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Universality of political corruption 
networks
Alvaro F. Martins1, Bruno R. da Cunha2,3, Quentin S. Hanley4, Sebastián Gonçalves5, 
Matjaž Perc6,7,8,9* & Haroldo V. Ribeiro1

Corruption crimes demand highly coordinated actions among criminal agents to succeed. But research 
dedicated to corruption networks is still in its infancy and indeed little is known about the properties 
of these networks. Here we present a comprehensive investigation of corruption networks related to 
political scandals in Spain and Brazil over nearly three decades. We show that corruption networks 
of both countries share universal structural and dynamical properties, including similar degree 
distributions, clustering and assortativity coefficients, modular structure, and a growth process that 
is marked by the coalescence of network components due to a few recidivist criminals. We propose 
a simple model that not only reproduces these empirical properties but reveals also that corruption 
networks operate near a critical recidivism rate below which the network is entirely fragmented and 
above which it is overly connected. Our research thus indicates that actions focused on decreasing 
corruption recidivism may substantially mitigate this type of organized crime.

Understanding the collective and intricate nature of political corruption and other organized crime demands 
more than simple statistics. In an analogy with complex systems1–4, where the whole is often more than just 
the sum of its parts, one may say that the success of criminal organizations depends not only on the individual 
skills of the criminals, but in fact much more so on their ability to cooperate and create robust organizational 
structures that are capable of protecting and hiding their illegal activities. The usage of complexity science has 
been advocated by different authors as an ideal framework to investigate economic crime, organized crime, 
and corruption5–9. Network science10,11 stands out in this context as it can most suitably describe the different 
interactions among criminals by means of a wide array of tools and methods that have been developed over the 
past two decades6.

Empirical investigations of criminal networks are, however, often made difficult by the unavailability of reli-
able data about these systems, especially time-resolved data. This is in part because criminals do their best to 
remain undetected, but also, and in fact primarily so, because this information is often classified and restricted 
to law enforcement agencies. Despite these difficulties, many recent works have demonstrated the usefulness of 
network science to investigate criminal networks, with examples including cartel detection12, corruption risk in 
contracting markets13, money laundering14, identification of corrupt politicians via voting networks15, dark web 
pedophile rings16, criminal conspiracy networks of companies17, modular structure of crime organizations18, 
political corruption networks19, organized crime networks20, controllability of criminal networks21, resilience 
of drug trafficking22, as well as police criminal intelligence networks23. Nevertheless, and despite the fascinating 
research that has already been made, we still need to identify overarching common properties and dynamical 
aspects of criminal networks, which might allow us to develop simple models that describe fundamental features 
and provide valuable insights into organized crime.

Here we aim to address this challenge by presenting a comprehensive investigation of static and dynamical 
aspects of political corruption networks that are associated with corruption scandals in Brazil and Spain. The 
two datasets that we use provide unprecedented information about corruption activities spanning almost three 
decades of history in each country and involve over 400 people in Brazil and more than 2700 people in Spain. 
Our research shows that corruption scandals in both countries rarely involve more than ten people, and that the 
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corresponding corruption networks have universal properties such as an exponential degree distribution, a high 
clustering coefficient, the small-world property, homophily, modular structure, and a similar relation between 
the number of network modules and the total number of political scandals. We also study the temporal aspects 
of these scandals to create an evolving network representation, which allows us to identify striking similarities in 
the dynamics of political corruption networks of both countries. Specifically, we find that the giant component 
of these networks exhibits abrupt changes caused by the coalescence of network components, that the number 
of network modules increases linearly with the number of scandals, and that the number of recidivist agents 
(people involved in more than one corruption scandal) is linearly associated with the number of people in the 
network over the entire network growth process. These empirical universalities finally allow us to propose a 
simple model where the main parameter is the recidivism rate, that is, the fraction of corrupt agents recurring 
in the criminal activity. Beyond simulating corruption networks with features very similar to those observed in 
the empirical data, our model indicates that corruption networks operate around a critical recidivism rate below 
which the network becomes completely fragmented and above which it is overly connected.

