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ABSTRACT Temporal interictal epileptiform discharges (IEDs) are often invisible in the scalp EEG
(sEEG). However, due to within-electrode temporal correlation and between-electrode spatial correlation,
they still have their signatures in the sEEG. Therefore, it is expected to have some common spatial and
temporal features among the IEDs. In this paper, we first present a novel method, called common feature
analysis (CFA)-based method, for IED detection via an existing common orthogonal basis extraction
(COBE) algorithm. In the second approach, we benefit from the sparsity of IED waveforms in developing
a new algorithm, namely sparse COBE, and based on that, a sparse CFA (SCFA)-based method for IED
detection. The proposed CFA and SCFA models are compared with two state-of-the-art IED detection
methods. Two types of approaches, namely within- and between-subject classification approaches, are
employed for evaluating the methods. SCFA outperforms the others and achieves the accuracy values of
75.1% and 67.8% using within- and between-subject classification approaches, respectively. This enables
the proposed techniques to capture the intracranial biomarkers of epilepsy and ameliorate the performance
of a classifier in automatically detecting the scalp-invisible IEDs from sEEG.

INDEX TERMS Common feature analysis, IED detection, interictal epileptiform discharges, intracranial
and scalp EEGs, sparsity.

I. INTRODUCTION

EPILEPSY is a chronic brain disorder that can affect
people at any age [1]. It causes recurrent and erratic

interruptions in brain functionality, called epileptic seizure,
arising due to dysfunction of the brain electrophysiological
system and uncontrolled electrical discharges in a group of
neurons in the cerebral cortex [2], [3]. Between two seizure
onsets, abnormal patterns occur, called interictal epileptiform
discharges (IEDs), which can be captured by the EEG [4].
Nonetheless, scalp EEG (sEEG) suffers from low sensitivity
in capturing these discharges and, consequently, around 30%
to 40% of patients considered for epilepsy surgery require
invasive intracranial EEG (iEEG) recording [5]. As a result,
ameliorating the sensitivity of sEEG for epilepsy diagnosis
and management as a low cost noninvasive approach be-
comes very important. Furthermore, findings from sEEG are
crucial in presurgical assessment to decide if and where to

implant iEEG electrodes. Therefore, developing an effective
method for identification of IED from over the scalp can
greatly enhance the effectiveness of surgical treatment.

Recording from mesial temporal structures through multi-
contact foramen ovale (FO) electrode bundles [6] paves the
way to investigate the scalp fields associated with mesial tem-
poral lobe epilepsy, the most common form of human focal
epilepsy [7]. The FO electrodes are bilaterally introduced via
FO into ambient cistern [8], [9] and provide an opportunity
to simultaneously record sEEG and iEEG without disruption
to brain coverings [9], [10]. Investigation of sEEG and iEEG
simultaneously has shown that a small percentage of IEDs,
for instance, 9% [11] or 22% [12], can be recognized in
sEEG by visual inspection, here called scalp-visible IEDs.
The reason lying behind this fact is possibly the relatively
high attenuation of electrical fields thanks to being away
from the source [13], [14]. However, it has been proven that
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the spikes from deep sources contribute to the scalp EEG
regardless of how deep their locations are [15].

Most of IED detection algorithms are applicable to either
sEEG [16], [17] or iEEG [18], [19]. Algorithms developed
for detection of IEDs scored by sEEG use only scalp-
visible IEDs for training the model and, consequently, are
not sufficiently suitable as they hardly detect scalp-invisible
IEDs. There are few studies investigating scalp IEDs from
concurrent sEEG-iEEG recordings [20]–[23]. Spyrou et al.
[20] detected scalp-visible and scalp-invisible IEDs, scored
by iEEG, from sEEG by using time-frequency (TF) features.
In [21], the authors mapped sEEG to iEEG by using an
asymmetric–symmetric autoencoder, then detected IEDs by
using a convolutional neural network. This method requires
an intensive computational cost and does not exploit the
data statistics effectively. Quite recently, we developed a
model to map the sEEG to iEEG recordings by tensor fac-
torization [22]. In our mapping model, the TF features were
extracted by applying continuous wavelet transform. Time,
frequency, and channel modes of IED segments from iEEG
recordings were concatenated into a four-way tensor. Then,
the tensor was decomposed into temporal, spectral, spatial,
and segmental factors by employing Tucker and CANDE-
COMP/PARAFAC decomposition techniques. Finally, TF
features of both IED and non-IED segments from the scalp
recordings were projected onto the temporal components for
detecting IEDs. Furthermore, we already proposed a method
based on tensor factorization to detect scalp-visible and
scalp-invisible IEDs from concurrent sEEG-iEEG recordings
[23], [24]. However, we here apply our proposed models to
the concurrent sEEG and iEEG recordings as well, in which
the IEDs were scored based on iEEG waveforms but detected
from the sEEG recordings. In other words, both scalp-visible
and scalp-invisible IEDs are included in the dataset thanks to
using the iEEG as a ground truth for scoring the IEDs.

Group component and common feature analyses (CFA)
have recently been a hot topic in biomedical signal process-
ing [25]–[27]. Zhang et al. [25] recognized the steady-state
visual evoked potential by analyzing common components.
In [26], the authors proposed an artifact rejection method
based on CFA. On the other hand, only very few papers have
employed group component analysis for IED detection [28],
[29]. In [28], the authors constructed a four-way tensor of
time, channel, frequency, and segment information. Then,
they factorized the tensor using Tucker model into tempo-
ral, spatial, and frequency modes. Each mode consisted of
a number of components or signatures that were common
between the trials. Finally, they detected the IEDs using the
spatial factors. Thanh et al. [29] used tensor decomposition
for detecting epileptic and non-epileptic spikes. They built a
four-way tensor of time, channel, wavelet-scale, and epileptic
spike, and decomposed it using nonnegative Tucker decom-
position. Then, the extracted tensor factors and core tensor
were used for epileptic spike detection. However, to the best
of our knowledge, there exists no IED detection study that
extracts common components across all IED segments in the

most discriminatory time-space domain only. Therefore, we
aim to present two models based on CFA and sparse CFA
to detect the IEDs from sEEG using a unique limited set of
concurrent sEEG and iEEG recordings.

