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ABSTRACT Recently, the number of Battery Energy Systems (BESs) connected to the grid has grown
significantly. These assets can alleviate some operational issues such as demand surges and occasional power
fluctuations associated with the Renewable Energy Sources (RESs) connected to the grid. Nonetheless, both
overcharging and frequent usage severely affect their health status and shorten their life expectancy. In this
paper, an Energy Management System (EMS) framework with a linearised algorithm and in-depth analysis
on BES life extension is presented, which optimises the techno-economic aspects of an Active Distribution
Network (ADN) connected to RESs. By applying a mathematical linearisation formulation, a Mixed-Integer
Linear Programming (MILP) model is proposed for linearising the Optimal Power Flow (OPF) problem.
This technique, which has the merit of fair accuracy while having high speed, is used for scheduling BESs
to increase their durability and decrease grid costs. To consider the inherent uncertainty associated with
demand and RES generation, a two-stage Stochastic Programming (SP) method is implemented in the
proposed model. In terms of battery Loss of Health (LoH) assessment, a linearised battery lifetime method
is introduced. Ultimately, a modified 33-bus radial distribution test system with a day-ahead Real-Time
Pricing (RTP) program was chosen to apply the proposed algorithm and assess its efficiency.

INDEX TERMS Energymanagement system (EMS), optimal power flow (OPF), linearised AC-OPF, battery
scheduling, battery degradation, rain-flow cycle counting, day-ahead pricing.

NOMENCLATURE
A. INDICES & SETS
t Indice of time interval.
t, n Indices of time intervals/number of days.
ω, bat Indices of scenarios/energy storage

systems.
i, j, k Indices of network buses.
X ,Y Indices for lifetime curve piecewise lin-

earisation.
�T , �ω Sets of time intervals/scenarios.
�bat , �B Sets of network buses/energy storage

systems.
3DoD,3CtoF Horizontal and vertical axes sets for piece-

wise linearisation of battery lifetime curve.
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B. PARAMETERS
Rij,Xij,Zij Resistance/Reactance/Impedance of the

line between bus i and j [�].
Ploadi,t,ω,Q

load
i,t,ω Active and reactive load demand in bus i in

scenarioω at time t [kW ].
V ,V Maximum/minimum limits of bus voltages

[V ].
Iij Maximum limit of line current between bus

i and j [Amp].
SoC, SoC Maximum/Minimum state of charge limit

of energy storage systems [kW ].
Pch,Pdch Maximum charging/discharging limit of

energy storage systems. [kW ].
ηch, ηdch Charging/Discharging efficiency of energy

storage systems [-].
Pricei,t Electricity unit price of substation located

in bus i at time t [$/kW ].
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CBES
bat Purchasing cost of bat energy storage sys-

tem [$].
λ Piecewise linearisation segments for lin-

earising AC-OPF model [-].
pω Probability of scenario ω [-].

C. BINARY VARIABLES
qij,t,ω Line power exchange between bus i and j [-].

D. VARIABLES
OF Expected objective function value [$].
CostNetω Network operating cost in scenario ω [$].
CostBES operating cost of energy storage systems in

the simulation horizon [$].
Pssi,t,ω,Q

ss
i,t,ω Active/Reactive power distributed from

Substation on bus i in scenario ω at time
t [kW/kVar].

Pij,t,ω,Qij,t,ω Active/Reactive power transmitted from
bus i to j in scenarioω at time t [kW/kVar].

Iij,t,ω Current of bus i to j in scenario ω at time t
[Amp].

Vi,t,ω Voltage of bus i in scenario ω at time t [V ].
1Vij,t,ω Voltage difference of bus i and j in scenario

ω at time t [V ].
Pchbat,t ,P

dch
bat,t Charging/Discharging Power of bat energy

storage system at time t [kW ].
SoCbat,t State of charge of bat energy storage sys-

tem at time t [-].
fij,t,ω Current Squared of bus i to j in scenario ω

at time t [Amp2].
ui,t,ω Voltage Squared of bus i in scenario ω at

time t [V 2].
η, ζ Auxiliary variables for linearisation [-].
DODbat,t,n Depth of discharge of bat energy storage

system at time t in day n [-].
LoHbat,t,n Loss of health of bat energy storage system

at time t in day n [-].
Lifebat Estimated lifetime of bat energy storage

system [years].

I. INTRODUCTION
In recent years, the use of Renewable Energy Sources (RESs)
has expanded substantially in both small-scale and large-
scale integration. Generated electricity from these abundant
sources, such as wind and solar energy, can alleviate many of
the issues that power grids are struggling with today. Firstly,
by generating electricity inside cities and adjacent to load
demand centres, these assets have a huge impact on reducing
distribution system network losses. Secondly, by providing
a proportion of the increasing electricity demand, they can
lower costs for network expansion or postpone it at the very
least. While being beneficial to a large extent, the usage of
these resources has introduced new challenges. Unlike their
conventional fossil-fuel-based rivals, the stochasticity and

unpredictability of these sources have introduced new imped-
iments in the energy management of power networks [1]–[3].
The output power of RESs primarily depends on the weather
conditions and cannot be accurately predicted [4].

