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Abstract—Data-driven industrial manufacturing services
are proliferating. They use large amounts of data generated
from Industrial-Internet-of-Things (IIoT) devices for intelli-
gent services to end-service-users. However, cloud data
centers hosting these services consume a huge amount of
energy, resulting in a high operational cost. To address this
issue, an energy-efficient resource allocation framework
is proposed in this paper for cloud services. It operates
in two phases. Firstly, a multi-threshold-based host CPU
utilization classification scheme is developed to classify
hosts into four groups for improved CPU resource alloca-
tion. It is designed through analyzing CPU utilization data
by using the least median squares regression technique.
Thereby, the scheme limits search space, thus reducing
time complexity. In the second phase, with a metaheuristic
search, an energy- and thermal-aware resource allocation
method is developed to find an energy-efficient host for al-
locating resources to services. From real data center work-
load traces, extensive experiments show that our frame-
work outperforms existing baseline approaches with 6.9%,
33.75%, and 34.1% on average in terms of temperature, en-
ergy consumption, and service-level-agreement violation,
respectively.

Index Terms—Industrial manufacturing service, energy
efficiency, resource allocation, data center.

I. INTRODUCTION

Industry 4.0 refers to the process of the digitization of the
manufacturing sector to create an ecosystem for industry with
a focus on manufacturing and supply chain management. The
Industrial-Internet-of-Things (IIoT) includes smart sensors,
camera systems, smart meters, industrial robotics, and actu-
ators to leverage the power of smart machines and real-time
analytics in a cloud computing environment (CCE) [1]. The
IIoT market is expected to grow from $64.00 billion in 2018 to
$91.40 billion by 2023, at a compound annual growth rate of
7.39% [2] [3]. In Data-Driven industrial Manufacturing (D2M)
services, IIoT devices have great potential in sustainable and
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green practices, supply chain traceability, quality control, and
overall supply chain efficiency. Consequently, an enormous
amount of data is being generated from IIoT devices and
analyzed at cloud data centers for the provisioning of efficient
D2M services. An extensive analysis of the big industrial data
has been carried out at cloud data centers [4], [5].

The CCE provides manufacturing as a service (MaaS) to the
manufacturing industry, enabling the industry to take benefits
by minimizing operational and administrative costs. MaaS
includes different types of D2M services, such as supply
chain management, and asset tracking & optimization. These
services require a massive amount of computing, networking,
and storage resources for their delivery to end-service-users
[6]. Therefore, CCE requires support of a large amount of
energy, and such energy consumption is increasing with the
rapid growth of the demand for D2M services. The main
portion of energy consumption in CCE is in their hardware in-
frastructure including servers (hosts), storage, network devices,
and cooling. As hardware devices still consume a large amount
of energy when they are idle, such energy consumption leads
to enormous energy wastage. It is reported that physical hosts
use nearly 30% of their peak power consumption while sitting
idle 70% of time [7]. So, a basic reason of energy waste in data
centers’ infrastructure is under-utilization [8]. In the United
States, cloud data centers consume about 2% (70 billion
kWh) of the total energy production. Therefore, improving
the energy-efficiency of cloud data centers is desirable for a
sustainable and cost-effective CCE.

A challenge in this context is how to reduce host energy
consumption while ensuring the Service Level Agreements
(SLAs) delivered by cloud manufacturing services providers.
To address this challenge, improvement in the level of host
resource utilization will help reduce the total energy consump-
tion in a CCE. However, naively improving host utilization
levels may affect the temperature of the host and the SLA
delivered by cloud manufacturing services providers [9]. So,
to reduce the SLAs violation, select D2M services from either
a service-overloaded-host (SO-host) or a service-underloaded-
host (SU-host) for re-allocation according to the current
resource requirement. Broadly speaking, energy-efficient re-
source allocation can be performed by using three major tasks:
(1) to detect CPU utilization level; (2) to select D2M services
form SO-host; and (3) to find an energy-efficient host for
allocating resources to D2M services [10].

Most existing investigations into resource allocation to ser-
vices focus on traditional cloud environments without explicit
considerations of the impact of host temperature in overall
performance and SLA violation. Lin et al. [11] have proposed
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a resource-constraint project scheduling approach based on
a genetic algorithm for solving resource allocation problems
in cloud manufacturing environments. However, this proposal
neglects the fact that the temperature of the hosts also plays a
significant role in resource utilization and energy consumption.
Thus, the allocation of resources to the services significantly
affects the overall temperature in CCEs. Mikko et al. [12]
have introduced a method to optimize the cost of data centers
by analyzing the waste heat utilization from the perspectives
of both data centers and district heating network operators.
They have considered the timing of data center waste heat
production from an existing data center load profile. Al-
Qawasmeh et al. [13] have introduced a power- and thermal-
aware approach for the consolidation of workload in hetero-
geneous cloud data centers. They have designed optimization
methods to assign the performance state of CPU core at data
center level. Mhedheb et al. [14] have presented an approach
to identify critical hosts for Virtual Machine (VM) migrations
according to a threshold. The threshold is computed by using
the utilization and temperature of the host. However, all these
approaches still lack SLA violation and communication cost
mechanism. This leads to high costs for searching an energy-
efficient host for resource allocation, resulting in inefficient
energy management with possible SLA violation.

Motivated from the aforementioned work, this paper
presents a two-phase framework for energy-efficient resource
allocation in CCE. In the first phase, an adaptive multi-
threshold-based host CPU utilization classification (MCU )
scheme is proposed. It classifies the hosts into four groups:
SU-hosts, service-allocate hosts (SA-hosts), normal-loaded
hosts (NL-hosts), and SO-hosts. For this purpose, we use the
least median square (LMS) regression technique to estimate
three thresholds (Tlower, Tmiddle, Tupper) based on a statis-
tical analysis of past CPU utilization. In the second phase,
an energy- and thermal-aware resource allocation scheme is
proposed. It is designed with a metaheuristic approach to
search for an energy-efficient host for resource allocation to
D2M services based on host temperature. The advantages of
metaheuristics include their progressive optimization ability,
incremental and step-wise searching manner, and a control-
lable search time. Often a near-optimal solution can be found
within a specified period of time. Hence, a metaheuristic
approach is suitable for applications with real-time constraints.
The main contributions of this paper are summarized below:

• We optimize the energy consumption of the CCE during
the peak time by exploring computation energy consump-
tion, communication energy consumption, and cooling
energy consumption. This work presents cloud computing
architecture based on a data-engine and control engine for
building an intelligent manufacturing system. It formu-
lates the resource allocation problem as a constrained op-
timization problem to minimize the energy consumption
under several constraints such as dynamically fluctuating
resources and upper-temperature threshold.

