
Developing a new deep learning CNN model to detect and classify 

highway cracks 

Abstract  

Purpose: Testing the capabilities/accuracies of four deep learning pre-trained CNN models to 

detect and classify types of highway cracks, as well as, developing a new CNN model to 

maximise the accuracy at different learning rates.  

Design/methodology/approach: a sample of 4,663 images of highway cracks were collected 

and classified to three categorises of cracks, namely, vertical cracks’ ‘horizontal and vertical 

cracks’ and ‘diagonal cracks’, subsequently, using ‘Matlab’ to classify the sample to training 

(70%) and testing (30%) to apply the four deep learning CNN models and compute their 

accuracies. After that, developing a new deep learning CNN model to maximise the accuracy 

of detecting and classifying highways cracks and testing the accuracy using three optimisation 

algorithms at different learning rates.  

Findings: the accuracies result of the four deep learning pre-trained models are above the 

averages between top-1 and top-5 and the accuracy of classifying and detecting the samples 

exceeded the top-5 accuracy for the pre-trained AlexNet model around 3% and by 0.2% for the 

GoogleNet model. The accurate model here is the GoogleNet model as the accuracy is 89.08% 

and it is higher than AlexNet by 1.26%. While the computed accuracy for the new created deep 

learning CNN model exceeded all pre-trained models by achieving 97.62% at learning rate 

0.001 using Adam’s optimisation algorithm.  

Practical Implications: The created a deep learning CNN model will enable users (e.g., 

highways agencies) to scan a long highway and detect types of cracks accurately in a very short 

time compared to traditional approaches.  



Originality/value: A new deep learning CNN-based highway cracks detection was developed 

based on testing four pre-trained CNN models and analyse the capabilities of each model to 

maximise the accuracy of crack detection based on the proposed CNN.  
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1. Introduction  

Deep learning, as an extension of and supplement to machine learning, has become a new 

research front in the field of crack detection due to its superior performance in object detection 

and semantic segmentation  (Reichstein et al., 2019). Generally, deep learning-based crack 

detection methods can be categorized into two main groups, namely region based and pixel-

based methods. In recent years, new deep learning models have been introduced to structural 

crack detection. For example, Lorenzoni et al. (2020) relied on the Seq-Net to realize end-to-

end semantic segmentation of crack images. Zhang et al. (2020c) increased the model detection 

accuracy by integrating the tubelets with deep CNN (T-DCNN) and multi-method detection 

into a unified loop detection process. Huyan et al. (2020) employed a convolutional neural 

network (CNN) to realize the pixel level detection. Through the encoder and decoder process, 

the output was guaranteed to be the same size as input.  Thus, the prediction was included in 

the output probability map. Kang et al. (2020) designed a deep neural network called CrackNet-

V to automated pixel-level crack detection on 3D asphalt pavement images.  

There have been some studies that applied deep learning algorithms on images collected from 

cameras in moving vehicles for road crack detection.  Mei and Gül (2020b) utilized smartphone 

in a vehicle to collect road images in Japan and applied a deep neural network on it for road 

defect detection. This study focused on multiple defect types, bounding boxes were drawn 



around the defects, but no detailed information could be provided regarding the exact location, 

shape or orientation of the cracks.  Park et al. (2019) proposed a pixel‐level detection method 

for identifying road cracks in black‐box images using a deep convolutional encoder–decoder 

network. The encoder consists of convolutional layers of the residual network for extracting 

crack features, and the decoder consists of deconvolutional layers for localizing the cracks in 

an input image. The proposed network was trained on 427 out of 527 images extracted from 

black‐box videos and tested on the remaining 100 images. Mei and Gül (2020a) installed a 

sport camera on the rear of a vehicle to mimic the behavior of a backup camera. Then they 

developed an algorithm with a conditional Wasserstein generative adversarial network 

(cWGAN) and connectivity maps to improve the accuracy of crack detection. 

 A review of literature reveals that there has been intensive research over the last few years to 

utilise deep learning and CNN to detect cracks for highways and tunnels. Therefore, there is a 

need to measure the capabilities of different CNN models to maximise the accuracy of 

detecting various types of cracks.  

With all the above in mind, this research explores the validity and accuracies of four pre-trained 

deep learning CNN model and analyses parameters of the most accurate CNN models in order 

to develop a new CNN-based approach to maximise the accuracy of deep learning to detect 

and classify highway cracks, particularly, horizontal, horizontal-vertical and diagonal cracks. 

The findings of this study proves that the computed accuracy of the four deep learning pre-

trained models were above the averages, as well as the pre-trained AlexNet model was above 

the top-5 accuracy by 3% and by 0.2% for the GoogleNet model. The most accurate model is 

the GoogleNet model by 89.08%. Regarding the proposed CNN-based highways cracks 

accuracy, it is exceeded all pre-trained models based on Adam’s optimisation algorithm by 

97.62% at learning rate 0.001. 