In the last few decades, the technological advancement of
Battery Energy Systems (BESs) along with energy conver-
sion systems has made them worthwhile in power grid appli-
cations. These units are capable of surmounting numerous
current power system issues that come with the utilization of
RESs, such as high demand peaks, poor power quality, and
voltage fluctuations [5]. As a viable solution to these issues,
BES units can be scheduled to charge in off-peak hours and
discharge in peak hours, which benefits the system in terms
of reducing line congestion as well as operating costs [6].
Frequent usage, however, alongwith overcharging or overdis-
charging, does harshly harm their health conditions and leads
to a reduction in their lifetime [7], [8]. Thus, an optimal
charging schedule and strategy as well as an accurate lifetime
model are required to not only reduce grid operation expenses
but also result in BES’s longer lifespan.

A. LITERATURE REVIEW
In the existing literature, a number of algorithms are used
to model BES, which are different in terms of accuracy,
speed, and practicability, and each has unique advantages and
flaws. Firstly, Peukert Lifetime Energy Throughput (PLET)
is one method, which is utilised in [9], where BES sizing and
lifetime, as well as grid costs, are the main objectives. This
model is also taken into account in [10], [25] with simplifying
assumptions, with goals such as optimally operating network
and prolonging battery life. However, this method, which
measures battery loss of health by the output current in each
cycle, was first introduced for small-scale batteries and is not
completely appropriate in terms of accuracy for power grid
applications. Secondly, the Ampere-hour throughput model
is widely considered in the existing literature. In [23], this
method is used on a residential network and small-scale units
to anticipate the life depreciation of electric vehicle batteries
with the objective of prolonging their life and decreasing
customers’ electricity costs. Compared to other BES lifetime
methods, however, this model is less accurate. Therefore,
in some research, such as [26] and [27], a modified version
of this model with higher precision is used, particularly for
Li-ion batteries in BES and wind farm correlation. Addition-
ally, this method is implemented in [28] to anticipate the end
of life of Li-ion batteries and assess their economic bene-
fits. Finally, another technique to assess the BES lifetime in
various conditions is the Rain-Flow Cycle Counting (RFCC)
model. By conducting several laboratory experiments, the
RFCC and Ah throughput models are compared in terms of
accuracy in [29]. According to this reference, while being
more complicated, the RFCCmethod has the benefit of higher
precision, since it considers more stress factors (destructive
inherent and ambient elements that a battery faces in its
lifespan). In [11], it is used for lead-acid batteries, and the
simulation required data is obtained from the manufacturer’s
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TABLE 1. A comparison taxonomy of the reviewed papers.

datasheets. In [24], this method is taken into account in
an operational problem with the objective of extending the
BES lifetime and lowering operating costs. In this reference,
a plain DC-OPF is introduced, which does not consider net-
work losses thoroughly. In [12], [13], with some modifica-
tions to the model details, this approach is used for battery life
extension to achieve higher accuracy and lower complexity.

Another substantial element that needs to be addressed
is future demand and supply predictions, for in real-world
conditions, the output power of RESs and day-ahead cus-
tomer demand are uncertain variables. Stochastic program-
ming is widely used to tackle this issue by considering
highly probable scenarios for these variable events in power
grids [30]–[33]. A stochastic problem with a two-stage solu-
tion with uncertain load demands, PV, and wind generation
is taken into account in [34]. In addition, a large number of
scenarios (which are highly probable) are considered, and a
data clustering method is implemented to reduce their quan-
tity and solve them in two stages. In [10], a neural-network-
based stochastic approach is taken into account to anticipate
future load demand and PV generation.

B. CONTRIBUTIONS SUMMARY
Based on the reviewed literature and to the authors’ best
knowledge, a gap exists in the modelling techniques and
methods that are utilised in the existing research works.
Hence, in this work, an EMS framework with linearised
approach and in-depth analysis on BES life extension is
presented which optimises the techno-economic aspects of
an Active Distribution Network (ADN) connected to BESs
and RESs. This includes a dual-objective model to determine

the optimum scheduling scheme for BESs both to minimize
electricity purchasing costs from the perspective of Dis-
tribution System Operators (DSOs) and to maximize the
life expectancy of BES units. The novelties in this paper
include, but are not limited to, formulating the problem
as a stochastic, Mixed-Integer Linear Programming (MILP)
model, meaning that all non-linear elements of the problem
are linearised using mathematical techniques. Furthermore,
a satisfactory, accurate, rapid, and linearised AC power flow
method is adopted for the first time in the context of schedul-
ing BESs and distribution EMSs. These qualities in solving
energy management problems—accuracy and speed—are of
high importance, especially for DSOs to schedule charg-
ing/discharging based on the future energy price signal and
predicted renewable generation to meet load demand, max-
imise revenue as well as minimise costs, and shave demand
peaks as much as possible. Regarding numerical studies,
to illustrate the viability of this methodology, the proposed
algorithm is tested on a manipulated radial network. Table 1
presents a taxonomy to highlight the novelties of the present
paper compared to previous research. To summarise, themain
contributions of this paper are as follows:

1) Developing a two-stage stochastic optimisation frame-
work with the K-means clustering method as the reduc-
tion algorithm to tackle the uncertainties associated with
the load demand and renewable generations -solar and
wind energies- considering historical weather conditions
and time of the year for a one-year period.

