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Abstract

Can identical goods sell at different prices in identical markets when people are perfectly
mobile? We provide a formal account of strategic behaviour in large games with many com-
modities, and exhibit how it drives price dispersion at equilibrium. Interactions between agents
are modelled using a Shapley–Shubik market game. We demonstrate the failure of the law of
one price in this setup through a robust counterexample. The proposed model, and our find-
ings, constitute an alternative and plausible explanation to some “anomalies” which routinely
appear in a wide array of fields, ranging from banking, business economics, to international,
and labour economics. JEL Classification: C72, D43, L1
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1 Introduction

The Law of One Price (LOP) is a fundamental concept underpinning almost all the subfields of
economics and finance. It stipulates that there is a single price which clears all markets for a com-
modity at equilibrium. In a finite-commodity framework, Toraubally (2018) proved that even in
frictionless markets featuring large numbers of agents—all of whom can arbitrage prices if they
wish to—it is possible for the LOP to fail. In this paper, we go one (nontrivial) step further: we
solve a longstanding open problem, and establish that the LOP may fail to obtain in large friction-
less1 markets with infinitely many commodities. Why this infinite-dimensional contribution is of
paramount importance is best understood by considering the following points.

First, infinite-dimensional commoditymodels have become prominent in the social sciences be-
cause they capture natural aspects of the world that cannot be examined in their finite-dimensional
counterparts. An obvious case in point is commodity differentiation. Taking online searchmarkets
and stock markets as the archetypal examples, there are inarguably only finitely many commodi-
ties which are actually traded by business executives, hedge-fund managers, investors, and other
∗I thank an anonymous referee for comments which have helped to improve the exposition of this paper.
†E-mail address: ad0250@coventry.ac.uk.
1“Frictionless” is to be understood in the sense that no good or money is lost or leaves the system.
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customers. Yet, these same commodities are conceivably bought and sold in infinitely many vari-
ations. A theory which aims to explain such trades must no doubt employ infinite-dimensional
analysis, where each variation can be regarded as a separate commodity. Second, models in fields
such as business economics, and international trade typically feature large numbers of commodi-
ties and players. The failure of the LOP is well documented in these areas, and this paper aims
to explain such price dispersions solely through strategic forces. Our motivation for pursuing this
route is thus: in a paperwhich arguably encompasses both the above-mentioned categories, Haskel
andWolf (2001) find that for identical products—furniture, sold by IKEA—price deviations of 20%-
50% exist. However, and crucially, this price disparity cannot be narrowed down to differences in
distribution costs, local taxes, and even tariffs, which leads the authors to conclude there may be
other, strategic influences at work.2

Consider, by way of additional motivation, the importance of using an infinite-dimensional
framework in labourmarkets. Indubitably, the number of workers employed at any point in time is
finite; nevertheless, there are likely infinitely many worker types. Here, the failure of the LOP also
has important implications. Any entrepreneur, or executive of a state-owned organisation needs
to know the ramifications of competing firms paying different, especially higher, wages to workers
of the same skill type employed in identical jobs. As Ehrenberg and Smith (2012) argue, the basic
labour market model built on the assumption of costless worker mobility between employers has
an unequivocal prediction: similarly-skilled workers performing the same jobs in similar working
conditions must receive the same wage. “If a firm currently paying the market wage were to ... pay
even a penny less per hour, ... it would instantly lose all its workers to firms paying the goingwage”
(Ehrenberg and Smith, 2012, p. 129). However, as the authors remark, data from the US Bureau
of Labor Statistics show that in 2009, registered nurses in Albany, Madison, and Sacramento—all
medium-sized state capitals with very comparable costs of living—received mean hourly wages
of $28.87, $33.79, and $43.16, respectively. While the extant literature cannot explain this failure
in the LOP without the introduction of economic frictions (see, e.g., Burdett and Mortensen, 1998,
and Postel-Vinay and Robin, 2002, who analyse wage dispersion using labour-market models with
search frictions), in this paper we provide an easily-adaptable theory to explain those wage differ-
entials uniquely via a (frictionless) strategic-behavioural lens.