2. Deep learning-based crack detection  

 

In recent years, Machine Learning (ML) based methods are continually being adopted across 

many aspects during the whole life cycle (Zhong et al., 2016). Deep Learning is recognised as 

one of the methods that are continually applied especially for complex situations that require 

extensive amount of data (Mohammadi et al., 2018). With the deserved significance gained by 

deep learning within the construction industry, many studies began to provide insightful 

focuses into its forms and applications. A study by Akinosho et al. (2020) has summarised 

different architectures of deep learning and their applications, which looked at seven (Deep 

Neural Network, Convolutional Neural Network, Recurrent Neural Network, Auto-encoder, 

Restricted Boltzmann Machine, Deep Belief Network and Generative Adversarial Networks) 

conventional architectures. 

Roads and Infrastructure can be seen as one of my complex areas that require continual 

investigations to identify suitable and appropriate remedies to maintain their quality and 

performance on the long-term (Majidifard et al., 2019). Asphalt-related issues can tangibly be 

recognised as a major element that requires continual monitoring to assess its performance and 

potential issues. In fact, and in recent years, many technologies including ground penetrating 

radar, ultrasonic testing and new sensors have all been used in the detection of asphalt damages 

(Li et al., 2021) especially those that often occur such as cracking. With the evolution of 

computer-based techniques, the application of deep learning in detecting issues such as 

cracking where many studies were conducted to demonstrate crack detection using deep 

learning. Table 1 shows the previous relevant research to use deep learning to detect cracks. In 

addition to highlight the findings of each research, the limitation of each study was also stated 

in order to avoid these limitations in the proposed method in this research. 

Table 1. Previous and relevant research 



Author Aim Methodology Findings Limitation 

(Chow et 

al., 2020) 

Replace the 

current laborious 

inspection 

programme of 

concrete defects 

of civil 

infrastructure 

Deep learning 

image-based 

inspection of 

concrete defects 

of civil 

infrastructure 

The method is greatly 

successful in detecting 

and classifying defects 

subjected to various 

environmental 

conditions such as 

lighting and capturing 

angles. 

The overall accuracy 

needs improvement 

using more 

sophisticated deep 

learning models and 

training strategies 

(Liu et al., 

2020) 

Develop a 

method to 

recognise rebars 

on the GPR data 

for a deck 

Integration of 

conventional 

image 

processing 

techniques and 

deep CNN  

An overall accuracy of 

detection of 99.60% ± 

0.85% 

Larger database size is 

needed 

(Kim et al., 

2020) 

Develop a 

methodology for 

automated bridge 

component 

recognition in 

3D point cloud 

data 

Using deep 

learning in 

conjunction with 

subspace 

partition to 

classify 3D 

points in each 

subspace 

The developed 

methodology 

distinguished bridge 

components from 3D 

points bridges to deck, 

pier, and background, 

even with curved bridges 

and bridges with 

different pier heights. 

No able to evaluate 

surface damages on 

the point cloud  

(Song et 

al., 2020) 

Develop an 

algorithm to 

detect and 

localise rebars in 

the data from 

GPR 

Integration of 

conventional 

image 

processing 

techniques and 

deep CNN 

An overall accuracy of 

detection of 99.60% ± 

0.85% 

Larger database size is 

needed 

(Qiu, 

2020) 

Provide a state-

of-the-art review 

of imaging 

techniques 

applied for 

defect detection 

of fiber 

reinforced 

polymer (FRP)-

bonded civil 

engineering 

structures 

Literature review Recommends the 

integration of AI 

approaches with non-

destructive testing (e.g., 

synthetic aperture radar, 

infrared thermography, 

laser shearography, and 

laser reflection 

technique) to enable the 

automated defect 

detection in FRP-bonded 

civil infrastructures. 

Further research is 

required to combine 

imaging techniques 

with artificial 

intelligence 

approaches. 



(Kohiyama 

et al., 

2020) 

Develop a 

method to detect 

the input data of 

an unlearned 

damage pattern 

The collective 

decision of 

support vector 

machines were 

developed using 

feature vectors 

of training data 

that are stored in 

the output layer 

of a deep neural 

network 

The method is capable 

of detecting data of 

unrelated pattern 

Acknowledging 

different 

characteristics such as 

pulse-like ground 

motions to further 

validate the method 

developed 

(Zhang et 

al., 2020d) 

Develop a 

framework for 

structural 

condition 

identification 

case, that is, steel 

frame bolted 

connection 

damage. 

Application of 

deep CNN 

The developed 

algorithm, SHMnet, has 

100% accuracy using at 

least four independent 

training datasets 

The performance of 

the algorithm heavily 

depends on the 

quantity and quality of 

training data. 

(Gonzalez 

et al., 

2020) 

Automatically 

detect building 

materials and 

types of later-

load resisting 

systems (i.e. 

building’s 

structural 

typology) 

Using CNN in 

the dataset of 

nearly 10000 

manually 

annotated photos 

at the street level   

The developed algorithm 

has the recall accuracy 

of 95% on the material 

type and 60% on three of 

the eight building 

typologies. 