2) Implementing an epsilon-relaxed linearised ACOptimal
Power Flow (OPF) model on a radial network for the
first time in the BES scheduling context. In contrast to
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previously introduced linear OPFs in the existing litera-
ture, this method contains no binary variable. As a result,
with relatively high accuracy, it has less execution time,
which makes it a suitable choice for implementation in
real-world large-scale distribution networks.

3) Implementing a linearised RFCC method for battery
life expectancy estimation. Extending existing work,
a piecewise linearisation technique is taken into account
to formulate the battery life based on its discharge rate.
As a whole, by adopting this technique, we developed
a MILP formulation, achieving a globally optimal solu-
tion which cannot be achieved in a Non-Linear Program-
ming (NLP) solution.

The remainder of this paper is organised as follows:
Section II describes the general concept of the proposed
model. Section III presents the objective function and for-
mulation of the model. The BES units’ lifetime model is
explained in Section IV. The chosen stochastic approach is
presented in section V. In Section VI, the details of the pro-
posed case study based on a modified 33-bus radial distribu-
tion system are depicted, and simulation results are presented.
Conclusions are made in Section VII and the future possible
developments of this paper are given.

II. MODEL OUTLINE
The general framework of the proposed model is illustrated
in Fig. 1. According to this model, BESs are employed as
assets to shift loads from peak hours to off-peak ones. To this
end, these resources are being controlled by a centralised
EMS which determines when they should be connected to
the distribution network and when it is more economical to
isolate them. It also dictates charging/discharging patterns
and rates for BESs when they are connected to the network.
These decisions are made based on various variables such
as energy prices (provided by the DSO throughout the day),
network characteristics and constraints, and the predicted
loads of the customers as well as renewable generations.
The main goal of the system is to schedule the BESs to not
only extend their lifetime but also to decrease the network
operating costs as much as possible.While there are a number
of studies in the current literature using control algorithms in
event-triggered fuzzy as well as neural-network-based event-
triggered adaptive methods in [35], [36], this paper focuses
on the optimisation approaches in energy management to
optimally schedule BESs in an ADN.

Two-stage stochastic programming is engaged to tackle the
uncertainty of the problem. Here, renewable generation and
load demand are considered as uncertain variables, mean-
ing that they can take different quantities in each scenario.
To generate realistic scenarios based on historical data, initial
data including wind speed, solar irradiance, and load profile
are required, which are extracted from historical real-world
databases. Subsequently, based on the inherent characteris-
tics of each data set, an appropriate probability distribution
function is chosen, and scenarios are generated accordingly.

FIGURE 1. Energy storage system scheduling in the proposed framework.

To manage a large number of scenarios, the K-means clus-
tering method is used to shrink the number of scenarios for
calculating first-stage variables. While reducing scenarios
occasionally leads to data loss and incorrect density of data in
each region, this method retains the distribution of the main
scenarios in each region to a great degree, making the output
reduced scenario data set more reliable. Finally, by consid-
ering the first-stage variables as constants and solving the
stochastic problem with the main scenarios, the second-stage
variables and their expected values are computed. Fig. 2
illustrates the main algorithm of the proposed model.

Another significant element that needs to be addressed
in operational problems is the OPF method. Several exist-
ing methods are focused on AC non-linear iterative mod-
els [37], [38]. Nevertheless, these methods—while having
the advantage of accuracy—are considerably slow in solving
time, particularly for large networks. On the other hand,
despite having the advantage of high solving speed, the linear
DC-OPF method is not always the best option. Since it does
not take bus voltages, network losses, and reactive power
into account, the results of this solution are not genuinely
accurate. To get the best out of both, several linearised
AC-OPF methods [14], [39]–[41] were assessed. These are
formulated and compared with each other on some criteria,
such as calculation speed, accuracy, and compatibility with
distribution networks. While some of these methods were
more accurate, the solving time and complexity of imple-
mentation were burdensome in some cases. The algorithm
in [14], which is based on minimal approximations, was
chosen to be implemented since it was introduced mainly
for distribution networks and is rapid in calculation while
having fair precision. Additionally, it results in a glob-
ally optimal solution which cannot be obtained by NLP
methods. This model was formerly introduced for network
reconfiguration.
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FIGURE 2. Problem solving algorithm.

