
Hybrid convolution quadrature methods for

modelling time-dependent waves with

broadband frequency content

Jacob Rowbottom

Supervisors: Dr. David Chappell and Dr. Jonathan Crofts

A thesis submitted in partial fulfilment of the requirements of

Nottingham Trent University for the degree of Doctor of

Philosophy

September 2021



1

The copyright in this work is held by the author. You may copy up to 5% of

this work for private study, or personal, non-commercial research. Any re-use

of the information contained within this document should be fully referenced,

quoting the author, title, university, degree level and pagination. Queries or

requests for any other use, or if a more substantial copy is required, should be

directed to the author.



2

Abstract
This work proposes two new hybrid convolution quadrature based discretisations

of the wave equation for interior domains with broadband Neumann boundary

data or source terms. The convolution quadrature method transforms the time-

domain wave problem into a series of Helmholtz problems with complex-valued

wavenumbers, in which the boundary data and solutions are connected to those

of the original problem through the Z-transform. The hybrid method terminol-

ogy refers specifically to the use of different approximations of these Helmholtz

problems, depending on the frequency. For lower frequencies we employ the

boundary element method, while for more oscillatory problems we develop two

alternative high frequency approximations based on plane wave decompositions

of the acoustic field on the boundary. In the first approach we apply dynamical

energy analysis to numerically approximate the plane wave amplitudes. The

phases will then be reconstructed using a novel approach based on matching

the boundary element solution to the plane wave ansatz in the frequency region

where we switch between the low and high frequency methods. The second high

frequency method is based on applying the Neumann-to Dirichlet map for plane

waves to the given boundary data.
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Chapter 1

Introduction

The understanding and prediction of wave behaviour is important for a wide

range of applications in acoustics, elasticity, electromagnetics and quantum me-

chanics. Although waves are inherently time-dependent in nature, simplified

single frequency models are often employed since they reduce the dimension-

ality by assuming time-harmonic oscillations. However, fully time-dependent

models are essential when the wave sources themselves undergo fundamental

changes during the time period being considered [139]. Examples include lin-

ear vibrations induced by a structural shock, acoustic emissions in the presence

of structural fatigue and electromagnetic compatibility problems in malfunc-

tioning devices. As well as requiring full time-domain simulations, these wave

problems also often include high frequency content; this is clearly the case when

modelling sharp impulses such as shocks, but is also true of acoustic emissions

from large built-up structures [3, 175]. The importance of high-frequencies for

electromagnetic wave applications is also increasing due to the demand for ever

faster mobile communication networks using wave further up the electromag-

netic spectrum.

Significant progress has recently been made in time-dependent wave simula-

tion methods; notable are the new-found tractability of finite-difference methods

due to the emergence of graphics processing unit (GPU) processing [32, 134],

the relatively recent development of full space-time adaptive grid discretisations

[73, 142], and the continued rise of the Convolution Quadrature (CQ) method

including (implicit) high-order Runge-Kutta implementations for a variety of

wave equations [15, 20]. Despite these recent advances, all numerical wave equa-

tion solvers share the limitation that high frequency content in the time-domain

15
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signal requires a discretised model containing many degrees of freedom. The

computational cost will scale with at least the square of the upper frequency

band limit, and often worse depending on the choice of method and the number

of spatial dimensions to be modelled.

The remainder of this chapter consists of a detailed literature review on

numerical methods for the wave equation, the Convolution Quadrature Bound-

ary Element Method (CQBEM) and high frequency methods. In Chapter 2, we

solve the Helmholtz equation via both the direct and the indirect Boundary Ele-

ment Method (BEM) for a variety of boundary conditions. We numerically solve

the resulting Boundary Integral Equations (BIEs) using either the collocation

method or the Galerkin method, with both constant and linear basis functions

and make comparisons between the results. In Chapter 3, we will apply a di-

rect convolution quadrature boundary element method to numerically solve an

initial boundary value problem for the wave equation with Neumann boundary

conditions. Numerical results are presented for different domains. In Chapter

4, we approximate the solution of the two-dimensional Helmholtz equation at

high frequencies via Dynamical Energy Analysis (DEA), which uses a boundary

integral operator based model for transporting densities along ray trajectories

in phase-space, between intersections with the boundary of a domain or sub-

domain. We perform numerical experiments for a number of domains when

considering either a source point excitation or a constant line source expressed

as a Dirichlet boundary condition. In Chapter 5, we propose the development

of a new hybrid method in which the low frequency content will be modelled

via a convolution quadrature boundary element method and the high frequency

content will instead be approximated by either DEA or via an incident illumi-

nation approximation where only the direct contribution of the source term on

the boundary is considered and reflected contributions are assumed to play an

insignificant role. Finally in Chapter 6, we conclude our research from this work

and outline areas for future study.

1.1 Numerical methods for the wave equation

Numerical methods are used to find approximations of solutions to differential

equations and are typically used to solve problems in real world applications

that are of complex nature. It might take a long time to compute a result

to sufficient accuracy and some methods might never provide a high enough
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accuracy. Since the birth of the modern computer in the second half of the 20th

century, the rapid growth in computational power and resources has fuelled the

development of many numerical methods, such as the finite difference, finite

element and boundary element methods [4].

1.1.1 Finite difference method

The finite difference method involves constructing a mesh or grid, by discretising

the independent variables typically at equally spaced nodes where we approxi-

mate the dependent variable. We then replace the derivatives in the differential

equation with finite difference formulae that are derived using Taylor’s theorem.

The result is then a system of algebraic equations that are solved to find an ap-

proximate solution. The method was first developed by Euler in 1768 in one

dimension [61], but was then further developed by Runge in 1908 [162]. Twenty

years later Courant, Friedrichs and Lewy applied the finite difference method

to find an approximate solution to the Dirichlet problem for Laplace’s equa-

tion [190]. This was also one of the earliest numerical methods to be applied

the wave equation. The derivatives are approximated by difference formulae

as discussed in Mitchell and Griffiths [137] for up to two spatial dimensions.

However, the method is limited by the great amount of computation and mem-

ory required, particularly in three dimensions. Fine discretisations in space and

time are usually required to meet the constraints of accuracy, stability and min-

imum grid dispersion. Villarreal and Scales [195] overcame these limitations by

using the domain decomposition method to split the domain into a number of

sub-domains and then applied parallel processing techniques to solve for each

sub-domain concurrently.

Finite difference methods have been used to solve three-dimensional time-

domain electromagnetic problems such as the one considered in [177]. In [177]

the electromagnetic problem is solved via a tetrahedral mesh based method

known as Unstructured Transmission Line Modeling (UTLM). The UTLM com-

bines the use of a tetrahedral mesh to discretise in space and a time domain elec-

tromagnetic solver that is unconditionally stable. High level of parallelisation

makes the method able to consider solving broadband large-scale simulations in

an accurate and stable manner [135, 178, 179]. We remark that not all finite

difference methods use equally spaced nodes or meshes such as the method dis-

cussed in [66] which adopts an unstructured mesh finite difference time-domain

(FDTD) method for solving electromagnetic problems. The method considers
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using an unstructured co-volume staggered mesh and a generalisation of the

Yee FDTD method [204]. The use of staggered meshes results in an explicit

algorithm that is second order accurate in both space and time. The method is

also advantageous due to its of low computational cost and the scheme preserves

the energy and amplitude of waves, is free of divergence and can be parallelised.

Earlier work in electromagnetic using the FDTM can be found in [29, 68, 126].

In general the finite difference method is easy to implement for simple prob-

lems and geometries. However the method becomes more difficult to implement

if the geometry becomes too complex or irregular, particularly for implement-

ing boundary conditions, and may require a large number of mesh points to

discretise the full domain to sufficient accuracy.

1.1.2 Finite element method

The finite element method (FEM) was originally proposed in 1943 by Courant

[49], but was then later popularized in the 1960s by Argyris and Clough through

their computational work [21]. The method involves discretising the domain into

elements, which contain nodes that represent an unknown value in a system of

equations. Therefore each element has an associated set of equations. Com-

bining all elements together leads to the construction of a system of equations,

which may be solved to find an approximate solution. The first application of

FEM in acoustic problems was discussed by Gladwell in 1965 [72]. In the 1970s,

further research was completed in acoustics using FEM by Craggs, Milner and

Bernhard, who applied the method to analyse frequency responses and model

acoustics in rooms, cavities and irregular enclosures [50, 51, 52, 136].

The advantage of the finite element method over the finite difference method

is that it can be easily applied to irregular domains and for all types of boundary

conditions. However, the FEM is not efficient at approximating spatial variables

for higher frequencies due to the interpolation and dispersion errors. The dis-

persion errors arise from the difference between the numerical wavenumbers and

the physical wavenumbers, such that they become the dominant error term at

high frequencies [193]. In addition, at higher frequencies the FEM requires a

larger number of elements and computational expense in order to achieve er-

rors within an appropriate tolerance. More recent research has been conducted

for FEM in room acoustics by Okuzuno [143], in which he compared an explicit

time-domain FEM with an iterative model, and discovered that the FEM model

was better for modelling higher acoustic impedances. The FEM has been found
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to not always be effective when solving wave propagation problems using piece-

wise polynomial approximation techniques [75, 89, 115] due to the accuracy of

the numerical solution decreasing as the wavenumber increases.

For solving transient wave problems via the FEM, the numerical wave prop-

agation velocity may become significantly different to the physical velocity due

large period elongations and amplitude decay [24, 46]. Therefore when high

frequency content is present, we find significant errors in the numerical solution

unless the mesh is fine enough to model the rapidly varying waves [81]. For the

case of time harmonic wave problems, the partition of unity FEM was proposed

by Kacimi to calculate the solution at high frequencies [95]. For this approach

the wave solutions are incorporated into the spatial approximation, which is

difficult when solving practical wave problems as we do not usually know which

waves need to be calculated [81]. Many smoothed FEM based approaches have

also been shown to reduce numerical dispersion errors at low to mid frequencies

in interior problems [85]. The FEM has proven to be effective in the low fre-

quency range for structural vibration and acoustic problems, however for high

frequencies the wavelength becomes very small and therefore a large number of

elements are required for the adequate resolution of the wave behaviour.