In this study, we consider that the IED segments for each
subject are naturally linked and share spatially and tempo-
rally some common features. These common features which
are latent in EEGs may reflect more accurately the IEDs char-
acteristics. Zhou et al. [30] developed an algorithm, namely
common orthogonal basis extraction (COBE), for extracting
common and individual features to boost image classification
performance. We adopt the COBE algorithm to exploit the
latent common features among the IED segments in order
to enable detection of a higher percentage of IEDs from over
the scalp using a unique set of simultaneously recorded sEEG
and iEEG. This method is referred to as CFA-based method
for IED detection. In the second approach, as the main
contribution of this paper, we extend the COBE algorithm to
exploit the common features with sparsity constraint, referred
to as sparse common orthogonal basis extraction (SCOBE).
We extract common features among the IED segments with
sparsity constraints (sparse common features) using our de-
veloped SCOBE algorithm. This method is called sparse CFA
(SCFA)-based method for IED detection. It should be noted
that, in our dataset, the IEDs are scored from the iEEG by
an expert clinician, while they are detected from the sEEG.
This provides an opportunity to automatically detect scalp-
invisible IEDs from sEEG, which is not feasible in the sEEG-
based algorithms for IED detection. For classification, three
types of classifiers, namely support vector machines (SVM),
diagonal linear discriminant analysis (DLDA), and naïve
Bayes (NB) are employed.

The rest of the paper is structured as follows: CFA and
SCFA models are described in Section II, data description
and preprocessing are provided in Section III, the results are
reported in Section IV, the discussion is presented in Section
V, and Section VI concludes our work.

II. METHODS
The IEDs are associated with abnormal patterns, thus it can
be assumed that they are independent from the other brain
activities. Moreover, they have much similarity in shape and
morphology and therefore, some features are expected to be
shared among them. In contrast, the non-IEDs are random
and there is no shared feature between them. Therefore, we
are interested in a feature space that spans the IEDs only.

In the proposed CFA and SCFA methods, common fea-
tures and sparse common features among the IED segments
are exploited respectively by COBE and SCOBE algorithms.
Then, both IED and non-IED segments are projected onto
them using Khatri-Rao product. Finally, the features of pro-
jected segments are extracted for classification. FIGURE 1
shows the flowchart of the proposed methods representing
the overall IED detection system. The details of the methods
are explained in the following subsections.
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FIGURE 1. The flowchart of the proposed methods representing the overall IED detection system.

A. COMMON FEATURE ANALYSIS

In the proposed CFA model, the common features are ex-
ploited using the COBE algorithm [30], explained below.

1) COBE

Suppose the training dataset consists of N IED segments,
X = {Xn ∈ RL×M : n ∈ N}, N = {1, 2, ..., N}, where
L and M are respectively the number of time samples and
channels. Our goal is to extract the common features among
all IED segments. According to matrix factorization solution,
for each matrix Xn, we attempt the following minimization:

Sn,Wn
min ‖Xn − SnWT

n ‖2F , n ∈ N , (1)

where the columns of Sn ∈ RL×Pn denote the sources in
Xn, Wn ∈ RM×Pn indicates the corresponding mixing ma-
trix, and ‖.‖F is the Frobenious norm operator. It is assumed
that Pn < min(L,M), implying that SnWT

n presents a low-
rank representation of Xn.

The sources of the data ensemble Xn are linked together,
thereby sharing some common features. Hence, we can de-
fine Sn as follows:

Sn = [S̄ S̆n], n ∈ N , (2)

where the sub-matrix S̄ ∈ RL×C consists of common fea-
tures shared by all the matrices in X , and the sub-matrix
S̆n ∈ RL×(Pn−C), C ≤ min{Pn : n ∈ N}, presents the
individual sources of each Xn. By doing so, we are able to
re-factorize the data matrices Xn in an augmented way as:

Xn = SnWT
n =

[
S̄ S̆n

] [ W̄T
n

W̆T
n

]
= S̄W̄T

n + S̆nW̆T
n = X̄n + X̆n, n ∈ N ,

(3)

where W̄n and W̆n consist of the mixing matrices corre-
sponding to S̄ and S̆n, respectively.

There are numerous solutions to minimization of (1),
which are not unique. To reduce the solution space, the
following three constraints are applied:

i. S̄T S̄ = IC

ii. S̆Tn S̆n = IPn−C

iii. There is no interaction (correlation) between the spaces
of common and individual features, i.e., S̄T S̆n = 0

By substituting (3) in (1) and considering the above con-
straints, (1) can be reformulated to:

S̄,W̄n,S̆n,W̆n

min
∑
n∈N ‖Xn − S̄W̄T

n − S̆nW̆T
n ‖2F ,

s.t. S̄T S̄ = IC , S̆Tn S̆n = IPn−C
S̄T S̆n = 0, n ∈ N ,

(4)

where the notation 0 denotes a C × (Pn − C) zero matrix.
There is a close relationship between the factorization

problem (4) and principal component analysis (PCA) when
Pn = C,∀n ∈ N . In this case, S̄ = S can be found from

S
min

∑
n∈N ‖Xn − SWT

n ‖2F , s.t. STS = IC . (5)

Problem (5) can be considered as a partitioned version of the
global PCA of X̃ when the data matrices Xn are stacked to
construct a global matrix X̃ = [X1 X2 · · ·XN ] and similarly
W̃ = [W1 W2 · · · WN ], that is

S
min‖X̃− SW̃

T
‖2F , s.t. STS = IC . (6)

However, the factorization problem (4) is not equivalent to
PCA when C < Pn. The main difference between problems
(4) and (5) is owing to the individual components S̆nW̆

T

n ,
meaning that the common components found by (4) can
be interpreted as the principal components of the common
subspace X̄n = Xn − S̆nW̆

T

n . For more details, the reader
is referred to [30].