III. PROBLEM FORMULATION
In this paper, we undertake a MILP formulation to solve the
proposed problem. The main goal is to calculate the optimal
charging/discharging power as well as its pattern throughout
the day such that it can bring the minimum cost to the DSO
while maximizing the life span of BESs. Later in this section,
different aspects of the formulation, including objective func-
tion, network constraints, cost-based formulas, and the linear
AC-OPF model, are explained.

A. OBJECTIVE FUNCTION
In the proposed bi-objective problem, the operating cost
of the system is considered as the main objective. This
includes the cost of energy purchased from the upstream
network by the DSO. The second objective is the lifetime

of BESs, which here is converted to a price-based term to
match the unit of the main objective. The complete objective
function is defined by (1) which is a cost-based equation and
is required to be minimised in the optimisation problem.

min OF =
n∑

ω∈�ω

pω
[
CostNetω + Cost

BES
]

(1)

It should be noted that since we introduced stochastic
programming, second-stage cost terms take scenario indices.
Nonetheless, CostBES (as a first-stage variable) is calcu-
lated with decreased scenarios and appears as fixed in the
second-stage calculation, and therefore, it does not take
a scenario index. The operating cost of each scenario is
multiplied by its chance of occurrence, and finally, the
expected cost of operation is calculated as the ultimate
objective function. Network costs are explained in the next
subsection, and CostBES is comprehensively explained in
section IV.

B. GRID COSTS AND BES CONSTRAINTS
The upstream network cost equations are shown in (2),where
the electricity unit price, Pricei,t , is considered as a con-
stant parameter. Other constraints regarding BES modelling
are shown in (3)-(6). Equation (3) is the operating con-
straint which calculates the SoC of each BES through-
out the day based on its initial, input, and output energy.
Equation (4)-(6) are inequalities regarding battery charg-
ing and discharging limits and battery high and low energy
limits.

CostNetω =

∑
t∈�t

∑
i∈�B

PGi,t,ω1t Pricei,t ∀ω ∈ �
ω (2)

SoCbat,t = SoCbat,t−1 + η
chPchbat,t1t −

1
ηdch

Pdchbat,t1t

∀bat ∈ �bat , ∀t ∈ �T (3)

0 ≤ Pdchi,t ≤ Pdch ∀i ∈ �
B, ∀t ∈ �T (4)

0 ≤ Pchi,t ≤ Pch ∀i ∈ �
B, ∀t ∈ �T (5)

SoC ≤ SoCbat,t ≤ SoC ∀bat ∈ �bat , ∀t ∈ �T (6)

C. LINEARISED AC-OPF
In this work, the OPF problem is formulated as a lin-
earised AC-OPF model, which was previously introduced
in [14]. Nonetheless, we implemented this formulation for
BES scheduling for the first time. All equations associated
with the proposed network model are shown as (7)-(18).
Equation (7) and (8) are related to supply and demand balanc-
ing considering renewable generations for active and reactive
power, respectively. Equation (9) calculates bus voltages,
(10) and (11) are inequalities associated with maximum and
minimum limits of voltages, and (12) specifies the current
limit of network lines. Equation (13)-(15) and (16)-(18) are
two sets of linear equalities and inequalities that linearise the
expression P2 + Q2

= S2. These equations are thoroughly
explained in [14] and in [42]. It is worth mentioning that λ,
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the piecewise linearisation parameter for OPF, is set to 6.

PGi,t,ω + P
Wind
i,t,ω + P

PV
i,t,ω +

∑
ki∈�L

[
Pki,t,ω − Rkifki,t,ω

]
−

∑
ij∈�L

Pij,t,ω − (Pchbat,t − P
dch
bat,t ) = PLoadi,t,ω

∀bat ∈ �bat ,∀ω ∈ �ω, ∀i ∈ �B, ∀t ∈ �T(7)

QGi,ω +
∑
ki∈�L

[
Qki,t,ω − Xkifki,t,ω

]
−

∑
ij∈�L

Qij,t,ω = QLoadi,t,ω

∀ω ∈ �ω, ∀i ∈ �B, ∀t ∈ �T (8)

ui,t,ω − uj,t,ω = 2
(
RijPij,t,ω + XijQij,t,ω

)
−
(
Zij
)2fij,t,ω +1Vij,t,ω

∀ω ∈ �ω,∀ij ∈ �L ,∀t ∈ �T (9)(
V
)2
≤ ui,t,ω ≤

(
V
)2
∀ω ∈ �ω, ∀i ∈ �B, ∀t ∈ �T

(10)∣∣1Vi,t,ω∣∣ ≤ (V − V ) (1− qij,t,ω)
∀ω ∈ �ω, ∀ij ∈ �L , ∀t ∈ �T (11)

0 ≤ fij,t,ω ≤
(
I
)2
wij,t ∀ω ∈ �ω, ∀ij ∈ �L ,

∀t ∈ �T (12)