Results
We start by presenting the two datasets of corruption scandals used in our study. The Brazilian data is the same 
reported in Ref.19 and comprises 65 well-documented political corruption scandals that occurred in Brazil 
between 1987 and 2014. This information was manually compiled from web pages of magazines and newspapers 
with wide circulation and includes the names of the 404 people involved in each of the 65 scandals. The Spanish 
data are original to our work and have been extracted in May 2020 from a non-profit website24 that aims to list all 
known corruption scandals in Spain. The information on this website is also compiled from publicly accessible 
web pages of popular Spanish news magazines and daily newspapers. The Spanish data comprises 437 corruption 
scandals that occurred between 1989 and 2018 and involved 2753 people.

Having described our datasets, we first examine the distribution associated with the size (number of people 
involved) of corruption scandals. As reported in Ref.19 for Brazil, we find that the size distribution of scandals 
is roughly approximated by an exponential distribution with a characteristic number of people around seven 
people for both countries (Fig. 1A,B). Despite the deviations between the exponential model and the empirical 
distributions observed for large scandals, this result shows that political corruption runs in small groups that 
rarely exceed more than ten people (only 20% and 17% of corruption cases in Spain and Brazil, respectively). 
Thus, it seems that corrupt agents usually rely on a small number of cronies for running their criminal activities, 
probably because large-scale processes are hard to manage and remain undetected for longer periods25. Moreover, 
the surprising similarities in size distributions of scandals in both countries already indicate a possible universal 
pattern related to political corruption processes.

To investigate the emerging patterns of people involved in corruption cases, we have created a static network 
representation of these scandals where people are nodes and connections among them indicate individuals 
engaged in the same corruption case. Figure 2A,B depict the Spanish and Brazilian corruption networks, respec-
tively. The Spanish network has 2753 nodes, 27,545 edges, 197 connected components, 58 isolated nodes, and a 
giant component accounting for 40% of nodes and 53% of edges. In turn, the Brazilian network comprises 404 
nodes, 3549 edges, 14 connected components, and a giant component accounting for 77% of nodes and 93% 
of edges.

Despite the different sizes, these networks share striking similarities. For instance, both networks (Spanish vs. 
Brazilian networks, respectively) have high clustering coefficients (0.91 vs. 0.93 for the entire network and 0.94 vs. 

Figure 1.   The size of corruption scandals is approximately exponentially distributed. Complementary 
cumulative distribution function of the number of people involved in political corruption scandals in (A) 
Spain and (B) Brazil. The dashed lines indicate an exponential distribution adjusted to data via the maximum 
likelihood method. The characteristic number of people involved in these scandals (indicated by the numbers 
within each panel) is around seven people for both countries.
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0.93 for the giant component), moderately high assortativity coefficients (0.74 vs. 0.53 for the entire network and 
0.59 vs. 0.50 for the giant component), low densities (0.007 vs. 0.044 for the entire network and 0.025 vs. 0.069 for 
the giant component), and small average shortest path length (5.11 vs. 2.99 for the giant component). Modular 
structures also characterize these networks (see colors in Fig. 2A,B) and usually merge more than one scandal 
into a single network module, as estimated by the infomap clustering algorithm26,27. Indeed, the ratio between 
modules and scandals is 0.76 for the Spanish network and 0.62 for the Brazilian one. Moreover, we find that the 
degree distributions of both networks are well-approximated by exponential distributions with characteristic 
degrees equal to 20.0 people for Spain and 17.6 people for Brazil (see insets of Fig. 3A,B).

Beyond the previous static representation, our data allow us to investigate dynamical patterns associated 
with the growth of these corruption networks over time. To do so, we create time-dependent networks of people 
involved in corruption scandals up to a given year. Then, by increasing this threshold year, we observe a process 
of network growth in which new nodes and edges among new and old nodes emerge year after year due to 
the discovery of new scandals. Using this time-varying representation, we first ask whether the approximated 
exponential degree distribution holds for all years. We have fitted the exponential model to each stage of our 
networks via the maximum-likelihood method, and the results indicate that the degree distributions are in good 
agreement with the exponential distribution for all years of both Spanish and Brazilian networks. Figure 3A,B 
show the complementary cumulative degree distributions divided by the characteristic degree (insets depict 
the degree distributions for the latest network stage), where the linear behavior on the log-linear scale and the 
good quality collapse of the distributions support the exponential hypothesis. Moreover, Fig. 3C,D depict the 
evolution of the characteristic degree of our corruption networks. We observe significant variations in earlier 
network stages followed by an approximately steady characteristic degree in later stages that is surprisingly 
similar for the two countries.

