal dimension,
higher-order spectra (HOS), Hurst’s exponent (HE), largest
Lyapunov exponent (LLE), recurrence quantification analysis
(RQA), and sample entropy (SampEn) from the EEGs of
controls and depressed subjects. The estimated features were
ranked according to their significance and fed into five dif-
ferent classifiers. They reported an average accuracy of 98%
using a support vector machines (SVM) classifier. Liao et al.
[19] utilized eigen-filter-bank common spatial patterns (CSP)
to extract Spatio-temporal EEG features and then applied
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principal component analysis (PCA) to achieve discriminative
features. The features were applied to an SVM, which led
to the depression diagnosis accuracy of 81.23%. Bairy et al.
[20] used an EEG-based computer-aided diagnosis (CAD)
system for the diagnosis of depression based on a linear
predictive coding (LPC) scheme by using HOS parameters
to extract significant features for classifying depressed from
non-depressed subjects. They obtained sensitivity, specificity,
and accuracy of 91.46%, 97.45%, and 94.30%, respectively.

In a different approach, Acharya et al. [21] tried to dif-
ferentiate depressed patients from controls by applying their
raw EEG signals to a 13-layer convolutional neural network
(CNN). They attained 93.5% and 96% classification accuracy
using the scalp electrodes located over the left and right
hemispheres. Li et al. [22] focused on designing a CAD
system using CNN to detect mild depression. They reported an
accuracy of 85.62% for the mild depression diagnosis. Saeedi
et al. [23] developed a deep learning framework comprised of
sixteen connectivity methods in eight EEG frequency bands
to detect MDD patients automatically. They introduced the
extracted images of connectivity from EEG signals and applied
them to a convolutional neural network, long short-term mem-
ory (LSTM) network, and a combined CNN-LSTM model.
They achieved the highest accuracy of 99.24, the sensitivity
of 100, and the specificity of 99.25 using the CNN-LSTM
network.

To the best of the authors’ knowledge, no study has been
conducted to estimate the Beck score of subjects by analyzing
their EEG signals. In this regard, we have used a rich dataset
containing the EEG signals of 119 patients, all of whom have
executed the Beck test. To estimate the depression score, we
have deployed two approaches. In one approach, raw EEG
signals are applied to the proposed combinatorial convolu-
tional and temporal convolutional neural network (CNN-TCN)
to assess the Beck score. In another approach, we have elicited
informative features from their scalp EEGs and feed them to
the proposed CNN-TCN for estimating their Beck score.

The remainder of this paper is organized as follows. Section
II introduces the characteristics of the deployed dataset and
then proposes the suggested candidate features and the deep
hybrid network. Section III illustrates the empirical results and
their merits and demerits with the results of the compared
methods. Finally, Section IV concludes the paper.

[I. MATERIALS AND METHODS
A. Dataset and Preprocessing

We have used a publicly available dataset on PRED+CT
website [24], originally containing EEG signals of 121 sub-
jects (72 females and 49 males, 18.86£1.19), among whom
two subjects’ practical information were missed and removed
accordingly [25]. The subjects have different depressive levels.
Among these enrolled participants, the Beck score of 76
subjects was in the range of 0-13, categorized as the control
group (without depression). The score of 14 subjects was in
the interval of 14-19 (mild depression), the score of 24 subjects
was in the range of 20-28 (moderate depression), and the score
of 5 subjects ranged from 29-63, which is considered as severe

depression [26]. The data comprised 500 seconds of recorded
signals via 64 channels with electrode settings according to 10-
20 standard EEG recording system and sampling frequency
of 500 Hz during the resting state. The paradigm recording
for subjects included eyes-opened and eyes-closed events
with varied sizes. All participants provided written consent
approved by the University of Arizona approves. Subjects’
age is in the range of 18-25 years old, and are not having
any history of head trauma or seizures. They are not taking
any psychoactive medications. Participants are enrolled from
introductory psychology categories based on their BDI scores
in a mass survey.

