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Abstract. The Gray-Scott model is a widely-studied autocatalytic model that exhibits a range
of interesting pattern formation behaviour, as well as a rich structure of dynamics that includes
many ideas from a typical undergraduate dynamical systems course, and some from beyond. Under-
standing the solutions to this model is arguably most easily conducted via a bifurcation analysis of
corresponding ODE problems within the software XPPAUT. In this paper, we provide an introduc-
tory XPPAUT tutorial, through which we begin to expose the range of intricate patterns that the
Gray–Scott model emits.
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1. Introduction. The spontaneous formation of spatial (and spatio-temporal)
patterns has long been of interest to Mathematicians, with previous literature de-
scribing several models that show how a pair of reacting and diffusing chemicals can
give rise to patterns such as spots, stripes, spirals and more. (See e.g. [1, 6, 9, 13].)
These models have applications including both experimental studies and pattern for-
mation in biological settings such as animal hides, amongst others. (See Figure 1 for
some examples of these.) Since the concentrations of the chemicals involved evolve
as functions of both the spatial position and time, models largely comprise of two
or more coupled partial differential equations (PDEs). Their analysis involves the
application of the key ideas that feature in most undergraduate PDE or dynamical
systems courses, with the latter being particularly useful in understanding how the
rich array of patterns that models permit depends on related model parameters. In
many cases, it is helpful to perform a bifurcation analysis to fully understand the mod-
els’ dependence on parameter values. For complicated models, this often requires a
numerical approach that uses appropriate bifurcation software, with XPP-Auto (XP-
PAUT; available from [3]) being a common choice. In this article, we describe the
analysis of one such reaction–diffusion PDE, the Gray–Scott model, and describe how
to perform the necessary analysis in XPPAUT – software which most undergradu-
ate students won’t study in class. We include code examples that could be readily
adapted to analyse other related models.

In 1984, Gray and Scott [4] introduced a reaction-diffusion (PDE) model of the
following irreversible, autocatalytic reaction:

U + 2V → 3V,(1.1a)

V → P,(1.1b)

in which two generic chemical species U and V react to produce a product P . Their
model assumes that U is continuously supplied, and the inert product P is continu-
ously removed. After a suitable re-scaling, the Gray–Scott model can be expressed
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a,b) Striped and hexagonal patterns on the hides of a zebra and a giraffe. Photo-
graphs courtesy of Nina Čapek. (c) Spiral patterns produced by the Belousov–Zhabotinsky reac-
tion. Image reproduced from [1] under the terms of the Creative Commons Attribution License
http://creativecommons.org/licenses/by/4.0/. Original image courtesy of Michael C. Rogers and
Stephen Morris, University of Toronto. (d–f) Corresponding patterns obtained from simulations of
the Gray–Scott model.

by the following pair of equations:

∂u

∂t
= Du∇2u− uv2 + F (1− u),(1.2a)

∂v

∂t
= Dv∇2v + uv2 − (F + k)v,(1.2b)

in which u and v are concentrations of U and V respectively. The feed or flow
parameter F is the rate of replenishment of U , and the kill parameter k is the rate at
which V decays to produce P . The parameters Du and Dv are diffusion constants,
representing the rate at which each chemical moves spatially, and ∇2 represents the
Laplacian operator, i.e

(1.3) ∇2 =
∂2

∂x2
, or ∇2 =

∂2

∂x2
+

∂2

∂y2
,

in one- or two-dimensional settings respectively. Since the parameters F , k, Du and
Dv all represent some form of biological rate constant (either a rate of reaction or a
rate of diffusion), these parameters always take positive values.

http://creativecommons.org/licenses/by/4.0/
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The Gray-Scott model has been shown to exhibit a range of interesting pattern
formation behaviour in both one [10, 11, 14, 15] and two spatial dimensions [12, 16],
some of which are illustrated in Figure 1(d–f). The starting point for most analyses is
to understand the dynamics of the corresponding homogeneous system (obtained by
neglecting the diffusion terms in the model). This involves calculation of the model’s
steady states and their stability, and understanding how these change as parameters
are varied, following the standard procedure outlined in a typical undergraduate dy-
namical systems course. Various authors have performed this type of analysis for the
Gray–Scott model [2, 10, 14, 15, 16], to identify a rich structure of bifurcations, some
of which an undergraduate would be familiar with, and some of which they typically
would not. We explore this in more detail below. With an understanding of the
homogeneous system in hand, we then re-introduce the spatial terms and examine
how these give rise to spatially inhomogeneous solutions, focusing upon stationary
one-dimensional patterns in particular. We then briefly comment on how these ideas
may be extended to two-dimensional domains. Our objective throughout this work
is to provide an undergraduate reader, who has perhaps only completed an intro-
ductory dynamics course so far, with some insight into more complicated dynamical
systems problems that give rise to interesting spatial solutions (patterns) and their
analysis in XPPAUT. We occasionally also make use of Matlab to visualise our pat-
terns; all XPPAUT and Matlab codes used in this paper are freely available online
at https://github.com/martinrnelson/GrayScott. Thus, the pre-requisite knowledge
required in order to work through the tutorial given here includes: an introductory
foundation in dynamical systems analysis and bifurcation theory (including saddle-
node and Hopf bifurcations); some familiarity with common, more simple PDEs such
as the heat equation (including time-varying solutions on one- and two-dimensional
spatial domains); and knowledge of basic numerical methods techniques, such as so-
lution of ODEs and PDEs via finite difference methods. We expand on some of these
topics and delve more deeply into the behaviours of the Gray-Scott model below.