Prediction of building 

typologies may not be 

accurate and should be 

used in conjunction 

with census data and 

expert judgement 

(Dorafshan 

and Azari, 

2020) 

Investigate the 

feasibility of 

using deep 

learning models 

(DLM) to detect 

subsurface 

defects and 

overlay 

debonding from 

impact echo (IE) 

data 

Application of 

one dimensional 

and two 

dimensional 

convolutional 

neural network 

(CNN) to 

classify the IE 

waveforms 

The developed method 

has the accuracies 

between 45% and 81% 

(more accurate on the 

cement overlay than on 

the asphalt overlay). 

Also, it was found that 

the proposed 1D CNN 

has higher accuracy. 

Larger database size is 

needed 



(Zhang et 

al., 2020b) 

Detect and 

localize moisture 

damage in 

asphalt 

pavements from 

Ground 

Penetrating 

Radar (GPR) B-

scan images 

Integration of 

mixed deep 

CNN including 

ResNet50 

network as 

feature extractor, 

and YOLO v2 

network, as 

object detector, 

with a proposed 

incremental 

random 

sampling (IRS) 

approach to 

automatically 

convert raw 

GPR images to 

suitable plot 

scale GPR 

images 

The proposed detection 

CNN model shows F1 

score (91.97%), Recall 

(94.53%) and Precision 

(91.00%), showing that 

deep learning is reliable 

in detecting and 

localising moisture 

damages in asphalt 

pavements 

Further work is 

required to try latest 

deep framework to 

improve Precision and 

Recall 

(Ghosh 

Mondal et 

al., 2020) 

Assess multiple 

damage 

categories in 

reinforced 

concrete 

buildings due to 

an earthquake 

from visual data 

captured by the 

sensors mounted 

on the robots. 

Using deep 

learning-based 

approaches to 

detect and 

classify damages 

(i.e. surface 

crack, spalling, 

spalling with 

exposed rebars, 

and severely 

buckled rebars) 

Inception-ResNet-v2 

was found to perform 

better (producing a MAP 

value of 60.8% ) 

compared to Inception 

v2, ResNet-50 and 

ResNet-101. Also, it was 

found that the processing 

speed reduces with 

increase in accuracy. 

The practical 

implementation of the 

algorithm by 

integrating it with 

UAVs or inspection 

robots is missing. 

(Asadi et 

al., 2020) 

Develop a 

computer-vision 

method for 

detecting rebars 

from concrete 

bridge deck GPR 

images 

Application of a 

fined-tuned 

Histogram of 

Oriented 

Gradients/ 

Multi-Layer 

Perceptron based 

binary image 

classifier which 

is trained on 

URIGPR dataset 

and then 

applying a post-

processing 

algorithm for 

removing false 

detections 

The performance of the 

method is 54.35% more 

accurate than the result 

received from 

GSSI RADAN, which is 

GPR software, in 

deteriorated bridge 

decks 

Larger database size is 

needed 



(Lee et al., 

2020) 

Use deep 

learning for 

detecting cracks 

and measuring 

the maximum 

crack width in 

images from 

railway 

infrastructure   

Application of 

semantic 

segmentation 

within 

framework of the 

deep CNN 

Precise labelling of 

slender objects is 

important for improving 

prediction accuracy 

Integration of the 

crack detection with 

deterioration 

prediction of track 

geometry 

(Zhang et 

al., 2020a) 

Propose a vision-

based single-

stage detection 

algorithm for 

detecting 

damages on 

concrete bridges, 

unlike most deep 

learning-based 

techniques that 

are built on two-

stage, proposal-

driven detectors 

Application of a 

real-time 

objection 

detection 

technique, You 

Only Look One 

(YOLOv3), 

The developed algorithm 

is able to detect concrete 

crack, pop-out, spalling, 

and exposed rebar, and it 

has a detection accuracy 

of up to 80% and 47% at 

the Intersection-over-

Union (IoU) metrics of 

0.5 and 0.75. It performs 

better than original 

YOLOv3 and the two-

stage detector Faster 

Region-based 

Convolutional Neural 

Network (Faster R-

CNN) with ResNet-101, 

especially for the IoU 

metric of 0.75. 

The dataset contains 

many small damages 

and a complex 

background 

information, which 

could inhibit the 

algorithms’ 

generalization and 

capacity. 