1.1.3 Boundary element method

Boundary element methods (BEMs) were pioneered by Rizzo [155] and Jawson

[92] in the 1960s with their work on integral equations for boundary value prob-

lems (BVPs), and since the late eighties BEMs are becoming more popular for

applications in physics and engineering [97, 203]. The BEM involves reformu-

lating a partial differential equation (PDE) in terms of an integral equation and

applying boundary conditions, so that the integral equation is defined on the

boundary of the domain. The resulting equations are known as boundary inte-

gral equations (BIEs). The BEM requires us to discretise along the boundary

only, whereas with the finite element method and finite difference method, we

discretise over the whole domain. This reduces the complexity of calculation as

the dimension of the problem is reduced and results in a more computationally

efficient model to solve. For these reasons, we shall use the boundary integral

method to solve the interior acoustic problem. Since the introduction of BEM,

a number of different approaches have been developed for its application to the

wave equation, which we discuss below - see also Costabel [48].



Chapter 1 – Introduction 20

Time stepping

Time stepping methods reduce the hyperbolic problem of the wave equation to

an elliptic problem by using a time discretisation of the initial boundary value

problem. The difficulty is that when solving the problem at each time step

we require a new non-zero initial condition, that is given by the problem from

the previous time step. This means that a particular solution of the stationary

problem must be included in the solution at each time step. Methods have

been derived to overcome this issue, such as Newton potentials which require

the whole domain to be discretised. This defeats the purpose of using the

boundary element method to some extent, as one of its main advantages is

that it only discretises over the boundary rather than the whole domain. Some

alternative methods are discussed by Costabel [48], such as fast solution methods

using radial basis functions (dual reciprocity method) and higher fundamental

solutions [140, 146].

Another idea is to consider all the time steps together as a discrete convolu-

tion equation. The discrete convolution operator, which has (time-dependent)

coefficients that are elliptic partial differential operators, has a fundamental

solution that can be used to construct a boundary integral method. This fun-

damental solution can be given explicitly for simple time discretisation schemes,

such as the backward Euler method [25], or more generally can be constructed

from Laplace transforms using the operational quadrature method of Lubich

[121]. However, it is known that the application of a time-domain BEM may

lead to instabilities in the time-stepping methods [33]. This disadvantage causes

issues for solving engineering problems using a time-domain BEM [82, 130].

These issues may be overcome by a careful choice of A-stable time stepping

method in the operational quadrature method, as discussed in further Section

1.2.

Space-time integral equations

Space-time integral equations have been applied to wave propagation problems

since the 1960s. This method uses the fundamental solution of the initial value

problem. The boundary integral equations are either constructed directly via

Green’s second identity or indirectly using single and double layer potentials

[127, 187]. The integral equations obtained are of convolution type in time.

Numerical methods constructed from space-time integral equations are global

in time, meaning they compute the solution in one step for the entire time
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interval [48].

Friedman and Shaw [64] and Mitzner [138] were the first to apply the col-

location boundary element method to the hard surface scattering problem in

the 1960s. However, since then the increase of available computational power

has made longer run times feasible revealing that there are problematic insta-

bilities in the time marching solutions [28, 163]. A number of methods have

been suggested to resolve this. One approach, developed by Rynne [164], fil-

tered out the instabilities by introducing space and time averaging. A review

of the various schemes proposed is given by Davies and Duncan [53]. Birgisson

et al. [28] applied a modified time stepping method to improve the stability

of their schemes. One scheme involved halving alternate time steps, which did

improve stability but instabilities could still develop at later times. Another

scheme involved increasing the current time step by a small increment and was

found to eliminate any evidence of instability for a sufficiently large value. Yu et

al. [206] applied a similar technique to a two-dimensional acoustic problem and

showed that the stability of the results was greatly improved by increasing the

current time step. However, this method introduces amplitude decay, meaning

that high frequency responses are damped out of the solution [36].

In 1983, Mansur developed a direct BEM formulation in the time-domain

for the scalar wave equation and for elastodynamics problems with zero initial

conditions [127]. This is of interest to engineers due to the variables representing

physical quantities. Antes then presented this formulation for elastodynamics

with non-zero initial conditions in [6].

Ding et al. [54] numerically solved the space-time integral equations by ap-

plying the Galerkin method for the problem of hard surface scattering in the

time-domain. In this case the boundary integral equations are written in a vari-

ational formulation and the discrete scheme is written in a matrix operator form,

which preserves the time convolution character of the boundary integral equa-

tions. An explicit time-marching scheme is formed when a Courant-Friedrichs-

Lewy condition is applied to the time-step. Ha-Duong [79] later extended this

study to the case of an absorbing obstacle. Ha-Duong et al. [80] also derived

an integral equation that combines the time and normal derivatives of the clas-

sical integral equations for the surface solution and proved the stability of the

approach. However, variational Galerkin methods can be difficult to implement

due to evaluating high dimensional integrals and dense matrices, which makes it

difficult to model large scale problems effectively [38]. Yu et al. [207] compared

the Galerkin and collocation methods for the two-dimensional acoustic radiation
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problem. The results showed that for this problem the Galerkin method gave

stable results in cases that the collocation method was unstable. The linear sys-

tem that arises from a classical Galerkin discretisation of the retarded potential

boundary integral equations [14] leads to a Toeplitz system matrix, where the

matrix blocks are sparse. However, the numerical quadrature for computing the

coefficients of the system matrix has to be computed over intersections of the

boundary element and the region over which the wave has travelled. Comput-

ing integrals over these intersections is difficult to implement in general and we

therefore seek alternative approaches.

Recently, adaptive space-time mesh refinements have been applied to the

time-domain BEM formulation of the wave equation. These adaptive methods

have been explored by Gläefke [73] for two-dimensional problems, for which

he does not separate the time-domain from the spatial domain, but instead

refines the mesh of a space-time cylinder. The adaptive mesh refinement allows

flexibility as we can have a more refined grid at a specific area of our mesh

that needs greater precision. However, this flexibility comes at a cost as for

each time-step one has to solve a full space-time system [208]. Gimperlein et al.

[69, 70, 71] have further investigated adaptive space-time mesh refinement for

modelling sound emission from tyres.

Fourier and Laplace transforms

These methods involve solving frequency domain Helmholtz problems for a

range of (possibly complex) frequencies and then transforming them to the time-

domain using a numerical method for the inversion of the Fourier or Laplace

transform. Laplace and Fourier transforms can be used to transform from the

time -domain to the frequency domain to solve problems for many frequencies.

The advantage of the using these methods is that instead of solving a problem in

space and time, such as for the space-time integral equations, we instead solve

a system of Helmholtz boundary integral equations in space only, at these fixed

frequencies. Early examples of work using these transforms includes Dubner

and Abat [55] and Durbin [56]. As well as these works, an example of solv-

ing transient problems with non-homogeneous initial conditions using a discrete

Fourier transform can be found in [128]. Here the inverse transformation is per-

formed using an approximation based on linear multi-step methods for ordinary

differential equations, which was first introduced as the operational quadrature

method by Lubich [119], and will be discussed further in the next section.
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1.2 Convolution quadrature BEM

We now take a more in-depth look at boundary element methods via Fourier

and Laplace transforms and in particular the convolution quadrature boundary

element method (CQBEM). We note that convolution quadrature (CQ) is an

alternative name for Lubich’s operational quadrature that is more commonly

used in the context of numerically solving the wave equation. The CQBEM

employs a convolution quadrature approach for the time discretisation and a

boundary element method for the space discretisation. The CQ approach was

developed by Lubich in the late eighties [119, 120, 121] and Lubich and Schnei-

der [122]. The method provides a simple way to obtain a stable time stepping

scheme using the Laplace transform of the kernel function, due to an implicit

regularization in time [153]. For the discretisation of boundary integral equa-

tions, its main advantage is that it avoids having to evaluate the convolution

kernel in the time-domain and one instead solves a simplified system of fre-

quency domain boundary integral equations in the spatial region [153]. In this

section we discuss the literature surrounding different projection methods that

can be applied for the space discretisation. Projection methods approximate

the solutions of boundary integral equations by projecting them onto finite di-

mensional sub-spaces, meaning that the approximate solution can be expressed

as a linear combination of a finite set of basis functions [4, 7, 102].

1.2.1 Galerkin method

The Galerkin method generates an approximate solution by assuming it can be

expressed in the form of a linear combination of basis functions and imposing

a weak form of the original integral equation. This involves multiplying the

integral equation by each of the basis functions in turn and integrating over

the boundary. Imposing that the weak form is solved exactly for each basis

function generates a set of equations that can be solved to give an approximate

solution. This involves computing an additional boundary integral, resulting in

a more complicated implementation and greater computational costs than most

alternative methods [4]. However, the Galerkin method has a well-studied and

reasonably widely applicable stability and convergence theory [13, 191], and can

be applied to problems with singular integrals [194].

Since Lubich first developed the convolution quadrature method in the eight-

ies, additional refinements have been proposed to reduce the computational
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complexity of the method. Hackbusch et al. [77] combined Fast Fourier Trans-

form (FFT) techniques with a data sparse approximation so that the matrix

blocks are approximated by data sparse representations based on a simple cut

off strategy. This reduces the storage cost without changing the computational

complexity of the method and was extended by Kress and Sauter [103] to re-

duce the storage further. More research on this approach was completed by

Banjai and Sauter [15], who developed a variant of the panel clustering method

[77] to further reduce the storage and computational costs. The mathematical

analysis within this research provided asymptotic estimates with significantly

improved storage and computational costs compared to the previously proposed

approaches for the solution of the wave equation using the convolution quadra-

ture method.