In this paper, wemodel strategic interactions between agents using a strategicmarket game (SMG)3

with multiple markets per commodity. In an SMG, prices are determined by the buy-and-sell de-
cisions of agents: increased buying and selling drive prices upward and downward, respectively.
SMGs thus provide an elegant solution to an inescapable problem which executives and even pol-

2Elegant theories of equilibrium price dispersion have been proposed by, e.g., Burdett and Judd (1983), Salop and
Stiglitz (1977), and Reinganum (1979), but these rely crucially on the existence of strictly positive search/information-
gathering costs, as opposed to strategic considerations.

3SMGs à la Shapley–Shubik (1977) were proposed as a (noncooperative) general-equilibrium alternative to the Wal-
rasianmodel of exchange, which relies on prices being given by Adam Smith’s invisible hand. Themultiple-market-per-
commodity SMGwas first analysed—albeit in an altogether different form to ours—in a seminal paper by Koutsougeras
(2003), with only finitelymany players. For an excellent overview of thewide-ranging applicability of SMGs, see Goenka
(2003), Goenka et al. (1998), Xefteris and Ziros (2017), and the references therein.
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icymakers face in their day-to-day jobs: modelling prices that depend in a reasonable way on indi-
viduals’ trading decisions.4 There are two types of agents, pure traders, and trading-post/market
owners. The market owners, like the pure traders, buy and sell in the markets for each commodity.
However, they also impose a proportional service charge on agents who trade on their platforms.5

This charge is the same across all markets for the same commodity,6 and is imposed only on the net
trades of agents at a post.7 It is taken to be exogenously given: assume that an outside agency/a
government chooses and imposes this charge/tax before trading takes place. We show in this setup
with infinitely many commodities that when agents are strategic in their decision-making process,
the LOP can fail, even with many large and small agents.

It is perhaps helpful at this point to spell out some features of the game hereby proposed. In the
multiple-market-per-commodity SMG that we consider, all traders are allowed to simultaneously
trade in any number of commodities, and at however many trading posts for each commodity they
would like to—i.e., given their financial constraints, agents have complete freedom with regard to
which commodity(ies) to trade in, andwhichmarket(s) to place their orders at. Next, a well-known
feature of Shapley–Shubik market games with numéraire is that if agents are bindingly financially-
constrained at equilibrium, then a true8 arbitrage opportunity could well and truly exist, but not
be taken advantage of. In particular, agents would want to arbitrage prices, but would be unable
to, simply because they lack cash. However, in this paper we present stronger results: agents face
no binding constraints at equilibrium. They are entirely free, and also have the financial means to
’play’ the prices (for any good) in an attempt to make a profit. Nonetheless, they interestingly still
choose to stay put. Admittedly, at a glance, the notions of unequal market-clearing prices across
identical platforms (with perfectly-mobile agents), and equilibrium seem incompatible. Yet, this
unequal-price situation is tenable because any unilateral deviation from this “state of repose” leads
agents to a worse payoff—the intricacies of this puzzle are dissected in Section 4.

It is not obvious that the violation of the LOP in large games with finitely many commodities
applies to infinite-commodity games as well. This is because: (i) it is well known that in infinite-
commodity economies, there exists a formidable amount of variation in agents’ characteristics and
strategy sets. If these characteristics are sufficiently dissimilar, then getting agents to achieve the re-
quiredmagnitude anddirection of net trades for the LOP to fail can be truly very difficult; (ii) and as
Kreps (1981), who considers amodel with infinitelymany commodities argues, it is both necessary

4This is especially relevant to the banking literature regarding issues associated with the “pricing” of loans: the so-
called ’bad management’ hypothesis—bank managers who do not practise adequate loan underwriting, monitoring,
and control (see Izzeldin and Tsionas, 2018).

5In real-world markets, trading on privately-owned platforms is almost never free.
6This implies that markets for the same commodity are identical to traders. Yet, the LOP still fails. This means that

once the service charge is accounted for, agents also pay different effective prices for the same commodity. Accordingly,
the failure of the LOP as we hereby analyse is a much deeper and stronger concept thanmerely differing nominal prices.