2. Analysis of the homogeneous model. We begin our analysis by consid-
ering the homogeneous model obtained by eliminating the spatial terms from Equa-
tion (1.2), i.e.

du

dt
= −uv2 + F (1− u) ≡ f(u, v),(2.1a)

dv

dt
= uv2 − (F + k)v ≡ g(u, v).(2.1b)

In this setting, u and v do not exhibit any spatial dependence and our PDE sys-
tem has hence reduced to a pair of ODEs, to which we can apply the ideas of our
undergraduate dynamical systems course. Solutions of Equation (2.1) correspond ex-
actly to the subset of solutions of Equation (1.2) that are spatially homogeneous (i.e.
unpatterned).

We identify the steady states of this system by setting the right-hand sides of
Equation (2.1) to zero, in the usual way, to provide the following pair of simultaneous
equations for u and v:

F (1− u)− uv2 = 0,(2.2a)

uv2 − (F + k)v = 0.(2.2b)

From this we obtain a trivial steady state at (u∗, v∗) = (1, 0) and two further steady

https://github.com/martinrnelson/GrayScott
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states, which we denote by (u+, v−) and (u−, v+) respectively, where

(u+, v−) =

(
1

2

(
1 +

√
1− 4(F + k)2

F

)
,

1

2

F

F + k

(
1−

√
1− 4(F + k)2

F

))
,(2.3a)

(u−, v+) =

(
1

2

(
1−

√
1− 4(F + k)2

F

)
,

1

2

F

F + k

(
1 +

√
1− 4(F + k)2

F

))
.(2.3b)

Since the steady state at (1, 0) does not depend on the parameters, it exists for all
choices of F and k. It is straightforward to show that the quadratic equation that
gives rise to the steady states (u+, v−) and (u−, v+) only has real roots provided that

0 < k <
1

2

(√
F − 2F

)
, 0 < F <

1

4
.(2.4)

Equation (2.4) provides a restriction in (k, F )-space for the existence of our additional
two fixed points, as illustrated in Figure 2. For choices of parameter values that fall
outside of the solid curve in Figure 2, i.e. in region I, only the steady state at (1, 0)
exists. Inside this curve, in regions II and III, all three steady states exist. Since
crossing the solid curve by moving from region I to regions II or III results in two
additional steady states being created, we know that the solid curve represents a curve
of saddle-node bifurcations.

We compute the stability of our three steady states by considering, as usual, the
eigenvalues of the Jacobian matrix J, given by

(2.5) J =

(
−F − v2 −2uv

v2 2uv − (F + k)

)
,

evaluated at each steady state in turn. Given that the eigenvalues of J are given by

λ = 1
2

(
tr(J)±

√
tr(J)2 − 4|J|

)
, and recalling that our steady state is stable if both

eigenvalues have negative real part, we can easily show that the trivial steady state
(1, 0) is always stable, the fixed point at (u+, v−) is always a saddle point, and the
steady state at (u−, v+) is stable provided that

F >
1

2

(
−
√
k − 4k

3
2 − 2k +

√
k

)
,(2.6)

and unstable otherwise. Plotting this restriction in (k, F )-space provides the dotted
black curve in Figure 2; the steady state at (u−, v+) is stable in region II and unstable
in region III. Since crossing the dotted line in Figure 2 corresponds to a pair of complex
conjugate eigenvalues having a real part that changes sign, this line corresponds to
a line of Hopf bifurcations, which we also associate with the existence of oscillatory
solutions. Our analysis below will largely focus upon the two steady states that have
the potential to be stable for some parameters. The steady state at (1, 0) is typically
referred to as the red state, in which no chemical V is present in the system; the
steady state at (u−, v+) is often called the blue state, in which the concentration of
V has grown up to a level where it is effectively controlled by depletion of U [16].

Our analysis so far has essentially followed a standard undergraduate dynamical
systems analysis, and revealed two sets of bifurcations (saddle-node and Hopf) that
most readers will be aware of from that setting. From Figure 2, we also see an addi-
tional interesting point at (F, k) = (0.0625, 0.0625) where the saddle-node (solid) line
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Fig. 2. Bifurcation diagram for Equation (2.1). Inside the solid curve, Equation (2.4) is
satisfied and all three steady states exist, whereas in region I, only the trivial steady state (1, 0)
exists. Above the dotted black line (in region II) Equation (2.6) is satisfied and the steady state
(u−, v+) is stable. As we decrease F down through the dotted black line into region III, the steady
state (u−, v+) becomes unstable. The solid and dotted curves represent curves of saddle-node and
Hopf bifurcations respectively.

and the Hopf (dotted) line intersect. This point corresponds to a Bogdanov-Takens
bifurcation [8]; a bifurcation of codimension two that many undergraduate readers
may not have encountered previously. The equilibrium solution at the Bogdanov-
Takens point has a zero eigenvalue of algebraic multiplicity two. At this point, a
saddle and a non-saddle collide at the same point that the non-saddle undergoes a
Hopf bifurcation that gives rise to a periodic orbit. The interaction between the pe-
riodic orbit and the saddle then also eliminates the periodic orbit via a homoclinic
bifurcation [18]. It is certainly the case that visualising the phase planes that the
model permits for parameters close to the Bogdanov-Takens bifurcation is far from
trivial. We thus turn to XPPAUT below in order to compute full bifurcation diagrams
for our model (which supplement our existing understanding of the steady states with
more detailed analysis of periodic structures, in particular), before then also exam-
ining corresponding phase planes for various choices of parameters. The reader may
like to note, here, that phase planes corresponding to parameter choices in the three
regions of Figure 2 will be given in Figure 7 below. (We also recommend that readers
interested in knowing more about Bogdanov–Takens bifurcations refer to [5], which
nicely illustrates how phase planes change close to these points.)