• A two-phase framework is proposed. In the first phase,
a multi-threshold-based host CPU classification (MCU)
scheme is used to classify various hosts into four groups
for efficient utilization of host resources with a reduced
risk of overloading hosts. In the second phase, we intro-
duce a metaheuristic energy- and thermal-aware resource

allocation scheme (ETV) to search an energy-efficient
host for processing D2M services. Proposed scheme
reduces the risk of over-heating hosts, maximizes energy
savings, and compresses time complexity in problem
solving.

The paper is organized as follows: Section 2 presents the
architecture of the CCE. Section 3 formulates the problem of
energy efficiency. Section 4 presents our framework. Section 5
conducts simulations. Finally, Section 6 concludes the paper.

II. SYSTEM ARCHITECTURE AND MODEL

The section outlines the system architecture of cloud com-
puting with D2M services and formulates our system model.

A. Overview of System Architecture
CCE for D2M services is a new network manufacturing

paradigm. It organizes smart-manufacturing resources (e.g.,
robots, sensors, smart cameras, and IoT) and computing ser-
vices (e.g., data analytic, real-time production monitoring, and
user emotion data estimation) over networks. This section
discusses the cloud computing architecture, as shown in Fig.
1, which consists of four main layers as discussed below.

1) Terminal Layer: The end-service-users is a group that
requests smart-manufacturing resources and computing ser-
vices from cloud manufacturing services providers as per
their requirements. The end-service-users can monitor their
production line by using terminal devices.

2) Cloud Layer: An enormous amount of data being gen-
erated by IIoT devices is stored in the cloud data center
and applies machine learning or deep learning algorithms for
providing intelligent manufacturing services. Cloud layer also
provides high-performance computation resources to D2M
services and this layer is equipped with a data-engine and
control engine.
• Data-Engine- A data-engine collects data being generated

by IIoT devices and carries out comprehensive big data
analysis through artificial intelligence algorithms, which
effectively execute the D2M services.

• Control Engine- The control engine plays a crucial role
in managing and allocating the communication and com-
puting resources of the cloud data center (e.g., allocate
resources to D2M services as per their requirements,
network type, communication quality, data flow between
services, and other dynamic parameters). It also sends
real-time resources availability status to the data-engine,
while gathering the significant data analytics results of the
data-engine. Thus, the control engine can allocate cloud
resources efficiently to D2M services.

3) Gateway Layer: This layer consists of the routers or
switches, a bridge between the smart-manufacturing layer and
the cloud layer. It plays a significant role in interchange data
and information between these layers.

4) Smart-Manufacturing Layer: This layer consists of all
manufacturing hardware resources, e.g., camera, Wi-Fi an-
tenna, motor-rotation interface, temperature sensors, vibration
frequency sensors, RFID tag, Li-battery, pressure sensor, and
LED indicator light. These devices are assembled into different
types of robots, each of which performs a particular task as
per end-service-users requirements.
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Fig. 1: The system architecture of industrial manufacturing services with cloud support.

B. System Models

The considered cloud computing system is presented in
Fig. 1. The requests of services from users are considered
as tasks. The total number of submitted tasks is denoted as
n. We consider that the same number of VMs are required
to execute these tasks [15]. The VMs are denoted by V =
(v1, v2, ...., vj , ...., vn). We model the workload in terms of the
n services S = (s1, s2, ...., sj , ...., sn) that need to be placed
on m hosts H = (h1, h2, ...., hi, ...., hm). We assume that
each VM processes its associated D2M service, and the VM
is terminated after the service is executed. The key attributes
of the D2M service sj , are denoted by (Dj , C(sj)), where
Dj represents the data size of D2M service, and C(sj) is
the required computation resources. Here, we assume that
the size of a VM is similar to its associated D2M service
workload. Therefore, we only need to consider the workload of
service instead of VM. Let G denote a gateway device. Since
we are addressing resource allocation, we submit all tasks at
the beginning of the experiment. The energy consumption of
CCE comes from computing, communication, and cooling. An
observation time slot is denoted by q with q = 1, 2, . . . , l. The
duration of each time slot is κ.

1) Computing Energy Consumption Model: In a CCE, the
energy consumption of computing is determined by the energy
consumed by CPU, storage, memory, and network. The CPU
is the leading energy consumer. Thus, the energy consumption
model mainly focuses on the energy consumed by the CPU.

A host consumes a base energy Phbase at its idle state, and
the maximum energy Phmax at its full utilization. Its total
capacity of hosting services is represented by C(host). For the
jth D2M service, the total number of required CPUs is denoted
by C(sj). We use a binary variable δj to indicate whether or
not the jth D2M service is offloaded to get resources from a
host (value ”1” for yes and value ”0” for no). Therefore, the
overall energy Phost consumed by a host is given by Marcel
et al. [16] as follows:

Phost = Phbase + (Phmax − Phbase)
∑n
j=1 C(sj)× δj
C(host)

(1)

Equation (1) states that the utilization of a host given by the
ratio between the sum of the CPU cores requested by each
D2M service and the total number of CPU cores of the host.

The overall computing energy consumption of the CCE
within an observed period of time is expressed as an m × l
matrix P with elements Phosti,q (q = 1, 2, ..., l; i = 1, 2, ...,m).

TABLE I: Notations and symbols.

B Channel bandwidth
C(sj) CPU requirement of jth D2M service
C(host) Resource capacity of a host
C Heat capacity of host
c Safety parameter
di,k Effect of heat recirculation to kth host from ith host
Dj Data size of jth D2M service
Ecomputing Total computing energy consumption
Ecooling Total cooling energy consumption
EG Total communication energy consumption
hj Channel power gain
H A set of m Hosts
i, k Indices for hosts, i, j = 1, . . . ,m
j Index for VMs or services, j = 1, . . . , n
l,m, n Total nos. of time slots, hosts, and VMs, respectively
N0 Noise power
Phost Energy consumption of a host
Ph
base Ideal energy consumption of host
Ph
max Maximum energy consumption of host
Pj Transmission power of IIoT device
q Index for time slots, q = 1, . . . , l
R Thermal resistance of host
S A set of n D2M services
T inlet
i,q Inlet temperature at ith host on observe time q
T cpu
i,q Temperature at ith host on observe time q
Tup Maximum threshold of CPU temperature
T supply Supply cold air temperature from CRAC
Tupper Upper loaded CPU utilization threshold
Tmiddle Normal loaded CPU utilization threshold
Tlower Underloaded CPU utilization threshold
X,Y Data points
α, β Intercept and slop variables
κ The duration of a time slot