(Guo et al., 

2020) 

Identify the 

damage features 

from noisy and 

incomplete mode 

shapes without 

the need of using 

any hand-

engineered 

feature or prior 

knowledge 

Using A deep-

learning model 

based on CNN 

and design a new 

network 

algorithm, a 

multi-scale 

module, which 

helps in 

extracting 

features at 

various scales 

The proposed algorithm 

improves the accuracy of 

at least 10% compared 

to other network 

algorithms 

The results are based 

on the laboratory 

experiments and the 

research lacks dataset 

from actual structures 

(Dong et 

al., 2020) 

Develop a non-

contact structural 

displacement 

measurement 

method with less 

user involvement 

Using deep 

learning-based 

optical flow and 

validating it 

through a series 

of laboratory 

experiments and 

a field 

application 

The proposed method, 

FlorwNet2, has a higher 

accuracy compared to 

the traditional optical 

flow algorithms and 

decreases the need for 

human involvements 

limited to process 

uniformed sampled 

image data 



(Dong and 

Catbas, 

2020) 

Provide an 

understanding of 

the concepts, 

state of the art 

approaches and 

real-world 

practice of 

computer vision-

based structural 

health 

monitoring  

 

Review of the 

literature 

Applications of 

computer vision-based 

structural health 

monitoring are divided 

into local level and 

global level. At local 

level, they are mainly 

focused on identifying 

defects such as crack, 

spalling and 

delamination.  At the 

global level, they are 

mainly focused at 

applications such as 

displacement 

measurement, structural 

behaviour analysis, and 

vibration serviceability. 

This review mainly 

puts emphasis on two-

dimensional computer 

vision–structural 

health monitoring 

applications. 

(Sajedi and 

Liang, 

2021) 

Develop a 

framework that 

quantifies the 

confidence level 

of computer 

vision and deep 

learning models 

on vision-based 

structural health 

monitoring 

Using Bayesian 

neural network 

for deep vision 

of structural 

health 

monitoring 

models 

Bayesian inference is 

proposed to provide an 

uncertainty output for 

the corresponding 

predictions in the 

inspection processes. 

Larger database size is 

needed 

(Bae et al., 

2020) 

To enhance the 

crack 

detectability by 

augmenting the 

pixel resolution 

of the raw digital 

images that are 

degraded due to 

issues such as 

lack of 

resolution, 

motion and blurs 

Combining super 

resolution (SR) 

and automated 

crack detection 

networks as the 

end-to-end data 

interpretation 

network 

A deep super resolution 

crack network (SrcNet), 

which has 24% better 

crack detectability in 

comparison to the crack 

detection results using 

unmanned inspection 

robots 

More validation 

required to widen the 

applicability of the 

proposed method 

(Fiorillo 

and Nassif, 

2020) 

Detect 

subsurface 

damage of steel 

members in a 

steel truss bridge 

using infrared 

thermography 

(IRT) 

modified deep 

inception neural 

network (DINN) 

The method has 96% 

accuracy and 97.79% 

specificity. Also, the 

proposed method 

processed a thermal 

image covering an area 

of (0.120 m x 0.440 m) 

in only 55 s, while 

ultrasonic pulse velocity 

(UPV took two hours. 

This method is not 

able to detect small or 

very low subsurface 

damages 



(Ali and 

Cha, 2019) 

Overcome the 

challenge of 

traditional CNN 

with bounding 

boxes to localize 

the defects, 

which is not 

capable of 

effectively locate 

detects and 

quantify them. 

An instance 

level recognition 

and 

quantification 

approach based 

on Mask R-CNN 

Results show 90.0%, 

90.8% average precision 

(AP) for the bounding 

box and mask, 

respectively. The 

developed method can 

recognize bugholes on 

the concrete surface 

images, and can directly 

output the area and 

maximum diameter of 

the bughole, which 

reflect excellent bughole 

detection and 

quantization 

performance. 

The method is not able 

to detect multiple 

damage types 

(Wang et 

al., 2019) 

Automatically 

monitor whether 

construction 

personnel are 

wearing hardhats 

and identify the 

corresponding 

colours (e.g. 

blue, white, 

yellow, and red) 

A one-stage 

system based on 

convolutional 

neural network 

 Higher accuracy is 

needed for the small-

scale hardhats 

detection 

(Lei et al., 

2019) 

Detect buried 

objects from 

GPR profiles 

automatically 

Combining 

Faster R-CNN 

with the DA 

strategy, which 

helps to increase 

the volume and 

variety of the 

training data 

The proposed algorithm 

is more accurate and 

robust in terms of real-

time detection and 

localization of buried 

objects in comparison to 

GPR 

The proposed requires 

further validation to be 

applied for fitting 

hyperbola and 

estimating the peak of 

target 

(Huynh et 

al., 2019) 

Detect loosened 

bolts in critical 

connections 

Combining a 

regional 

convolutional 

neural network 

(RCNN)-based 

deep learning 

algorithm and 

the Hough line 

transform 

(HLT)-based 

image 

processing 

algorithm 

The algorithm can 

overcome challenges 

with the existing vision-

based bolt-loosening 

methods such as the 

ability to identify bolts 

in images captured under 

an arbitrary shooting 

angle 

The shooting angle for 

images should not go 

beyond 40 degrees to 

ensure the accuracy of 

the detection results 



(Kim and 

Cho, 2019) 

Develop a 

framework that 

identifies and 

quantifies cracks 

for concrete 

structures 

Using mask and 

region‐based 

CNN (Mask R‐

CNN) 