7This is reminiscent of financialmarkets: brokerages charge a commission if an order is filled, but none if it is unfilled.
We note that when a trader enters a market both as a buyer and seller, there are identical amounts of purchases and sales
that cancel each other. Such “wash-sales” affect none of the market-clearing price and the resulting allocations, for all
agents (see, e.g., Postlewaite and Schmeidler, 1978). It is only the “thickness” of that market which is affected. But then
again, agents are free to choose which market(s) to trade at, such that being charged only on their net trades is natural.

8As opposed to the price inequalities in the present paper, which are but illusions of arbitrage opportunities.
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and sufficient that there be no ‘arbitrage opportunities’ for an equilibrium to exist, where a bundle
is ‘priced by arbitrage’ if it commands a unique price without creating an arbitrage opportunity;
(iii) finally, generalising Toraubally’s (2018) model to an infinite-commodity setup involves over-
coming many mathematical difficulties which we next summarise. In Toraubally (2018), Banach
spaces are used throughout. Hence, familiar concepts such as Bochner integrability and Fréchet
differentiability can be routinely used. However, in the present study, we look at nonnormable
locally convex topological vector spaces, giving rise to two issues. First, Bochner integrability can
no longer be used. This makes proving the existence of measurable and (appropriately-) integrable
strategy maps that take values into these spaces considerably more difficult. Second, Fréchet dif-
ferentiability is no longer applicable, meaning more general concepts of differentiability have to be
used, which in turn implies that extra care needs to be taken when composing functions.

2 The model

We consider a pure exchange economy with small agents, represented by an atomless continuum,
and large agents, represented by atoms. We let the set of agents be denoted by N = N0 ∪ A ∪
C, where N0 = (0, 1], A = {2, ...,H}, and C =

{
H + g

}∞
g=1

. The space of agents is denoted
by the measure space (N,N , µ), where N is the collection of all µ-measurable sets of N , and µ

is an extended real-valued, σ-additive measure defined on N . Let NN0 , NA and NC denote the
restricition of N to N0, A, and C, respectively. We define µ to be the Lebesgue measure when
restricted toNN0 , the counting measure when restricted toNA, and µ = µC when restricted toNC ,
where µC is such that for each agent (H + g) ∈ C, g ∈ N, µC(H + g) = 1

πg , π ∈ (1,∞).
We denote the set of commodities bought and sold in this economy by K = {1, 2, 3, . . .}. There

is also a commodity, m, which in addition to yielding utility in consumption, acts as money. We
define the consumption set byX , with a commodity bundle inX represented by x = (xk)k∈{m}∪K .

There are two types of agents in this economy, pure traders, and post owners. Each pure trader
h ∈ N is characterised by a preference relation, which is representable by a utility function uh :

X → R, and an initial endowment of commodities e(h). Each post owner i ∈ N is characterised
by a preference relation representable by a utility function ui : X → R, and initial endowments of
commodities e(i), and trading posts Υi = {Υi

k}k∈N, where Υi
k denotes the post for k owned by i.

W.l.o.g., we let post owners lie in A only, and assume that the capacity of each post is µ(N).9

Before trading starts, an outside agency allocates a service charge to post owners, which agents
then take as given. This proportional service charge ck ∈ (0, 1), k ∈ K, is the same across all posts
for a good k, butmay differ across commodities—i.e., let |P | <∞denote the total number of (large)
post owners, such that c1,k = · · · = c|P |,k = ck, and c1,l = · · · = c|P |,l = cl for all k, l ∈ K, k 6= l, but
ck does not have to be equal to cl.

Throughout this paper, we will employ the following assumptions:
9This way, post owners cannot prevent agents from trading on their platforms. Hence, all agents, large or small, are

perfectly free to choose whether, and where to trade, and to arbitrage prices if they wish to.
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Assumption (i). The consumption set X is the positive cone of the space of all real-valued sequences, i.e.,
X := {x = (x1, x2, . . .) ∈ RN : xn ≥ 0 ∀n ∈ N}, where RN is endowed with the product topology τP .

Assumption (ii). For each n ∈ N , e(n) = (αk)k∈{m}∪K , where 0 < αk <
β̄

µ(N) for every k ∈ {m} ∪K,
and 0 < β̄ <∞.