The computing energy consumption model of the CCE is:

Ecomputing = κ
l∑

q=1

m∑
i=1

Phosti,q (2)

2) Communication Energy Consumption Model: In an of-
floading mode, a jth D2M service first transfers its data to
the cloud via a wireless access point (gateway). We assume
that all wireless links are symmetric, and data transmission
between a gateway to CCE is through a wired network [17].
A free-space propagation path-loss-model captures the large-
scale fading of the channel from an IIoT device to a gateway.
If a jth D2M service is offloaded to cloud via a gateway, the
transmitting time TGj of an offloaded D2M service depends
on the available bandwidth, D2M service data size Dj , j ∈ S,
and transmission rate. Since the D2M service is completely
offloaded to the cloud via a gateway, the transmission time
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TGj required by sj can be obtained as

TGj =
Dj

rj
, rj = B log2

(
1 +

Pjhj
N0

)
, j = 1, . . . , n (3)

where rj is the achievable rate, Pj denotes the transmission
power of the IIoT device, which offloaded jth D2M service to
the cloud via a gateway, and hj represents the channel power
gained from IIoT device to wireless gateway due to path loss
and shadowing attenuation during offloading jth D2M service,
B represents to a channel bandwidth, and N0 is a power
noise. As in existing studies [18], we also do not consider
the transmitted time required to send back computing results
because it is much smaller than input data.

The energy consumption of transmitting the jth D2M
service is the product of the transmission time and transmit
power for each IIoT device [19]. We use an exiting model to
calculate the total transmission energy consumption EGj as

EGj = TGj Pj , j = 1, . . . , n (4)

3) Cooling Energy Consumption Model: Computer room
air conditioning (CRAC) is used for cooling management in
a cloud data center. The amount of heat generated by the
hosts as well as the efficiency of CRAC negatively impact
on overall energy consumption [20]. The pattern of airflow in
a typical cloud data center is intricate. This leads to a heat
recirculation (HR) phenomenon, where hot air from the host
outlets recirculates in the data center and is mixed with the
supplied cold air from the CRAC, causing the temperature
at the host inlets to be higher than that of supplied air. We
use HR matrix d to describe the relationship between each
pair of hosts. Its element di,k expresses the recirculation rate
generated from the ith host to the kth host, where i 6= k [21].
The HR in a data center causes the rise of inlet temperature
T inleti,q of the ith host in observed time slot q than supplied
cold air with temperature T supplyq . Thus, HR plays a crucial
role in increased energy consumption in cloud data centers.
The effect of the heat contribution of all hosts on the inlet
temperature of ith host in observed time slot q is described
by:

T inleti,q =T supplyq +
m∑
k=1

di,kP
host
k ,

i = 1, . . . ,m; q = 1, . . . , l (5)

The CPU generates an extensive amount of heat that impacts
the inside temperature of the host. The host CPU temperature
is governed by not only its energy consumption but also
thermal resistance and heat capacity along with the inlet
temperature. Thus, the CPU T cpui,q dissipated by the ith host
during observed time q can be defined by an Resistance-
Capacitance model (RC model) as [22]

T cpui,q =Phosti,q R+ T inleti,q + (T inii,q − Phosti,q R− T inleti,q )e−
q

RC ,

i = 1, . . . ,m; q = 1, . . . , l (6)

where R and C represent thermal resistance (K/W) and heat
capacity (J/K) of the host, respectively; T ini denotes the initial
temperature of ith host CPU.

To keep the reliability of all hosts within the cloud data
center, all inlet temperature max(T inleti,q ) ≤ Tup, where Tup
is a warning temperature (nominal values is 70 ◦C [20]).

Therefore, the setting of cold air temperature supplied from
the CRAC by using equation (5) is

T supplyq + max
i∈H

m∑
k=1

di,kP
host
k ≤ Tup, q = 1, . . . , l

T supplyq ≤ Tup −max
i∈H

m∑
k=1

di,kP
host
k , q = 1, . . . , l

(7)

The amount of heat generated by hosts is directly propor-
tional to computing energy consumption. The efficiency of
the CRAC unit is generally characterized by the Coefficient
of Performance (CoP), which is described as the ratio of the
amount of heat removed by a cooling device to the consumed
energy by CRAC units. For example, the expression of CoP
= 2 means that the CRAC units will consume 50 J energy
for removing 100 J heat. The CoP typically is non-linear with
the supplied cold air temperature (T supply). We use HP utility
data center CoP model: CoP(T supply) =

(
0.0068(T supply)2 +

0.0008T supply + 0.458
)

[21], [23]. Therefore, the energy
consumption Ecooling of cooling can be described as follows:

Ecooling = Ecomputing/CoP (T supply) (8)

The total amount of energy (Etotal) consumed by CCE in an
observed period of time is calculated by integrating equations
(2), (4), and (8) as follows:

Etotal = Ecomputing + Ecooling + EG

= Ecomputing +
Ecomputing

CoP (T supply)
+ EG

= κ

l∑
q=1

m∑
i=1

Phosti,q

(
1 +

1

CoP (T supplyq )

)
+ EG (9)

The maximum allowable input temperature is maintained
through the overall performance of computing and cooling
facilities of the CCE. Thus, the total energy consumption
(Etotal) can be modified by using equations (9) and (7) as:

Etotal = κ
l∑

q=1

m∑
i=1

Phosti,q(
1 +

1

CoP (Tup −maxi
∑m
k=1 di,kP

host
k )

)
+ EG (10)

This equation shows that all entry di of HR matrix d [21] and
other parameters (e.g., Tup and κ) are determined. Therefore,
the total energy consumption from cooling, communication,
and computing in the observed time is directly affected by
Phosti , where Phosti is a set of all computing power of the
hosts in the CCE.

Fig. 2: Multi-threshold scheme for dividing hosts CPU utilization
level in to four groups

Authorized licensed use limited to: Nottingham Trent University. Downloaded on February 25,2022 at 12:30:46 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3153508, IEEE
Transactions on Industrial Informatics

III. PROBLEM FORMULATION

This work aims to minimize the energy consumption of a
CCE by leveraging the under-utilized computation resources
of the hosts and shutting down idle hosts. The total energy
consumption in a CCE can be split into energy consump-
tion for computing (Ecomputing), energy consumption for
communication (EG), and energy consumption for cooling
(Ecooling). Hence, we model the objective function as the
total energy consumption of the CCE. We investigate how to
allocate resources between D2M services and hosts such that
the objective function is minimized.