Detects most of the 

cracks 0.3 mm or wider 

and quantifies cracks 

with widths of 0.3 mm 

or more with errors less 

than 0.1 mm 

Cracks less than 0.3 

mm widths show 

relatively larger error 

due image resolution 

(Yu et al., 

2019) 

Develop a non-

intrusive method 

to monitor the 

whole-body 

physical fatigue 

Computer vision 

for construction 

workers using an 

RGB camera 

3-step method for 

physical fatigue 

assessment of joint-level 

physical fatigue 

assessments non-

intrusively and 

automatically 

The method requires 

to measure the mass of 

materials or equipment 

to be able to perform 

properly, which limits 

the method's 

applicability in real 

construction projects 

(Li et al., 

2019) 

provide pixel-

level detection of 

four concrete 

damages: cracks, 

spalling, 

efflorescence, 

and holes. 

Using a Fully 

Convolutional 

Network (FCN) 

The performance of the 

trained FCN was 

compared with the 

SegNet-based method 

and it was showed that 

FCN-based method has a 

better performance of 

detection results of 

damages and FCN 

requires smaller size of 

trained model of the 

FCN compared to the 

SegNet 

The inability to detect 

the depth of damages 

(Liang, 

2019) 

Develop an 

approach for 

post-disaster 

inspection of the 

reinforced 

concrete bridge 

Convolutional 

neural 

network for 

image 

classification, 

object detection, 

and semantic 

segmentation 

Three-level image-based 

approach for post-

disaster bridge 

inspection. The three 

levels are for the system-

level failure analysis, the 

structural component-

level detection, and 

local-level damage 

localization. 

Further investigation is 

required to enable 

post-disaster 

autonomous inspection 

for near-real time 

damage detection and 

assessment 

(Bao et al., 

2019) 

Review of the 

state of the art of 

data science and 

engineering in 

SHM 

Literature review Machine learning, deep 

learning, and Computer 

vision techniques can be 

extensively applied in 

SHM because they 

provide efficient 

algorithms to 

automatically identify 

cracks  using big data 

from monitoring 

 

Evidence of findings 

need to be applied in 

real operational 

scenarios 



(Ni et al., 

2019) 

Automate crack 

extraction 

quickly and 

accurately at a 

pixel level in 

civil structures 

convolutional 

feature fusion 

and pixel‐level 

classification 

New image‐based 

structural damage 

detection and 

segmentation method at 

the pixel level, called the 

CDN, identifies cracks 

accurately and rapidly in 

images, which unlike 

some other methods 

does not need hand‐

designed low‐level 

features 

More autonomous 

toward detecting other 

damage types and 

segmentation from 

images of any size 

need to be considered 

(Atha and 

Jahanshahi, 

2018) 

Detect corrosion 

of a sliding 

window over an 

image. 

Two state-of-

the-art CNN 

architectures, ZF 

Net and VGG16, 

were evaluated 

and compared to 

three proposed 

CNNs, 

Corrosion7, 

Corrosion5, and 

VGG15, for 

corrosion 

detection. 

CNNs outperforms the 

previous state-of-the-art 

corrosion detection 

approaches 

The type of corrosion 

cannot be identified, 

and the amount of 

corrosion cannot be 

measured 

(Pan et al., 

2018) 

Extract structural 

information that 

determine 

conditions of the 

complex 

structures with 

uncertainties 

using the deep 

Bayesian Belief 

Network 

Learning 

(DBBN)   

DBBN could accurately 

determine the structural 

health state in terms of 

damage level to the 

conventional shallow 

learning Support Vector 

Machine; 

Larger database size is 

needed 

(Xu et al., 

2018) 

Identify and 

extract fatigue 

cracks from 

images 

containing 

complicated 

background on a 

steel structure 

surface 

Constructing a 

deep learning 

network 

consisting of 

multiple 

processing 

restricted 

Boltzmann 

machine (RBM) 

 

The capability of correct 

identification decreases 

for the images with low 

resolution 

Multiple‐scale deep 

learning is required for 

crack identification 

from images with 

various resolution  

 

 

3. Convolutional Neural Networks (CNN) for crack detection 

Amongst many of the reviewed conventional deep learning architectures, Convolutional 

Neural Network (CNN) is widely known for their capability of image processing, especially 



for applications that require image matching of width, height and depth (Krizhevsky et al., 

2012). Ren et al. (2020) detected cracks with a deeper deep learning network, further improving 

the accuracy of crack detection. Another study by Kumar et al., (2020) developed a vision‐

based method using a deep architecture of convolutional neural networks (CNNs) for detecting 

concrete cracks without calculating the defect features. The designed CNN is trained on 40 K 

images of 256 × 256-pixel resolutions to detect cracks by classifying each region separately. 