We have also investigated how the size of the main components of our corruption networks changes over 
time. Figure 4A,B show the evolution of these quantities for the giant and second-largest components, where we 
find abrupt changes between particular years. For the Spanish network, the giant component steeply increases 
between 2011 and 2012, while the second-largest component abruptly shrinks during the same time interval. 
The Brazilian network exhibits similar patterns between the years 2004 and 2005, as also reported in Ref.19. This 
behavior is qualitatively similar to what happens in percolation transitions28 and indicates the existence of a 
coalescence-like process of network components. Indeed, by visualizing snapshots of our corruption networks 
(Fig. 4C,D), we discover that the emergence of new political scandals involving a few recidivist agents causes the 
abrupt changes observed in the largest components.

A B

Figure 2.   Visualization of the corruption networks formed by people involved in political scandals in (A) 
Spain and (B) Brazil. In both networks, nodes represent people and the edges among them indicate individuals 
engaged in the same corruption case. The colors refer to the modular structures of these networks estimated by 
the infomap algorithm26,27.
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As we have already shown, the latest stage of these networks displays a modular structure in which two or 
more scandals are usually merged into a single network module (Fig. 2). We now ask whether this behavior 
is particular to later network stages or a more general property of different stages of corruption networks. To 
answer this question, we examine the modular structure of these networks year after year using the infomap 
algorithm26,27 and determine the association between the number of network modules and the total of corrup-
tion scandals. While there is no fail-safe method for community or modular structure detection in networks29,30, 
we use the infomap due to its computational efficiency and good performance in benchmark tests with planted 
partition models29,30; however, we find similar results with modularity maximization or stochastic block mod-
els. Figure 5A,B show that the number of network modules grows linearly with the total of political scandals 
with similar rates for both countries (0.744 modules per scandal for Spain and 0.626 modules per scandal for 
Brazil). Thus, despite the underlying complexity of corruption processes, the structure of corruption networks 
approximately preserves the ratio between number of modules and scandals over their entire growth process. It 
is also worth remarking that this precise balance between modules and scandals is driven by the emergence of 
recidivist agents responsible for connecting different political scandals.

The dynamics of the largest network components and the linear association between modules and scandals 
exposed the critical role recidivist agents have on the structure of these corruption networks. To further under-
stand the emergence of these special agents, we have investigated how the number of recidivist agents increases 
as new scandals are discovered and added to our corruption networks. Figure 5C,D show the relation between 
the number of recidivist agents and the total of people for each year of the corruption networks of both countries. 
We observe that these two quantities are linearly associated, which implies that agents become recidivists at an 

Figure 3.   Degree distributions of corruption networks are approximated by exponential models with 
characteristic degrees that seem to approach a constant value with the network growth. Complementary 
cumulative distributions of the node degree divided by the characteristic degree for each year (indicated by the 
color code) of the (A) Spanish and (B) Brazilian networks. The insets show the degree distributions for the latest 
stage of the network of each country. The approximately linear behavior of these curves on a log-linear scale and 
the good quality collapse of the distributions indicate that the exponential model approximates well the degree 
distributions. Evolution of the characteristic degree for the (C) Spanish and (D) Brazilian corruption networks. 
The markers indicate the maximum-likelihood estimate of the characteristic degree in each year and the error 
bars stand for 95% bootstrap confidence intervals.
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approximately constant rate over the years. By fitting a linear model to the association between the number of 
recidivist agents and the total of people, we find the recidivism rate to be 0.090± 0.001 recidivists per agent for 
Spain and 0.142± 0.003 recidivists per agent for Brazil. These rates indicate that we expect to find about nine 
recidivists every hundred corrupt agents in the Spanish network. In comparison, the Brazilian network has 
about fourteen recidivists per hundred corrupt agents. Moreover, the higher recidivism rate observed for Brazil 
partially explains why the Brazilian network is denser and characterized by a lower average shortest path length 
than the Spanish counterpart.