The XPPAUT software incorporates two related tools. Firstly, the XPP tool is
used to perform numerical integration from given initial conditions to e.g. a stable
steady state, for a fixed set of parameter values. Secondly, the AUTO tool is used
to track how the coordinates of steady states etc. change as one or more model
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parameters are varied, allowing us to construct corresponding bifurcation diagrams.
This is achieved via a process of numerical continuation, primarily using a pseudo-
arclength continuation algorithm. Briefly, the objective of continuation algorithms in
general is to identify approximate solutions of an equation of the form f(x, µ) = 0
in terms of some parameter µ. Here, x is a vector of unknowns, and we wish to
determine which values of x satisfy f(x, µ) = 0 for given choices of the parameter
µ. In the context of dynamical systems, µ can be thought of as a model parameter
and x as a vector of steady state coordinates. Figure 3 briefly illustrates how the
pseudo-arclength continuation approach tackles this task. We begin with an initial
choice of the parameter µ = µ0 and numerically integrate our ODEs in XPP until they
reach steady state; the steady state coordinates provide a choice of x that satisfies
f(x, µ0) = 0, and hence gives us an initial point on our bifurcation curve. We then
numerically compute the tangent to the curve at this point, and then attempt to
predict a new point on the curve at a distance ds along this tangent vector. For
suitably small choices of ds, we can expect to attain a new point for which the function
f takes values close to (but not exactly) zero; an iterative root finding method, such
as Newton’s method is then applied to more accurately determine the appropriate
value of x at our new parameter value, and hence our new point on the curve sought.
This process is repeated iteratively until the entire curve has been identified. Since
the algorithm takes steps along tangents to the curve, we take small steps in the
parameter µ when gradients are steep, and larger steps when gradients are shallow.
Furthermore, we have the freedom to choose negative choices of ds in order to track
along the curve in the opposite direction. Here, the parameter ds is an approximation
of the arclength between two successive points on our curve. Carefully choosing this
parameter is key to the success of the algorithm; however, AUTO also includes the
capability to automatically adapt its choices of ds between prescribed maxima and
minima, which takes some of the burden of choosing ds away from the user (although
this does still require some user control, as we will see below). For more detail on
numerical continuation algorithms in general, we direct the reader to the excellent
textbooks of [7] and [17].

Our XPPAUT analysis begins with the construction of an ODE file, specifying
the model of Equation (2.1), as shown in Algorithm 2.1. The first line of this file
is a simple heading which XPPAUT ignores. This is followed by specification of the
parameters F and k (here denoted Feed and kill on line 2), initial conditions (on line
3) and the ODEs themselves (on lines 4–5). Finally, on line 6, we specify default axis
limits that XPPAUT will use, together with a maximum integration time (total).
These parameters are not crucial, and can be amended at any time. The keyword
done demarks the end of the file. In this example, we have chosen the parameter
values F = 0.01 and k = 0.03, and initial conditions are chosen as the corresponding
fixed point (u−, v+) obtained by inputting said parameters into Equation (2.3b).

Algorithm 2.1 ODE file used to define the Equation (2.1) in XPPAUT.

# Homogeneous Gray-Scott System

par Feed=0.01 kill=0.03

init u=0.2 v=0.2

u’=-u*v^2+Feed*(1-u)

v’= u*v^2-(Feed+kill)*v

@ xlo=0 xhi=1000 ylo=0 yhi=1 total=1000

done
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Fig. 3. Schematic diagram of a typical pseudo-arclength continuation algorithm, such as that
used by AUTO to track steady states as a function of parameter µ.

The easiest way to navigate XPPAUT is via keyboard shortcuts. The shortcut
letter for the desired option in the active menu is given by a capital letter (which
may or may not be the first letter of the word). Upon launching XPPAUT with the
above ODE file, we can click the drop down menu titled Initialconds and then
navigate to (G)o, or instead we can simply type IG for the same result. Since we
set our initial conditions as the steady state (u−, v+) in the ODE file, the resulting
graph is a horizontal line, as shown in Figure 4. (As a proof of concept, we can
alternatively click Initialconds and this time navigate to (N)ew, which allows us
to pick initial conditions different to those in the ODE file; Figure 4 additionally
shows the integration resulting from the initial condition at (0.8, 0.2), as an example.)
Before moving to the AUTO window, it is important to make sure that the integration
has reached equilibrium to a reasonable degree of accuracy (else the continuation
methods used to trace a branch in AUTO can often fail). We can achieve this by
either increasing total in the ODE file if needed, or by selecting Initialconds and
(L)ast (IL) two or three times, to continue the integration from the values obtained
on the last computation.

Once we have achieved full convergence to a steady state (or alternatively, conver-
gence to a periodic orbit, although this is less reliable) we can use AUTO to perform
bifurcation analysis. To launch AUTO, select File then Auto, or alternatively use
the keyboard shortcut FA. Before we can generate a bifurcation diagram, we need
to change the default numerical settings. We simply click Numerics to bring up the
relevant window. For different systems, it can take some trial and error to find a
good balance, but in the case of creating a bifurcation diagram for the system given
in Equation (2.2), changing the default values of the following options works well:

• Nmax:250. This describes the maximum number of steps taken along any
branch. This has been increased slightly from the default value.

• Npr:250. This instructs AUTO to provide information about a point every
Npr steps. If we set Npr=Nmax, only points of interest will be highlighted,
making the resulting bifurcation diagram clearer.

• Ds:0.001. This is the initial step size. Since the step size is adaptive, this
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Fig. 4. Integrations of Equation (2.1) in XPPAUT with initial conditions (u, v) = (0.2, 0.2)
and (u, v) = (0.8, 0.2), showing u(t) only.

is only a suggested starting value. (We note that, in some problems, setting
this parameter to be negative can sometimes be helpful in tracing branches
that fold back on themselves.)