To solve (4), finding the common features S̄ plays a vital
role. From (3), we have:

[S̄ S̆n] = XnWT†
n , STnSn = IPn , n ∈ N , (7)

where (.)† denotes Moore-Penrose pseudo-inverse of a ma-
trix. To estimate S̄, we can employ QR decomposition to de-
compose Xn = QnRn, where Qn is an orthogonal and Rn

is an upper triangular matrix. By defining Zn = RnWT†
n ,

(7) can be reformulated to:

[S̄ S̆n] = (QnRn)WT†
n = QnZn, n ∈ N . (8)

Therefore, for any given n1, n2 ∈ N , n1 6= n2, we have:{
Qn1

zn1,k = Qn2
zn2,k = s̄k, if k ≤ C;

Qn1zn1,k 6= Qn2zn2,k if k > C,
(9)
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where zn,k and s̄k are respectively the kth columns of Zn
and S̄. It should be noted that the condition (9) is valid
when there is a similarity among all the Xn segments (and
consequently Qn). Due to this fact, our Xn consists of only
IED segments, falling in the same frequency range having
similar morphologies (e.i., spkies and sharp waves). From
(9), we can compute the first column of S̄, signified by s̄1,
by minimizing

s̄1,zn,1
min J1 =

∑
n∈N ‖Qnzn,1 − s̄1‖22,

s.t. s̄T1 s̄1=1,
(10)

where ‖.‖2 denotes l2-norm. Based on (8) and (9), the objec-
tive function J1 has to be very small (very close to zero) to
ensure that s̄1 is a common basis vector among the trials.

An alternating least-square (ALS) optimization algorithm
can be utilized to minimize (10). First, by fixing zn,1, the
optimal s̄1 is obtained by

s̄1 =
∑
n

Qnzn,1, (11)

which is then normalized to have a unit norm. Repeating for
a fixed s̄, we calculate zn,1 as

zn,1 = QT
n s̄1, n ∈ N , (12)

and repeat until convergence. For the proof of convergence
of ALS algorithm see [31]. The vector s̄1 is considered to
be a common basis vector as long as min J1 ≤ ε for a very
small threshold ε ≥ 0; otherwise, there is no common feature
among the trials and iterations (11) and (12) stop.

Given the estimated set of common basis vectors,
[s̄1, s̄2, . . . , s̄k], it needs to be ensured that the new sought
vector s̄k+1 is not repeated. We can achieve this by con-
sidering the following property of Zn. Suppose Zn,C =
[zn,1 zn,2 · · · zn,C ], then according to (8) we have:

ZTn,CZn,C = ZTn,CQT
nQnZn,C = S̄T S̄ = IC . (13)

This means zTn,k+1zn,k = 0 and zn,k+1 is the null space of
zTn,k, allowing us to update Qn as

Q(k+1)
n = Q(k)

n (I− zn,kz
T
n,k). (14)

Finally, this leads to finding s̄k+1 through minimizing the
following objective function:

s̄(k+1),zn,k+1
min Jk+1 =

∑
n∈N ‖Q

(k+1)
n zn,k+1 − s̄k+1‖22,

s.t. s̄Tk+1s̄k+1 = 1.
(15)

The ALS algorithm is repeated till Jk+1 is minimized.

2) IED Detection Based on CFA

In the proposed CFA-based method for IED detection, we
employ the COBE algorithm to extract the common basis
vectors S̄ ∈ RL×C among the IEDs. Then, both IED and
non-IED segments Xk ∈ RL×M are projected onto the

extracted vectors using Khatri-Rao product as follows:

Pk = S̄T � XT
k , (16)

for k = 1, . . . ,K, where K is the total number of both
IEDs and non-IEDs in the training and test data, the symbol
‘�’ denotes Khatri-Rao product, Xk is an IED or non-IED
segment, and Pk ∈ R(MC)×L represents the same segment
after projection. The epileptiform spikes (no matter if they are
scalp-visible or scalp-invisible IEDs) have similar behavior,
meaning that most channels have the same trends including a
sharp excitatory and a damped inhibitory oscillation during
the spike onsets. In addition, these trends are similar to
the common basis vector trend. By Kharti-Rao product, the
time samples of each channel are separately elementwise
multiplied by each of the common vectors [s̄1, s̄2, . . . , s̄C ].
Therefore, the epileptiform spikes (or the background ac-
tivities of scalp-invisible IEDs) are magnified by projection.
On the other hand, since there is no common feature among
the non-IEDs, this projection has no significant impact on
them. We show this in the results (FIGURE 5). Furthermore,
the kurtoses of projected segments are extracted for being
used as the classification features, shown in Section III-D.
This strength in the amplitude leads to an increase in the
IED kurtosis, while does not significantly affect the non-IED
kurtosis.

B. SPARSE COMMON FEATURE ANALYSIS
During the last decade, sparse representation has attracted
much attention in various signal processing areas including
epilepsy study [32], [33]. The train of spikes emitted from
individual neurons in the brain can be considered sparse in
some domains such as time and space domains. One of the
interesting characteristics of an IED is its sparsity in the time
domain. The original COBE algorithm does not exploit this
property, making it inefficient for spike detection. Therefore,
we develop a new algorithm, namely SCOBE, with sparsity
constraint to exploit the common features. Then, we propose
a model based on sparse common features to detect the IEDs,
called SCFA.

1) SCOBE
In this approach, we extract the common basis vectors with
sparsity constraint. In other words, the number of non-zero
elements of each basis vector is sparsified. To this end, the
sparsity condition is incorporated into (10) to change it into
a constrained problem as follows:

D,a1,zn,1
min J1 =

∑
n∈N ‖Qnzn,1 −Da1‖22

s.t. ‖a1‖0 ≤ T0, (Da1)T (Da1) = 1.
(17)

for s̄1 = Da1, where T0 is a small threshold set empirically,
D ∈ RL×F is the dictionary (whose columns are the atom
signals), a1 ∈ RF includes the first sparse representation
vector of the signals, and ‖.‖0 denotes l0-norm which ac-
counts for the number of non-zero entries. However, (17) is
an NP-hard problem but can be efficiently solved using sev-
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Algorithm 1. The SCOBE pseudocode.
Input: Xn, n ∈ N , ε ≥ 0

1: Decompose Xn=QnRn s.t. QT
nQn=IM , n ∈ N .