Motivated by our empirical findings and the commonalities between the Spanish and Brazilian networks, 
we propose a simple model describing these corruption networks. This model starts with an empty network 
that grows by including complete graphs representing political scandals at each iteration. The number of people 
or the size of these complete graphs (s) is randomly drawn from an exponential distribution (P) to mimic the 
empirical behavior (Fig. 1), that is, P(s) ∼ e−s/sc , where sc represents the characteristic size of corruption scan-
dals (empirically, sc ≈ 7 people). We consider that part of the agents added to the network at each iteration are 
recidivists. By following the empirical behavior (Fig. 5C,D), we assume the number of recidivists (r) to increase 
linearly with the total number of agents (n) via r = αn− β , where α is the recidivism rate and β > 0 controls 
the minimal number of people necessary for the emergence of the first recidivist agents. We keep track of the 
number of recidivists during the network growth process, and when new recidivists emerge, we randomly select 
nodes already present in the network to become recidivists and make them belong to the next scandal (complete 
graph) added to the network. Moreover, when selecting nodes for representing recidivist agents, we can select 
nodes that were already recidivists with a small probability p or nodes that will become recidivists for the first 
time with probability 1− p . This last procedure allows us to control the number of agents involved in more than 
two corruption scandals and reproduce the empirical behavior as about 2.5% of all agents of both Spanish and 
Brazilian networks fit this condition.

We have generated networks using this model for different parameters and observed that the recidivism 
rate α is the most relevant parameter for the network structure. Because of this, we have fixed sc = 7 , β = 12 , 
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Figure 4.   Corruption networks grow by a coalescence-like process of network components. Evolution of the 
size of the giant component (circle) and second-largest component (square) of the (A) Spanish and (B) Brazilian 
corruption networks. We observe that these quantities undergo sudden changes between specific years (2011–
2012 for Spain and 2004–2005 for Brazil) characterized by an abrupt increase in the giant component and an 
abrupt decrease in the second-largest component. Snapshot visualizations of the network before and after the 
abrupt changes in the largest components of the (C) Spanish and (D) Brazilian networks. We observe that these 
changes are associated with a coalescence of network components caused by the emergence of new scandals 
(new nodes are colored in gray) involving a few recidivist agents.
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and p = 0.025 (values close to their empirical counterparts) and explored the network behavior for different 
values of α . To do so, we grow one thousand networks with one thousand iterations each (that is, by adding 1000 
complete graphs) for 50 values of α uniformly distributed between 0 and 1. Using this ensemble of networks, we 
evaluate the average fraction of the giant component f (the number of nodes belonging to the largest component 
divided by the total of nodes) at the latest network stage as a function of the recidivism rate α . Figure 6 shows 
this analysis and three examples of simulated networks for α = 0 , α = 0.065 and α = 1 . We note that small 
values of α produce very fragmented networks with giant components comprising only a small fraction of the 
network nodes. Conversely, values of α close to 1 generate very connected networks with a chain-like structure 
and a giant component incorporating almost all network nodes. Similar to what happens in percolation transi-
tions, we observe that the fraction of the giant component (f) steeply increases between α = 0 and α = 0.1 . By 
calculating the derivative of the association between f and α (inset of Fig. 6), we find a distinct peak that defines 
a critical recidivism rate αc = 0.065 capable of generating networks visually similar to the empirical corruption 
networks (see the network example in Fig. 6). Interestingly, this critical recidivism rate is close to the empiri-
cal rates estimated for the Spanish ( α = 0.09 ) and Brazilian ( α = 0.14 ) networks. We have also investigated 
the model behavior near this critical point and the results suggest that this transition from very fragmented to 
chain-like networks has a continuous nature (see Fig. S5) similarly to classical percolation transitions. Thus, cor-
ruption processes seem to operate close to a critical recidivism rate below which the network becomes entirely 
fragmented and above which it is overly connected.