Definition 1: The resource allocation decision between m
D2M services and n hosts is defined as an n × m matrix
∆, where its (i, j)th element δi,j is defined as a binary value.
δi,j = 1 means the resources of the ith host allocated to the jth
D2M service. Otherwise, δi,j = 0. The problem is formulated
as:

Y : min
∆

Etotal = EG + κ
l∑

q=1

m∑
i=1

δi,jP
host
i,q(

1 +
1

CoP (Tup −maxi
∑m
k=1 di,kP

host
k )

)
(11)

s.t. C1 :
∑
i∈H

δi,j ≤ 1, ∀j ∈ S,

C2 :
∑
j∈S

sj(C(sj),M) ≤ hi(C(host),M),∀i ∈ H,

C3 : T cpui,q ≤ T
up ∀i ∈ H,∀q ∈ {1, . . . , l}

The objective function Y takes care of the holistic min-
imization of energy. The first constraint C1 ensures that a
D2M service is allocated to one and only one host. The
second constraint C2 ensures that the resources requirements
of all D2M services allocated to one host are capped by the
capacity of a host. The third constraint C3 ensures that the
thermal violation does not occur when more D2M services
are executed on the host.

Because of the integer constraint δi,j ∈ {0, 1}, the above
optimization problem is an integer programming problem,
which is generally non-convex and NP-hard. Thus, in the next
section, an energy-efficient resources allocation framework is
proposed based on a metaheuristic approach. It finds a near-
optimal solution in a reasonable amount of time.

IV. A TWO-PHASE FRAMEWORK

The efficient energy consumption can be achieved by con-
solidating the computation load into a small number of hosts
while setting idle hosts to an energy-saving mode. So, we
have divided the energy consumption problem into three sub-
problem. First, detecting overloaded host, second, selecting
service from overloaded host for migration, third, allocating
resources to migrated service.

Therefore, our resource management framework operates in
the following two phases. In the first Phase, an MCU scheme
is used to classify hosts into four groups: SU-hosts, SA-
hosts, NL-hosts, and SO-hosts. MCU scheme help to detect
overloaded host. After detecting an overloaded host, we need
to select service from an overloaded host for migration. So,
we use an existing approach for service selection, named
Bandwidth-Aware Dynamic Selection Policy (Bw) [9]. In the

second Phase, an ETV scheme is designed to find the energy-
efficient host from the SA-host group for resource allocation
to D2M services, which improves energy-efficiency, the tem-
perature of the host, reduces the complexity, and reduces SLA
violations. Our scheme proposed in this work is a general
one applicable to the scenarios with or without GPUs, the
only difference is the inclusion or exclusion of a GPU energy
consumption model. For the simplicity and without loss of
generality, we do not choose to include a GPU model for the
demonstration of our scheme in this paper.

A. Multi-threshold scheme to classify host CPU utilization

The proliferation of D2M services demands an enormous
amount of computing resources to provide these services
efficiently. However, The dynamic property of a CCE is a big
concern for cloud manufacturing service providers. A static
threshold is not a reliable solution for the dynamic workload
of the CCE. Therefore, we propose a multi-threshold based
host CPU utilization classification for this dynamic nature.
In this section, we solve the sub-problem of the proposed
framework for scenarios when a host is considered to be
service-underloaded, service-allocated for resource allocation
to D2M services, normal loaded, or service-overloaded.

We classify all cloud data center hosts based on their current
CPU utilization. As shown in Fig. 2, we set three host CPU
utilization thresholds in the range between 0 and 1, i.e., 0 ≤
Tlower < Tmiddle < Tupper ≤ 1. From this classification, hosts
are grouped to SU-hosts, SA-hosts, NL-hosts, and SO-hosts.
The process of the proposed MCU is discussed as follows:

• Firstly, obtain current CPU utilization Hu
i of the ith host.

• If Hu
i ≥ Tupper, this ith host is categorized into SO-

host group. The hosts in this group must migrate some
D2M services to SA-host ( Tlower ≤ Hu

i ≤ Tmiddle)
group, thus minimizing SLA violation with high energy
efficiency.

• Extravagant D2M services migration from one host to
another in the cloud data center leads to inefficient energy
consumption and high SLA violation [9]. Therefore, all
D2M services of the host in NL-host ( Tmiddle ≤ Hu

i ≤
Tupper) group are kept unchanged.

• If Hu
i ≤ Tlower, the host is categorized into SU-host

group. The hosts in this group must migrate all D2M
services to the SA-host group. As a result, idle hosts are
switched to low-energy-mode or shut-down for energy
savings. The hosts are reactivated based on resource
demand increment [10], [24].

For the proposed MCU scheme, how to obtain the thresh-
olds Tlower, Tmiddle and Tupper? Assigning a constant value
to these thresholds is not a reliable solution for unpredictable
or dynamic workload of the CCE. Therefore, the least median
square (LMS) regression technique [9] is used to adjust these
thresholds automatically through a statistical analysis of the
past host CPU utilization. An LMS estimator is more robust
than other estimators such as variance, ordinary least squares,
standard deviation, and median. Let c denote a safety param-
eter that defines how fast the system allocates resources to
D2M services. The adaptive thresholds of the proposed MCU
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approach are defined as follows:
Tlower = a(1− c× LMS),

Tmiddle = b(1− c× LMS),

Tupper = (1− c× LMS)

(12)

where c is set as 0.5 from the existing work by Yadav et al.
[9]. A larger value of c implies higher energy consumption,
but lower SLA violation. A smaller value of c indicates lower
energy consumption but higher SLA violation. We use two
hyper-parameters a and b to divide upper threshold into 30%,
and 90% for Tlower and Tmiddle, respectively. Thus, we set
a = 0.3 and b = 0.9, respectively.