More recently, Banjai and co-authors [16, 17, 18] have made significant

progress in developing CQ methods for time-dependent wave simulations, in-

cluding high-order Runge-Kutta implementations for a variety of wave equa-

tions. Betcke et al. [26] considered a convolution quadrature formulation for

the parallel space-time evaluation of the wave equation. In particular, they de-

couple the number of frequency domain solutions from the number of time steps.

This allows one to overresolve in the frequency domain by computing more fre-

quency solutions than there are time steps. This is important if the overall

error is dominated by the convolution quadrature approximation and provides

exponentially fast convergence as the number of frequencies is increased.

1.2.2 Collocation method

The collocation method involves approximating the solution to an integral equa-

tion by assuming that the solution can be expressed as a linear combination of

basis functions and then imposing that the integral equation must be solved

exactly at a finite number of points, known as collocation points. The colloca-

tion method is relatively easy to implement, including for the singular integrals

typically encountered in boundary element methods.

The first direct collocation CQBEM approach was proposed by Schanz and

Antes [167], who showed that a critical time step size exists such that for any

value below this critical time step, the method becomes unstable. This critical

value depends on the underlying multistep method. The CQ method is par-

ticularly useful for solving visco-elasticity and poroelasticity problems, where

the fundamental solutions are only available in closed form in the frequency
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domain [168, 170]. The direct collocation CQBEM was then extended to other

applications such as 3D viscoelastic and 3D elastodynamic problems by Gaul

and Schanz [67], as well as in poroelastic applications by Schanz [169, 170].

The first direct collocation formulation of the CQBEM for the 2D scalar

wave propagation problems was employed by Abreu, Carrer and Mansur [1],

in which the authors used piecewise linear basis functions. The results were

reliable and depended on the choice of time step for the stability of the re-

sults. In 2006, Abreu, Carrer and Mansur [2] developed CQBEM collocation

schemes with pseudo-force initial conditions. This method consists of replac-

ing the initial conditions by pseudo-forces, as previously CQ formulations were

only applied to problems with homogeneous initial conditions. In 2010, Schanz

applied Banjai’s CQBEM [15] formulation to elastodynamics with a collocation

based implementation [171]. The results showed that the method reduces the

storage requirement to the size of one complex valued system matrix and shows

the same sensitivity to the time step size as the older formulation presented

by Schanz [170]. However, the limitation of this reduction is that a system of

equations has to be solved for each time-step.

In 2015 Schanz, Ye and Xiao [172] compared the convolution quadrature

method with a discrete Fourier transform approach, both with the collocation

boundary element method in space. Both methods have the same inverse trans-

formation, however, the CQ approach uses complex frequencies and as a result

the methods determine different numerical solutions. The numerical experi-

ments show that the discrete Fourier transform needs fewer frequencies to be

calculated and is consequently faster. However, the CQ method leads to lower

error levels for a fixed mesh size. For this formulation, the CQ method is there-

fore more efficient than the discrete Fourier transform and fewer iterations are

needed in the iterative linear system solver. This is due to the imaginary part

of the complex frequencies in the CQ method improving the condition number

of the resulting system matrix. The discrete Fourier transform would not be

a suitable approach for the undamped acoustic wave equation problem we are

considering, since the real frequencies can potentially coincide with cavity res-

onances leading to serious issues for the numerical solution scheme. Recently,

a generalised CQ formulation with Runge-Kutta methods was applied to solve

acoustic wave problems by Schanz [173]. The method allows for a variable

adaptive time-step size and the results showed that the convergence order is

preserved, even for non-smooth solutions. However, the order of convergence is

limited by the spatial discretisation.
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As discussed in [131, 132] and then summarised in [23] it is known that

BIEs lead to less pollution effect (dispersion) than FEMs, a further advantage of

implementing a BEM based method as opposed to the FEM or FDMs. Evidence

of the pollution effect in FEMs and FDMs can be found in [8, 9, 90, 200]. The

effect of numerical damping in the BEM for the solving the Helmholtz equation

has been studied in [62], but the pollution effect for BEM is not primarily caused

by a phase error but instead by numerical damping and it shows that the effect of

numerical damping increases as the frequency values increase [132]. Therefore,

we expect no pollution effect for the CQBEM scheme, but we do expect to see

numerical damping. In a recent paper by Galkowski and Spence [65], it has

been rigorously shown that the BEM for the Helmholtz scattering problem does

not suffer from the pollution effect if hk is sufficiently small and the obstacle is

non-trapping.

More recently, Mavaleix-Marchessoux et al. [133] numerically solved three-

dimensional transient acoustic problems for large scale domains using a collo-

cation based CQBEM. The high frequency content was approximated by an

infinite plate model, which can be calculated simply. The high frequency ap-

proximation was found to be effective for dealing with high frequency boundary

data approximating an underwater explosion and for large complex geometries.

1.3 High-frequency methods

For modelling high frequencies, the CQBEM will require a large number of

boundary elements to model the more rapidly oscillating waves. When numer-

ically solving the wave equation, the accuracy of the solution is determined by

the number of elements or grid points. Therefore, when we consider large fre-

quencies this approach is no longer feasible due to a large computational cost

to retain appropriate accuracy. We seek a method for numerically solving the

wave equation, where the boundary condition includes broadband frequency

content. In this section we initially focus on methods for effectively treating

high frequency waves.

1.3.1 Time-domain

Here we consider numerical methods for simulating waves at high frequencies

using variants of geometrical optics [161], which are asymptotic approxima-

tions obtained when the frequency tends to infinity. Instead of oscillating wave
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fields, which are modelled by standard wave equations, the unknowns are the

phase and amplitude, which vary more slowly and hence are easier to calculate

numerically. There are a number of different mathematical models that can

be formulated for geometrical optics. One example is the kinetic formulation,

which is based on the assumption that rays are trajectories of particles follow-

ing Hamiltonian dynamics in which we want to determine a phase-space density

function that satisfies the Liouville equation [58, 59]. Another formulation is to

express the phase and amplitude as solutions of partial differential equations,

where the phase function satisfies the eikonal equation and the amplitude sat-

isfies a transport equation. Geometrical optics can also be formulated in terms

of the ray equations, which are a system of ODEs obtained by applying the

method of characteristics to the eikonal equation [57]. However, a drawback

of geometrical optics is that the diffraction effects at boundaries are lost and

the approximation breaks down at caustics. These issues can be addressed by

more detailed models such as the geometrical theory of diffraction [99], which

explicitly takes information from the domain and boundary condition to then

add a term that includes diffraction.

There are a number of numerical methods to solve these high frequency wave

models. Solutions of the ray equations can be approximated directly by solving

the ODEs with numerical methods, giving a solution in terms of the phase and

amplitude along a ray. Interpolation must be applied to obtain the quantities

everywhere in the domain. This is the basis of ray tracing [34, 93, 107, 192]

and is classically used to determine the travel time of a wave from one source

point to all points in a domain, together with the corresponding amplitude at

those points. One can obtain solutions at specific points via ray shooting [117],

which shoots rays from the point source in different directions. The result at

the receiver is interpolated from the solutions along rays. Alternatively, one can

obtain a solution at a particular point via ray bending. In this method the ODEs

are considered as a non-linear elliptic boundary value problem and can be solved

using variants of Newton’s method. The calculations can be performed simply

for piecewise homogeneous domains, since the solutions of the ray equations are

given at the boundaries and on the interfaces between media such that the rays

are straight lines satisfying the reflection law and Snell’s law at interfaces.

Ray tracing has many applications, including seismology [35], electromag-

netics [117], and room acoustics. The first attempt to model room acoustics was

in 1968 by Krokstad et al. [105], who utilised ray tracing for computing time-

energy responses. Schroeder [174] proposed a similar idea but was limited to
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two-dimensional spaces. Stephensen [185] showed that it was computationally

advantageous to have multiple simultaneous receivers in one simulation to model

concert halls. He also showed that more accurate results can be achieved by tak-

ing into account the distance of a ray path inside a receiver, which enabled the

use of any shaped receiver [186]. The growth of available computational power

allowed for further possibilities for the prediction of the acoustical behaviour

in rooms. The rendering equation, which has been applied to computational

graphics since the 1980s [98], has also been applied to room acoustics and led

to a method known as acoustic radiance transfer [180]. However, its general ap-

plication to complex domains requires simplifying assumptions to obtain an ap-

propriate numerical solution with reasonable computational requirements. The

stability of ray tracing solutions increases as the number of rays increased, but

it is hard to know how many must be used to obtain reliable results. Vorländer

has studied the relation between the number of rays and the obtained accuracy,

and showed that the required number of rays is proportional to the volume of

space [198]. Two reviews of geometrical optics in room acoustics can be found

in [166, 199]. Recently, ray-based methods have been further developed for het-

erogeneous problems including ray approximations of the heterogeneous Green’s

function for medical applications [159].

Wave front methods are related to ray tracing, but instead of individual rays,

the location of many rays emitted from one source is computed at fixed time

points. Those points form a wave-front and its behaviour is tracked in phase-

space, which is beneficial for problems including caustics. This method was first

introduced by Vinje et al. [161, 196]. The level-set method was later introduced

by Osher and Sethian [144], as a method for tracking interfaces and shapes by

realising them as the zero-level set of higher-dimensional smooth surfaces. This

technique has been applied to problems in multiphase flow, image processing

and visualisation, see [145, 176] for example. Moment-based methods instead

track the time dynamics of beams or interfaces in phase space [205]. Brenier and

Corrias [31] originally proposed this method for finding multivalued solutions to

geometrical optics problems in the one-dimensional homogeneous case. It was

then developed further to two-dimensional problems by Engquist and Runborg

[59, 160].