2: Train a dictionary D using the K-SVD algorithm.
3: S̄ = [ ],Q

(1)
n = Qn and k = 1.

4: while Jk ≤ ε do
5: Initialize ak randomly and sparsely with a unit norm
6: while not converged do
7: zn,k = [Q

(k)
n ]TDak, n ∈ N ;

8: y=
∑
n∈N Qnzn,1

9: Use any pursuit algorithm to calculate ak,
through approximating the solution of

ak
min ‖y −Dak‖22, s.t. ‖ak‖0 ≤ T0;

10: s̄k = Dak/‖Dak‖2;
11: end while
12: Jk = 1

N

∑
n ‖Q

(k)
n zn,k − s̄k‖22;

13: S̄ = [S̄ s̄k];
14: k = k + 1;
15: Q

(k)
n = Q

(k−1)
n (I− zn,k−1z

T
n,k−1), n ∈ N ;

16: end while
17: return S̄ = [s̄1 s̄2 · · · s̄C ], where C = k − 1.

eral available approximation techniques such as orthogonal
matching pursuit (OMP) [34], [35] and basis pursuit [36],
[37].

Apart from D and a1, we need to minimize zn,1, thereby
employing ALS iteration. Suppose Da1 is fixed, zn,1 is
computed as:

zn,1 = QT
nDa1, n ∈ N . (18)

Then, by keeping zn,1, we have

D,a1
min J1 =‖y −Da1‖22, s.t. ‖a1‖0 ≤ T0, (19)

where y=
∑
n∈N Qnzn,1. To optimizes the objective func-

tion (19), the OMP technique [35] is used to approximate the
sparsity and the K-SVD algorithm [38] to train the dictionary
D. More details are given in Appendices A and B. In terms
of stability, it should be noted that in our proposed method
the objective (19) is a matrix-based problem optimized by
the OMP technique. The stability of OMP has been proven in
[39].

However, after solving (19), from (17) the first sparse
common basis vector will be

s̄1 = Da1, (20)

and normalized to have a unit norm. s̄1 and zn,1 are itera-
tively and in an alternating manner computed. It should be
noted that the condition of min J1 ≤ ε needs to be met for
a very small threshold ε ≥ 0 for s̄1 to be a sparse common
basis vector among the trials.

In order to avoid repeating the sparse common basis
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FIGURE 2. The proposed SCFA-based (or CFA-based) model
for IED detection. X includes the IED segments (N ) from the
training set only. S̄ denotes the sparse common basis
vectors (or common basis vectors) extracted by applying the
SCOBE (or COBE) algorithm to X . Xk can be an IED or
non-IED segment from the training and test datasets and Pk

represents the same segment after projection. The notation
‘�’ denotes Khatri-Rao product.

vectors, we need to update Qn. Here, the property of
ZTn,CZn,C = I is also verifiable like COBE, (13). Therefore,
Qn is updated through (14).

Finally, after computing Q
(k+1)
n , the new sparse common

basis vector is obtained by solving the following objective
function:

D,ak+1,zn,k+1

min Jk+1 =
∑
n∈N ‖Qk+1

n zn,k+1 −Dak+1‖22

s.t. ‖ak+1‖0 ≤ T0, (Dak+1)T (Dak+1) = 1,
(21)

which can be minimized by repeating the procedure in solv-
ing (17). New sparse common basis vectors are considered
the vectors which make Jk is smaller than a very samll
threshold ε (Jk < ε). In other words, the number of com-
mon or sparse common components are determined by ε.
Accordingly, ε should be small enough to avoid extracting
uncommon factors. The pseudo-code of SCOBE is illustrated
in Algorithm 1.

To avoid confusion, it should be noted that the number of
non-zero elements of each basis vector – not the number of
basis vectors – is sparsified. From (17) and (19), it can be seen
that the number of non-zero elements of vector ac, where
s̄c = Dac, is sparsified.
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2) IED Detection Based on SCFA

In the proposed SCFA-based method for IED detection, the
sparse common basis vectors among the IEDs from the
training dataset are extracted using the developed SCOBE
algorithm. After obtaining the sparse common basis vectors,
the IEDs and non-IEDs from the training and test datasets are
projected onto them using Khatri-Rao product according to
the procedure given in (16). The schematic diagram of CFA-
and SCFA-based methods for IED detection is illustrated in
FIGURE 2.

III. EXPERIMENTS
A. DATA DESCRIPTION
We analyzed 20 minute EEG recordings from 18 subjects
suffering from temporal lobe epilepsy. Informed consent
was obtained from all the individual participants included
in the study. sEEG and iEEG signals were simultaneously
recorded using sampling frequency of 200 Hz at King’s
College Hospital London. The sEEG was recorded by using
18 standard silver chloride electrodes placed on the scalp
according to the ‘Maudsley’ electrode placement system –
which is essentially similar to the 10-20 system except that
the lateral electrodes have lower positions in order to improve
recording from the temporal lobes [11] – and 2 electrodes
placed on the ear lobes. For recording iEEG, 12 intracranial
multi-contact FO electrodes consisting of a couple of 6
electrode bundles were used. Both sEEG and iEEG signals
were recorded with respect to Pz as a common reference, and
filtered by a bandpass filter with cutoff frequencies of 0.3 Hz
and 70 Hz.

B. IED SCORING
IEDs were scored by an expert epileptologist based on the
morphology and spatial distribution of the observed wave-
forms from the iEEG. In other words, the iEEG recordings
are used as ground truth since all scal-visible and scalp-
invisible IEDs are observable in the iEEG signals. The scor-
ing details are illustrated in our previous work [20]. Briefly,
each IED is classified into one of the following groups: (I)
scalp-invisible IED, (II) scalp-visible IED by considering
the concurrent iEEG, and (III) scalp-visible IED without
considering the concurrent iEEG. FIGURE 3 shows a sample
of IED from each group. In FIGURE 3 (b), showing a scalp-
invisible IED, there is no sign of spike or sharp waves
over the scalp electrodes, while the FO channels captured
the epileptiform discharges. From FIGURE 3 (c) showing
a scalp-visible IED by considering the iEEG, we can see
that some signatures of IEDs were captured by the scalp
channels, but without referencing to the iEEG signals we can
not consider these waveforms as an IED waveform. In the
scalp-visible IED, without considering the concurrent iEEG
shown in FIGURE 3 (d), the IED waveforms is observable
over both scalp and FO channels. Note that all three groups
of IEDs fall within the same IED class in classification.