To preprocess the EEG signals in this work, first, the
baselines of the signals are removed. Then they are passed
through a notch filter of 50 Hz [27], [28] for eliminating
the power grid effect. Subsequently, the signals are passed
through a bandpass filter with the cut-off frequencies of 0.2
and 50HZ and following this, a Butterworth filter (order=5,
high cut=50HZ, low cut= 1HZ) was carried out [2]. In the
last step, the independent component analysis (ICA) is applied
to the filtered EEGs for eliminating the remaining undesired
components. This research utilizes the MNE-python package,
which uses a semi-automated ICA approach for parsing the
contaminations. Here, fastiICA has been employed, which is
considerabely faster than conventional ICA approaches and
maximizes the non-Gaussianity. In this method, the mixtures
are whitened by PCA and then decomposed by ICA. After-
wards, the artifacts are detected via MNE. Then the remaining
ICA components are back-projected to the channel space [29],
[30].

To process the raw data, EEG data is transformed into
two separate datasets: eyes-open and eyes-closed resting-state
datasets. The difference between the number of samples for
each subject and the memory size limitations enforced the
following steps. Firstly, we down-sampled the EEGs by a
factor of two to avoid approaching the Nyquist rate as well
as reducing the volume of input data. Secondly, two minutes
(3000 samples) of each subject’s EEG signals in eyes-open and
eyes-closed states are selected. The signals are segmented in
the interval of five seconds (1250 samples), where successive
windows have 90% overlap. Afterwards, for achieving more
consistent estimations, we balance the data, based on the
number of subjects, over the entire range of Beck scores. This
imbalanced problem stems from the fact that the sampling
probabilities vary across depression levels, which means that
the data is not uniformly distributed. Therefore, in each
window, the number of data points in depression classes is
equalized to the class with the lowest size (number of data
points).

B. Feature Extraction

In the feature-based approach, for each subject, the EEG
data is segmented event-wise. Afterwards, the following fea-
tures are estimated for each individual’s signal [31]. We
compute the features in four domains: (I) time-domain features
[28], [29], including min, max, standard deviation, mean,
median, activity, mobility, complexity, kurtosis, 27d difference
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Fig. 2: Dilated causal convolution with dilation factors, d= 1,
2, 4, and filter size =3.

mean, 15 difference max, coefficient of variation, skewness;
(II) wavelet domain features [32], [33] including mean, stan-
dard deviation, and energy of wavelet approximation and
wavelet details; (II) complexity-based features [34] (mean of
the vertex to vertex slope, the variance of the vertex to vertex
slope); (IV) frequency domain features (max power spectrum
in the Delta, Theta, Alpha, and Beta bands, and the ratio of
Delta/Alpha [34], [35] and Delta/Theta band powers).

C. The proposed hybrid deep CNN-TCN network

The EEG signal can be viewed as a temporal series of brain
activity signals. EEG data collected over a period of time are
used to identify a variety of disorders. The suggested deep
network for both raw EEG data and elicited EEG features is a
cascade combination of CNN being capable of extracting local
characteristics and TCN which can efficiently be employed
for sequence modeling tasks by storing exceptionally lengthy
historical data to estimate the depression (Beck) score. CNN’s
are potent tools for feature learning, classification, and regres-
sion. In general, CNNs are comprised of three main layers:
(D) convolutional layer, which performs the feature extraction
procedure via different linear and nonlinear functions (II)
pooling layer for reducing the spatial size of the feature map
by down-sampling process (II) fully connected layer in which
the regression task is performed by flattening the outputs of
previous layers into a single vector. In addition, some more
parameters such as the number of filters, kernel size, stride,
and padding need to be appropriately tuned for customizing a
CNN. CNN, despite its excellent feature extraction strength,