Transient statistical energy analysis (TSEA) is a variation of statistical en-

ergy analysis (SEA) which has been adapted to approximate shock-response

problems. Statistical Energy Analysis is a method in which a system is divided

up into subsystems whereby the energy density in each subsystem is assumed
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to be approximately constant and the solution is assumed to be independent of

the ray or wave direction [124], see the next section for more details on SEA.

A number of authors have previously investigated the TSEA model, although

often the energy variable is treated as the energy in a frequency band rather

than a function of both time and frequency and mostly problems with only two

subsystems are investigated. A disadvantage of TSEA is that due to its dif-

fusive nature, it cannot predict localisation effects where, even at large times,

energy remains localised in a subsystem [111]. Some contributions from authors

who have achieved good accuracy using the TSEA method can be found in

[106, 148, 157]. Whereas some work which demonstrates its limitations can be

found in [87, 156, 188]. However, the poor results in some of the latter references

may be due to the system or frequency range selected and because only a single

realisation rather than ensemble of systems was investigated.

1.3.2 Frequency domain

Ray and front tracking methods, such as the ones discussed in Section 1.3.1,

often become inefficient when considering frequency domain wave problems in

bounded domains, such as to determine the wave field in a finite cavity driven by

a continuous excitation. Multiple reflections of rays can lead to an exponential

increase in the number of ray paths that need to be considered resulting in

long and complicated computations. Frequency domain approaches have been

developed to combat these issues, such as SEA [63, 124] and Dynamical Energy

Analysis (DEA) [42, 189].

In SEA, a structure is split into subsystems and ergodicity of the underly-

ing ray dynamics as well as quasi-equilibrium conditions in each subsystem are

assumed [63]. That is, the energy density in each subsystem is assumed to be

approximately constant and the solution is assumed to be independent of the

ray or wave direction. These assumptions result in a simplified model of SEA

equations based only on flow rates between subsystems [202]. SEA is a popular

method for solving vibro-acoustic problems in the mid to high frequency range

and was initially proposed by Lyon and Smith in 1962 [124]. The original formu-

lation of SEA was based on the energy flow between pairs of coupled oscillators

and is known as the modal approach to SEA. However, due to the implicit as-

sumptions within the method Lyon developed, it does not provide a practical

tool for calculating parameters used in an SEA model. Suitable methods for

estimating these parameters were the subject of debate within the mechanical
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engineering community [63], leading to a number of methods to obtain esti-

mates of SEA parameters [125]. One method includes a representation of the

SEA equations based on wave approaches, in which a complex subsystem is rep-

resented as a collection of propagating wavetypes. The energy storage capacity

of a given subsystem is related to the expected velocity and dimension of the

subsystem. This wave approach was analysed by Langley to model elastic wave

transmission through plate/beam junctions [108]. The disadvantage of SEA is

that the underlying assumptions are often hard to verify a-priori, or are only

justified when an additional averaging over equivalent subsystems is considered,

such as structures originating from the same production line that are identical

up to manufacturing tolerances. These limitations have been discussed by Lan-

gley [109, 110] and more recently by Le Bot [112, 113, 114]. Improvements to

SEA were made using random matrix theory by Reynders et al. in 2014 [154].

The method employs a nonparametric model of uncertainties in geometry, ma-

terial properties and boundary conditions. The response of a nonparametric

random subsystem is then defined by its full displacement as opposed to its

total energy. The result is an efficient method that can be applied to a wider

range of problems than SEA, with no additional assumptions.

Another approach is the energy finite element method developed by Nefske

and Sung [141]. This approach is based on the heat conduction equation in

steady state and leads to a continuous analysis of structures opposed to SEA’s

discrete analysis. This approach is well studied for the one-dimensional systems

such as rods or beams [30, 201], but its wider applicability is unclear.

DEA is based on a linear operator approach for propagating ray densities

and was first introduced in [189]. The solution in a subsystem is typically rep-

resented by a basis expansion, in contrast to SEA where the solution in each

subsystem is typically represented by a single value, the mean ray density. One

main advantage of DEA is that the choice of subsystem splitting is no longer

important since some of the SEA assumptions are removed. The elements of a

mesh can even be used as substructures where energy can flow freely between

neighbouring mesh cells, providing flexibility for many potential applications.

A number of approaches have been developed to obtain efficient discretisations

of the DEA boundary operator. In [41, 42] a BEM for the stationary Liouville

equation was proposed, which extended DEA to larger structures and three-

dimensional applications. However, the high dimensionality and quadrature

routines near singularities meant that the simulations required long computa-

tions. The Discrete Flow Mapping (DFM) [10, 11, 43, 44] approach was proposed
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to improve the efficiency of these high-dimensional problems. DFM provides an

efficient numerical implementation of DEA on meshes and facilitates the com-

putation of phase-space densities on complex two-dimensional shell structures

by making use of the geometric simplicity of typical mesh elements. Further

extensions of DFM have been considered in [10] to model wave energy densities

in three dimensions, in which the densities are transported along ray trajectories

through tetrahedral mesh elements. Numerical results have demonstrated the

convergence and efficiency of DFM for a full-scale vehicle cavity mesh [10].

1.3.3 Hybrid methods

Shorter and Langley developed a hybrid method [183] whereby a system can

be split into “deterministic” components with only a few distinct natural fre-

quencies modelled via the FEM and “statistical” components with high modal

overlap, which are modelled with SEA. The modal overlap is the number of

modes of a system that are excited at a given frequency. The FEM and SEA

models are coupled together via a diffuse reciprocity relationship [182], which

relates the two sets of variables obtained from these methods. Hawes et al. [84]

extended Shorter and Langley’s method [183] to predict the structural response

under an impulsive and time-varying excitation by deriving a transient hybrid

FE-SEA method. In this approach, a power balance equation that determines

the power in each SEA subsystem was derived. This equation can be time-

integrated, which leads to a time -domain version of the subsystem energies and

deterministic response. Simulation results were provided for a system of two

plates coupled by a beam. The results for the deterministic system exhibited

oscillatory behaviour after an impulse, which was not predicted by the hybrid

method.

Anderson et al. [5] recently developed a frequency/time hybrid integral

equation for the time dependent wave equation in two and three dimensions.

The method relies on a combination of a finite difference formula for the time

discretisation and a Fourier transform to reduce the time-domain wave equation

to a set of Helmholtz equations for a range of frequencies. A Nyström method

is then applied to numerically solve the integral equations at all frequencies.

A difficulty that arises when solving the Fourier integrand is the increase in

oscillation as time increases, which requires finer discretisations resulting in

larger numbers of frequency-domain models to solve. To address this issue,

the hybrid method employs a smoothly time-windowed Fourier transformation



Chapter 1 – Introduction 32

technique, which re-centers the solution in time and thus effectively handles

the fast oscillations that occur in the solution as a function of the Fourier-

transform variable. A new quadrature method is used to evaluate the windowed

Fourier transform integral, which requires computation of certain discrete scaled

convolutions that are evaluated by an FFT based algorithm. The results of

this method show a fast convergence in both space and time. It can produce

arbitrarily large time evaluation of scattered fields at O(1) cost, as well as being

suitably parallelizable in time and space.

1.4 Summary and outlook

To begin, we investigated which numerical method would be the most suitable

to approximate solutions to the wave equation. We considered the FDM, the

FEM and the BEM, and it was determined that the BEM would be the most

appropriate option. The BEM reformulates a PDE in terms of a BIE, which

is simpler for implementing boundary conditions in comparison to the other

numerical methods. The FDM and the FEM require a large number of mesh

points in order to discretise a full domain to sufficient accuracy. The advantage

of the BEM is that it is only necessary to discretise over the boundary, therefore

reducing the dimensionality of the problem. We then discussed further the

application of the BEM to the wave equation.

We decided that using Fourier and Laplace transforms would be a promis-

ing approach since it transforms time-domain wave problems to the frequency

domain. The advantage of this is that we are now only required to solve a sys-

tem of Helmholtz BIEs (in space), at fixed frequencies, as opposed to solving

a problem in space-time. Therefore the problem has been simplified further.

Alternative approaches, such as time-stepping methods, can lead to instabilities

in the time-domain BEM.

We then took a more in-depth look at the BEM for the wave equation via

Fourier and Laplace transforms, considering the CQBEM. The CQBEM em-

ploys a convolution quadrature method for the time-discretisation and a BEM

for the space discretisation. We then looked further into the different projection

methods that can be applied for the space discretisation, including the collo-

cation method and the Galerkin method. We will investigate this further in

Section 2.7 when we compare the two projection methods for discretising the

BIE that arise when applying the BEM to the Helmholtz equation.
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We discussed that the CQBEM would not be efficient for broadband bound-

ary data since the system of integral equations would require a large number of

time-steps and boundary elements to model the highly oscillatory wave compo-

nents. We therefore considered other options to model the high frequency con-

tent. We decided that geometrical optics methods, such as ray tracing methods,

were not a viable option since they become inefficient when considering rever-

berant wave problems in bounded domains. Multiple reflections can lead to an

exponential increase in the number of ray paths to consider resulting in long

computations. We then considered frequency domain approaches such as SEA

and DEA. We found that a DEA approach would be more advantageous because

it is more widely applicable than SEA with fewer limiting assumptions.