For calculating the LMS, we need to calculate the following
Ordinary Least Squares (OLS) model:

Yi =α+ βX i + εi (13)
εi =Yi − (α+ βXi) (14)

where εi is an independent variable called residuals, and X
and Y are data points. This model aims to minimize the value
of residuals εi. If the value of all residuals εi reaches zero,
then an optimal model is found with all given data points. i ∈
Hu, where Hu is a set of CPU utilization of all hosts in the
data center. The goal is to estimate the parameters, α and β,
which is usually called the intercept and slope of the fitted line
in the given data set, respectively. In OLS, a line is fitted in a
given dataset by estimating the value of α and β to minimize
the sum of squared residuals (SR) as described below:

min
α,β

SR =

m∑
i=1

(
Yi − (α+ βXi)

)2

(15)

For minimizing the values of α and β, partially differentiate
Equation (15) with respect to α and β

∂SR

∂α
= −2

m∑
i=1

(
Y i − (α+ βX i)

)
= 0 (16)

∂SR

∂β
= −2

m∑
i=1

(
Y i − (α+ βX i)

)
X i = 0 (17)

Simplifying Equation (16) gives
m∑
i=1

Y i −
m∑
i=1

α−
m∑
i=1

βX i = 0 (18)

It follows that

α = Ȳ − βX̄ (19)

Similarly, through simplifying Equation (17) , we obtain:

β =

∑m
i=1(Xi − X̄)(Yi − Ȳ )∑m

i=1(Xi − X̄)2
(20)

where Ȳ and X̄ are the means of variables Yi and Xi, respec-
tively. Formally, the least median of squares fit is determined
by the median of the residuals after plotting the values of α
and β as follows:

LMS = med
∀i∈H

(
Yi − (α+ βXi)

)2

(21)

The selection of service is an immediate task after the
host detected service-overloaded, and the decision needs to

Algorithm 1: Hosts Status Detecting Algorithm
Input: HostList, ServiceList, Tlower, Tmiddle, Tupper
Output: Resources Allocation to D2M Services
Phase : Service Allocation

1 SortDecreasingOrder.ServiceListUtil(ServiceList);

2 foreach (service:ServiceList) do
3 HostAllocated ← NULL;
4 foreach (Host:HostList) do
5 if ( sj(C(sj),M) ≤ hi(C(host),M)) then
6 CurrentHostCpuUtil ←

GetHostCpuUtil(Host, service);

7 if (Tlower ≤ CurrentHostCpuUtil ≤ Tmiddle)
then

8 MapService ←
SearchHost.PlaceService();

9 if (HostAllocated6= Null) then
10 Allocate Host Resources to Service;

11 else
12 (HostAllocated== Null)

13 HostAllocated ←
ActiveNewHostfromSleep-modeHostList() ;

Phase : SO-Host and SU-Host Detection
14 for Host:HostList do
15 CurrentHostCpuUtil = GetHostCpuUtil(Host);
16 if (Tupper ≤ CurrentHostCpuUtil) then
17 SO-Host ← GetOverloadedHost();
18 SelectService ←

SelectServiceForMigration(SO-
Host);

19 MapService ←
SearchHost.PlaceService(SelectService);

20 else
21 (Tlower ≥ CurrentHostCpuUtil);

22 HostUnderloaded ← GetUnderloadedHost();
23 SelectService ←

SelectServiceForMigration(SU-Host);
24 MapService ←

SearchHost.PlaceService(SelectService);

be made to select services for migration from SO-host to
SA-host. The efficient selection of service is an essential
task to minimize performance degradation and SLA violation.
For service selection, we use an existing approach, named
Bandwidth-Aware Dynamic Selection Policy (Bw) [9].

B. Energy and thermal-aware resource allocation (ETV)

An integer programming solver for the optimization prob-
lem in Equation (11) has high complexity. It is not feasible
to solve D2M resource allocation under dynamic resources
constraints. Thus, a metaheuristic approach is proposed to
solve the D2M resource allocation problem. The allocation
of resources to D2M services plays a significant role in the
efficient utilization of resources and energy consumption in
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the cloud data center. In this paper, we balance the tradeoff
between computing and cooling systems. The basic idea of this
scheme is that the best suitable host for resource allocation to
D2M services is directly dependent on the current temperature
of the host. So, find a host whose thermal temperature is
minimum than the other hosts in CCE for resource allocation.

In Algorithm 1, ”HostList” and ”ServiceList” represent
the sets of hosts and services in the cloud data center,
respectively. Our proposed framework works into two phases:
firstly, allocate host resources for newly offloaded services;
and secondly, detect SO-hosts and SU-hosts (for minimizing
energy consumption and SLA violation) and migrate their
services in SA-hosts group. First of all, this algorithm sorts
all D2M services as per their Million Instructions Per Second
(MIPS) requirements in a decreasing order (line 2) and then
check that the resource requirements of D2M service are
guaranteed by available hosts (line 5-6). In next step, the
algorithm finds a host which is categorized in SA-host group
by using Tlower, and Tmiddle (line 7) for resources allocation.
The allocation of resources is process with help of Algorithm
2 (line 8). Next, if no host is fulfilling new D2M service
requirements, then the shutdown-mode host will turn-on for
allocating resources to services (line 11-13). In second phase,
the detection of SO-host and SU-host is a crucial stage to
minimize energy consumption, performance degradation, and
SLA violation (line 14-21). After detecting SO-host, select
a D2M service for migration (line 22). In the next stage,
selected D2M services should be placed in the host according
to their temperature. The next algorithm is to describe the
host resources allocation workflow according to each host’s
temperature.

Algorithm 2 refers to the search for the best host for
resource allocation. In each scheduling interval (five minutes
in this case), the algorithm makes a local list (HostSearchList)
of hosts as per their thermal cost, which is calculated with the
help of Algorithm 3 (line 4). This local list (HostSearchList)
limit the search space to find the best host for resource
allocation, as a result, reduces the time complexity. Next, in
each iteration, the algorithm compares the thermal cost of
each host from a list (HostSearchList) and select a host whose
thermal cost is minimum than other hosts for allocating its
resource to D2M service (6-8).

Algorithm 3 refers to energy and thermal-based cost con-
struction. It takes host list, service, Tlower, and Tmiddle as
input and returns the best feasible hosts list (BestFeasible-
HostList) with their cost calculated by equation (10). The
first stage of an algorithm is making a feasible host list
(FeasibleHostList) by using Tlower, and Tmiddle (line 5-6),
which represents the finite search space to construct the best
feasible host list, and it positively impacts on the reduction
of time complexity. To the end, this procedure will return a
BestFeasibleHostList with the cost of each host belong in
this list. In the next section, we will evaluate the effectiveness
of the proposed framework.

V. SIMULATION SETUP & RESULTS ANALYSIS

A. Simulation Setup
The prototype of the proposed scheme is implemented on

top of CloudSim [25] with real dataset traces, which models
large datacenters provisioning computing infrastructures as

services. CloudSim implements a view of infinite computing
resources. This feature is important for us to evaluate the
proposed scheme on a large virtualized data center infras-
tructure. For simplicity and without loss of generality, we
choose the CloudSim simulator to demonstrate our scheme.
In contrast, validation on a real Cloud infrastructure will be
extremely difficult for performing different experiments in
order to examine the full functionality of the implemented
algorithm and the impact of the resources allocation strategies.
Therefore, simulation is the best choice for evaluating the
efficiency of proposed schemes.