ηl ≥
∣∣Qij,t,ω∣∣ , ξl ≥

∣∣Pij,t,ω∣∣
∀ω ∈ �ω, ∀ij ∈ �L , ∀t ∈ �T ,∀l = 1 (13)

ξl = ξl−1 cos
( π

2l+1

)
+ηl−1 sin

( π

2l+1

)
ξl = ξl−1 cos

( π

2l+1

)
+ηl−1 sin

( π

2l+1

)
∀l = 2, . . . , λ (14)

ξl ≤ Sij,t,ω ηl ≤ ξl tan
( π

2l+1

)
∀ω ∈ �ω,∀ij ∈ �L ,∀t ∈ �T ,∀l = (λ+ 1)

(15)

ηl ≥
∣∣Sij,t,ω∣∣ , ξl ≥ ∣∣(ui,t,ω − fij,t,ω) /2∣∣
∀ω ∈ �ω,∀ij ∈ �L ,∀t ∈ �T ,∀l = 1 (16)

ξl = ξl−1 cos
( π

2l+1

)
+

ηl−1 sin
( π

2l+1

)
ξl = ξl−1 cos

( π

2l+1

)
+

ηl−1 sin
( π

2l+1

)
∀l = 2, . . . , λ

(17)

ξl ≤
(
ui,t,ω + fij,t,ω

)
/2, ηl ≤ ξl tan

( π

2l+1

)
∀ω ∈ �ω, ∀ij ∈ �L , ∀t ∈ �T , ∀l = (λ+ 1)

(18)

IV. BATTERY MODELLING
Generally, a battery’s life expectancy is dependent on the
number of times it has been charged (or discharged) in its
lifetime. Apart from that, the RFCC method implies that the
lifetime of a chemical-based battery is dependent on other
stress factors, including, but not limited to, the total capacity
of the battery, the number of incomplete cycles, the battery’s
discharging current, temperature, and charging method. The
more stress factors are considered, the greater the accuracy
of the model will be. Here, it is assumed that the battery
ambient temperature is fixed at 25 degrees Celsius. With fair
approximation, several stress factors, such as battery capacity,
number of discharging cycles, discharging power, and rate
of discharge, are taken into account. Less energy exchange
between a BES and the connected network can lead to its
longer life span. Additionally, the lifetime is also dependent
on other factors such as usage patterns, meaning that during
a significant rate of charge/discharge in a given time interval,
the battery’s state of health degrades at a quicker pace. As a
consequence, life expectancy is affected more severely. As a
solution, if a high-capacity BES is available, the energy could
be exchanged in a gradual and steady manner, which results
in higher efficiency and a longer BES lifespan.

To follow the life depreciation of BESs, a battery life esti-
mationmodel based on [29] is introduced. In this process, bat-
tery life depreciation ismeasured by using the cycle-to-failure
versus Depth of Discharge (DoD) curve. Fig. 3a portrays an
example Li-ion battery lifetime curve which is employed in
this work [43]. The RFCC algorithm, which was originally
introduced to track material fatigue, is implemented to assess
each cycle’s effect on the BES lifetime [44].

This battery life assessment algorithm assumes that if the
mentioned lifetime curve for DoD of k shows N cycle-to-
failure, the storage unit can charge or discharge N times
before the end of its life. As a result, if the battery undergoes
a cycle with a DoD of k , 1/N of its life is lost, and (N−1)/N ,
which we call the remaining life fraction, is the fraction that
represents the remaining battery life. As this process contin-
ues, when the remaining life fraction reaches zero, the battery
is considered to stop operating and this stage is regarded as
the battery’s end of life. Formerly, the RFCC technique has
been successfully implemented for battery lifetimemodelling
in [11], [12], [29], [45].

To include any fractional charge cycles (which were not
available in the manufacturer’s datasheet) and their impact
on battery life expectancy, the mentioned lifetime curve was
extrapolated using a two-term exponential curve fitting equa-
tion. The formula and the results of the calculation are shown
in (19), and Fig. 3a illustrates the extrapolated curve.

Cf = A eB(DoD) + C eD(DoD)

A = 166100, B = −11.11, C = 15530, D = −1.3 (19)

The BES life depreciation in each time interval can be
calculated by a piecewise linearised equation which is shown
in (20). This linearisation of the cycle-to-failure versus DoD
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FIGURE 3. (a) Battery lifetime data and extrapolated curve which is used
in this paper [43]. (b) linearised lifetime curve for the selected battery to
be utilised in a MILP formulation.

curve is undertaken based on battery manufacturer data.
Fig. 3b depicts the original and linearised curve. It is worth
mentioning that in (20), Xi and Yi are the horizontal and verti-
cal axis data of the cycle-to-failure versus DoD curve. X1 and
Y1 are the starting points, and X2 and Y2 are the ending points
of each section, while X0 is the predetermined linearisation
step (which is assumed to be 5%). Additionally, each BES
life expectancy, as well as the deterioration cost of all of these
units, are calculated using (21) and (22), respectively.