struggles to preserve time coherence. Although networks such
as RNN and LSTM have been proposed to address the matter
of high-dimensional time-series data, they have drawbacks
such as the disappearance of gradient and higher running time.
TCN is an extension of CNN, which is used in the temporal
sequence modeling tasks and has shown better performance
than canonical recurrent networks such as long short-time
memory (LSTMs) across a broad range of datasets and tasks.
[36], [37]. TCN utilizes causal 1D convolutions, dilated con-
volutions, and residual layers. Combining dilated convolutions
and residual blocks results in high receptive field size and
addresses the computational complexity problem. Moreover,
using Causal convolutions in the architecture is to prevent
data from being transported from the future to the past and
to ensure that the output sequence is the same length as the
input sequence; Zero-padding is used [38]. Unlike the standard
convolution layer, which can only look back at history with
size being linear with the depth of the network, TCN using di-
lated convolution layers results in an exponential enlargement
of the receptive field size. In this layer, a filter is applied over
a region more significant than its size by skipping input data
with a specified step similar to pooling or stride convolutions
since it increases the size of the receptive field, but the output
is equal to the input. 1D dilated convolution operation for an
input sequence z € R”, and a filter h = {0,....,k — 1} is
defined as:
k-1
H(s) = (z%ah) (s) = > _ h(i)@saxi (1)
i=0
where *4 represents the convolution operation with dilation
factor d = 27, v is the network level, k is the filter size, and the
term s —d x ¢ demonstrates the direction of the past. Increasing
the dilated factor d exponentially with the network depth when
using dilated convolutions, ensures the full history coverage
by the receptive field. Figs. 1 and 2 show the architectural
components of the TCN model. As demonstrated in Fig. 1, in
the main path of the residual block [39] there are two dilated
casual convolution layers followed by a nonlinear rectified
linear unit (ReLU) layer [40], spatial dropout [41], and weight
regularization layers for generalization. Augmenting a residual
block to a TCN capacitates the receptive field twice Because
it has two basic causal convolutional layers. The residual
block’ output, computed by adding the input x to the series of
transformations F' on this input, is presented in the following
equation.
O = activation (x + F(x)) (2)

Dilated convolution demonstrated in Fig. 2. is used to solve
the small receptive field size problem. The TCN block com-
prises several dilated convolutions with an input which is a
coefficient equal to the powers of two (incrementally).

In the obtained dataset, each subject has about 500 seconds
of recorded EEG signals captured by 62 proper scalp channels
in addition to two more channels HEOG and VEOG. The last
two channels were removed in the preprocessing phase.

In feature-based methodology, the input of the proposed
CNN-based network would be in the form of a matrix. In
the first step, each individual’s EEG signal is segmented
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Fig. 3: The proposed network structure in the high-level
presentation.

at event points.The signal comprises 12 unique events, and
since each subject’s EEG data contains a variable number
of events from each distinct event, the number of segments
formed for each specific event differs. To achieve a more
balanced data, we equalize the number of sections regarding
each unique event to the minimum number of segments, which
is 120. As a result, the data structure for each subject becomes
(12,120, k,62), where 12 represents the number of unique
events, 120 represents the number of segments, k represents
the length of the signal data in each segment, and 62 is the
number of channels in each recorded signal. Subsequently, 31
linear and nonlinear features are extracted in each channel
of the segmented EEG signals. In this step, an array of (12,
120, 62, 31) is created for each individual, and since the last
two dimensions’ types are features, they are concatenated. The
network’s input matrix is generated by stacking the created
data for all 119 subjects in the dataset, leading to the final
multi-modal structure of ((119 x 12),120, (62 x 31)).