TABLE 1. The number of trials for each subject

Subject No. of trials Subject No. of trials
S1 38 S10 622
S2 524 S11 692
S3 302 S12 344
S4 108 S13 26
S5 158 S14 20
S6 648 S15 692
S7 250 S16 22
S8 552 S17 178
S9 38 S18 338

C. DATA FILTERING AND SEGMENTATION
In order to increase SNR and avoid the 50 Hz grid fre-
quency, a bandpass filter with cutoff frequencies of 4 Hz
and 48 Hz was applied to the sEEG signals. In addition,
contra-lateral (CL) reference method was employed as re-
referencing method to the sEEG signals [40]. In CL, the right
and left hemisphere electrodes are re-referenced to the right
and left earlobe electrodes, respectively. In our work, “Z”
electrodes are re-referenced to the average of the two earlobe
electrodes.

For analysis and classification, the length of the segments
with IED were selected to be 480 ms (96 samples) – 160 ms
before and 320 ms after the peak positions marked as IED.
The non-IED segments with 480 ms length were extracted
from the time segments in which no scored IED exists, and
did not have overlap with the IED segments. The number of
non-IED segments was the same as the number of IED seg-
ments for each subject—the number of trials are summarized
in TABLE 1. Then, both IED and non-IED segments were
linearly detrended to alleviate the undesired drifts. Finally,
the scalp segments were normalized using the z-score method
to have unit norm per electrode channel.

D. FEATURE EXTRACTION
We construct X ∈ R96×18×N (whose dimensions 96, 18,
and N correspond respectively to the time samples, scalp
channels, and IED segments from the training set). Common
(or sparse common) basis vectors S̄ ∈ R96×C , where C is
the number of vectors, are exploited by employing COBE
(or SCOBE) to X . Then, both IED and non-IED segments
from the training and test sets Xk ∈ R18×96 are projected
onto the extracted vectors using the Khatri-Rao product (16),
Pk = S̄T � XT

k . Finally, the kurtosis of components of the
projected IEDs and non-IEDs Pk ∈ R(18C)×96 is computed
as classification features.

Kurtosis is a statistical measure of whether the data are
heavy-tailed or light-tailed and describes the shape of a
distribution. For each component – here 18C components –
the kurtosis can be computed as:

Kurtosis =

∑96
l=1(µl − µ̄)4/96

σ4
, (22)

where µ̄ and σ are respectively the component mean and
standard deviation. Each scalp IED or non-IED segment
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FIGURE 3. Samples of non-IED and IED segments befor normalization; (a) non-IED, (b) scalp-invisible IED, (c) scalp-visible IED by referencing to the concurrent
iEEG, and (d) scalp-visible IED without considering the concurrent iEEG. Channels R1 to R6 and L1 to L6 indicate respectively the FO channels of right and left
hemispheres. The IEDs start at 160 ms.

consists of 18× C features.

E. COMPETING MODELS
We compare the performance of our proposed models with
those claimed by very recent publications in this area.

1) Kurtosis features
We compare our proposed methods with a method in which
the kurtosis features (KFs) are extracted by (22) from the
raw data after preprocessing. The corresponding method is
referred to as KFs method. This method is selected for
comparison mainly because here we extract the kurtosis fea-
tures from the projected segments in our proposed methods.
Therefore, it is interesting to see the effects of kurtosis on the
feature space and IED detection performance.

2) Time-frequency features
We previously found out that the time-frequency (TF) fea-
tures are superior to continuous wavelet transform and
chirplet transform for this particular application [20]. There-
fore, we compare our proposed models with a model based
on TF features. Common average reference (CAR) method is
employed as re-reference method for artifact rejection, as it is
recommended in the paper proposing the TF model for IED
detection [20]. In the CAR method, the reference signal is
the average over all the electrode signals, which is subtracted
from each of them. Then, each scalp electrode is linearly

detrended to alleviate the undesired drifts, and normalized
to have zero mean and unit norm. Finally, the TF features are
obtained by the spectrogram method with a Hanning window
of size 80 ms (16 samples) and an overlap of 50% between
the windows. A total of 11 windows slide over each segment.
The squared magnitudes of short-time Fourier transform are
calculated from the spectrogram as TF features. The number
of discrete Fourier transform points has been set to 16 (the
same as the number of time samples in a window) resulting
in 9 frequency features. Finally, each scalp IED or non-IED
segment consists of 1782 features (18 scalp channels ×11
temporal ×9 frequency).

3) Simultaneous multilinear low-rank approximation of
tensors

The proposed models are compared with the method, namely
simultaneous multilinear low-rank approximation of tensors
(SMLRAT), proposed quite recently by Thanh et al. for EEG
epileptic spike detection [29]. The model is summarized as
follows.

In the SMLRAT model, the authors decomposed epilep-
tic and non-epileptic spikes through the continuous wavelet
transform (CWT) and built a three-way tensor for each trial,
Y ∈ RH×L×M , (whose dimensions H,L, and M corre-
spond respectively to wavelet-scale, time, and channel). They
concatenated only three-way epileptic tensors, {Yep

n }Nn=1

(whereN is the number of epileptic spike trials), into a single
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FIGURE 4. The first common basis vector and sparse common basis vector
extracted respectively using COBE and SCOBE from the IED segments of a
subject. The IEDs start at 160ms.

four-way tensor Ỹep ∈ RH×L×M×N , and then applied
nonnegative Tucker decomposition (NTD) to Ỹep, as shown
below, to obtain the B1,B2, and B3 factors:

Ỹep = G ×1 B1 ×2 B2 ×3 B3 ×4 B4, (23)

where G ∈ Rr1×r2×r3×N denotes the core tensor, B1 ∈
RH×r1 ,B2 ∈ RL×r2 ,B3 ∈ RM×r3 , and B4 ∈ RN×N span
the parameter spaces respectively representing the wavelet-
scale, time, channel, and epileptic spikes. Finally, in order
to obtain feature space of each trial, the epileptic and non-
epileptic spikes were projected onto the wavelet-scale, tem-
poral, and spatial factors as follows:

Fi = Yi ×1 B†1 ×2 B†2 ×3 B†3, (24)

where (.)† denotes Moore-Penrose matrix pseudo-inverse.
Here, we decompose the IED and non-IED segments

through CWT and construct a three-way tensor for each
segment – Yi ∈ R38×96×18. The three-way IED tensors
are concatenated into a single four-way tensor, Ỹep ∈
R38×96×18×N . Then, NTD is employed to obtain the factor
matrices; B1 ∈ R38×10,B2 ∈ R96×15, and B3 ∈ R18×18;
and features Fi ∈ R10×15×18. We should note that LC
or CAR re-referencing and z-score normalization are not
applied to SMLRAT since not only these methods were not
employed in the paper proposing SMLRAT but also these
deteriorate spatial components in tensor-based methods.

F. FEATURE SELECTION
We utilized Fisher score algorithm for finding significant
features. Fisher score is defined as follows:

ϕf̄ =

∑c̄=C̄
c̄=1 nc̄(µf̄ c̄ − µf̄ )2∑c̄=C̄

c̄=1 nc̄ρ
2
f̄ c̄

(25)

where µf̄ c̄ and ρf̄ c̄ are respectively the mean and the variance
of the f̄ -th feature in the c̄-th class, nc̄ is the number of
instances in the c̄-th class, and µf̄ is the mean of the f̄ -th
feature.
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FIGURE 5. (a)-(c) present a non-IED segment before and after
applying CFA and SCFA; (a) a non-IED segment before
applying the CFA or SCFA, (b) after applying CFA, and (c)
after applying SCFA. (d)-(f) present an IED segment before
and after applying CFA and SCFA; (d) an IED segment
before applying the CFA or SCFA, (e) after applying CFA,
and (f) after applying SCFA. The segments were projected
onto the first common basis vector and sparse common
basis vector only. The IED start at 160ms.

G. CLASSIFICATION AND CROSS-VALIDATION

In order to classify the IED and non-IED segments, we em-
ployed three different classifiers, namely SVM, DLDA, and
NB. SVM and NB are popular classifiers for biomedical data
analysis [41], [42] particularly for epileptic seizure prediction
[23], [43]. We use linear SVM in all methods, which outper-
formed other kernel-SVMs in our experiment. In addition,
DLDA is superior to LDA for our dataset. Therefore, DLDA
is employed.

Classifying the IEDs and non-IEDs is performed in two ap-
proaches, namely within- and between-subject classification
approaches. In the within-subject classification approach, an
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TABLE 2. The performances of classifiers and the performance SE are shown based on the within-subject approach with results averaged over 15 subjects and 5
folds. ACC, SEN, and SPEC are presented in percent (%).

Classifier Model ACC SEN SPEC F1-S

DLDA

TF 70.7±1.7 61.0±2.2 80.3±3.0 0.66±0.02
SMLRAT 64.9±2.0 46.4±3.7 83.4±2.9 0.54±0.04
KFs 70.7±2.6 57.0±2.3 84.3±3.2 0.65±0.02
CFA 73.2±2.3 64.1±2.6 82.3±3.1 0.70±0.02
SCFA 74.2±2.5 63.7±2.7 84.6±2.9 0.70±0.02

SVM

TF 66.9±2.3 65.2±2.2 68.2±2.6 0.66±0.02
SMLRAT 72.9±2.7 63.8±2.5 82.0±3.5 0.69±0.03
KFs 69.8±2.6 56.1±2.8 83.5±2.6 0.64±0.03
CFA 72.3±2.5 64.2±2.6 80.3±2.7 0.69±0.02
SCFA 74.3±2.4 68.0±2.8 80.5±2.5 0.72±0.02

NB

TF 70.5±1.9 68.0±3.5 73.0±3.9 0.68±0.02
SMLRAT 71.3±2.4 61.7±4.3 80.1±3.3 0.65±0.03
KFs 71.3±2.7 54.4±4.2 88.3±1.6 0.63±0.04
CFA 73.6±2.6 64.5±4.4 82.6±2.4 0.69±0.03
SCFA 75.1±2.6 65.5±4.0 84.7±2.2 0.71±0.03

individual classifier is trained for each subject and a k-fold
(k=5) cross validation is employed to validate the models.
Increasing the number of folds did not change the outcome.
In this approach, subjects 13, 14, and 16 are excluded from
classification because of having less number of trials, thus
the results of 15 subjects are reported. In the between-subject
classification approach, one-subject-leave-out cross valida-
tion is employed to validate the models. In other worlds, a
subject is used as the test data and other subjects (17) are
employed to train a classifier. This is repeated for all subjects.

Accuracy (ACC), sensitivity (SEN), specificity (SPEC),
and F1 score (F1-S) are obtained as the evaluation criteria
as follows:

ACC =
TP + TN

TP + FP + TN + FN
× 100%,

SEN =
TP

TP + FN
× 100%,

SPEC =
TN

TN + FP
× 100%,

F1-S =
2TP

2TP + FP + FN
,

where TP and TN are respectively the number of IED and
non-IED samples classified correctly in their classes, FP is
the number of non-IED samples recognized incorrectly as
IED samples, and FN is the number of IED samples catego-
rized wrongly in the non-IED class. Accuracy indicates the
percentage of detection of IED and non-IED samples. Sen-
sitivity and specificity respectively illustrate the performance
of a classifier in correctly detection of the IED and non-IED
samples.

IV. RESULTS
The obtained results are presented in three sections. In Sec-
tion IV-A, the extracted common components and the impact

of their projection on the IED segments are investigated.
The within- and between-subject classification approaches
results (performance ± standard error (SE)) are respectively
reported in Section IV-B and IV-C. DLDA, SVM, and NB
classifiers were employed for classification. We made use of
the first 36 significant features according to Fisher scores in
CFA and SCFA, 18 significant features in KFs, 100 signifi-
cant features in SMLRAT, and 200 significant features in TF.
Those numbers of features gave the highest accuracy in their
models.