A new hybrid method will therefore be proposed for solving the wave equa-

tion subject to broadband frequency content whereby the lower frequency con-

tent will be modelled via the CQBEM and the higher frequency content will be

modelled in terms of a plane-wave expansion. We will investigate how DEA can

be used to determine the plane wave amplitudes and develop a novel method for

recovering the phases. We will also propose a simple high-frequency approxima-

tion, based on the assumption that reflected wave contributions are very small

compared to those related to the prescribed boundary data. This work has also

been subject of a recent journal paper [158].
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Boundary element method

for the Helmholtz equation

In this chapter we consider solving the two-dimensional Helmholtz equation via

both the direct and the indirect BEM with a variety of boundary conditions.

We numerically solve the resulting BIEs using either the collocation method or

the Galerkin method, with both piecewise constant and piecewise linear basis

functions. Numerical experiments are conducted to investigate the behaviour of

the solution for a variety of different domains. A comparison is made in terms

of both the accuracy and efficiency of the methods considered.

2.1 The Helmholtz equation

Let Ω ⊂ R2 be a domain with boundary Γ = ∂Ω. The inhomogeneous two-

dimensional wave equation is defined as

∆Φ− 1

c2
∂2Φ

∂t2
= P (x, t), (2.1)

where Φ is the solution in two-dimensional space x = (x1, x2) ∈ Ω and time

t > 0. Here P defines a source term within Ω and c > 0 is the wave speed.

The operator ∆ = ∂2

∂x2 + ∂2

∂y2 denotes the Laplacian in R2. We assume that

Φ(x, t) has harmonic time dependence with frequency f , such that we can write

the solution Φ(x, t) = u(x)eiωt and P (x, t) = g(x)eiωt, where ω = 2πf is the

34
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angular frequency. Substituting this into (2.1) leads to

∆ueiωt +
ω2

c2
ueiωt = geiωt.

By dividing through by eiωt, we obtain the inhomogeneous Helmholtz equation

∆u+ k2u = g, (2.2)

where k = ω/c is the wavenumber [36]. In the following we will first consider

the case when g = 0, corresponding to the homogeneous Helmholtz equation,

together with one of the following boundary conditions:

Dirichlet condition (or pressure condition):

u(x) = f(x), x ∈ Γ, (2.3a)

Neumann condition (or velocity condition):

∂u(x)

∂n̂
= f(x), x ∈ Γ, (2.3b)

Robin condition (or impedance condition):

∂u(x)

∂n̂
+ h(x)u(x) = f(x), x ∈ Γ, (2.3c)

where the functions f, h are known and n̂ is the outward unit normal to Γ.

We will also consider the case when f = 0 in the above boundary conditions

and g(x) = δ(x− x0) corresponding to a point source at x0 ∈ Ω. The Dirac δ

models an impulse or density of an idealised point mass as a function equal to

zero everywhere except at zero - see Appendix A. In our numerical experiments

later in Section 2.8.2, we consider this case together with the Neumann boundary

condition (2.3b). We rewrite the solution to the Boundary Value Problem (BVP)

(2.2), (2.3b), as u(x) = v(x) + w(x) and substitute this into the Helmholtz

equation, which leads to

∆(v(x) + w(x)) + k2(v(x) + w(x)) = δ(x− x0),

and splitting up the left hand side we obtain

(∆v(x) + k2v(x)) + (∆w(x) + k2w(x)) = δ(x− x0).



Chapter 2 – BEM for the Helmholtz equation 36

The boundary condition may be written as

∂u(x)

∂n̂
=

∂

∂n̂
(v(x) + w(x)) = 0,

leading to
∂v(x)

∂n̂
= −∂w(x)

∂n̂
. (2.4)

Let us now assume that v satisfies the homogeneous Helmholtz equation with

boundary condition (2.4). This means that w satisfies ∆w(x) + k2w(x) =

δ(x−x0) and hence extending to the whole of R2 we have that w = Gk, where

Gk is the free-space Green’s function for the Helmholtz equation - see Appendix

A. Explicitly, we find

Gk(x,x0) = − i
4
H

(1)
0 (k ‖x− x0‖) (2.5)

where H
(1)
0 is the zeroth order Hankel function of the first kind and ‖·‖ is the

Euclidean norm.

The boundary condition (2.4) to the homogeneous Helmholtz problem for v

can therefore be rewritten as

∂v(x)

∂n̂
= −∂Gk(x,x0)

∂n̂
. (2.6)

We can express the right hand side of (2.6) as

∂Gk
∂n̂

=
∂Gk
∂r
· ∂r
∂n̂

,

where r = ‖r‖ and r = x− x0. Here ∂Gk
∂r and ∂r

∂n̂ are given by

∂Gk
∂r

= − i
4
kH

(1)
1 (kr),

∂r

∂n̂
=
r · n̂
r

.

Therefore we can write ∂Gk
∂n̂ as

∂Gk
∂n̂

= − ik(r · n̂)H
(1)
1 (kr)

4r
. (2.7)

We can then numerically solve the homogeneous Helmholtz equation ∆v(x) +

k2v(x) = 0 with the boundary condition (2.6) using either the indirect or direct
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BEM as described in Sections 2.2 and 2.3. The final solution to the original

inhomogeneous BVP is then calculated for x ∈ Ω via u(x) = v(x) +Gk(x,x0).

For the case when k = 0 in the homogeneous Helmholtz equation, we then

have instead the Laplace equation, which physically represents that there is a

potential and no wave propagation. Resonant solutions are non-trivial solutions

of the Helmholtz equation for the case when f = g = 0, and only exist for par-

ticular values of k called resonant wavenumbers. The solution at these resonant

wavenumbers is non-unique, since u = 0 is also a solution.

We now consider two methods to reformulate the Helmholtz equation as an

integral equation, the indirect and the direct method. The indirect formulations

assume that the solution to the PDE may be represented using formulae known

as the single and double layer potentials, in which we solve for a non physical

quantity known as a layer density [100]. The direct method involves applying a

set of integral relations known as Green’s identities to derive a boundary inte-

gral representation of a given PDE; this method is often applied in engineering

problems as we solve in terms of physical quantities [36]. In the next section

we consider the indirect method and then in Section 2.3 we describe the direct

BEM.

2.2 Boundary integral formulation via the indi-

rect method

Let u be the solution to the Helmholtz equation in (2.2), which satisfies one

of the boundary conditions (2.3a)-(2.3c) on Γ. Then for y ∈ R2, the indirect

single-layer potential formulation assumes that the solution can be expressed in

terms of a source density function σ defined on the boundary Γ as follows

u(x) =

∫
Γ

Gk(x,y)σ(y)dΓy, x ∈ Ω ∪ Γ. (2.8)

Equation (2.8) can be used to solve the Dirichlet BVP by applying the boundary

condition (2.3a) to (2.8) and calculating the density function σ. This leads to

the following BIE:

f(x) =

∫
Γ

Gk(x,y)σ(y)dΓy, x ∈ Γ, (2.9)
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where we have made use of the continuity of Gk across Γ - see Appendix A. Once

σ has been calculated, we substitute the density function σ back into (2.8) to

determine the solution u of the Dirichlet BVP.

For the Neumann BVP we differentiate (2.8) with respect to the external

unit normal n̂x at a point x on the boundary, which yields the BIE

∂u

∂n̂x
(x) =

∫
Γ

∂Gk
∂n̂x

(x,y)σ(y)dΓy +
1

2
σ(x), x ∈ Γ, (2.10)

for points x on a smooth part of Γ. The jump discontinuity of the double-

layer potential (integral in (2.10)) has been applied to give the additional term

on the right hand side [4, 102]. Now, by applying the Neumann boundary

condition (2.3b) to equation (2.10), the density function σ can be calculated

and the solution to the Neumann BVP can be approximated by substituting σ

into (2.8) as before.

For simplicity in future sections, we introduce the following boundary inte-

gral operators

(Lkσ)(x) :=

∫
Γ

Gk(x,y)σ(y)dΓy, x ∈ Γ, (2.11)

(Mkσ)(x) :=

∫
Γ

∂Gk
∂n̂y

(x,y)σ(y)dΓy, x ∈ Γ. (2.12)

Here n̂y is the external unit normal to Γ at the point y. We also define the

single-layer and double-layer potentials, Sk and Dk respectively, as follows

(Skσ)(x) :=

∫
Γ

Gk(x,y)σ(y)dΓy, x ∈ Ω, (2.13)

(Dkσ)(x) :=

∫
Γ

∂Gk
∂n̂y

(x,y)σ(y)dΓy, x ∈ Ω, (2.14)

to distinguish between the boundary and domain operators. Finally in this sec-

tion, we note that there are a number of alternative ways to obtain an indirect

boundary integral formulation for the Helmholtz equation, such as the double

layer potential formulation which is based on the ansatz u = Dkσ, in place of

(2.8). However, in this work we consider only the simplest single-layer formu-

lation as a test case for the various discretisation methods described later in

sections 2.4 and 2.5.
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2.3 Boundary integral formulation via the di-

rect method

We now discuss the direct method which is based on Green’s identities. We

first state the Gauss’ divergence theorem, which will be used in the derivation

of Green’s first identity.

Theorem 2.1 (Divergence Theorem) If F is a vector field in a domain Ω ⊂
R2 with boundary Γ, then∫∫

Ω

(∇ · F ) dΩ =

∫
Γ

(F · n̂) dΓ. (2.15)

Proof. See Spiegel [184].

Setting F = φ∇ψ in Theorem 2.1 leads to Green’s first identity as follows:

Theorem 2.2 (Green’s first identity) Let Ω ∈ R2 be a domain with a closed

boundary Γ and let φ and ψ be functions defined on Ω with continuous second

derivatives, then ∫∫
Ω

(φ∆ψ +∇φ · ∇ψ) dΩ =

∫
Γ

φ
∂ψ

∂n̂
dΓ. (2.16)

Proof. From [184] we consider the identity,

(φ∆ψ +∇φ · ∇ψ) = ∇ · (φ∇ψ).