To compare our model with the empirical results, we have simulated an ensemble of one hundred networks 
using the recidivism rate of each country while fixing all other parameters ( sc = 7 , β = 12 , and p = 0.025 ). 
In these simulations, the number of complete graphs added to the networks is set equal to the total number of 

Figure 5.   Evolution of the modular structure and the emergence of recidivist agents in corruption networks. 
Relationship between the number of network modules and the total of political scandals for each year of the (A) 
Spanish and (B) Brazilian corruption networks. The dashed lines are linear models adjusted to data, indicating 
that 0.744± 0.004 network modules are created per scandal in the Spanish network, while 0.626± 0.015 
network modules per scandal emerge in the Brazilian network. Association between the number of recidivist 
agents and the total number of people for each year of the (C) Spanish and (D) Brazilian corruption networks. 
The dashed lines represent a linear model adjusted to data, where we find 0.090± 0.001 and 0.142± 0.003 
recidivists per agent in the Spanish and Brazilian networks, respectively.
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scandals in each dataset (437 for Spain and 65 Brazil). Besides generating very similar networks to their empiri-
cal counterparts (Fig. S1), our model approximately replicates several structural properties of real corruption 
networks. When comparing the simulated results (average value ± standard deviation over the ensemble) with the 
Spanish network, we find very similar clustering ( 0.949± 0.003 vs 0.908 for the entire network and 0.945± 0.004 
vs 0.939 for the giant component) and assortativity coefficients ( 0.76± 0.01 vs 0.74 for the entire network and 
0.69± 0.02 vs 0.59 for the giant component), and somewhat comparable values for density ( 0.0042± 0.0002 vs 
0.007 for the entire network and 0.0084± 0.0009 vs 0.025 for the giant component) and the average shortest 
path ( 9.17± 1.01 vs 5.11 for the giant component). For the Brazilian network, the model yields similar clustering 
coefficients ( 0.938± 0.008 vs 0.925 for the entire network and 0.938± 0.007 vs 0.929 for the giant component), 
assortativity coefficients ( 0.67± 0.03 vs 0.53 for the entire network and 0.63± 0.04 vs 0.50 for the giant com-
ponent), and densities ( 0.030± 0.003 vs 0.044 for the entire network and 0.043± 0.008 vs 0.067 for the giant 
component), and somewhat comparable average shortest paths ( 4.87± 0.55 vs 2.99 for the giant component). 
The degree distributions of the simulated networks are also in good agreement with exponential distributions, 
but with characteristic degrees somewhat smaller than the empirical ones ( 14.00± 0.66 vs 20.0 for Spain and 
14.84± 0.72 vs 17.6 for Brazil).

Figure 6.   Corruption networks seem to operate close to the critical recidivism rate of our model. The 
continuous curve in the main panel shows the average fraction of the giant component of simulated networks (f) 
as a function of the recidivism rate ( α ), and the shaded region represents the minimum and maximum values of 
f estimated from one thousand model realizations for each α . The inset in the main panel depicts the derivative 
of f with respect to α , and the dashed vertical line (also shown in the main panel) indicates the critical recidivism 
rate αc = 0.065 of our model, a value that is not too far from the recidivism rates of the Spanish ( α = 0.09 ) and 
Brazilian ( α = 0.14 ) networks. The three visualizations surrounded by dashed paths represent typical simulated 
networks for α = 0 , α = αc , and α = 1 . We observe that α = αc (upper network visualization) generates 
networks visually similar to the empirical corruption networks.
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In addition to static properties, we have also verified that our model replicates the growth process of cor-
ruption networks. In particular, we find that the degree distributions of simulated networks are well-described 
by exponential distributions with characteristic degrees approaching a constant value for later network stages 
(Fig. S2). The evolution of simulated networks is also marked by the coalescence of components, which in turn 
reproduces the abrupt changes observed in the size of the largest and second-largest components (Fig. S3). 
Simulated networks also display modular structures that often merge two or more scandals into single network 
modules. Moreover, the association between the number of network modules and scandals is linear over the 
entire growth of simulated networks (Fig. S4), although the average ratios between number of modules and scan-
dals estimated from simulations with the recidivism rates of Spain and Brazil ( 0.813± 0.001 and 0.783± 0.001 , 
respectively) are slightly larger than the empirical ones ( 0.744± 0.004 and 0.63± 0.02 , respectively).