• Dsmax:0.01. This is the maximum step size. If this is too big, AUTO will
sometimes miss important points, and the bifurcation diagram can end up
looking jagged. Therefore, this has been decreased from the default value.

The remaining numerical parameters that can be controlled in this window are not
important here; for more guidance about the remaining parameters, see [3]. Once we
have changed the numerical settings, we return to the main AUTO window and simply
click Run and then Steady state (RS) to draw the first branch(es) of the bifurcation
diagram. This bifurcation diagram will likely be produced at an inefficient scale, so
we can select Axis then Fit (AF) to automatically adjust the scale of the axes (or
Axis then hI-lo (AI) to do this manually). Upon creating a bifurcation diagram,
AUTO will mark points of interest by a numbered cross, and add a label to indicate
the nature of this point; most commonly: EP for the end of a branch; LP for a limit
point or turning point of a branch, and HB for a Hopf bifurcation. By selecting the
Grab tool (G) and clicking the tab key, we can toggle between these different points
and select each in turn to use as the starting point for new branches to be added to the
diagram (via the appropriate tool from the Run menu). (We note that, throughout this
article, we illustrate bifurcation diagrams generated in XPPAUT as described here,
but plotted via Matlab. We briefly describe how to do this in the supplementary
material.)

Figure 5 shows a bifurcation diagram for the system given in Equation (2.2), for
fixed k = 0.03; this is equivalent to taking a vertical slice through Figure 2 at this
value of k. Stable and unstable steady states are shown by solid and dashed lines
respectively. In Figure 5, the upper (unstable) branch represents the steady state
at (u+, v−), whereas the lower branch represents the steady state at (u−, v+). The
two points labelled S at (F, u) ≈ (0.0049, 0.5) and (0.1851, 0.5) were highlighted as LP
points in AUTO, and are the two saddle-node bifurcations expected from the solid
curve in Figure 2. For values of F . 0.0049, the only steady state is the (stable) red
state at (u, v) = (1, 0). As we increase F through the first saddle-node bifurcation,
the steady states at (u+, v−) and (u−, v+) are born but are initially both unstable.
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Fig. 5. Bifurcation diagram showing u as a function of F , for k = 0.03. The solid and dashed
lines represent stable and unstable fixed points respectively. The points labelled S are saddle-node
bifurcations and the point labelled H is a Hopf bifurcation. This figure was created by importing
XPPAUT data into Matlab.

As we further increase F through the Hopf bifurcation (marked H in Figure 5), the
blue state (u−, v+) becomes stable. The blue state remains stable until it eventually
collides with the steady state at (u+, v−), and both are eliminated via the second
saddle-node bifurcation at F ' 0.1851.

Next, we seek to understand the periodic solutions associated with the Hopf
bifurcation. We use the grab tool to select the Hopf bifurcation point, and then select
the Periodic option from the Run menu to plot the amplitudes of periodic orbits.
Stable periodic orbits are plotted in green and unstable periodic orbits are plotted in
blue. In this example, the additional branches that appear are quite steep, so it is
helpful to rescale the axes to see the detail. Figure 6 illustrates the additional branches
that appear for k = 0.03 and k = 0.04, revealing that the Hopf bifurcation can be
either subcritical or supercritical in this model. For k = 0.03, the Hopf bifurcation is
supercritical, as the unstable fixed point at (u−, v+) is surrounded by a stable periodic
orbit. Here, the stable periodic orbit is itself surrounded by an additional unstable
periodic orbit, for some values of F . As F is decreased through the point labelled SP
in Figure 6, the two periodic orbits move toward each other and eventually collide
and disappear. We refer to the point SP as a saddle-node of periodic orbits. For
k = 0.04, the Hopf bifurcation is subcritical, as the stable fixed point at (u−, v+)
is surrounded by an unstable periodic orbit. In both cases, we can additionally see
that the unstable periodic orbit eventually interacts with the saddle point at (u+, v−)
and is eliminated (at the point labelled HC). This point is a homoclinic bifurcation.
By constructing bifurcation diagrams for a range of k values, increasing gradually
from k = 0.03, we observe that the point SP moves toward the Hopf bifurcation
(H), until eventually (at k = 9/256) SP and H occur simultaneously (at F = 3/256)
such that the stable orbit never exists. Then, for subsequent increases in k, the
Hopf bifurcation is subcritical. The change in the criticality of the Hopf bifurcation
at (k, F ) = (9/256, 3/256) is known as a Bautin bifurcation [2, 8]. (Note that, in the
phase planes of Figure 7 below, crossing the Bautin bifurcation corresponds to moving
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Fig. 6. Bifurcation diagrams showing u as a function of F for (a) k = 0.03 and (b) k = 0.04,
with stable and unstable periodic orbits included in green and blue respectively. The point labelled
H is a Hopf bifurcation, the point labelled SP is a saddle-node of periodic orbits, and the points
labelled HC are homoclinic bifurcations. Figure created by importing XPPAUT data into Matlab.

between the phanes planes of Figure 7(c) and Figure 7(d).)
With a thorough understanding of the model’s fixed points and bifurcations in

place, we now briefly discuss how to generate phase planes in XPPAUT. This task is
completed in XPP, rather than AUTO, so it is easiest to close any previous bifurca-
tion analysis and restart the software to start from a ‘clean’ state. Upon relaunching
XPPAUT, change the axis variables of the window by clicking Viewaxis and then 2D

(V2). This will bring up a menu that allows you to change the axis variables to u and v
respectively, and also to change the axis size. Following this, we can quickly draw the
nullclines by clicking Nullclines and then (N)ew (NN). Fixed points lie on the inter-
sections of the nullclines. Now, we can draw trajectories by selecting Initialconds

then m(I)ce (II) and then clicking anywhere on the window to generate a new tra-
jectory starting at that point. To get a more complete picture of the direction field,
click (D)ir.field.flow then (S)caledDir.Fld (DS) and press Enter to accept the
default mesh size. Finally, to further investigate the nature of any particular fixed
point, we can select Sing pts then (M)ouse, and then click close to the fixed point of
interest. Various windows then appear in succession; for our purposes, it is sufficient
to accept all the default options here, following which stable and unstable fixed points
are marked with circles and triangles respectively.