To feed the features into the first convolutional network
(Conv2D, stride= (1,7)), we have to add another dimension
at the end of the input data with the value of 1 because the
input for the Conv2D should be a four-dimensional matrix. We
concatenate the second and third dimensions for dimension
reduction as they are both features; consequently, the size of
input data would be ((119 x 12),120,1992,1). This layer is
connected to another Conv2D (stride= (1,3)) layer connected
to the TCN block, inspired by Bai et al. [42]. Subsequently,
we use a dropout layer to avoid over-fitting and improve the
generalization of the model. This layer is connected to the final
fully-connected layer in which the regression is performed.
We use a ReLU function after each convolution layer and
the first dense layer. This function takes the value O for the
negative inputs and the x value for the positive inputs z. Table
I presents the detailed information and parameter settings of
the proposed methodology, and conventional machine learning

methods parameters are shown in Table II. Parameters are
set by trying various network structures to avoid over-fitting
and reduce regression errors as much as possible. The high-
level information and parameters of the proposed design are
mentioned in Fig. 3. For weight initialization of the proposed
network, Glorot uniform initialization is utilized, which is a
common initialization scheme for deep neural networks. The
overall algorithm of the proposed network id presented in
Algorithm 1. The same network has been obtained for the raw
EEG data analysis (eyes-open and eyes-closed data separately)
aiming for the BDI prediction. The source code is avail-
able at: https://github.com/HashempourSara/depression-score-
estimation

Algorithm 1 Algorithm of the proposed model

Input: D: EEG signal of patients, L: BDIs of patients
Qutput: Trained Neural Network
Step 1: Data Preparation
X =[LY =[]
: for each patient signal in D and patient BDI in L do
Split eyes open and eyes close sequence data
for each open/close sequence data do
Remove baseline
Notch filter
Band-pass filter
Butterworth filter
ICA
EEG sequence windowing
Add created windowed signals to X
12: Add patient BDI with the number of created windows to Y’
13:  end for
14: end for
Step 2: BDI prediction
15: while not convergence do
16:  Divide X, Y into b mini batches of size i =1to b
17:  Choose the i mini batch of X
18:  Compute the output of network
19: Compute the errors (with Table 1II)
20:  Update the network weights
21: end for

AN S ol

—_—
-0

TABLE |: THE PROPOSED MODEL PARAMETERS AND
SETTINGS.

Parameters Setting values
Batch size 64
Optimizer Adam
Metric MSE, RMSE, MAE, R?
Learning Rate 0.0001
Epochs 50

TABLE ll: THE SETTINGS FOR CLASSICAL MACHINE
LEARNING METHODS.

Classical methods Parameters

KNN Number of neighbors=5
SVR C=100, kernel= rbf, max iter=-1
RF N_estimators= 100, max_depth=3, n_jobs=-1

D. Compared Methods

When the proposed network works with raw EEGs, we
compare it with the three successful deep learning-based
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TABLE Ill: THE REGRESSION METRICS FORMULAS

Formula Regression Metrics

1/n 30 (i — 93)3 MSE (Mean squared error)

i=n

\/l/n i=1 (yi - ?71)2
1/n 3271 lyi — il

ST (i/92)

RMSE (Root mean square error)

MAE (Mean absolute error )

Rsquared

models, including the combination of convolutional neural
network and long short-term memory (CNN-LSTM) proposed
by Ay et al. [43], a 13 layer deep CNN offered by Achariya
et al. [21] and CNN based model introduced by Li et al. [22].

Another comprehensive comparison of the proposed CNN-
TCN method with the popular statistical machine learning-
based methods like support vector regression (SVR) [44], K-
nearest neighbor [45], and random forest [46] is performed
by applying the EEG features to them for predicting the
depression severity score. The feature selection methodology
used for the classical machine learning methods is minimum
redundancy maximum relevance, in which the features are
selected based on being the most relevant regarding the target
and the least redundant for the previously chosen features.

In the K-fold cross-validation process, a model is trained
using (k — 1) folds as training data and tests it over the left
fold. This procedure is repeated k times until all folds have
a chance to be selected as the test set. The final result is
the average of the k evaluations. A 10-fold cross-validation
procedure is utilized for model evaluation using 10% of the
subjects as a testing set [47]. The overall performance is
computed by averaging the results from all ten assessments.