Chuang et al. (2019) pre-processed the image by Naive Bayes classifier and then identified 

cracks with the CNN. Zhu and Song (2020) employed a Deep Convolutional Neural Network 

(DCNN) trained on the ‘big data’ ImageNet database, which contains millions of images, and 

transfer that learning to automatically detect cracks in Hot-Mix Asphalt (HMA) and Portland 

Cement Concrete (PCC) surfaced pavement images that also include a variety of non-crack 

anomalies and defects. Hoang et al. (2018) compared a CNN model with metaheuristic 

optimized edge detection algorithm. They showed that the performance of CNN was 

significantly better than edge detector. A later study by Ye et al. (2019) put forward a structural 

crack detection method based on CNN, which divides the image and processes it with deep NN 

and random forest.  

However, the region-based methods can only provide information about the existence of cracks 

and rough shape and location depending on the size of regions. The value of crack detection 

decreases if the accurate pattern and location of the cracks cannot be given. Liang (2019) 

introduced a CNN approach for detecting concrete columns surface cracks or spalls. To 

overcome this issue, pixel-level crack detection methods are studied, for instance, the 

investigation conducted by Fan et al. (2019) improved the detection accuracy to 92.08% 

through the integration between the edge optimization algorithm and the CNN. Ni et al. (2018) 

proposed a convolutional neural network‐based framework to automatically extract cracks 

quickly and accurately at a pixel level, through convolutional feature fusion and pixel‐level 



classification. Liu and Zhang (2020) presented a novel context‐aware deep convolutional 

semantic segmentation network to effectively detect cracks in structural infrastructure under 

various conditions. The proposed method applies a pixel‐wise deep semantic segmentation 

network to segment the cracks on images with arbitrary sizes without retraining the prediction 

network. Meanwhile, a context‐aware fusion algorithm that leverages local cross‐state and 

cross‐space constraints is proposed to fuse the predictions of image patches Won et al. (2020) 

adopted U-Net to detect the concrete cracks. Focal loss function is selected as the evaluation 

function, and the Adam algorithm is applied for optimization. The trained U-Net is able of 

identifying the crack locations from the input raw images under various conditions (such as 

illumination, messy background, width of cracks, etc.) with high effectiveness and robustness. 

Fan et al. (2020) develops a robust method for crack detection using the concept of transfer 

learning as an alternative to training an original neural network.  

Three standard deep learning methods of training a crack classifier using 1) a shallow 

convolutional neural network built from scratch, 2) the output features of the VGG16 network 

architecture previously trained on the general ImageNet dataset, and 3) the fine-tuned top layer 

of VGG16 are investigated. Data augmentation is used to reduce overfitting caused by the 

limited and imbalanced training dataset. The image dataset includes both fatigue test 

photographs and actual inspection photographs captured under uncontrolled distance, lighting, 

angle, and blurriness conditions. Zhu and Song (2020) developed a weakly supervised network 

for the segmentation and detection of cracks in asphalt concrete deck. Firstly, the data were 

differentiated by the autoencoder, and the unlabeled data features were highlighted, so that the 

original data autonomously generate a weakly supervised start point for convergence. 

Secondly, the features were classified by k-means clustering (KMC). Thirdly, the cracks in the 

bridge deck defects images were subjected to semantic segmentation under weak supervision. 

A dataset of six types of defects on asphalt concrete bridge deck which was set up the defects 



in the dataset were labelled manually. A recent research was found which utilizing cycle-

consistent generative adversarial learning for crack detection (Nath et al., 2020). In this study 

authors proposed a self-supervised structure learning network which can be trained without 

using paired data, even without using ground truths (GTs); this is achieved by training an 

additional reverse network to translate the output back to the input simultaneously. 

4. Methodology  

The objective of the current study is to present a workable solution and explore its practicality 

in a real-life setting. As argued by (Yin, 1981), an exploratory case study is the most workable 

method for implementing such context-dependent studies. In that sense, a case study is like 

simulation and experiment. Referring to the studies (see table 1) mentioned in the previous 

sections, majority of the studies lacked empirical application of the tools developed, and also 

the level of accuracy has relative reliability which would pose some difficulty in applying for 

other contexts. The main difference is that a case study tests a phenomenon in its real-life 

setting, where an experiment deliberately separates a phenomenon from its context (Yin, 1981). 

An illustrative case study was used to check the validity, reliability and scalability of the 

proposed solution (deep learning CNN model). Figure 1 shows the adopted process in order to 

develop a new CNN model to detect and classify highways cracks. The process begins by 

collecting images of different types of highway cracks (n=4663), then classifying these images 

to three categorises, namely, vertical cracks’ ‘horizontal and vertical cracks’ and ‘diagonal 

cracks. In order to check the most appropriate parameters to develop and tailor a special CNN 

model for highway cracks, four pre-trained CNN models were selected and applied to the three 

categorises of images. Subsequently, evaluating the capable points/parameters of each pre-

trained model and use these parameters to develop a tailored CNN model to detect and classify 

highway cracks with possible maximum accuracy.  