Figure 7 shows phase planes for the homogeneous system given by Equation (2.2),
for various choices of the parameters F and k chosen from the various regions of
parameterspace indicated in Figure 2. In region I, illustrated in Figure 7(a) for F = 0.2
and k = 0.06, we observe that the only steady state is the red state at (u, v) = (1, 0),
which is stable. As we move in to region II, two additional fixed points are created:
a saddle point at (u+, v−) and a stable spiral at (u−, v+), as shown in Figure 7(b,c).
For some parameter choices close to the Hopf bifurcation in region II, the phase plane
also exhibits an unstable periodic orbit as described above (Figure 7(c)). In region
III, the fixed point at (u−, v+) becomes unstable, and there is scope for two periodic
orbits (one stable, one unstable) to concentrically surround this fixed point, as shown
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Fig. 7. Phase planes for the system given by Equation (2.1), for various parameter choices.
Dotted and dashed lines represent u– and v–nullclines respectively; fixed points lie on the intersection
of the nullclines. Stable and unstable fixed points are marked by circles and triangles respectively.
Stable periodic orbits are shown in green; unstable periodic orbits are shown in blue. Regions indi-
cated correspond to the regions of parameterspace illustrated in Figure 2.

in Figure 7(d).

3. Stationary one-dimensional patterns. We now examine some of the spa-
tial patterns that this model can emit, starting with the simplest case of a one-
dimensional spatial domain. Our analysis below is predominantly a bifurcation analy-
sis in XPPAUT (although we also supplement this with numerical simulations in
Matlab in places). In order to do this, we must reconfigure our PDE model of Equa-
tion (1.2) as a system of ODEs. We do this by applying a simple discretisation, as
described in a typical undergraduate numerical methods course. We make use of the
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following second-order finite difference approximation for the second derivative:

∂2u

∂x2

∣∣∣
x=xj

=
uj+1 − 2uj + uj−1

h2
+O(h2),(3.1)

where h is an appropriate spatial step size and subscripts denote the index of the
spatial meshpoint. Substituting this into Equation (1.2), we obtain the following
system of 2n ODEs (to leading order, having neglected the higher-order terms in
Equation (3.1)):

∂uj
∂t

=
Du

h2
(uj−1 − 2uj + uj+1) + f(uj , vj),(3.2a)

∂vj
∂t

=
Dv

h2
(vj−1 − 2vj + vj+1) + g(uj , vj),(3.2b)

for j ∈ [1, n], where the functions f and g represent the spatially-independent re-
action terms that appear in the right-hand sides of Equation (2.1). We supplement
Equation (3.2) with periodic boundary conditions, which enforce that u0 = un and
un+1 = u1 (and similarly for v0 and vn+1).

Before we proceed with our analysis, it is helpful to briefly clarify how concepts
such as steady states and their stability should be interpreted within the spatial
(PDE) context. From our undergraduate background in dynamical systems analysis,
and also from the analysis performed so far in this article, we should be comfortable
with the concept of steady states of an ODE system; i.e. a steady state of an ODE
system is a set of values of the dependent variables which, when attained, results in
the system remaining in this state forever. A steady state is referred to as stable
if, when initialised with an initial condition close to this state, the system evolves
towards it. This interpretation still applies in the PDE context; we simply have to
understand that we have turned our PDE into a very large system of ODEs, with new
variables representing the values that our original variables take on each of the points
in the discretisation of our spatial domain. If we represent patterns by some colouring
scheme, steady states with all u–variables equal and all v–variables equal would appear
as a uniform colour across the whole domain. We refer to these as homogeneous
steady states. Spatial patterns would appear as steady states that include some
regular variation between these variables; we refer to these as inhomogeneous steady
states. In order for a spatial steady state to be stable, we require that initialising our
system with a ‘colouring’ close to the steady state pattern results in this pattern being
attained in the long term. Equivalently, we start with some spatial distribution of our
two chemicals, which then move around in space until they reach some (potentially
non-uniform) equilibrium, giving rise to the pattern. Identification of spatial patterns
in our PDE system requires that we identify inhomogeneous steady states that are
stable; any steady states that are unstable are unlikely to ever be observed, either in
nature, or in our analyses.