Standard statistical criteria for evaluate the methods used in
estimating the severity of depression by regression methods
have been used, including mean squared error, root mean
square error, mean absolute error, and R squared.The descrip-
tion and the formula of these measurements are presented in
Table III, in which y and § represent the actual and predicted
values.

[1l. RESULTS AND DISCUSSION

In this section, the depression score is determined in two
different manners: using raw EEGs and estimated EEG fea-
tures. As we mentioned before, just deep learning methods
are compared in the former manner, while in the latter mode,
the proposed deep learning is compared to SVR, KNN, and
random forest methodologies. Finally, the overall performance
in both states is computed by averaging the results over ten
folds. Normalization operations and window-wise balancing
for the raw data are performed to circumvent imbalanced data
distribution.

In the presented CNN-TCN structure, for the raw data manner,
discriminant features are extracted by the convolutional layers
and then feed these feature vectors to the TCN block to
perform the regression task. In the feature-based approach, the
secondary feature extraction is performed by the CNN blocks

and, following this, would be transformed into the TCN layers
for BDI estimation. As a sequence modeling manner, one of
the main limitations of TCN is that it may not be suitable
for processing temporally large datasets. Consequently, in the
proposed network, using 2D convolutions in the first two
layers, the network time steps and the number of features
are reduced before feeding them into the TCN block. This
reduction of features also accelerates the processing procedure.
As a result, the network might be less time-consuming and
contains fewer data samples leading to less complexity.

The moving average trends of MSE results per 10 folds
adopting deep learning-based networks can be compared in
Fig. 4, and as depicted in these graphs, the CNN-TCN
results surpass other methods. The overall results gained by
the feature-based CNN-TCN methodology and state-of-the-art
approaches are reported in terms of MSE, RMSE, R squared,
and MAE in Table IV. Furthermore, the results are enhanced
using the frame-wise raw-EEG-based regression prediction,
which is presented in Table V. Although the achieved results
by the proposed model and CNN-LSTM model are fairly close
to each other, the relative superiority of the introduced model
is that TCN structures perform better in modeling long-term
dependencies. It has a more extended adequate memory size in
comparison with LSTMs. Furthermore, to examine the effect
of the number of channels, the results of the deep learning
models are also compared using 14 and 32 EEG channels,
which is presented in Table VI. Additionally, regression results
for sampling frequencies of 250 and 1000 are depicted in Fig.
5 to survey the impact of the varied sample rates.It can be
understood from this figure that number of samples affects
the network’s learning process, and the more the sampling
frequency is, the better results are achieved. The intra-subject
coefficient of variation (CoV) is computed in this study, which
is an average of the CoV in the error of predicted BDI
values calculated from windows of each individual’s EEG
data. The inter-subject CoV is an average value calculated
from the 10-times-10-folds error of predictions for all subjects.
The intra-individual and the inter-individual coefficient of
error variability for predicted BDI scores is 0.45, and 0.82
respectively, indicating room for further improvement of the
results. It should also be noted that the proposed method is
offline in the training phase, and after the training procedure
the estimation of BDI values can be performed online.

A. Computational Complexity

The computational complexity of the proposed model with
the other three deep learning-based methods is also com-
pared, presented in Table VII, in terms of the number of
flops (floating-point operations per second), inference speed
(number of examples per second), and the average training
time in 10 folds [48]. The CNN-TCN network superseded the
models by Li et al., 2019 and Ay et al., 2019 regarding the
complexity measurements by having less run time, fewer flops,
and more speed. This is because the LSTM network’s training
pace is significantly slowed by non-parallelizability, which
consumes excessive computational resources. TCN, on the
other hand, solves this difficulty by utilizing a backpropagation
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Fig. 4: The comparison between the MSE results and moving average trends of deep models per fold using the raw a) eyes-open

state EEG data, and b) eyes-closed state EEG data.

path independent of the sequence’s temporal direction and
provides a unified approach that hierarchically captures low
and high-level temporal information with fewer complexities
and a larger receptive field size. Although the deep network
presented by Acharya et al., 2018 were less complex than our
represented model, the superiority of the results obtained by
CNN-TCN is considerable compared to those of the model
proposed by Achariya et al. Moreover, the results achieved by
Li et al., 2019 network were moderately close to the presented
model results, while having higher computational complexity.