LoHbat,t,n =
{ 1
Y2
−

1
Y1

X2 − X1

(
DoDbat,t,n − X1

)
+

1
Y1
|

X2 = X1 + X0 , X1 ≤ DoDbat,t,n ≤ X2

}
∀bat ∈ �bat ,∀t ∈ �t ,∀n ∈ �year ,

∀X ∈ 3DoD,∀Y ∈ 3CtoF (20)

Lif ebat =
1∑

n∈�year

∑
t∈�t

LoHbat,t,n
∀bat ∈ �bat (21)

CostBES =
∑

n∈�year

∑
t∈�t

∑
bat∈�bat

LoHbat,t,nCBES
bat (22)

V. STOCHASTIC PROGRAMMING
Due to the uncertain nature of input variables—load demand,
PV, and wind generation—a two-stage stochastic method is
proposed to tackle the uncertainty and fluctuation of these
variables. Naturally, more generated scenarios can lead to
a more reliable and also more accurate answer. However,
considering all possible scenarios can add to the problem’s
size and complexity, and a trade-off between accuracy and
solving speed should be considered.

FIGURE 4. (a) Probable load demand area for scenario generation under
Gaussian distribution function. (b) Probable photovoltaic generation area
in June 1st in the summer for Málaga, Spain based on the historical
irradiation data for scenario generation under Beta distribution
function [46].

FIGURE 5. (a) Wind speed data of June 1st representing the summer
season [47]. (b) wind speed probability based on Rayleigh PDF for 9:00 in
June 1st for Málaga, Spain [47].

In terms of load demand uncertainty, 100 scenarios are
generated based on a Gaussian Distribution Function (GDF).
In each time interval, the maximum deviation of 10% of the
maximum daily load is considered. The extra load in each
scenario—positive or negative—is randomly distributed to
buses that contain load demands. In Fig. 4a, the bounded area
for scenario generation of load demands is characterised by
the coloured surface.
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As for the PV generation stochasticity, the Beta Distri-
bution Function (BDF) is implemented based on the solar
irradiance data available in online databases [46]. Accord-
ing to [48], compared to other distribution functions for PV
generation outputs, this function results in more accurate and
realistic scenarios. A total of 10 scenarios are generated for
each time interval, in which every single one deviates from
80% to 105% of the mean value. The coloured surface in
Fig. 4b indicates the scenario generation domain.

Lastly, the Rayleigh Distribution Function (RDF), with a
fixed shape parameter k set to 2, is engaged to take wind
stochasticity into account. This function is a single-parameter
one, which can be used for generating accurate wind scenar-
ios [49]. The scale parameter and an RDF scenario generation
formula are depicted in (23) and (24), respectively [50].

c =

√
2
π
vm (23)

f (v) =
( v
c2

)
e−

v2

2c2 (24)

where c is the scale parameter, v and vm are wind speed and
mean wind speed, respectively. In total, 10 random scenarios
are generated based on the historical wind speed data for each
time interval. Fig. 5a illustrates wind speed captured on the
first day of summer in 2019, based on historical data [47].
Fig. 5b shows an example of wind speed probability based
on Rayleigh PDF at 9:00 on the same day with an average
wind speed of 3.7m/s. The scenarios are generated according
to the probability distribution of this curve for the mentioned
date and time and likewise for other time intervals.

The results are calculated by taking each of the 100 load
scenarios and each of the 10 renewable scenarios. As a result,
for each time interval, 10 × 100 = 1000 scenarios are
generated. In total, this will leave us with a 1000×24 scenario
matrix. A large number of scenarios lead to a complicated
problem, and usually it is shrunk to a sensible one with the
same range and distribution density as the original scenarios.
Cluster analysis has been used in many existing research
works to separate items from a set with similar inherent
specifications. In this paper, the K-means clustering method
as a type of cluster analysis is employed to shrink the number
of scenarios, since it has been widely used and tested success-
fully in previous research [34], [51], [52]. After generating
the main scenarios, a single-dimensional K-means clustering
method is employed to reduce the number of scenarios to
10 for each time interval, resulting in 10×24 scenario matrix.
In this paper, control variables in the proposed model are

divided into two groups. First-stage variables are Pchbat,t and
Pdchbat,t , which are calculated on the first program running con-
sidering a reduced number of scenarios. After the first stage of
simulation, these variables are fixed and treated as constants.
Subsequently, the problem is solved using the original sce-
narios and second-stage variables consisting of Vi,t,ω, Iij,t,ω,
Pij,t,ω,Qij,t,ω, and other variables with indexω. The expected
value ofOF is calculated using the mathematical expressions

TABLE 2. Specifications of energy storage systems.

explained in the previous section and the probability of each
scenario.