Implementation of Equation (3.2) in Matlab (code online) results in spatial pat-
terns similar to those shown in Figure 8, including stationary and travelling pulses,
self-replicating patterns and chaotic outcomes. We note, in particular, that the sta-
tionary pulses and self-replicating patterns shown in Figure 8 correspond to steady
states of Equation (3.2), since there is no long-term temporal dependence. Our aim
below is to understand how these patterns arise (and for which choices of param-
eters) via a bifurcation analysis in XPPAUT. Below, we focus, in particular, upon
self-replicating patterns similar to that of Figure 8(b).
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We implement Equation (3.2) in XPPAUT via the ODE file given in Algo-
rithm 3.1. Here, we set n = 101 and therefore we solve a system of 202 unknowns.
We also set Du = 0.00002, Dv = 0.00001, F = 0.04 and choose a domain of length
L = 0.8, which in turn implies h = 0.008 since h = L/(n − 1). Much of the ODE
file is similar to that of Algorithm 2.1; however, on lines 3 and 4 we now introduce
functions f(u, v) and g(u, v) and use these to simplify the definition of our ODEs on
subsequent lines. We note that the lines starting with percentage symbols indicate
the definition of a loop used to define ODEs governing the variables uj and vj for
j = 2, . . . , 100. The equations for u1, u101, v1 and v101 (written here as u1 etc.) are
defined separately to account for the periodic boundary conditions. In this code, it
is of great importance to consider the order in which our equations are presented.
Here, the equation for any variable uj is always immediately followed by an expres-
sion for the corresponding vj ; as such the code sets up a matrix problem in which
odd-numbered rows correspond to u and even-numbered rows correspond to v. This
results in a matrix that is of banded structure, and is hence relatively easy for the
software to invert. (Defining, for example, u1, . . . , u101 first, followed by v1, . . . , v101
would result in a loss of this structure and code that is, at best, much slower.) On
the penultimate line of Algorithm 3.1, meth enables us to set the integration method;
CVODE is the recommended method for stiff systems, and by informing this solver that
our problem has a banded structure, we can dramatically improve integration times.
Here we set bandlo and bandup to two, since the ODE for each variable (e.g. uj)
refers to the variables two prior (uj−1) and two ahead (uj+1), together with those in
between (uj and vj). Again, we conclude the ODE file with the command done.

Algorithm 3.1 ODE file used to define Equation (3.2) in XPPAUT.

# Gray-Scott System: 1D; Spatially Discretised; Periodic BCs

par kill=0.06 Feed=0.04 Du=0.00002 Dv=0.00001 h=0.008

f(u,v)=-u*v^2+Feed*(1-u)

g(u,v)= u*v^2-(Feed+kill)*v

u1’=f(u1,v1)+Du*(u101-2*u1+u2)/h^2

v1’=g(u1,v1)+Dv*(v101-2*v1+v2)/h^2

%[2..100]

u[j]’=f(u[j],v[j])+Du*(u[j-1]-2*u[j]+u[j+1])/h^2

v[j]’=g(u[j],v[j])+Dv*(v[j-1]-2*v[j]+v[j+1])/h^2

%

u101’=f(u101,v101)+Du*(u100-2*u101+u1)/h^2

v101’=g(u101,v101)+Dv*(v100-2*v101+v1)/h^2

@ xlo=0 xhi=10000 ylo=0 yhi=1 total=10000, dt=0.01

@ meth=cvode, bandup=2, bandlo=2,

done

Note that, unlike in Algorithm 2.1, initial conditions have not been included in the
above ODE file. Rather than laboriously specifying the initial conditions for our 202
variables in our ODE file here, we instead import a set of initial data corresponding to
a fully converged inhomogeneous steady state obtained from a typical numerical sim-
ulation in Matlab. This has the additional benefit that it increases the likelihood that
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Fig. 8. Five different one-dimensional patterns that arise from numerical simulations of Equa-
tion (3.2) in Matlab, showing v(x, t) only. (Code online.)

AUTO will be able to successfully track the corresponding branches of the bifurcation
diagram. Figure 9 shows an initial condition used in a typical Matlab simulation, to-
gether with the resulting stable stationary pattern that is obtained via self-replication.
We can use this inhomogeneous steady state as our initial conditions in XPPAUT. To
import the inhomogeneous solution from Figure 9 as our initial data, we must export
this from Matlab as a column vector of the form [u1, v1, u2, v2, ..., un, vn]T . Then,
upon launching XPPAUT, we select Initialconds then File (IF) and navigate to
the desired file. Upon selecting the initial data file, the XPPAUT plot of any given
variable should be a horizontal line, since the initial conditions should already be at a
steady state. If this is not the case, it is advisable to repeat the numerical simulations
in Matlab to ensure complete convergence. Following this, we launch AUTO.

Since we are now working with a system of 202 variables, it is preferable to plot the
norm of our solution vector on our bifurcation diagrams, rather than simply plotting
one variable alone; we select Axis then Norm (AN) in AUTO to do this. We must also,
once again, change the default numerical settings as described above, here choosing
Nmax = 400, Npr = 400, Ds = −0.02 and Dsmax = 0.02. Choosing Ds to be negative
here allows us to trace a branch that initially runs right to left, although AUTO will
automatically adapt Ds should the branch double back on itself, so further adjustments
to this parameter shouldn’t be required. We then generate the bifurcation diagram
by selecting Run and Steady State as described above.

Figure 10 illustrates a bifurcation diagram for Equation (3.2) for F = 0.04. In this
figure, the black curve describes behaviour of the homogeneous system, as analysed
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Fig. 9. A spatially inhomogeneous initial condition used in a typical numerical simulation in
Matlab, representing a perturbation to the red state in the centre of the domain, alongside the result-
ing stable stationary pattern that is obtained via self-replication. Solid and dashed lines represent u
and v respectively. (Code online.)

above, and includes a Hopf bifurcation point (H) and a saddle-node bifurcation point
(S). The information represented by this curve corresponds to taking a cross-section
through Figure 2 at the point F = 0.04. Figure 10 also includes an additional branch,
shown in red, which represents the inhomogeneous solution shown in Figure 9. This
branch has two saddle-node bifurcation points, labelled S∗

1 and S∗
2 and a Hopf bifur-

cation point labelled H∗. (The k-coordinate of S∗
1 is referred to as kmin in [15].) For

F = 0.04, as we increase k through the point S∗
1 ≈ 0.05774, the stable inhomogeneous

solution appears. We note that, for F = 0.04 the value of k at S∗
1 is smaller than the

value of k at H and, therefore, for S∗
1 < k < H the system has at least three steady

states available: the red state (1, 0), the blue state (u−, v+) and the inhomogeneous
solution shown in Figure 9. However, this is not always the case. For example, re-
peating this analysis for F = 0.035 reveals that the value of k at S∗

1 is larger than the
value of k at H and, therefore, for H < k < S∗

1 the only available steady state is the
red state in this case. (We omit the details here for brevity.)