Figure 1. The logic and design of the research process 

5. Data collection and analysis 

Three sets of cracks images were collected as secondary data (see Figure 2). Size of samples 

were ‘vertical cracks around 1359’, ‘horizontal and vertical cracks around 2184’ and ‘diagonal 

cracks around 1120’. After importing these images and classify them into Matlab platform, 

four pre-trained models, namely, AlexNet, VGG16, VGG19, GoogleNet. The images shows 

that the more images that are embedded as part of deep learning, the higher the accuracy will 

be achieved. In other words, this will support, not only identifying type of cracks, but also 

provide more accurate classification of the cracks. 



Figure 2. Used samples of highway cracks.  

5.1.Comparison of Pre-trained Deep Learning Models 

Figure 3 shows the process of defining the categorises of cracks, which are Dia (Diagonal), 

Ver (Vertical), H-V (Horizontal-Vertical). Subsequently, these defined categorises of cracks 

should be classified as training and validation sets so that all pre-trained CNN models  will be 

applied and tested using these identified sets (70% for training and 30% for testing). It shows 

how the applied algorithm both learns from the data and classify type of cracks, which is part 

of the investigation in this paper. 

 

 

 

 

Figure 3. Define categorises and create raining and validation sets codes. 



Four models were selected as shown in Table 2 to test their accuracy in classifying and 

identifying cracks as presented in the methodology section. In order to check the reliability of 

the collected data in corresponding to the accuracy of pre-trained models, the accuracy 

percentage should be placed between the top-1 and top-5 accuracy percentages. Accuracies 

results in Table 2 reveals that the quality of images were very high as the accuracy of all models 

are above the averages between top-1 and top-5 and the accuracy of the samples exceeded the 

top-5 for the pre-trained AlexNet model around 3% and by 0.2% for the GoogleNet model. The 

accurate model here is the GoogleNet model as the accuracy is 89.08% and it is higher than 

AlexNet by 1.26%. Therefore, GoogleNet is the best model to be employed for these types of 

distresses in highways. Results in Table 2 confirms that all these pre-trained CNN models can 

give accuracy more than 85% to classify the type of cracks such as horizontal, vertical-

horizontal and diagonal. The large sample sizes for all types of cracks enabled to increase the 

accuracy of all pretrained models and once new set of data entered, the system will be able to 

classify new images of cracks regardless of the size and number of images, therefore, the 

decision maker can scan hundreds of kilometres of highway and import images to the system 

to determine percentages of each type of cracks in order to start the maintenance process. 

Table 2. Pre-trained deep learning models 

CNN Model Accuracy Accuracy ranges (top 1 to 

top 5) 

AlexNet 87.83 % 63.3% to 84.6% 

VGG16 85.14 % 74.4% to 91.9% 

VGG19 85.93 % 47.5% to 92% 

GoogleNet 89.09 % 68.93 % to 88.9% 

 

5.2.Proposing and Evaluating a New CNN Model 



Figure 4 depicts the created codes of the proposed CNN model-based highway cracks including 

the proposed layers, the training options to define ‘optimization algorithm, mini-batch size, 

learning rate, validation frequency, and max Epochs’, and codes to train the network and 

compute accuracy of the created CNN model at different learning rates in order to reach the 

maximum optimised accuracy. The below figure, indeed, explains the three steps followed for 

the CNN model. Step 1 defines the layers and the parameters associated with each of the layers; 

step 2 explains the training options to identify optimisation algorithm, learning rate, and mini-

batch size; step 3 explains the training of the model based on both steps 1 & 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Codes of the proposed CNN-based highway cracks model  

Figure 4 shows the details of the proposed CNN model in terms of type of layer, activations 

and learnable. CNN includes neurons with learnable weights and biases. Numerous inputs are 



received by neurons by which a weighted sum of those inputs is considered. Finally, the 

weighted sum of inputs passes through an activation function to provide an output. 

Each layer of a CNN has two kinds of parameters: weights and biases. The number of 

parameters can be computed for each layer as follows; 

𝑊𝑐 = 𝐾2 × 𝐶 × 𝑁 

𝐵𝑐 = 𝑁 

𝑃𝑐 = 𝑊𝑐 + 𝐵𝑐 

Where 𝑊𝑐 is the number of weights, 𝐵𝑐 is the number of biases, N is the number of kernels, C 

is the number of channels of input images, and 𝑃𝑐 is the total number of parameters of a layer.   

Figure 5 also provides the stride and padding of convolutional and pooling layers. Stride 

determines the number of pixels shifts over the input matrix. When stride equals "1", kernels 

will move by 1 pixel at a time. Padding is the process of adding layers of zeros to the input 

images. The figure (figure 5) comprehensively provides detailing of each of the layers in terms 

of activations. This will support identifying that the model is functioning systematically in a 

sense that the outcomes from a particular layer can form the inputs for another layer. 

 

Figure 5. The proposed CNN model parameters  

 



Classification Accuracy of the Proposed Model 

The following Table 3 illustrates the values of various hyper parameters of the proposed model. 

These parameters were selected based on the comparison between pre-trained models in order 

to determine the capabilities of each one to detect small cracks from a good quality set of 

images.  