VI. SIMULATION AND RESULTS
A. CASE STUDY
In the present paper, a modified radial distribution network
(20.9 kV) with 33 buses is considered to be used as a test
system. The original network data for the simulation were
obtained from [53]. The assumed test system along with the
added components is depicted in Fig. 6. It is worth men-
tioning that RESs are considered non-dispatchable and their
generated power is consumed as it is produced.

In terms of load demand, a seasonal load profile is con-
sidered, which takes four separate curves for each season
into account. To reduce the size of demand data, the first
day of each season is assumed to represent the entire season.
Therefore, four different load profiles for Málaga, Spain (the
chosen site for our network) are obtained from [54], which are
illustrated in Fig. 7. In scenarios in which the load demands
are higher or lower than the original network [53], the excess
load demand is distributed to the buses proportionally (based
on their original load).

The electricity price is assumed to follow a market-based
RTP scheme. In this paper, two representative curves for the
entire year are considered to reduce the bulky data input, one
representing spring and summer, and the other representing
autumn and winter. The prices for the first day of summer and
winter are assumed to represent the warm and cold seasons,
respectively. These figures and data are taken from [55],
which are illustrated in Fig. 8.
According to [43], each battery packwith a 110Ah capacity

can store approximately 1.4kWh. In our proposed network,
each BES unit includes 72 battery packs, which raises the
total capacity to 100.8 kWh. According to [56], in the simu-
lation period, the BES system investment cost is presumed to
be $150/kWh. The data for BES units are depicted in Table 2.

Concerning renewable generation, each PV unit’s maxi-
mum generation is set at 50 kW (see Fig. 4b). The generated
power is based on solar irradiance data obtained from [46].
In addition, each wind unit’s capacity is nominally 100 kW.
The wind speed data at 10 meters above ground are obtained
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FIGURE 6. Modified 33-bus distribution test network [53].

FIGURE 7. Representative load profiles for each season.

FIGURE 8. Representative network prices for cold (autumn and winter)
and warm seasons (spring and summer).

from [47], and the power is calculated proportionally. It is
worth mentioning that, similar to load demand data, for
renewable generations, the first day of each season is assumed
to represent the entire season. The renewable site is consid-
ered to be in Málaga, Spain, which is located at coordinates
of 36.71 degrees North and 4.41 degrees West.

The processor for the simulation platform is Intel(R) core-
i5 @ 2.30GHz and 4GB of RAM. Scenarios generation and
graph linearisation are conducted with MATLAB software.
The optimisation problem is solved using GAMS software
with the CPLEX linear solver.

TABLE 3. Numerical results of the three assumed cases in a one-year
simulation period.

Regarding the evaluation of the results, the problem is
solved in three different cases. These cases are defined as
follows:

Case A: BES units are not considered.
Case B: BES units are considered but the lifetime model is

not employed.
Case C: BES units are considered and the lifetime model is

employed.

B. NUMERICAL RESULTS
The proposed optimisation problem is solved based on the
data assumed in the previous subsection. As for the numerical
results, expected costs are calculated for four representative
days of each season and generalised to that whole season
for each case. Finally, by adding these numbers together, the
expected cost for a year is calculated. The numerical results
for the case studies are shown in Table 3.

In case A, only the effects of RESs are considered, remov-
ing BESs from the network. According to the data depicted
in Table 3, in this case, the operating cost of the system is
relatively high.

In case B, while considering BES units, no lifetime algo-
rithm is implemented, meaning thatCostBES is removed from
the objective function equation (see section III). Even though
BESs are charged in off-peak hours (when the electricity price
is lower) and discharged in peak hours when the electricity
price is higher, it is observed that the cost of the operation
increases in each season and in total, in comparison to case A.
As a result, the expected operating cost is 0.31% higher than
that of case A. This mainly happens because the BES units
are employed fully without any consideration, and the LoH of
each unit is significantly high during charge/discharge cycles.
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FIGURE 9. (a) State of charge in percentage in case B in each day
(b) State of charge in percentage in case C in each day.

In other words, the entire capacity of the BES is employed,
which influences their lifespan in a negative and destructive
manner. Furthermore, these units discharge at a tremendous
rate, and their minimum rate is as high as C/3 which influ-
ences BES lifetime. Fig. 9a illustrates each BES’s SoC in
warm and cold seasons in case B.

Finally, for case C, the code is compiled and run with the
same BESs, while considering the life expectancy of these
units and including it in the objective function. In contrast, the
operating costs are lower than in previous cases. Generally,
the expected operating cost is 0.05% and 0.36% lower than
in cases A and B, respectively. Based on the equations, in this
last case simulation, the objective goals are achieved by
utilising BESs in a moderate and intelligent manner, which
results in not only reducing the total expected cost but also
their lifetime extension. In Fig. 9b, the charging pattern of
each BES unit in case C is illustrated for the warm and
cold seasons, respectively. The curves show that in case C,
each BES unit has a lower discharging rate compared to
case B, which at most is less than C/8. In cold seasons,
as two price peaks exist in the price curve, they are charged
fully. However, in warm seasons with one electricity price
peak, they are only charged up to 81% of their capacity.
As a result, the deterioration cost of BESs is relatively
lower.