B. Robustness

Diverse network configuration modes using TCN structure
are regulated. Ultimately, the best model parameters achieving
the highest performance are used for this study through
trial-and-error by optimizing the model’s error. Training and
test curves are examined to avoid over-fitting, and the most
appropriate parameters are selected. Furthermore, white noises
with different intensities (SNRs of 10, 20, 30, and 40 dB)
are added to the signal to show the reliability of the network
structure, and then the network results for the eyes-open state
are reported accordingly. As represented in Table VIII, the
differences in the regression results can be considered minor,
manifesting the robustness of the model versus the increasing
noise level.

C. Contribution

The model structure introduced in this research is the main
contribution of this article. This is because the number of
layers and the combination of CNN and TCN networks is a
new structure. The structure of TCN solely was also tested for
this study, which yielded poorer results than the combinatorial
model. We have utilized Conv2D layers in the primitive layers
of the model due to their outstanding ability in extracting
discriminant features. After rigorous examinations, we proved
that a combined CNN-TCN approach outperforms TCN.

In this study, for the first time, the BDI index, being a valid
criterion for detecting the severity of depression, is estimated
with a very small error. To the best of our knowledge, most
studies in the field of EEG-based depression diagnosis mainly
focus on the classification of normal vs. depressed subjects
or MDD diagnoses. We have used a rich dataset containing
individuals with mild, moderate, and severe depression. The
best network parameters have been derived by try and error.

Regressionresults vs. Sample
rates

"

ONMOOO

MAE RMSE

= 250 1000

Fig. 5: Model results with twice and half times the default
data sampling rate.

IV. CONCLUSION

In this research, we explored both conventional machine-
learning models and the temporal CNN-based deep model
to predict the severity of depression in terms of BDI con-
tinuously. With the change in depression recognition area,
both spectral and temporal information substantially vary.
As a result, we use the CNN structure with its outstand-
ing feature extraction ability and combine it with the TCN
block, a powerful learner with a high spectral resolution.
The presented methodology is developed utilizing both raw
and features extracted from the EEG data of 119 individuals.
The experimental results are surveyed via subject-wise 10-fold
cross-validation demonstrate that the CNN-TCN methodology
outperforms other benchmarks in BDI detection of depressive
subjects, which can aid the specialists in early depression
detection and better treatments.The suggested robust model
can be utilized for EEG-based detection of other neurological
diseases too. However, one of the significant challenges in
this work is due to the inequality of the data size in different
depressive states leading to an imbalanced data problem. The
proposed model has its limitations. To begin with, TCN may
require ample data storage during evaluation compared to
CNN networks since it needs to involve a reasonable size
data history. Also, for the hyper parameter tuning, methods
such as grid search, random search, and Bayesian optimization
are more convenient than the many time-consuming trial-and-
error approaches we have used. The deep learning models are
black boxes. Therefore, interpreting the the network’s function
is important. For a more explanatory model, a regression
activation map can be generated to explain the regression
results. As part of our future work, we aim to progress
the proposed methodology in the following ways to achieve
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TABLE 1V: PRESENTATION OF THE REGRESSION RESULTS USING THE FEATURE-BASED APPROACHES.

Approaches MSE=+ SD RMSE+ SD MAE+ SD R Squared+ SD

KNN 121.96+£10.4 11.03+0.47 7.51+0.44 23.12+0.074

SVR 87+£3.77 9.3240.2 7.4+0.17 19.18+0.03

Random Forest 79.5242.66 8.51£0.15 7.31£0.16 32.25+0.023
Achariya et al., 2018 58.11+18.1 7.54=£1.08 5.27£0.46 46.1+0.16

Li et al., 2019 29.814+14.89 5.3+1.28 3.81+1.01 72.251+0.14

Ay et al., 2019 25.09£5.1 4.98+0.49 10.88+5.14 76.68+£0.047
Proposed feature-based model 10.81£5.14 3.21+£0.73 2.41£0.59 90.26£0.046

TABLE V: COMPARISON OF THE REGRESSION RESULTS USING THE RAW DATA.