While the agreement between properties of empirical and simulated networks is far from perfect, it remains 
surprising that such a simple model qualitatively replicates all features of our corruption networks, including 
dynamical properties. Part of the discrepancies between data and model (such as the smaller characteristic degree 
and the larger average shortest paths obtained in the simulations) can be attributed to the deviations observed 
between the exponential distribution and the size distribution of scandals (Fig. 1). However, these deviations 
also indicate that other processes are likely to affect the structure of corruption networks. An exciting possibility 
that future investigations can explore has to do with the fact that our model does not distinguish among corrupt 
agents. This distinction is crucial in the present context of rising political polarization31–34, where one may expect 
partisan and ideological divisions to be also reflected in political corruption and thus on the structure of cor-
ruption networks. Besides the likely importance of this and other mechanisms related to corruption processes, 
our findings indicate that the recidivism of a small fraction of corrupt agents is crucial for the structure and 
dynamics of corruption networks.

Discussion
We have presented an extensive characterization of static and dynamical properties of corruption networks 
related to political scandals in Spain and Brazil. Despite important differences in the political systems of both 
countries, our results have shown that the Spanish and Brazilian corruption networks share surprisingly similar 
structural and dynamical properties. This universality indicates that corruption processes share universal features 
that are independent of social and cultural differences among countries, as well as independent of individual psy-
chological attributes of corrupt agents. Moreover, we have proposed a simple model in which the recidivism rate 
is the main ingredient to strengthen this hypothesis. Simulations of our model not only qualitatively replicate all 
properties of the empirical networks but also indicate that corruption processes appear to operate near a critical 
recidivism rate. Corruption networks simulated below this critical recidivism rate are completely fragmented, 
while networks generated above this critical value become overly connected.

Taken together, empirical results and simulations indicate that a few recidivist agents typically play a promi-
nent role in corruption activities. These agents act as bridges among minor corrupt groups and possibly engage 
and coordinate them to work in more extensive and often much more harmful corruption processes to society. 
Considering the many adverse impacts of corruption on democracy35, economy36,37, and on the trust in the rule 
of law38, our findings indicate that public policies and operational law enforcement activities focused on decreas-
ing corruption recidivism, such as increasing the severity of sentences, swift legal processes, and strict serve of 
sentences, are likely to have a significant negative impact on this type of organized crime by reducing the overall 
connectivity of corruption networks.

However, since our results are based on corruption scandals of two western countries, and despite the dif-
ficulties in finding information about corruption processes, future work should be, if at all possible, dedicated 
to other countries in order to further strengthen or limit the universalities that we report. Moreover, the lack of 
quantitative agreement between our model and some empirical properties of corruption networks suggests that 
factors other than recidivism may affect the structure of political corruption networks. These factors may include 
political polarization, demography, agent adaptation, and memory effects. There is thus certainly room for the 
development of other, likely more complex, network models to describe organized crime. Another limitation of 
our work concerns the information quality used to create corruption networks. Despite the best efforts to make 
these data reliable, as it happens with all data related to illegal activities, ours may suffer from two types of bias. 
First, being named in a corruption scandal does not guarantee that a particular person has been convicted of 
a crime or done anything illegal. Second, it is likely that some people involved in corruption scandals have not 
been identified during investigations. The compilation of data on corruption will always suffer, at least to a certain 
degree, from such limitations. Still, we have found that our empirical findings are very robust against randomly 
removing a fraction of scandals from our data set (see Figs. S6–S9), indicating that the general patterns of cor-
ruption processes uncovered by our work are not affected by such biases. Thus, and despite these limitations, we 
believe that our work contributes significantly to better understand organized crime as a complex networked 
system, and to identify the essential features of corruption networks that may lead to better criminal policies 
and more efficient law enforcement interventions.

Data availability
The datasets used during the current study are freely available as a supplementary file in Ref.19 (the Brazilian cor-
ruption network) and can be download from the web page casos-aislados.com (the Spanish corruption network).
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