In our simulation setup, we analyze the performance of
host temperature, SLA violation metric [9] [26], ESV metric
and energy consumption. These results are compared with
existing baseline approaches. We install 800 heterogeneous
hosts with their real configurations, and energy consumption
at different workloads are summarized in TABLE II. The
energy consumed by the gateway is 20W, and the network
bandwidth of each host is 1 GB/s. We divide D2M ser-
vices based on CPU and memory requirements. The limits
of these services is based on the commercial amazon web
service, e.g., HighCPU-intensive, LargeCPU-intensive, Small-
CPU-intensive, and MicroCPU-intensive, as summarized in
TABLE III.

Algorithm 2: Search Host for Resources Allocation to
D2M Service
Input: HostList, service
Output: Best Host For Resources Allocation to D2M

Service
1 for (q:T) do
2 GetBestHost ← True;
3 while (GetBestHost) do
4 HostSearchList ←

CostConstruction(HostList, service) ;
5 BestHost ← Null ;
6 for (LocalBestHost:HostSearchList) do
7 if

(
Cost of (LocalBestHost) < Cost of

(BestHost)
)

then
8 BestHost ← LocalBestHost;

9 return BestHost

Our experiments use real workload traces from real servers
that are available publicly in the CloudSim simulator. The CPU
utilization was simulated based on the CoMon project’s data,
a monitoring infrastructure for PlanetLab [27]. This dataset
contains bandwidth, CPU utilization, and memory of more
than 1000 hosts situated in 500 places around the world.
However, for our experiments, we only need CPU utilization.
The data has been collected over three days for every five
minutes between 3rd March to 3rd April 2011, shown in
TABLE IV. On 3rd March, 6th March, and 3rd April, there
are 1052, 898, and 1464 CPU utilization data points. The CPU
dataset’s size for 3rd March is 1052 CPUs, 6th March is 898
CPUs, and 3rd April is 1464 CPUs. The data is interpolated to
generate CPU utilization for every second. The data have some
peak CPU utilization and very low off-peak CPU utilization
levels, thus satisfying our simulation requirements. We set
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Algorithm 3: Energy and thermal based cost construc-
tion
Input: HostList, services, Tlower, Tmiddle
Output: Best Feasible Host List

1 BestFeasibleHostList ← Null;
2 for Host:HostList do
3 if (Service resources requirements meets available

host resources) then
4 CurrentHostCpuUtil ←

GetHostCpuUtil(Host, service);

5 if (Tlower ≤ CurrentHostCpuUtil ≤ Tmiddle) then
6 FeasibleHostList ← ∪ Host;

7 for (FeasibleHost:FeasibleHostList) do
8 if ( Feasible Host meets service requirements) then
9 Cost(FeasibleHost) ← EG +

Phosti

(
1 + 1

CoP (Tup−maxi

∑m
k=1 di,kP

host
k )

)
;

10 BestFeasibleHostList ← ∪ FeasibleHost

11 return BestFeasibleHostList

TABLE II: Energy Consumption (W) and Characteristics of the Hosts

Server Fujitsu M1 Fujitsu M3 Hitachi TS10 Hitachi SS10

0% 13.3 12.4 37 36
10% 18.3 16.7 39.9 38.8
20% 21.1 19.4 43.2 41.2
30% 23.4 21.4 48.8 46.3
40% 26.5 23.4 48.8 46.3
50% 29.6 26.1 52.8 49.4
60% 34.7 29.7 57.8 53.1
70% 40.7 34.8 65.1 58.8
80% 40.7 34.8 65.1 58.8
90% 46.8 41 73.8 64.2

100% 60 51.2 85.2 69.7
Server Xeon 1230 Xeon 1230 Xeon 1280 Xeon 1280

Cores 4 4 4 4
CPU 2.7GHz 3.5 GHz 3.5 GHz 3.6 GHz

Memory 8GB 8GB 8GB 8GB

TABLE III: D2M Services

Feature High
CPU

Large
CPU

Small
CPU

Micro
CPU

MIPS 2500 2000 1000 500
Memory 4050 3750 1700 613

TABLE IV: Workload dataset

Date 03-
Mar

06-
Mar

03-
Apr

Workload 1052 898 1463
SD(%) 17.09 16.83 16.55

TABLE V: Parameter settings.

R C T ini T supply Tup B N0 Pj

0.35 K/W 340 J/W 318 K 25◦C 70◦C 20 MHz -113 dBm 31 dBm

other parameters that are useful in this simulation shown in
TABLE V.

We also assume that hosts are arranged in a rack layout, and
eight racks are arranged in a zone. Each zone laid 4×2 rows,
and each rack has 10 hosts [21]. In each zone heat recirculation
effect exists, which is negligible across the zone. Thus, we do
not consider the heat recirculation effect in this paper. The heat
distribution matrix d that represents the recirculation effect
within the zone is adopted from work in [21].

B. Baseline Strategies
Four baseline strategies are considered: RANDOM, KMI-

MR (K-means with a maximum ratio of CPU utilization to
memory utilization), KMI-MP (K-mean with minimum the
product of a CPU utilization and memory utilization), and
PABFD (Power-aware Modified Best Fit Decreasing):
RANDOM: The D2M services are allocated to randomly
selected hosts. This is the most intuitive approach. It does
not consider the energy and thermal status of the host.
KMI-MR: The k-mean clustering method is used with a
maximum ration of CPU utilization to memory utilization. It is
only considered the energy consumption status of hosts [24].
KMI-MP: The k-mean clustering method is used with a
Minimum the product of a CPU utilization and a memory
utilization. [24].
PABFD: It is only considered CPU utilization of hosts for
resource allocation to minimize energy consumption [28].

C. Cloud Efficiency Metrics
To evaluate the effectiveness of framework with schemes,

results are compared with existing baseline approaches by
using different metrics. The following subsection will discuss
these metrics.

1) SLA Violation Metric: In the cloud data center, SLA
defines quality attributes such as Quality of Service that cloud
manufacturing services providers provide to cloud services
users. SLA metrics are used to measure the performance char-
acteristics of the service objects. The computing performance
of SO-hosts are reduced over time, which increases SLA
violation. The value of SLA violations is vital for the energy-
aware algorithms, and this metric is proposed by Beloglazov
et al. [7].

2) Performance Metric: The main objective of Cloud
manufacturing-service providers is to minimize overall op-
erational and cooling costs by consolidating VMs or ser-
vices into a minimal number of servers. On the other hand,
cloud service users focus on performance of services, which
should not be affected by the consolidation process. Thus,
cloud manufacturing-service providers seek to reduce energy
consumption without violating SLA. Therefore, a combined
energy consumption (E) and SLA violation (SLAV) metric
called ESV metric is proposed by Beloglazov et al. [7] to
analyze operational cost along with SLA. This metric is
defined as ESV = E * SLAV.