We integrate the above identity over Ω resulting in∫
Ω

(φ∆ψ + (∇φ) · (∇ψ))dΩ =

∫
Ω

∇ · (φ∇ψ)dΩ.

We then apply Theorem 2.1, to the right hand side, which gives∫
Γ

(φ∇ψ) · n̂ dΓ =

∫
Γ

φ(∇ψ · n̂)dΓ =

∫
Γ

φ
∂ψ

∂n̂
dΓ. �

Corollary 2.2.1 (Green’s second identity) Let Ω ∈ R2 be a domain with a

closed boundary Γ and let φ and ψ be functions defined on Ω with continuous

second derivatives, then∫∫
Ω

(φ∆ψ − ψ∆φ)dΩ =

∫
Γ

(
φ
∂ψ

∂n̂
− ψ ∂φ

∂n̂

)
dΓ. (2.17)
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Proof.

Follows by exchanging ψ and φ in equation (2.16) and then subtracting the

result from (2.16). �

A direct BIE formulation results from Green’s second identity by letting

φ = u and ψ = Gk. Here, u is the solution to the homogeneous Helmholtz BVP

(2.2) with g = 0, together with one of the boundary conditions (2.3a)-(2.3c) and

Gk is given by (2.5) and satisfies (see Appendix A)

∆Gk(x,y) + k2Gk(x,y) = δ(x− y), (2.18)

where δ denotes the Dirac delta distribution as before. Substituting u and Gk

into (2.17) gives ∫
Γ

(
u(y)

∂Gk
∂n̂y

(x,y)−Gk(x,y)
∂u

∂n̂y
(y)

)
dΓy

=

∫
Ω

(Gk(x,y)∆u(y)− u(y)∆Gk(x,y)) dΩy.

(2.19)

Rearranging both the homogeneous Helmholtz equation and (2.18) yields ∆u =

−k2u and

∆Gk(x,y) = δ(x− y)− k2Gk(x,y),

respectively. Then substituting these relations into the integrand on the right

hand side of equation (2.19) leads to∫
Ω

(Gk(x,y)∆u(y)− u(y)∆Gk(x,y)) dΩy = −
∫

Ω

u(y)δ(x− y)dΩy. (2.20)

The position of the point x then determines the value of the right hand side

of equation (2.19). If x ∈ Ω, we can then use the sifting property of the delta

distribution (see Appendix A) to evaluate the right hand side of (2.20) as follows

−
∫

Ω

u(y)δ(x− y)dΩy = −u(x). (2.21)

If x /∈ (Ω ∪ Γ), that is outside our domain and away from the boundary, then

since x 6= y, the right hand side of (2.19) is equal to zero by (2.20).

Finally, we consider the case when x ∈ Γ. Let x be located on a smooth part

of Γ and consider a small circle with radius ε centered at x, then taking ε→ 0

the point x is surrounded by a semicircle in Ω and (2.21) instead evaluates to
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− 1
2u(x) [100]. Hence for x ∈ Γ we obtain∫

Γ

(
u(y)

∂Gk(x,y)

∂n̂y
−Gk(x,y)

∂u(y)

∂n̂y

)
dΓy = −1

2
u(x). (2.22)

We note that the above is arranged form of (2.10). Taking all of the above into

account we can write

∫
Γ

(
Gk(x,y)

∂u(x)

∂n̂y
− u(x)

∂Gk(x,y)

∂n̂y

)
dΓy =


0, x /∈ (Ω ∪ Γ),

1
2u(x), x ∈ Γ,

u(x), x ∈ Ω.

(2.23)

In our numerical examples, later in Section 2.8, we are interested in apply-

ing the Neumann boundary condition (2.3b). For convenience we rewrite the

solution at the boundary position x ∈ Γ in boundary integral operator notation

as (
1

2
I +Mk

)
u(x) = (Lkf) (x), (2.24)

where f is the Neumann boundary data in (2.3b) and I represents the identity

operator, Iu = u. Furthermore, the interior solution when x ∈ Ω may be

expressed as

u(x) = (Skf) (x)− (Dku) (x). (2.25)

2.4 Discretisation via the collocation method

We first consider solving a BIE of the form Av = B for the case of Dirichlet

boundary conditions (2.3a) using the collocation method. In Section 2.5, we

will discuss discretising the BIE via the Galerkin method. Here A, v and B

are combinations of linear operators and functions depending on whether the

indirect or the direct method is used, as detailed in Table 2.1.

The collocation method and the Galerkin method are two of the most com-

mon methods for numerically solving BIEs of this form, and are examples of

projection methods as we explain below [7]. Let X be a normed linear space

and Xm be a subspace of X that is spanned by the basis functions b1, ..., bm.

We seek an approximate solution for v by a function vm ∈ Xm in the form of a
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Indirect Direct

A Lk
1
2I +Mk

v σ u

B f Lkf

Table 2.1: Function and operator assignments in the BIE Av = B for the
indirect and direct methods.

linear combination of basis functions, bj , as follows

vm(x) =

m∑
j=1

φjbj(x), (2.26)

where φ1, ..., φm are unknown constants that need to be determined. Note that

vm will not solve the boundary integral equation Av = B exactly, but does solve

the equation

Avm = B + rm, (2.27)

where rm is the residual. For a good approximation we require rm to be

very small. In the collocation method we pick m distinct points called col-

location points, x1,x2, ...,xm such that the residual is zero at those m points

i.e. rm(xi) = 0 for all i = 1, 2, ...,m. We also divide the boundary Γ into m

elements E1, E2, ..., Em.

From this point on, we consider applying the collocation method only to

the BIE (2.9) derived from the indirect method to demonstrate in further detail

the application of the collocation method to a BIE. A similar process can also

be followed for the direct case instead. Substituting (2.26) into the integral

equation (2.9) at the collocation points, one obtains the following boundary

integral equations

m∑
j=1

φj

(∫
Γ

Gk(xi,y)bj(y)dΓy

)
= f(xi), i = 1, 2, ...,m, (2.28)

in which we need to determine the unknown coefficients φj for j = 1, 2, ...,m.

In our numerical examples discussed later in Section 2.7.1, we consider two

choices of basis functions, piecewise constant and piecewise linear. The simplest

collocation method is based on piecewise constant basis functions, which are
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defined as

bj(y) =

 1 if y ∈ Ej ,

0 otherwise,
(2.29)

for j = 1, 2, ...,m and the collocation point xi is chosen to be at the centre of the

element Ei as highlighted by the yellow circles in Figure 2.1. Since bj(y) = 1

only if y ∈ Ej , then (2.28) simplifies to

m∑
j=1

φj

∫
Ej

Gk(xi,y)dΓy = f(xi), i = 1, 2, ...,m. (2.30)

Figure 2.1: Example of the unit square domain discretised via the collocation
based BEM with piecewise constant basis functions for m = 8. The collocation
points xi are highlighted by the yellow circles chosen to be at the centre of each
element Ei for i = 1, 2, ..., 8.

For piecewise linear basis functions we let h denote the arclength of element

Ej and yj denote the Cartesian coordinates of the boundary node connecting

Ej and Ej+1, see Figure 2.2. Note that Em+1 ≡ E1. Unlike in the piecewise

constant case, the piecewise linear basis functions extend over two neighbouring

elements and the collocation points xi are chosen to be the element end points,

as highlighted by the red circles in Figure 2.2. For simplicity, we parameterise

xi and the integration point y by an arclength parameter. For the collocation

point, we denote si ∈ [0, L) for i = 1, 2, ...,m and for the integration point

we denote t(y) ∈ [0, L), where L is the boundary length. Finally, we denote
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tj = t(yj) for j = 1, 2, ...,m. The piecewise linear basis functions are then

defined as follows

bj(y) =



t(y)− tj−1

h
if tj−1 ≤ t(y) ≤ tj ,

tj+1 − t(y)

h
if tj ≤ t(y) ≤ tj+1,

0 otherwise.

(2.31)

The BIEs (2.28) with piecewise linear basis functions for i = 1, 2, ...,m, may

then be written as

f(xi) =

m∑
j=1

φj

(∫
Ej

Gk(xi,y)
(t(y)− tj−1)

h
dΓy

+

∫
Ej+1

Gk(xi,y)
(tj+1 − t(y))

h
dΓy

)
.

(2.32)

Figure 2.2: Illustration of the piecewise linear basis functions with their corre-
sponding nodes highlighted by red circles, in an element with length h = 0.25.
Element boundaries are indicated by dotted vertical lines.
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2.5 Discretisation via the Galerkin method

We now consider solving BIEs of the form Av = B for the case of Dirichlet

boundary conditions (2.3a) by applying a Galerkin method. Like the collocation

method, the Galerkin method approximates v as a linear combination of basis

functions, bj , for j = 1, 2, ...,m, as defined in equation (2.26) where φ1, ..., φm

are unknown constants that need to be determined. As before, vm does not

solve the integral equation exactly, but does solve equation (2.27). For a good

approximation we again require rm to be very small.

In the Galerkin method, an approximate solution is obtained by enforcing

〈rm, bi〉 =

∫
Γ

rm(x)bi(x)dΓx = 0, for i = 1, 2, ...,m. (2.33)

That is, the inner product of rm and bi is set to be zero [7]. Again, we only

demonstrate thoroughly the application of the Galerkin method for the indirect

boundary integral equation (2.9), but a similar procedure can be followed for the

direct method. We begin by substituting our approximation for v (2.26), into

the BIE (2.9). We then impose (2.33) by multiplication with a test function

bi(x) and then integrate with respect to x over Γ. This yields the following

boundary integral equations

m∑
j=1

φj

(∫
Γ

∫
Γ

Gk(x,y)bi(x)bj(y)dΓxdΓy

)
=

∫
Γ

f(x)bi(x)dΓx, (2.34)

for i = 1, 2, ...,m, where we need to determine the unknown coefficients φ1, ..., φm

[4].