A. COMPONENTS AND PROJECTION

The first common basis vector and sparse common basis
vector extracted respectively using COBE and SCOBE are
illustrated in FIGURE 4. The sparse common basis vector
not only is sharper but also has higher amplitude than the
common basis vector. Furthermore, the sparse common basis
vector does not fluctuate as much as the common basis vector
does.

FIGURE 5 shows a non-IED and an IED segment before
and after projection onto a common basis vector and sparse
common basis vector. Although slow waves appear over a
few scalp channels after projecting the non-IED segment
onto the first common and sparse common basis vector
(FIGURE 5 (b) and (c), respectively), strong spikes and sharp
waves appear over all scalp channels after projecting the
IED segment onto the first common and sparse common
basis vector (FIGURE 5 (e) and (f), respectively). Before
projecting the IED, FIGURE 5 (d), the IED waveforms are
observable only over channels P3 and P4. After projecting the
IED segment onto the common basis vector obtained using
COBE, FIGURE 5 (e), IED waveforms in the shape of spikes
and sharp waves are observable over almost all channels.
After projecting the IED segment onto the sparse common
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TABLE 3. The performances of classifiers and the performance SE are shown based on the between-subject approach with results averaged over all 18 subjects.
ACC, SEN, and SPEC are presented in percent (%).

Classifier Model ACC SEN SPEC F1-S

DLDA

SMLRAT 57.1±1.6 48.7±4.9 65.5±5.6 0.50±0.03
KFs 61.7±1.9 35.4±5.0 87.8±3.8 0.45±0.04
CFA 67.2±2.7 50.0±5.8 84.3±4.4 0.55±0.06
SCFA 67.6±2.6 54.5±4.7 80.7±4.7 0.58±0.05

SVM

SMLRAT 55.5±1.9 29.0±6.1 82.0±3.9 0.32±0.06
KFs 61.6±2.1 32.8±5.1 90.4±3.6 0.42±0.04
CFA 67.3±2.6 52.7±6.7 82.0±4.3 0.57±0.05
SCFA 67.1±2.7 52.0±6.9 82.3±4.3 0.56±0.06

NB

SMLRAT 51.2±1.0 17.5±7.0 84.8±6.0 0.17±0.06
KFs 64.8±3.0 35.1±6.6 94.5±3.2 0.43±0.07
CFA 66.3±2.7 40.5±6.4 92.1±3.4 0.49±0.06
SCFA 67.8±2.9 43.1±6.5 92.5±3.5 0.52±0.06

basis vector, FIGURE 5 (f), the IED waveforms become more
sharper.

B. IED DETECTION BASED ON WITHIN-SUBJECT
CLASSIFICATION APPROACH
Both scalp-visible and scalp-invisible IEDs scored by an
expert clinician based on the iEEG recordings were detected
from the sEEG recordings. The obtained IED detection
results based on within-subject classification approach are
illustrated in TABLE 2.

In DLDA, SCFA outperforms other methods and provides
the best performance with 74.2% accuracy, 63.7% sensitivity,
84.6% specificity, and 0.70 F1-score values. CFA presents the
best sensitivity value of 64.1% which is approximately 4%,
18%, and 7% more than TF, SMLRAT, and KFs sensitivity
values, respectively. In SMLRAT, the DLDA classifier is
biased to the non-IED class, meaning that most segments are
recognized as non-IED segments.

The best accuracy of SVM classifier is obtained using
SCFA which was 74.3%. Regarding SEN and F1-S, the
SCFA model outperforms other methods as well. In terms of
SPEC, KFs provides the best value. TF is the worst method
in all criteria except in terms of SEN.

SCFA achieve the best accuracy of 75.1%, specificity of
84.7%, and F1-score of 0.71% using the NB classifier. The
best sensitivity of 68% is obtained by TF. CFA classifies the
IEDs and non-IEDs by 73.6% accuracy which is higher than
TF, SMLRAT, and KFs do.

C. IED DETECTION BASED ON BETWEEN-SUBJECT
CLASSIFICATION APPROACH
The obtained IED detection results based on between-subject
classification approach are shown in TABLE 3. Here, the
performance of SMLRAT, KFs, CFA, and SCFA are re-
ported. The TF method is not employed here in the between-
subject classification approach. The paper [20] proposing the
TF method for IED detection detected IEDs in the within-

and between-subject classification approach. However, in
the between-subject classification approach, they trained a
classifier for each subject using the data of the same subject;
then, all trained classifiers were ensemble to detect IEDs
of a new subject. Since the data of different subjects are
not combined in the TF model, it is not employed in this
approach.

Using DLDA, SCFA achieves the best accuracy of 67.6%
which is approximately 10% and 6% more than the accuracy
obtained respectively by SMLRAT and KFs. In addition, it
presents the best sensitivity and F1-score values. In terms of
specificity, KFs achieves the best value of 87.8%.

Using SVM, CFA provides the best accuracy of 67.3%
which was slightly more than the accuracy of SCFA, 67.1%.
In terms of specificity, KFs achieves significantly better per-
formance. However, KFs and SMLRAT are biased to the non-
IED class. While they achieve respectively the specificity
values of 90.4% and 82%, they detect IEDs respectively with
only 32.8% and 29% sensitivity values.

Using NB, SCFA outperforms CFA, KFs, and SMLRAT
in all criteria except specificity. It achieves the accuracy of
67.8% which is respectively 1.5%, 3.0%, and 16.6% more
than those of CFA, KFs, and SMLRAT. The SMLRAT model
provides the worst performance with sensitivity value of
17.5%. Generally, the NB classifier is biased to the non-IED
class in all methods.