Table 3. The values of various hyper parameters for the proposed model 

Parameter Value 

Weight decay 5×10-4 

Momentum 0.9 

Iterations per epoch 73 

Maximum iterations 365 

Mini-batch size  32 

Maximum epochs 5 

 

5.3.Comparing Between Different Optimisation Algorithms to Enhance the Accuracy 

Three optimisation algorithms were applied to the proposed CNN model in order to enhance 

the accuracy as seen in Table 4. It can be seen that accuracies at different learning rates are 

ranged from 82.54% to 97.62% and this is higher than the best accurate pre-trained model 

(GoogleNet) by 8.53%. In order to check the reliability, validity and scalability of the proposed 

CNN model, the accuracy was measured in corresponding to three learning rates. For instance, 

the most accurate rate for SGDM and Rmsprop algorithms was at 0.001, while Adam algorithm 

the highest accuracy point was achieved at learning rate 0.0001 and this is the optimised and 

recommended algorithm to be used for the proposed CNN model. 

 



Table 4. Accuracies in corresponding to optimisation algorithms. 

Optimization Algorithm Learning Rate Accuracy 

SGDM 

0.01 90.08 % 

0.001 97.42 % 

0.0001 97.32 % 

Rmsprop 

0.01 88 % 

0.001 95.24 % 

0.0001 82.54 % 

Adam 

0.01 91.47 % 

0.001 92.56 % 

0.0001 97.62 % 

 

Figure 6 shows the curves of accuracy against diffent epoch (iterations) and loss values against 

different iterations to reach the final point for the recommended opimisation algorithm, which 

is Adam. learning rates as presented in Table 4. The learning rates (0.01, 0.001 and 0.0001) 

illustrated in figure 6 as well as the maximum-epochs (refer back to training options in figure 

4) would support identification level of accuracy and how to changes. This can perhaps support 

how graphically the training of CNN model would change versus iterations (at each epoch). 
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Figure 6. Adam algorithm accuracy results in corresponding to learning rate.  

6. Significance and Contribution  

The proposed CNN-based highway cracks are distinguished from existing pre-trained models 

based on the following aspects: 

 The parameters were built based on the revealed capabilities of four pre-trained CNN 

models to detect highway cracks. Therefore, the proposed CNN-based highway model 

gets benefits from the observation from testing these pre-trained models using the same 

samples. 

 The potential users will be able to use this model to scan a long highway and evaluate 

its health case in a few minutes since the proposed CNN was built and tested using a 

large size sample of high quality images and accuracy were very high. Therefore, the 

poor quality images will be also detected at a relative lower accuracy level. However, 

the model will be workable under different scenarios and a wide range of inputs.  



 The proposed CNN-based highway cracks were tested using different optimisation 

algorithms at different learning rates. Therefore, its accuracy will correspondingly 

increase with adding more images. This means that users such as highways agencies 

can use it for their highways and the model will be automatically adjusted to their types 

of cracks, quality of images and other criteria. As such, the proposed CNN-based 

highway cracks are scalable model compared to the pre-trained CNN model that were 

used to detect highways cracks in similar research.  

 The accuracy of the created CNN-based highway cracks is higher than the top-5 

accuracy of the tested pre-trained CNN models as the highest top-5 accuracy for 

VGG19 is 92%, meanwhile the accuracy of the proposed CNN model is higher than 

97%. This goes beyond many conventional Neural Network-based approaches, as deep 

learning would allow more accurate outcomes which corresponds to the amount of data 

provided. 

7. Conclusion  

To sum up, this study aimed at developing a CNN model that supported the detection and 

classification of highway cracks. Following an extensive literature review, the accuracy of four 

pre-trained CNN models (i.e. AlexNet, VGG16, VGG19, GoogleNet) were tested to classify 

and detect types of cracks for highways. Results showed that the accuracies of all pre-trained 

models were higher (97.72%) than averages and the computed accuracies for AlexNet and 

GoogleNet models by more than 5%. After analysing the capabilities of each pre-trained CNN 

models, a CNN model, which is tailored for highway cracks characteristics, is proposed. The 

accuracy was computed for three optimisation algorithms at three different learning rates in 

order to reach the maximum optimal accuracy. For the created CNN model, the maximum 

accuracy was achieved by Adam’s optimisation algorithm at learning rate (0.001) by 79.62%.  



The proposed CNN-based highway model is valuable for highways agencies to scan long 

highways by importing images to the created CNN-based highway model and the model will 

classify cracks. This is to enable highways agencies to start the maintenance activities and 

divide the road to specific sections according to types and density of cracks. This means that 

users such as highways agencies can use it for their highways and the model will be 

automatically adjusted to their types of cracks, quality of images and other criteria. For future 

studies, other samples of various types of cracks can be added to the proposed CNN model to 

enable it to detect a wide range of highway cracks. Moreover, the created CNN-based highway 

cracks will be included in an integrated maintenance system that will consider a wide range of 

highway distresses, as well as, evaluating the severity degree of cracks. 
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