We first write the BIEs (2.34) with piecewise constant basis functions by

dividing the boundary Γ into m elements E1, E2, ..., Em and employing the

basis functions given by (2.29). Since bj(y) = 1 only if y ∈ Ej and bi(x) = 1

only if x ∈ Ei, then (2.34) simplifies to the following system of BIEs

m∑
j=1

φj

(∫
Ei

∫
Ej

Gk(x,y)dΓxdΓy

)
=

∫
Ei

f(x)dΓx, (2.35)

for i = 1, 2, ...,m.

For piecewise linear basis functions (2.31) we also divide Γ into m elements

as before. The resulting system of BIEs is more complex and may be written
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as follows

m∑
j=1

φj

(∫
Ei

∫
Ej

Gk (x,y)

(
s(x)− si−1

h

)(
t(y)− tj−1

h

)
dΓxdΓy

+

∫
Ei

∫
Ej+1

Gk(x,y)

(
s(x)− si−1

h

)(
tj+1 − t(y)

h

)
dΓxdΓy

+

∫
Ei+1

∫
Ej

Gk(x,y)

(
si+1 − s(x)

h

)(
t(y)− tj−1

h

)
dΓxdΓy

+

∫
Ei+1

∫
Ej+1

Gk(x,y)

(
si+1 − s(x)

h

)(
tj+1 − t(y)

h

)
dΓxdΓy

)
=

∫
Ei

f(x)

(
s(x)− si−1

h

)
dΓx +

∫
Ei+1

f(x)

(
si+1 − s(x)

h

)
dΓx,

(2.36)

for i = 1, 2, ...,m. Here s(x) ∈ [0, L) is the arclength parameter for the point

x ∈ Γ and si = s(xi).

2.6 Singularity subtraction

The boundary integral operator Lk (2.11), which is used in the BIEs formulated

from both the direct and indirect methods, has a singularity when x = y. In the

collocation method, the BIEs (2.28) may therefore contain a weak singularity

when xi = y, and then the integrand diverges. This is also the case for the

Galerkin method when x = y for the BIEs (2.34), since direct numerical inte-

gration of Gk leads to problems with this singularity. We therefore implement

a singularity subtraction procedure to overcome these issues and calculate the

finite valued integral.

To begin, we let r = ‖r‖ and r = x − y, and then note that the Hankel

function H
(1)
0 (kr) appearing in Gk can be expressed as H

(1)
0 (kr) = J0(kr) +

iY0(kr), where J0 and Y0 are zeroth order Bessel functions of the first and second

kind, respectively. We find the Puiseux series expansion of H1
0 (kr) about r = 0

by using the Puiseux series expansions for J0(kz) and Y0(kz) about z = 0, which

can be found in Section 8.4 of [74]. The series expansion of the Hankel function

is then given by

H
(1)
0 (kr) = 1+

2i

π

(
ln

(
kr

2

)
+ γε

)
+r2

(
−1

4
− i

2π

(
ln

(
kr

2

)
+ γε − 1

))
+O(r4),

where γε is the Euler - Mascheroni constant [74]. This expansion tells us that
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as r → 0, then omitting O(r2) we have

H
(1)
0 (kr)− 2i

π
ln

(
kr

2

)
= 1 +

2iγε
π
,

and thus using the laws of logarithms,

H
(1)
0 (kr)− 2i

π
ln(r) = 1 +

2i

π

(
γε + ln

(
k

2

))
. (2.37)

Hence for k 6= 0, the left hand side of (2.37) is finite and non-singular in the

limit r → 0. Multiplying (2.37) by −i/4 we obtain

Gk(x,y)− 1

2π
ln(r) = − i

4
+

1

2π

(
γε + ln

(
k

2

))
.

Therefore, we replace Gk in (2.11) with (Gk(x,y)−G0(x,y))+G0(x,y), where

G0 is the free space Green’s function for the two-dimensional Laplace equation

given by

G0(x,y) =
1

2π
ln(‖x− y‖), (2.38)

see Appendix A. In the boundary integral operator Lk (2.11) when x and y are

in the same boundary element, we instead calculate

(Lkσ)(x) =

(∫
Γ

(Gk (x,y)−G0(x,y))σ(y)dΓy

+

∫
Γ

G0(x,y)σ(y)dΓy

)
.

(2.39)

The first integral in (2.39) has a non-singular kernel and can be evaluated us-

ing standard quadrature rules. In our numerical examples, the integrals are

calculated via the integral command in MATLAB which uses a vectorised

adaptive quadrature method. For more details on the integral command in

MATLAB we refer the reader to [181]. For the case when x and y belong to the

same boundary element, the final integral in (2.39) has an exact representation

when either piecewise constant or piecewise linear basis functions are employed.

We first substitute the approximation for σ given by (2.26) into the integral

resulting in
m∑
j=1

φj

∫
Ej

G0(x,y)bj(y)dΓy, (2.40)
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where φj , j = 1, 2, ...,m, are unknown constants to be determined and bj are

either piecewise constant basis functions defined by (2.29) or piecewise linear

basis functions defined by (2.31). The exact calculation of the integral (2.40)

for both cases of basis functions can be found in Appendix B.

This procedure is only used to evaluate the single-layer boundary integral

operator (2.11) and is not required for the double-layer boundary integral op-

erator Mk (2.12), as in our numerical examples for the direct BEM we only

consider polygonal domains. Therefore, the boundary is made up of straight

line edges such that the unit normal vector is perpendicular to the boundary

and thus r · n̂ = 0 in equation (2.7). Therefore ∂Gk/∂n̂ = 0 whenever x and y

belong to the same edge, including the case when x = y.

2.7 Numerical examples for the indirect BEM

In this section we aim to determine which spatial discretisation method and

basis functions to implement in our future development of methods for the

time-domain. We therefore consider solving the indirect BIE (2.9) with Dirich-

let boundary conditions, as it is the simplest to implement and compare the

discretisation methods against one another. We present the results for solving

the Helmholtz Dirichlet BVP (2.2)-(2.3a) via the indirect BEM discretising first

with the collocation method and then with the Galerkin method. For both

methods we consider the cases when Ω is a unit circle, a unit square and an L

shaped domain for both piecewise constant and piecewise linear basis functions.

Figure 2.3 displays a flowchart that details the equation that is required to de-

termine the unknown density coefficients φj depending on which discretisation

method and piecewise basis functions are being implemented to (2.9). Once the

density function σ from (2.26) has been calculated the interior solution is found

via (2.8). In the numerical examples considered we examine the errors and esti-

mated order of convergence (EOC) at different values of the wavenumber k. We

compare results firstly between the different basis functions for each discreti-

sation method, and then we compare both discretisation methods against each

other. The MATLAB code for these examples are available from the following

URL: https://github.com/JacobRowbottom/BEM/tree/main/Indirect .



Chapter 2 – BEM for the Helmholtz equation 49

Indirect

Collocation Galerkin

Piecewise
Constant

Piecewise
Linear

Piecewise
Constant

Piecewise
Linear

(2.30) (2.32) (2.35) (2.36)

Figure 2.3: Flow chart displaying the corresponding BIE required for each dis-
cretisation method and piecewise basis function combination.

2.7.1 Collocation method

We implement the indirect BEM for the BVP defined by (2.2)-(2.3a) discretising

with the collocation method and consider both piecewise constant and piecewise

linear basis functions for a variety of domains.

Circle domain

We first consider the homogeneous Helmholtz equation (2.2) with g = 0 and a

Dirichlet boundary condition (2.3a) for the case when Ω is a unit circle centered

at the origin. For simplicity, we also parameterise xi and the point y by an

arclength parameter, which we denote as si ∈ [0, L) and t ∈ [0, L) respectively,

where L = 2π is the perimeter of the circle. We consider a BVP with exact

solution

u(r, θ) =
J1(kr) sin(θ)

J1(k)
,

where r ∈ [0, 1] is the radial coordinate in Ω and θ ∈ [0, 2π) is the angular

coordinate - see Appendix C.1 for details. The boundary condition for this
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problem is therefore u(1, θ) = sin(θ). The distance between the two points si

and t is the length of a chord 2 sin
(
si−t

2

)
. Therefore the free space Green’s

function can be written as

Gk(xi,y) = − i
4
H

(1)
0

(
2k sin

(
s(xi)− t(y)

2

))
.

Figure 2.4 shows the numerical and analytical solutions for the Helmholtz

equation in a unit circle for different values of k. From the figure we can see

how the solution inside the circle varies due to the increase of the wavenumber

k. Physically this represents an increase in the oscillation of the wave within

the domain.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 7.3514e-04 - 0.0531 - 0.1739 -

32 8.0972e-05 3.65 0.0036 3.88 0.0056 4.96

64 1.1107e-05 3.00 4.0965e-04 3.14 2.6283e-04 4.41

128 1.3875e-06 3.00 5.0148e-05 3.03 2.8537e-05 3.20

256 1.7341e-07 2.95 6.2366e-06 3.00 3.4551e-06 3.05

Table 2.2: Relative errors and estimated orders of convergence for the collocation
method based indirect BEM with constant basis functions in a circle domain at
the point (0.5, 0.5) for different k values.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 4.8145e-04 - 0.0219 - 0.0089 -

32 5.9507e-05 3.02 0.0022 3.32 0.0018 2.31

64 7.4087e-06 3.01 2.6891e-04 3.03 1.5697e-04 5.83

128 9.2514e-07 3.00 3.3305e-05 3.01 1.8552e-05 3.08

256 1.1561e-07 3.00 4.1538e-06 3.00 2.2892e-06 3.01

Table 2.3: Relative errors and estimated orders of convergence for the collocation
method based indirect BEM with piecewise linear basis functions in an unit
circle domain at the point (0.5, 0.5) for different k values.