Approaches Data acquisition state MSE+ SD RMSE+ SD MAE+ SD R Squared+ SD
Proposed model Eyes-open 5.64£1.6 2.34£0.36 1.73+0.27 94.95+0.015
Eyes-closed 9.53+ 2.94 3.05+ 046  2.32+ 0.35 91.47+ 0.02

Achariya et al., 2018 Eyes-open 39.56£7.15 6.26+0.54 4.9740.5 64.62+ 0.064
" Eyes-closed 41.22+ 6.26 6.4+ 0.48 4.924+ 0.36 63.14+0.056
Li et al. 2019 Eyes-open 596 + 1.14 243 £023 1.8 +£0.16 94.67 + 0.01

" Eyes-closed 10.88+ 5.14 3214+ 0.73 2414 0.59 90.26 £ 0.046
Ay et al., 2019 Eyes-open 20.02+ 353 445+ 038 3444 0.34 82.09+ 0.031

” Eyes-closed 23.69+4.19 4.8440.42 3.76£0.39 78.82+ 0.037

TABLE VI: COMPARISON OF THE RESULTS USING DIFFERENT NUMBER OF EEG CHANNELS.

Network, channels MSE RMSE MAE R Squared
Proposed model- 32 channels 11.434+4.52 3.3140.65 2.4+0.048 89.7740.04
Proposed- 14 channels 23.67+8.77 4.78+0.89  3.57£75.52  78.8440.078

Li et al., 2019- 32 channels 14.6+4.74 3.761+0.64 2.89+0.45 86.93+0.04

Li et al., 2019- 14 channels 26.224+6.24  5.09+0.59 3.9240.43 76.4940.05
Achariya et al., 2018- 32 channels  49.51£8.78  7.0040.62 5.47+0.44 55.7440.078
Achariya et al., 2018- 14 channels  53.83+£5.50  7.3240.37 5.914+0.34 51.87+£0.049
Ay et al., 2019- 32 channels 26314+4.16 5.11+£0.42 3.9340.39 76.48+0.036
Ay et al., 2019- 14 channels 53.834+5.50  7.32+0.37 5.91+0.34 51.8740.049

TABLE VII: COMPUTATIONAL COMPLEXITY OF THE
DEEP LEARNING-BASED NETWORKS.

Model Flops Training time  Inference speed
Achariya et al., 2018 129746 313.84 1654.34
Ay et al., 2019 41208008 2915.29 129.42
Li et al., 2019 3054482 4322.43 91.46
proposed model 10838963 339.93 874.71

TABLE VIII: COMPARISON OF THE PROPOSED MODEL
PERFORMANCE FOR BDI PREDICTION BY ADDING
GAUSSIAN NOISES AT DIFFERENT LEVELS TO PROVE
THE RELIABILITY OF THE NETWORK.

SNR  MSE+ SD MAE+ SD RMSE+ SD R Squared+ SD
10 5.8442.82 1.71+0.43 2.27+0.37 94.1+0.025
20 6.28+2.2 1.784+0.3 2.47+0.41 94.38+0.019
30 6.711+2.44 1.8610.34 2.5440.45 94+0.021
40 8.824+3.54  2.13+0.44 2.940.62 92.11+0.031
0 5.64+1.6 1.73+0.27 2.344+0.36 94.95+0.015

more effective results in depression prevention, treatment, and
therapeutics area: (a) establishing future studies on larger
and more balanced datasets, (b) recording task-related EEG
signals to investigate the effect of different tasks (c) extracting

informative features, such as auditory evoked potential and
visual evoked potential.
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