Assumption (iii). Utility functions for all n ∈ N are continuous in the product topology on X , strictly
concave, continuously Gâteaux-differentiable in admissible directions, differentiably strictly monotone, and
satisfy limxk→0

∂u
∂xk

=∞, k ∈ {m} ∪K.

2.1 The strategic market game

Trade in the economy is organised through a system of trading posts (markets), at which agents
offer commodities for sale, and place bids for purchases of commodities. Bids, b, for commodities
k ∈ K = {1, 2, . . .}, are placed in terms of commodity m, while sales, q, are made in terms of
commodities 1, 2, . . .. Define Y = (RN, τP )× (RN, τP )—i.e., each factor space RN is endowed with
the product topology, and Y is supplied with the τP × τP product topology. Consider the subset
RN

+×RN
+ of Y , and denote byΘ the space (RN

+, τS)×(RN
+, τS), where τS := {RN

+∩O : O ∈ τP } andΘ
is given the τS× τS product topology. Thus, agents’ strategy sets can be described by a measurable
correspondence S : N ⇒ 2Θ, such that

S(n) =
{

(b(n), q(n)) ∈ Θ :
∞∑
k=1

|P |∑
s=1

bsk (n) + Λ(n) ≤ em (n) ;

|P |∑
s=1

qsk (n) ≤ ek (n) , k ∈ K
}
,

where ϕsk(n), ϕ = b, q, denotes the strategies of agent n ∈ N at the post owned by s ∈ A for
commodity k, and Λ(n) is the total premium payable by n (how Λ(n) is calculated is found below).

A strategy profile consists of a pair of measurable mappings b : N → (RN
+, τS) and q : N →

(RN
+, τS) such that (b(n), q(n)) ∈ S(n) a.e inN , i.e., a strategy profile is ameasurable choice from the

graph of the correspondence S, Gr(S). We next derive the following intermediate results, which
are themselves of independent interest:

PROPOSITION 1. The correspondence S has measurable graph.

PROPOSITION 2. The measurable mappings b and q exist.

PROPOSITION 3. The maps b and q are Gelfand–Pettis-integrable, and also weakly measurable.

In view of Propositions 1, 2 and 3, for a given strategy profile (b, q) ∈ Gr(S), we may then define
Bs
k =

∫
N b

s
k(n)dµ < ∞, and Qsk =

∫
N q

s
k(n)dµ < ∞. Transactions at each post clear through the

price psk = Bs
k/Q

s
k. For k ∈ K,we let zsk(n) = bsk(n)/psk − qsk(n) denote the net trade in k of a player

n ∈ N by trading at post Υs
k. We also define Bs

−λ,k =
∫
N\{λ} b

s
k(n)dµ, and Qs−λ,k =

∫
N\{λ} q

s
k(n)dµ.

Consumption allocations, xh,k (b(h), q(h), B−h, Q−h) ≡ xh,k, for commodities k ∈ {m} ∪K, to
pure traders µ-a.e, h ∈ N , are determined as follows:
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xh,k =


ek(h) +

|P |∑
s=1

(
bsk(h) ·

Qsk
Bs
k

− qsk(h)
)

if k 6= m;

ek(h) +

∞∑
k=1

|P |∑
s=1

(
qsk(h) ·

Bs
k

Qsk
− bsk(h)

)
·
(
1 + ts,kh ck

)
if k = m,

(1)

where ts,kh : R ⊃ zsk(h) → {−1,+1}, ck is the proportional service charge payable (per unit of
monetary net trade) at all trading posts for k, and we adopt the market game convention 0

0 = 0

whenever it appears in the rule above. We will only write ts,kh to denote ts,kh (zsk(h)). The second
expression in the allocation rule above also includes the total premia payable to post owners, in
terms of commoditym. The premium payable at a trading post by an individual h depends on the
difference, in that very market itself, between h’s sales receipts and his bid placed. In this light, we
stipulate that ts,kh = +1 if zsk(h) > 0, and ts,kh = −1 if zsk(h) < 0 (such that agent h actually pays a
premium). If zsk(h) = 0, then, as in Toraubally (2018), we use the following rule:

ts,kh =

+1 if ∃θ ∈ N , where µ(θ ∩N0) > 0, such that µ-a.e, ς ∈ (θ ∩N0), zsk(ς) ≥ 0;

−1 otherwise.