3) Migration Metric: It is crucial to estimate the overhead
of dynamic scheduling caused due to migration and workload
consolidation. Therefore, we consider migration metrics to
visualize performance degradation during the migration of ser-
vices. Hence, the number of migrations should be minimized
to reduce the overhead and SLA violations.

D. Analysis of Results
Fig. 3 illustrates the comparisons of total energy con-

sumption among KMI-MR, KMI-MP, PABFD, RANDOM, and
MCU-ETV schemes. It can be observed that the MCU-ETV
scheme depicts the least energy consumption, and the RAN-
DOM algorithm portrays the highest energy consumption.
Moreover, the superiority of the MCU-ETV scheme gradually
diminishes with the growing workloads of the data center.
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Fig. 3: The energy consumption of hosts compared with baseline
strategies

The energy consumption of given workload trace by the ap-
proaches KMI-MR, KMI-MP, PABFD, RANDOM, and MCU-
ETV are 43.2 kWh, 41.1 kWh, 49.3 kWh, 76.7 kWh, and 32.5
kWh respectively. In other words, the proposed scheme (ETV)
consume 24%, 20%, 34%, and 57% less than KMI-MR, KMI-
MP, PABFD, and RANDOM, respectively. If we estimate the
average of energy consumption of all four baseline approaches
then we can observe that the proposed scheme consume
33.75% less energy than the average energy consumption of
all four baseline. The higher energy efficiency of the MCU-
ETV scheme is attributed to: (1) minimizing the number of
active hosts using the MCU scheme, and (2) the reduction of
cooling energy consumption by efficiently allocating resources
to D2M services, and the effects of heat recirculation using
ETV scheme.

Considering both Figs. 4 and 5, we observe that the increas-
ing value of a parameter c has a negative impact on energy
consumption. However, increasing the value of a parameter
c (safety parameter) has a positive impact on SLA violation.
Hence, these two figures demonstrate that the value of c plays
a significant role in balancing the tradeoff between energy and
SLA.
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Fig. 4: Energy consumption of hosts by using the proposed scheme
at different values of c compared with different workloads.
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Fig. 5: SLA violation by using proposed scheme at different values
of c compared with different workloads.
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Fig. 6: SLA violation compared with baseline strategies
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Fig. 7: The Performance metric compared with baseline strategies

The aggressive migration of D2M services leads to a high
SLA violation in a cloud data center. Fig. 6 compares the
percentage of SLA violation of the proposed scheme with
KMI-MR, KMI-MP, RANDOM, and PABFD. It is observed
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that the SLA violation using the proposed MCU-ETV scheme
is 16%, 36%, 33.6%, and 51% less than KMI-MR, KMI-
MP, PABFD, and RANDOM, respectively. If we estimate the
average of SLA violation of all four baseline approaches, we
observe that the proposed scheme violates 34.1% less SLA
than the average SLA violation of all four baselines. Hence,
the proposed scheme is capable of minimizing SLA violations
with better performance due to its host classification technique.

Cloud manufacturing-services provider aims to maximize
the overall performance, minimize energy consumption and
SLA violation. Therefore, ESV is used to evaluate the opera-
tion cost of cloud data centers along with SLA. The lower,
the better. Fig. 7 demonstrates the comparisons of ESV
among KMI-MR, KMI-MP, RANDOM, PABFD, and MCU-
ETV schemes using different workloads. We can find that the
MCU-ETV scheme can achieve the lowest ESV , followed by
KMI-MR, KMI-MP, PABFD, and RANDOM.
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Fig. 8: The temperature of hosts compared with baseline strategies.
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Fig. 9: The host shutdowns compared with baseline strategies.

Fig. 8 compares host temperature among KMI-MR, KMI-
MP, RANDOM, PABFD, and MCU-ETV schemes. It can be
observed that similar to the general trend of energy con-
sumption, the host temperature also grows with the increasing
workloads in the cloud data center. The temperature of given
workload trace by the approaches KMI-MR, KMI-MP, PABFD,
RANDOM, and MCU-ETV are 70.7 ◦C, 71 ◦C, 68.3 ◦C, and

65.8 ◦C, respectively. In other words, the obtained temperature
using the proposed scheme (MCU-ETV) is 6.9%, 7.3%, 3.3%,
and 9.9% less than KMI-MR, KMI-MP, PABFD, and RAN-
DOM, respectively. If we estimate the average of temperature
of all four baseline approaches then we can observe that
the obtained temperature using proposed scheme 6.9% less
than the average temperature obtained using all four baseline.
The MCU-ETV scheme depicts the lowest temperature and
never exceeds the upper temperature (Tup) due to its ETV
resources allocation approach, as a result, maximizes the
resource utilization and minimizes the cooling cost.

The hosts are reactivated for allocating new D2M services
and shutdown when detected as idle. Fig. 9 shows that the
MCU-ETV minimizes host reactivation 23%, 16%, 31%, and
40% compared to KMI-MR, KMI-MP, PABFD, and RAN-
DOM, respectively. In our simulation, we use only 800 hosts.
However, more than 800 hosts are shutdown due to host
reactivation. We can find that the MCU-ETV reduces host
reactivation more than baseline strategies. It indicates that the
superiority of the MCU-ETV scheme is more evident with
the increasing workload on each host; this is because of the
advantages of the MCU approach.
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Fig. 10: The migration of services is compared with baseline strate-
gies.

The migration metric is vital for the real environment of
cloud computing technology, which involves a considerable
bandwidth cost for live migrations of VMs or services. The
high number of VM or service migrations directly influences
the SLAs and the performance of cloud services. Simulation
result of the number of migrations using the proposed scheme
is obtained. Fig. 10 shows that the MCU-ETV minimizes the
total number of migrations compared to KMI-MR, KMI-MP,
PABFD, and RANDOM algorithms.

VI. CONCLUSION

The rapidly growing demand for D2M services in CCE
has led to enormous energy consumption. This paper has
investigated how to improve energy efficiency through energy-
efficient resource allocation for CCE. This has been math-
ematically described as a constrained optimization problem.
Due to the significant complexity, the optimization problem
has been solved using a metaheuristic approach to improve
energy efficiency, thus reducing SLA violation and complexity.
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A two-phase framework has been presented with algorithm
implementation for a solution to the optimization problem.
In the first phase, the MCU scheme has been developed to
classify hosts into four groups by using the least median square
regression technique. In the second phase, an ETV scheme has
been developed to search an energy-efficient host for resource
allocation to D2M service through a metaheuristic search pro-
cedure. Simulations have been conducted with the CloudSim
simulator. Experiments with real-world data-traces have shown
that the proposed framework substantially minimizes energy
consumption, host temperature, and SLA violation as com-
pared with existing baseline approaches. Future research can
expand the scope of investigation of GPU model and the
Energy Reuse Effectiveness (ERE) metric in the cloud data
center. We will embed this model into our framework for
energy-efficient resource allocation.