V. DISCUSSION
In both IED classification approaches, SCFA, a new sparse
common feature analysis method, outperforms TF and SML-
RAT (which is based on non-negative Tucker decomposi-
tion). The major advantage of our proposed models is that
they extract the components in a trial-, subject-, and channel-
independent-based approach, which enables the algorithms
to effectively capture the background EEG activities and the
intracranial biomarkers of epilepsy. Furthermore, SCFA out-
performs CFA, while in both of them common components
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are extracted and used for classification. The only difference
between CFA and SCFA is that SCFA exploits common
components with sparsity constraints. These shows that our
proposed algorithm, SCOBE, is superior to the plain COBE
algorithm.

SMLRAT [29] has been reported to have a high perfor-
mance where scalp-visible epileptic and non-epileptic spikes
were detected with an accuracy as high as 95.8% from scalp
recordings. In contrast, here, both scalp-visible and scalp-
invisible IEDs are detected, causing a fall in the performance
of all methods. SMLRAT performs significantly better in
the within-subject approach compared to the between-subject
approach. The best accuracy obtained for the within-subject
classification approach is 72.9%, while it is 57.1% for the
between-subject classification approach. SMLRAT is based
on spectral, temporal, and spatial components. In our dataset,
the locations of IED sources were different among subjects.
IEDs may be originated from right, left, or both temporal
lobes for each subject. That is, when the data of different
subjects are combined, spatial components not only become
meaningless but also deteriorate the performance of a classi-
fier.

In many studies, IEDs were detected by high accuracy
[44], [45], while the performance of both proposed and
compared methods is not high in our study. However, only
scalp IEDs were involved in their dataset, while a large
proportion of IEDs is not observable from over the scalp.
Therefore, they lost a large proportion of IEDs by default.
Our dataset consists of both scalp-visible and scalp-invisible
IEDs. The iEEG and sEEG were simultaneously recorded.
The iEEG recordings were used as a ground truth for scoring
IEDs, and the IEDs are detected from only the concurrent
sEEG. The importance of this dataset is that we need to
record concurrent iEEG and sEEG from the training subjects.
After training a model, it can be employed to detect scalp-
visible and scalp-invisible IEDs of a new subject from only
the scalp recordings. The proposed SCFA and CFA methods
detect respectively IEDs of new subjects with the accuracy
values of 67.8% and 67.3%. This can bring a huge benefit to
clinicians in monitoring epilepsy.

There is no limitation with respect to the data we have.
However, the IED morphologies are different and also change
with age [46]. Therefore, to generalize the application, we
should have access to the data from a wider age range. As
part of our future study we intend to include the IED shape
diversity into a higher dimensional tensor decomposition
approach.

VI. CONCLUSION
Automated detection of as many as possible IEDs from over
the scalp is of paramount importance for epilepsy diagnosis
and management. This is due to the fact that the majority
of IEDs are invisible on the scalp. Therefore, during the
observation of IEDs from sEEG signals, we often miss a large
proportion of IEDs. To overcome this deficiency, we effec-
tively use a limited set of concurrent iEEG-sEEG recordings

to design an algorithm which can be applied to the sEEGs
only. In this work, we adopt COBE algorithm proposed in
[30] to extract the common components among the IEDs,
then extent it to exploit the common features with sparsity
constraints, called SCOBE. We propose two models namely
CFA and SCFA based on COBE and SCOBE, respectively.
We show that by employing the proposed models for the
scalp-invisible IEDs, they become detectable from the sEEG
signals. We employed SVM, DLDA, and NB for classifica-
tion, and compared our proposed methods with two bench-
mark models, i.e., TF [20] and SMLRAT [29]. IEDs were de-
tected in two different classification approaches, within- and
between-subject classification approaches. The SCFA model
outperforms other methods in both approaches and achieves
respectively the best accuracy values of 75.1% and 67.8%
using the NB classifier. These findings show that common
component analysis can be very effective in capturing IED
signatures, and exploiting the common components among
IED segments with sparsity constraints is superior to exploit
the common components without any constraint.

.

APPENDIX A OMP ALGORITHM

The OMP algorithm is an iterative algorithm that finds the
sparse vector a1 element-by-element in a step-by-step itera-
tive manner. In this algorithm, the atom df – fth column of D
– with the highest correlation to the current residue, denoted
by r, is selected at each step; f̂ :=

f

Argmax |dTf r|. Once the
atom is selected, the signal is orthogonally projected to the
span of selected atoms I; a1I

:= D†Iy. After recalculating
the residue, r = y − DIa1I

, the procedure repeats until
meeting a stopping condition. For implementation of the
OPM algorithm, we utilized the Matlab toolbox provided by
Rubinstein et al. [35].

APPENDIX B K-SVD ALGORITHM

The K-SVD algorithm trains a dictionary for sparse approx-
imation through singular value decomposition (SVD) [38].
The goal of the algorithm is to iteratively learn a dictio-
nary to achieve the sparsest representations of the signals
in Ψ ∈ RL×T by optimizing the following constrained
objective function:

D,Γ
min ‖Ψ−DΓ‖2F , s.t. ∀i‖γi‖0 ≤ L0, (26)

where Γ ∈ RF×T is the sparse representation matrix of the
signals Ψ using the dictionary D ∈ RL×F . It is important to
note that T � F � L and that the columns of D need to be
normalized. At first, D is selected randomly from Ψ. Then,
a sparse approximation algorithm, here OPM algorithm, is
utilized to compute the sparse representation vectors γi for
each example ψi. For updating, at first, the group of examples
using this atom, φf = {i|1 ≤ i ≤ F, γfT 6= 0}, where γfT is
the fth row in Γ, is defined, and the overall error matrix, Ef ,
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is approximated by

Ef = Ψ−
∑
b6=f

dbγ
b
T . (27)

The error is then limited to only the columns corresponding
to φf as follows:

Elim
f = EfΦf , (28)

where Φf is a matrix of size T × |φf |, with ones on the
(φf (i), i)th entries and zeros elsewhere. Finally, the SVD
decomposition is applied to Elim

f = UΛV, and the dic-
tionary column df is updated using the first column of U

as well as the coefficient vector γflim using the first column
of V multiplied by Λ(1, 1). This procedure is repeated until
convergence. To see the proof of convergence the reader is
referred to [38]. For implementation, we used the Matlab
toolbox described in [35].
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