As we did for the homogeneous model above, it is of interest to track the relevant
bifurcation points in two-parameter-space, in order to understand where we expect to
observe inhomogeneous solutions. While it was possible to do this analytically in the
homogeneous case (to create Figure 2), the discretisation used in analysing inhomo-
geneous solutions requires us to now turn to XPPAUT to generate the corresponding
two-parameter plot. First, we use the Grab tool to select the saddle-node bifurcation
point (labelled S∗

1 in Figure 10) as described above. We then navigate to Axis then
Two par (AT). This will cause a window to be displayed in which we can select our
parameters of interest and plotting options; in this window, we set Y-axis:Feed, Main
Parm:kill, and Second Parm:Feed. In this case it is sensible to scale the axis such
that the x–axis spans 0.03 to 0.07, and the y–axis spans 0 to 0.08. Upon changing
into two parameter space, we click Run as before, which results in a line appearing in
(k, F )–space that describes the location of S∗

1 . If necessary, the lines in this plot can
be extended in a similar way to as we described above, when analysing the homoge-
neous system, by grabbing the most recent EP point and selecting Run then, this time,
Two param, noting also that changing the sign of Ds in the numerics menu can be
useful in changing the direction in which the curves are extended. This process can
take quite a long time, as it requires a reasonable amount of manual tuning. Once the
saddle-node bifurcation curve in two parameter space is complete, we change back to
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Fig. 10. A bifurcation diagram for Equation (3.2) with F = 0.04, Du = 2 × 10−5 and Dv =
1 × 10−5. Solid and dashed lines represent stable and unstable solutions respectively. The black
curve represents the homogeneous solutions of Section 2, while the red curve represents a spatially-
inhomogeneous steady state akin to that of Figure 9. The homogeneous branch exhibits a Hopf
bifurcation at H and a saddle-node bifurcation at S, as shown in Figure 2. The inhomogeneous
branch exhibits a Hopf bifurcation at H∗ and saddle-node bifurcations at S∗1 and S∗2 . The spatially-
inhomogeneous solution of Figure 9 is viable for choices of k ∈ [S∗1 , H

∗], where the corresponding
branch is stable.

the original bifurcation diagram by selecting Axis then hI-lo, and then repeat this
process with the Hopf bifurcation point H∗ and the other saddle-note bifurcation S∗

2 .
Adding these curves to those of Figure 2 provides Figure 11, in which black lines refer
to the homogeneous system of Figure 2 and red lines refer to the equivalent curves
of the inhomogeneous system; solid and dotted lines represent saddle-node and Hopf
bifurcations respectively. We observe that reducing the value of F results in the Hopf
bifurcation at H∗ moving toward the saddle-node at S∗

1 until these points eventually
collide at (k, F ) ' (0.049, 0.020), at which point the Hopf bifurcation is eliminated via
a Bogdanov–Takens bifurcation. For F . 0.020, the entire branch of inhomogeneous
solutions is unstable. Conversely, increasing the value of F has the effect of moving
the Hopf bifurcation towards the saddle-node at S∗

2 , extending the extent of the sta-
ble portion of the inhomogeneous branch, on which we observe patterns. Eventually
H∗ and S∗

2 collide at (k, F ) ' (0.068, 0.060) – another Bogdanov–Takens point. The
stationary, inhomogeneous solutions of Figure 9 exist for all choices of F and k that
lie between the two solid red lines (S∗

1 , S∗
2 ), but these are only stable in the region

above the dotted red line (H∗) in the figure.
We note that the branch of inhomogeneous solutions investigated in Figures 10

and 11 corresponds to just one of many possible self-replicating patterns permissible
in this model. Firstly, note that the solution described here is translation invariant,
in that moving the initial perturbation used in Figure 9(a) slightly left or right would
result in the pattern of Figure 9(b) also shifting slightly left or right. While we
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Fig. 11. Two-parameter bifurcation diagram for Equation (3.2) with Du = 2 × 10−5 and
Dv = 1 × 10−5. Solid and dotted lines represent saddle-node and Hopf bifurcations respectively.
Black lines refer to homogeneous solutions, while red lines refer to the stationary, inhomogeneous
solution of Figure 9. The stationary, inhomogeneous solutions of Figure 9 exist for choices of F and
k that lie between the two solid red lines (which represent S∗1 and S∗2 of Figure 10); these solutions
are stable above the red dotted line (representing H∗) and unstable below it.

could track this new solution in XPPAUT, the curves of Figures 10 and 11 would be
unchanged, since the norm of this new solution would be unaffected. Furthermore,
for other parameter choices, patterns of other wavelengths also exist. Effectively,
the wavelength of the solution attained is controlled by the diffusion parameters (Du

and Dv), and the existence and stability of this solution is determined according to
whether this wavelength is compatible with the chosen domain size, and as a function
of F and k. Branches corresponding to other self-replicating patterns on varying sizes
of domain, not shown here, are investigated in more detail in [14]. We note that, in
principle, we can easily trace any of these additional branches in XPPAUT by simply
following the steps above, starting with an appropriately modified initial conditions
file (generated e.g. numerically in Matlab).