Consumption allocations, xi,k (b(i), q(i), B−i, Q−i) ≡ xi,k, for k = m, 1, 2, . . ., to any post owner
i ∈ A, are determined as:

xi,k =



ek(i) +

|P |∑
s=1

(
bsk(i) ·

Qsk
Bs
k

− qsk(i)
)

if k 6= m;

ek(i)−
∞∑
k=1

ck ·
(∫

N
ti,kn qik(n)dµ ·

Bi
k

Qik
−
∫
N
ti,kn bik(n)dµ

)
+

∞∑
k=1

|P |∑
s=1

(
qsk(i) ·

Bs
k

Qsk
− bsk(i)

)
·
(
1 + ts,ki ck

)
if k = m.

(2)

The conditions on ts,ki are as for pure traders above. The second expression in the above rule not
only includes total premia receivable at posts i owns, but also amounts that i needs to pay his fellow
post owners. We impose that the total endowment and allocation of any commodity k ∈ {m} ∪K
in the economy be such that 0 <

∫
N xn,kdµ ≤

∫
N ek(n)dµ < ∞, with

∑
k∈{m}∪K

∫
N ek(n)dµ < ∞.

This technical restriction guarantees the mapping x(·) is Gâteaux differentiable (in b and q).
Based on the above construct, we may explicitly derive the premium payable at a post Υs

k by
any agent n ∈ N as −ckts,kn (qsk(n) · psk − bsk(n)), such that his/her total premia payable across all
markets for all goods may then be defined as Λ(n) =

∑∞
k=1

∑|P |
s=1 − ckt

s,k
n (qsk(n) · psk − bsk(n)).

An equilibrium for this model is defined as a profile of agents’ buy-and-sell decisions across
all trading posts and commodities (b, q) ∈ Gr(S) which forms a Nash equilibrium (N.E). At an
equilibrium with positive bids and offers, agents can be viewed as solving the following problem:

max
(b(n),q(n))∈S(n)

{
un

((
xn,k

(
b(n), q(n), B−n, Q−n

))∞
k=1

, xn,m
(
b(n), q(n), B−n, Q−n

))}
. (3)

Using Propositions 1-3, we will next derive properties of equilibria for the above economy with at

6



least two active posts (markets) per commodity. A post is active if price is positive and there is trade,
i.e., the commodity in question actually changes hands.

2.2 Characterisation of Equilibria

Propositions 4 and 5 characterise equilibrium prices for a commodity between pairs of markets.
Theorem 1 captures the failure of the LOP.

PROPOSITION 4. At an N.E with positive bids and offers, and no binding liquidity and offer
constraints, the prices for any commodity k ∈ K between any two active trading posts Υi

k,Υ
j
k

should satisfy the following condition:

For any pure trader h ∈ N :
(
pik
)2

=
Bi
−h,kQ

j
−h,k

(
1 + tj,kh ck

)
Qi−h,kB

j
−h,k

(
1 + ti,kh ck

)(pjk)2.
PROPOSITION 5. Fix any commodity k ∈ K. Consider an active post owned by an agent i ∈ A,
and another post owned by some j ∈ A, i 6= j. Then, at an N.E with positive bids and offers, and
no binding liquidity and offer constraints, the prices at posts Υi

k,Υ
j
k should satisfy the following

condition for i:

For i:
(
pik
)2

=
Bi
−i,kQ

j
−i,k
(
1 + tj,ki ck

)[
Qi−i,k + ck ·

(∫
N\{i} t

i,k
n qik(n)dµ

)]
Bj
−i,k

(
pjk
)2
.

THEOREM 1. Consider any good k ∈ K. If at equilibrium ∃θ ∈ N , such that µ(θ ∩N0) > 0, and
µ-a.e, ς ∈ (θ ∩N0), zik(ς) ≥ 0, zjk(ς) < 0, i, j ∈ A, i 6= j, then pik 6= pjk.