The results indicate that the life expectancy of BESs rises
significantly from 10.4 years in case B to 21.8 years in case C,
an increase of approximately 110%. This numerical assess-
ment demonstrates that a lower discharge rate and scheduled

FIGURE 10. Peak shaving assessment for each case in winter load profile.

TABLE 4. Comparison of the accuracy and speed of three algorithms.

utilisation can extend the BES lifetime considerably, as can
be seen by comparing Fig. 9a and Fig. 9b for cases B and C.

C. PEAK SHAVING ASSESSMENT
In this subsection, the effect of using BESs on network load
flattening is demonstrated. The winter season load profile
was chosen to analyse the data, as unlike other seasons,
it has two distinguishing peaks and valleys, which allows
one to compare the data more comprehensively. The load
demand from the upstream network throughout the day for
the winter season is depicted in Fig. 10 for three assumed
cases. In case A, no BES is considered; RESs account for
a slight demand reduction. According to the graph, unco-
ordinated usage of BESs in case B allows load shifting to
happen in a relatively high and radical manner, and therefore
the maximum demand supplied by the upstream network
decreases approximately by 2.3% to be 2996 kW. In case C,
however, the discharge rate is limited, and consequently, the
proposed lifetime model accounts for only a 1% reduction in
the maximum network demand, which will be 3034 kW.

D. COMPUTATIONAL TIME AND ACCURACY
To evaluate the model in terms of accuracy and solving time,
two other common power flow algorithms, DC-OPF and
AC-OPF, have been developed to solve the existing prob-
lem. The models are standard linear DC-OPF approximations
(without considering reactive power and voltage angle) and
a Newton-Raphson based AC-OPF obtained from [57]. This
allows for a comparison of the undertaken linearised AC-OPF
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FIGURE 11. (a) The power injected to the power grid from substation in
three assessed optimal power flow algorithms. (b) The active power loss
of the three assessed optimal power flow algorithms.

with other methods used in existing research. In formulating
the other two OPF methods, (1)-(6) and (19)-(24) (which
are equations regarding basic constraints and battery as well
as stochastic modelling) were unchanged, and the remaining
equations were replaced with the main algorithms of the new
methods.

The solving time, objective function quantity, and the
solution status for solving one scenario under three differ-
ent algorithms are demonstrated in Table 4. According to
these data, with relatively high accuracy compared to the
DC-OPF method and approximately 90% less error, the lin-
earised AC-OPF model significantly increases the calcula-
tion speed compared to the original AC-OPF model (nearly
7 times faster), while calculating a globally optimal solution.
In Fig. 11, PGi,t,ω or the power absorbed from the substation as
well as total active power loss of the network are depicted for
three mentioned power flow algorithms. It can be observed
that while in the DC-OPF the power loss is zero and the
total power from the substation is the least, in linearised
AC-OPF algorithm the power loss and power absorbed from
the substation is slightly less than in the original AC-OPF
method in most time intervals.

VII. CONCLUSION
In this paper, a BES scheduling problem in an ADN is pro-
posed. Operating cost minimization as well as BES lifetime
extension are set as the main objectives of the problem.
In terms of considering uncertainty, a two-stage stochastic
optimisation approach is implemented, and K-means cluster-
ing as a scenario number reduction method is engaged. As for
the core operation problem, a linearised, convexed AC-OPF
model with high calculating speed and fair accuracy is put

into practice. Finally, a linearised method based on the RFCC
technique is implemented to track BES’s deterioration and
evaluate the LoH of the battery during the simulation period.

The simulation results indicate that:
• Considering the lifetime model, BESs are discharged
moderately, while without the lifetime model, they are
discharged at a substantial rate and fully charged several
times a day.

• The operating cost is highest when using BESs without
the lifetime model and lowest when optimally schedul-
ing them.

• The life expectancy of BESs is extended by 110% by
using the proposed scheduling model.

• The peak demand is reduced by more than 1% in peak
hours, which can be decreased further with higher BES
capacity.

• By employing the linearised AC-OPF, the execution
time is reduced significantly (nearly 85%) compared to
the original non-linear formulation, while guaranteeing
fair accuracy (approximately 1% error in the objective
function).

In future work, some modifications can be made to the
proposed model to enhance it in terms of accuracy. First,
we only assessed Li-ion batteries in this work. By working
on different battery types on the same network, the results
can be compared in terms of battery life expectancy and grid
profit. Second, in this paper, it is assumed that the price
of BES units would remain constant throughout the oper-
ating period. However, as time passes, by introducing new
technologies and methods of manufacturing, they become
less expensive. As a result, by implementing an interest rate,
their price decrease in the operating period can be taken into
account.
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