VII. ACKNOWLEDGEMENT

This work was supported in part by the Shenzhen Sci-
ence and Technology Research and Development Foundation
(JCYJ20190806143418198), the Fundamental Research Funds
for the Central Universities (Grant No. HIT.OCEF.2021007)
and in part by the Australian Research Council under the
Discovery Projects Scheme (Grant No. DP170103305). Rahul
Yadav is the Corresponding Author.

REFERENCES

[1] S. Yin, X. Li, H. Gao, and O. Kaynak, “Data-based techniques focused
on modern industry: An overview,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 1, pp. 657–667, 2014.

[2] “Industrial iot market (iiot) by device and technology: Global fore-
cast to 2023,” https://www.marketsandmarkets.com/Market-Reports/
industrial-internet-of-things-market-129733727.html, 2018.

[3] R. Chaudhary, G. S. Aujla, N. Kumar, and J. J. Rodrigues, “Optimized
big data management across multi-cloud data centers: Software-defined-
network-based analysis,” IEEE Communications Magazine, vol. 56,
no. 2, pp. 118–126, 2018.

[4] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-a-service
at the edge: Trade-off between energy efficiency and service availability
at fog nano data centers,” IEEE wireless communications, vol. 24, no. 3,
pp. 48–56, 2017.

[5] H. Li, K. C. Chan, M. Liang, and X. Luo, “Composition of resource-
service chain for cloud manufacturing,” IEEE Transactions on industrial
informatics, vol. 12, no. 1, pp. 211–219, 2016.

[6] B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. Xiong, and J. Lloret, “A
time-driven data placement strategy for a scientific workflow combining
edge computing and cloud computing,” IEEE Transactions on Industrial
Informatics, 2019.

[7] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[8] R. Yadav, W. Zhang, H. Chen, and T. Guo, “Mums: Energy-aware vm
selection scheme for cloud data center,” in Database and Expert Systems
Applications (DEXA), 2017 28th International Workshop on, pp. 132–
136. IEEE, 2017.

[9] R. Yadav, W. Zhang, K. Li, C. Liu, M. Shafiq, and N. K. Karn, “An
adaptive heuristic for managing energy consumption and overloaded
hosts in a cloud data center,” Wireless Networks, pp. 1–15, 2018.

[12] M. Wahlroos, M. Pärssinen, J. Manner, and S. Syri, “Utilizing data
center waste heat in district heating–impacts on energy efficiency and
prospects for low-temperature district heating networks,” Energy, vol.
140, pp. 1228–1238, 2017.

[10] R. Yadav and W. Zhang, “Mereg: Managing energy-sla tradeoff for
green mobile cloud computing,” Wireless Communications and Mobile
Computing, vol. 2017, 2017.

[11] Y.-K. Lin and C. S. Chong, “Fast ga-based project scheduling for com-
puting resources allocation in a cloud manufacturing system,” Journal
of Intelligent Manufacturing, vol. 28, no. 5, pp. 1189–1201, 2017.

[13] A. M. Al-Qawasmeh, S. Pasricha, A. A. Maciejewski, and H. J. Siegel,
“Power and thermal-aware workload allocation in heterogeneous data
centers,” IEEE Transactions on Computers, vol. 64, no. 2, pp. 477–491,
2015.

[14] Y. Mhedheb, F. Jrad, J. Tao, J. Zhao, J. Kołodziej, and A. Streit,
“Load and thermal-aware vm scheduling on the cloud,” in International
Conference on Algorithms and Architectures for Parallel Processing, pp.
101–114. Springer, 2013.

[15] R. Yadav, W. Zhang, K. Li, C. Liu, and A. A. Laghari, “Managing
overloaded hosts for energy-efficiency in cloud data centers,” Cluster
Computing, pp. 1–15, 2021.

[16] A. Marcel, P. Cristian, P. Eugen, P. Claudia, T. Cioara, I. Anghel, and
S. Ioan, “Thermal aware workload consolidation in cloud data centers,”
in 2016 IEEE 12th international conference on intelligent computer
communication and processing (ICCP), pp. 377–384. IEEE, 2016.

[17] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-
latency tradeoff for dynamic computation offloading in vehicular fog
computing,” IEEE Transactions on Vehicular Technology, 2020.

[18] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coop-
erative computation offloading for industrial iot-edge-cloud computing
environments,” IEEE Transactions on Parallel and Distributed Systems,
2019.

[19] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 18, no. 2,
pp. 319–333, 2018.

[20] S. Ilager, K. Ramamohanarao, and R. Buyya, “Etas: Energy and thermal-
aware dynamic virtual machine consolidation in cloud data center with
proactive hotspot mitigation,” Concurrency and Computation: Practice
and Experience, vol. 31, no. 17, p. e5221, 2019.

[21] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient
thermal-aware task scheduling for homogeneous high-performance com-
puting data centers: A cyber-physical approach,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 11, pp. 1458–1472, 2008.

[22] S. Zhang and K. S. Chatha, “Approximation algorithm for the
temperature-aware scheduling problem,” in 2007 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pp. 281–288. IEEE,
2007.

[23] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Mak-
ing scheduling” cool”: Temperature-aware workload placement in data
centers.” in USENIX annual technical conference, General Track, pp.
61–75, 2005.

[24] Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H. Cheng, A. A.
Alelaiwi, and F. Li, “Minimizing sla violation and power consumption
in cloud data centers using adaptive energy-aware algorithms,” Future
Generation Computer Systems, 2017.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[26] R. Yadav, W. Zhang, O. Kaiwartya, P. R. Singh, I. A. Elgendy, and
Y.-C. Tian, “Adaptive energy-aware algorithms for minimizing energy
consumption and sla violation in cloud computing,” IEEE Access, vol. 6,
pp. 55 923–55 936, 2018.

[27] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring system
for planetlab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1,
pp. 65–74, 2006.

[28] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future generation computer systems, vol. 28, no. 5, pp.
755–768, 2012.

Authorized licensed use limited to: Nottingham Trent University. Downloaded on February 25,2022 at 12:30:46 UTC from IEEE Xplore.  Restrictions apply. 