PROOF: For any small pure trader ς ∈ N0, we have thatBi
−ς,k =

∫
N\{ς} b

i
k(n) =

∫
N b

i
k(n) = Bi

k, and
Qi−ς,k =

∫
N\{ς} q

i
k(n) =

∫
N q

i
k(n) = Qik. Using this fact together with the formula in Proposition 4,

the statement of the theorem then implies that for every ς ∈ (θ ∩N0), p
i
k

pjk
= 1−ck

1+ck
6= 1. 2

3 The failure of the LOP with many commodities: an example

Let (N,N , µ) be a measure space of agents as defined in Section 2. Consider an economy where
N = N0 ∪ A ∪ C, N0 = (0, 1], A = {2, 3}, and C = {4, 5, . . .}, where agents 2 and 3 are large
post owners. We denote agent 2 by i, agent 3 by j, and a representative agent in C by γ. The set
of commodities is K = KO ∪ KE , where KO = {1, 3, 5, . . .}, KE = {2, 4, 6, . . .}, and i and j each
own a single post for each commodity. The capacity of each post is µ(N) = 4. The service charges
allocated to i and j for commodities a ∈ KO and b ∈ KE are (ca, cb) = (1

6 ,
2
17).

The preferences of individuals are represented by the following utility functions:10

10It is easily verifiable that the utility functions below satisfy Assumption (iii). Gâteaux-differentiability of u(·) may
be verified by first taking limits, and using any appropriate test of convergence to establish existence.

7



uς(xς) =
∑

a∈KO
(1

2)a−1 · 16.05 ln(xς,a) +
∑

b∈KE
(1

2)b−2 · 17.00 ln(xς,b) + 1.23 ln(xς,m), µ-a.e, ς ∈ N0,

ui(xi) =
∑

a∈KO
(1

2)a−1 · 10.91 ln(xi,a) +
∑

b∈KE
(1

2)b−2 · 11.00 ln(xi,b) + 0.90 ln(xi,m),

uj(xj) =
∑

a∈KO
(1

2)a−1 · 18.28 ln(xj,a) +
∑

b∈KE
(1

2)b−2 · 19.42 ln(xj,b) + 1.37 ln(xj,m),

uγ(xγ) =
∑

a∈KO
(1

2)a−1 · 14.32 ln(xγ,a) +
∑

b∈KE
(1

2)b−2 · 15.17 ln(xγ,b) + 1.10 ln(xγ,m), ∀γ ∈ C.

The commodity endowments of the agents are as follows:

a.e, ς ∈ N0, (ea(ς), eb(ς), em(ς)) = ( 1
2a−1 · 49.91, 1

2b−2 · 49.84, 54.50), a ∈ KO, b ∈ KE ,

(ea(i), eb(i), em(i)) = ( 1
2a−1 · 50.11, 1

2b−2 · 50.19, 44.65), a ∈ KO, b ∈ KE ,

(ea(j), eb(j), em(j)) = ( 1
2a−1 · 49.98, 1

2b−2 · 49.97, 50.85), a ∈ KO, b ∈ KE ,

∀γ ∈ C, (ea(γ), eb(γ), em(γ)) = ( 1
2a−1 · 50.00, 1

2b−2 · 50.00, 50.00), a ∈ KO, b ∈ KE .

Now, consider any a ∈ KO and b ∈ KE . It can be verified that the strategies below satisfy the
conditions as in Theorem 1 and Propositions 1-5, therefore constituting an (unequal-price) N.E:

For any commodity a ∈ KO:

a.e, ς ∈ N0, (b
i
a(ς), q

i
a(ς), b

j
a(ς), q

j
a(ς)) = ( 1

2a−1 · 1.000, 1
2a−1 · 0.000, 1

2a−1 · 0.000, 1
2a−1 · 0.001), a ∈ KO,

(bia(i), q
i
a(i), b

j
a(i), q

j
a(i)) = ( 1

2a−1 · 0.429, 1
2a−1 · 0.148, 1

2a−1 · 1.000, 1
2a−1 · 0.064), a ∈ KO,

(bia(j), q
i
a(j), b

j
a(j), q

j
a(j)) = ( 1

2a−1 · 9.000, 1
2a−1 · 0.787, 1

2a−1 · 0.091, 1
2a−1 · 0.004), a ∈ KO,

∀γ ∈ C, (bia(γ), qia(γ), bja(γ), qja(γ)) = ( 1
2a−1 · 8.529, 1

2a−1 · 0.765, 1
2a−1 · 0.008, 1

2a−1 · 0.001), a ∈ KO.