4. Two-dimensional patterns. The natural next step in our analysis of the
Gray–Scott model is to move to examining inhomogeneous solutions on a two-dimensional
domain. Numerous previous studies have identified a diverse range of stationary pat-
terns in 2D variants of this model. (See e.g. [12, 16].) In principle, analysis of this
model in a 2D setting can broadly follow the steps outlined above; we begin with an
understanding of the dynamics of the corresponding homogeneous problem, and then
examine how the addition of two-dimensional diffusion supplements or disrupts these
dynamics. In particular, a natural approach would be to consider a discretisation of
our 2D domain and replicate the analysis of Section 3 above. However, it transpires
that this approach is somewhat impractical, within the confines of XPPAUT at least.
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The undergraduate reader will be aware, from their introductory numerics course,
that the accuracy of a numerical simulation is inherently linked to the coarseness of
the discretisation used (with the spatial meshsize putting significant restrictions on
the size of the corresponding timestep). In our 1D problem of Section 3, 101 spatial
meshpoints were sufficient to allow numerical progress (in both XPP and Matlab)
that retains the required accuracy. Moving from 1D to 2D requires a significant in-
crease in the number of meshpoints required; roughly, in the 2D setting, we require
the square of the number of meshpoints used in 1D. Unfortunately, this takes us sig-
nificantly beyond the memory limitations of XPPAUT. We must therefore turn to
alternative methods comprising, largely, of either by-hand analysis of 2D solutions or
direct numerical implementation in e.g. Matlab. We give further detail on some of
these approaches in the supplementary material, but briefly include an overview of
results below.

A common starting point for analysis of spatial patterns is to consider those which
arise via diffusion-driven (or ‘Turing’) instability [13, 19]. In such an analysis, we are
interested in whether there are any fixed points of the homogeneous system that are
stable in the absence of diffusion, but destabilised by the presence of diffusion. By
following the standard undergraduate analysis for computing the stability of steady
states (as outlined above), and assuming e.g. a travelling wave ansatz in order to
appropriately linearise the diffusion term, we can compute curves in parameter space
that demark changes in stability of fixed points in both diffusion-free and diffusion-
driven cases. For the Gray–Scott model, we have already performed the analysis
required for the diffusion-free case above. The homogeneous system has three fixed
points: the red state at (1, 0), which is always stable; the steady state at (u+, v−),
which is always unstable (a saddle); and the blue state at (u−, v+), which is stable
only in region II of Figure 2. We describe the diffusion-driven portion of this analysis
in more detail in the supplementary material. This analysis reveals that introducing
diffusion back in to the problem has no effect upon the stability of the red state, but
there is a region of parameter space within region II in which the blue state can be
destabilised by diffusion. The scale of this region is determined by the parameter
D = Du/Dv, the ratio of our two diffusion parameters. This region is plotted in
Figure SM1; within this region we determine stationary two-dimensional patterns,
including arrangements of spots (as shown in Figure SM2).

More generally, authors such as Munafo [12] and Pearson [16] have determined a
wider array of both stationary and moving patterns in the Gray–Scott model. These
patterns include examples of spatio-temporal chaos, worm-like branching, solitons,
large-scale spirals, patterns resembling soap-bubbles, and more. Examples of some of
these patterns are shown in Figure 12; these illustrations were generated numerically
in Matlab, the code for which is available online. Generally, these 2D patterns are
classified using the Greek letter classification system of [16]; we note that patterns of
type δ include the spotted arrangements that arise via Turing instability described
above. Proof of the existence and stability of these patterns, from an analytical
perspective, is a topic too broad to thoroughly review here, with different approaches
required for different types of patterns; for an accessible introduction to these topics,
we recommend the excellent textbook of Hoyle [6].

5. Discussion. The aim of this paper was to introduce the array of interesting
behaviours and patterns exhibited by the Gray–Scott model, from a point of view of
basic dynamical systems and bifurcation analysis, focusing on how problems such as
this may be analysed within the software XPPAUT. We have provided a thorough
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(a) α: F = 0.010, k = 0.050 (b) γ: F = 0.025, k = 0.054 (c) δ: F = 0.025, k = 0.052

(d) µ: F = 0.050, k = 0.064 (e) ξ: F = 0.010, k = 0.042 (f) σ: F = 0.095, k = 0.056

Fig. 12. Snapshots of a selection of two-dimensional patterns obtained for Du = 2× 10−5 and
Dv = 1×10−5, obtained via numerical simulation in Matlab. (Code online.) Patterns are classified
according to the Greek letter naming convention used by [12] and [16].

analysis of the homogeneous system, and have provided tasters of the analysis of
spatial patterns on one- and two-dimensional domains. Our ambition here was to
provide enough detail that a reader who is new to reaction-diffusion problems, or
XPPAUT analysis in general, may take the ideas presented here to form the basis
of their own analyses, whether these be related to PDEs or complicated systems of
ODEs alike. We encourage the reader to make full use of the XPPAUT and Matlab
codes that we have made available online in order to do this.

The Gray–Scott patterns examined in this paper are by no means an exhaustive
list. We have understood homogeneous solutions in full, and have examined one of
many similar branches of stationary, self-replicating patterns that can be attained in a
one-dimensional setting. We note that, in principal, it is easy to adapt the analysis of
Section 3 above to track the travelling pulses of Figure 8 in XPPAUT, since these arise
as periodic orbits of the corresponding spatially-discretised system. Tracking these
in XPPAUT essentially requires providing an initial condition that has accurately
converged to this periodic orbit, in place of the initial conditions file used in Section 3.
This will, of course, come with a need for some numerical tweaking in XPPAUT in
order to track the corresponding branches accurately. In addition, analysis of two-
dimensional patterns could be permissible, having performed the necessary analytical
steps required to reduce the problem to a tractable ODE problem (not covered here).
We leave these topics as possible targets for the reader to take forward, potentially
(and hopefully) using this tutorial and our corresponding codes as a helpful stepping
stone to do so.
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