For the above strategies, the prevailing market-clearing prices are pia = 11.15, and pja = 15.62.

For any commodity b ∈ KE :

a.e, ς ∈ N0, (b
i
b(ς), q

i
b(ς), b

j
b(ς), q

j
b(ς)) = ( 1

2b−2 · 2.000, 1
2b−2 · 0.000, 1

2b−2 · 0.000, 1
2b−2 · 0.001), b ∈ KE ,

(bib(i), q
i
b(i), b

j
b(i), q

j
b(i)) = ( 1

2b−2 · 0.429, 1
2b−2 · 0.222, 1

2b−2 · 1.100, 1
2b−2 · 0.071), b ∈ KE ,

(bib(j), q
i
b(j), b

j
b(j), q

j
b(j)) = ( 1

2b−2 · 9.045, 1
2b−2 · 0.709, 1

2b−2 · 0.100, 1
2b−2 · 0.005), b ∈ KE ,

∀γ ∈ C, (bib(γ), qib(γ), bjb(γ), qjb(γ)) = ( 1
2b−2 · 9.794, 1

2b−2 · 0.794, 1
2b−2 · 0.008, 1

2b−2 · 0.001), b ∈ KE .

For the above strategies, the prevailing market-clearing prices are pib = 12.33, and pjb = 15.62.
Based on the above profile of strategies, the final consumption of all agents µ-a.e, n ∈ N , is

(xn,a, xn,b, xn,m) = (50/2a−1, 50/2b−2, 50), ∀a ∈ KO, ∀b ∈ KE .

4 Discussion and conclusion

The intuition behind the failure of the LOP is as follows. Consider any commodity k ∈ K, and,
e.g., a large agent who wishes to shift his orders so as to buy more from the cheaper market (call
it C ), and sell more in the expensive market (E ). In doing so, he increases his bids and offers in
C and E , respectively. But what this merely achieves is increase the price in C , and decrease it in
E—i.e., for any large agent, the marginal price of k is not equal to its average price. Additionally,
this change in the market-clearing prices can be so drastic as to cause our trader to end up with
a resultant allocation which actually makes him worse off. Thus, he does not deviate. But what
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about small agents who cannot affect prices? Their efforts to profit from any price disparity are
hindered by the service charge, even though it is the same across markets for the same commodity.
The key lies in realising that traders are charged on their net, as opposed to gross, trades. In this
vein, let us picture a small agent who is a net buyer in E , and a net seller in C . Assume that this
agent now wishes to shift her orders such that whatever she had bidden in E is now bidden in
C , and whatever was sold in C is now sold in E . What happens is that while initially she was
charged only on the difference between her purchases and sales in each market (see the structure of
net trades in Theorem 1), with this new configuration of strategies, she is now charged on the full
amounts of her bids and sales in each market. Thus, whatever was gained by ’gaming’ the prices
is, at best, more than outweighed by the increase in premia payable. So our small agent stays put.

Note that the failure of the LOP is not due only to the presence of large players. In fact, so long
as agents have the financial means to arbitrage prices, conventional wisdom dictates that the LOP
should obtainwhen the number of players tends to infinity, whether or not the corresponding limit
economies contain large players who can influence prices. Verily, the set of equilibria in which the
LOP holds is a superset of perfectly-competitive equilibrium outcomes. As such, it is necessary, but
not sufficient, for the LOP to obtain for there to be perfect competition.

In this paper, we have presented a framework with infinitely many commodities in which the
LOP fails. This important result is new. Moreover, the example that we have produced in this
work is easily understandable, yet involved: it is indeed not trivial to explicitly derive equilibrium
allocationswhich satisfy, for infinitelymany agents, themarginal rate of substitution of commodity
k form, for infinitely many such k! This example is also robust as far as utility functions and initial
endowments are concerned: any collection of such which satisfy the relevant first-order necessary
and sufficient conditions (see Appendix B) will do.
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