We first apply piecewise constant basis functions to numerically solve the

BIEs for this example. Table 2.2 shows the relative errors and the convergence

rates, which are estimated by log2(Error(m/2)/Error(m)) as we double the num-
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(a) k = 1 (b) k = 1

(c) k = 10 (d) k = 10

(e) k = 25 (f) k = 25

Figure 2.4: Comparison between the exact and numerical solutions of the Dirich-
let BVP for the Helmholtz equation in a unit circle domain. The numerical
solution was calculated using the collocation method based indirect BEM with
piecewise constant basis functions and m = 256 boundary elements.

ber of boundary elements, where Error(m) is the relative error for the numerical

solution with m boundary elements. From this table we see that the errors are

very small for a relatively small number of boundary elements. The convergence
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rate is also much faster than expected for piecewise constant interpolation since

from Taylor series based arguments for piecewise polynomial interpolation we

would only expect first order convergence. This could be due to using an exact

representation of the smooth boundary Γ, instead of straight line segments.

Table 2.3 presents the relative errors and the EOC for different values of the

wavenumber, when k = 1, k = 10, and k = 25 calculated using piecewise linear

basis functions. By examining this table we can see that errors are very small

and are converging consistently at a cubic rate. If we compare this to the errors

and EOC for constant basis functions from Table 2.2, we identify that as the

wavenumber increases, the errors and convergence rate are very similar, and the

errors for the piecewise linear basis functions are slightly smaller compared to

the errors for the constant basis functions.

Square domain

We now consider solving the homogeneous Helmholtz equation (2.2) with g =

0 and Dirichlet boundary conditions (2.3a) for a unit square domain Ω =

{(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}. The boundary conditions are

defined as

u(x1, 0) = cos(kx1), for 0 ≤ x1 ≤ 1, (2.41a)

u(0, x2) = 1, for 0 ≤ x2 ≤ 1, (2.41b)

u(x1, 1) = cos(kx1), for 0 ≤ x1 ≤ 1, (2.41c)

u(1, x2) = cos(k), for 0 ≤ x2 ≤ 1. (2.41d)

The exact solution to the above BVP is u(x) = cos(kx1) and is independent of

x2 - see Appendix C.2.

Figure 2.5 shows the numerical and analytical interior solutions of the Dirich-

let BVP for the Helmholtz equation with k = 1, k = 10 and k = 25. As we can

see from the figure, as k increases, the rate of oscillation of the wave increases

through the domain. We observe that the numerical and analytical solutions

appear to be identical. This observation is further supported from the error

and convergence results from Table 2.4 and Table 2.5, which indicate that the

errors are small and that the numerical results converge quickly. When com-

paring between piecewise constant and piecewise linear basis functions we can

determine that there is no significant difference in errors or convergence rates,

and the errors for the piecewise constant case are typically lower. Comparing
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(a) k = 1 (b) k = 1

(c) k = 10 (d) k = 10

(e) k = 25 (f) k = 25

Figure 2.5: Comparison between the exact and numerical solutions of the Dirich-
let BVP for the Helmholtz equation in a unit square domain. The numerical
solution was calculated using the collocation method based indirect BEM with
piecewise constant basis functions and m = 256 boundary elements.

the convergence and error results with the results obtained from the unit circle

example, we find that in general the EOCs for the circle case are higher. This
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Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 0.0010 - 0.6869 - 1.0024 -

32 1.8753e-04 2.41 0.1622 2.08 0.4546 1.14

64 3.3180e-05 2.50 0.0275 2.56 0.0210 4.44

128 5.6822e-06 2.55 0.0045 2.61 0.0028 2.86

256 9.5180e-07 2.58 7.4676e-04 2.59 4.5502e-04 2.67

Table 2.4: Relative errors and estimated orders of convergence for the collocation
method based indirect BEM with constant basis functions in a unit square
domain at the point (0.5, 0.5) for different k values.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 0.0025 - 1.8031 - 0.9601 -

32 4.1083e-04 2.61 0.3240 2.48 0.3422 1.49

64 6.6934e-05 2.68 0.0521 2.64 0.0345 3.31

128 1.0804e-05 2.63 0.0083 2.65 0.0050 2.79

256 1.7006e-06 2.67 0.0013 2.67 7.7812e-04 2.68

Table 2.5: Relative errors and estimated orders of convergence for the collocation
method based indirect BEM with piecewise linear basis functions in an unit
square domain at the point (0.5, 0.5) for different k values.

is because the solution along the boundary Γ for the square domain example is

not smooth at the corners, unlike the circle domain example which has a smooth

boundary solution.

L-shaped domain

We define a BVP for the homogeneous Helmholtz equation (2.2) with g = 0

and Dirichlet boundary conditions (2.3a) on an L-shaped domain, as shown in

Figure 2.6. The boundary conditions are defined as follows

u(0, x2) = cos(kx2), for 0 ≤ x2 ≤ 0.5, (2.42a)

u = 0, otherwise. (2.42b)

This represents a wave along the left edge of the domain, with zero everywhere

else, as shown in Figure 2.6, where f(x) = cos(kx2). Figure 2.7 shows the
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Figure 2.6: L-shaped domain and boundary conditions.

(a) k = 1 (b) k = 10

(c) k = 25

Figure 2.7: Numerical solutions of the Dirichlet BVP for the Helmholtz equa-
tion in an L-shaped domain. The numerical solution was calculated using the
collocation method based indirect BEM with piecewise constant basis functions
and m = 256 boundary elements.
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numerical interior solutions of the Helmholtz equation in an L-shaped domain

for k = 1, 10 and 25. In these figures we have set the upper left quadrant of the

plot to be zero to highlight the shape of the reverse L. However when k = 1 this

is difficult to see due to the slow oscillation but as we increase k, we observe a

more oscillatory interior solution as before.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 0.0011 - 0.0467 - 0.7972 -

32 9.1508e-05 3.59 0.0086 2.44 0.4749 0.75

64 2.0944e-05 2.13 0.0033 1.38 0.0579 3.04

128 1.5418e-05 0.44 0.0013 1.34 0.0119 2.28

256 7.1546e-06 1.11 4.9735e-04 1.38 0.0033 1.85

Table 2.6: Relative errors and estimated orders of convergence for the collocation
method based indirect BEM with piecewise constant basis functions in an L-
shaped domain at the point (0.75,0.25) for different k values.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 0.0018 - 0.0953 - 3.5782 -

32 1.8382e-04 3.29 0.0067 3.83 1.6832 1.09

64 5.9063e-05 1.64 0.0029 1.21 0.1702 3.31

128 2.2842e-05 1.37 0.0014 1.05 0.0339 2.32

256 9.0978e-06 1.28 5.7747e-04 1.38 0.0092 1.88

Table 2.7: Relative errors and estimated orders of convergence for the collocation
method based indirect BEM with piecewise linear basis functions in an L-shaped
domain at the point (0.75,0.25) for different k values.

Since there is not an exact solution to this problem, we calculate an approxi-

mate error by calculating the relative error, Error(m), between two approximate

solutions as we double the number of boundary elements

Error(m) =
|um − u2m|
|u2m|

. (2.43)

Table 2.6 shows the approximate errors and the EOC for the Helmholtz prob-

lem in an L-shaped domain for different values of k calculated using piecewise

constant basis functions. From the table we find that the errors for k = 10
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and k = 25, and in particular for k = 25 when m is small, are quite large but

they do eventually become smaller for larger values of m. We also see from

the table that the EOC has not converged, yet but the estimated convergence

rate is mostly above first order. Table 2.7 shows the corresponding results for

piecewise linear basis functions. Comparing the piecewise linear basis functions

with the piecewise constant basis functions, we notice that the error and con-

vergence rates are similar. Both sets of results show an increase in error as we

increase k, as well as an inconsistent convergence rate. As for the unit square

domain, the errors are slightly smaller for piecewise constant basis functions and

we note that the solution for the example here is discontinuous at the corners

of the left edge. It is therefore not surprising that the errors are lower when

using a discontinuous set of basis functions (piecewise constant) compared to a

continuous one (piecewise linear).

2.7.2 Galerkin method

We look to numerically evaluate the Galerkin discretised BIEs (2.34) for a unit

circle, a unit square and an L-shaped domain. We again consider both piecewise

constant and piecewise linear basis functions. We examine the errors and EOC

at different values of k.

Unit circle domain

As before, we consider the homogeneous Helmholtz equation (2.2) with g = 0

and Dirichlet boundary condition u(r, θ) = sin(θ) on a circle domain, which

results in an exact solution given by u(r, θ) = J1(kr) sin(θ)
J1(k) - see Appendix C.1.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 5.0005e-04 - 0.0264 - 0.1532 -

32 5.9528e-05 3.07 0.0022 3.59 0.0018 6.40

64 7.4102e-06 3.00 2.6897e-04 3.03 1.5697e-04 3.52

128 9.2589e-07 3.00 3.3332e-05 3.01 1.8567e-05 3.08

256 1.1599e-07 3.00 4.1672e-06 3.00 2.2966e-06 3.02

Table 2.8: Relative errors and estimated orders of convergence for the Galerkin
method based indirect BEM with piecewise constant basis functions in a unit
circle at the point (0.5, 0.5) for different k values.
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Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 6.2237e-07 - 4.2174e-04 - 0.0078 -

32 5.9556e-08 3.39 2.4060e-06 7.45 1.5861e-06 12.26

64 3.9467e-09 3.92 6.9107e-07 1.80 2.5048e-07 2.66

128 9.0815e-10 2.12 4.2340e-07 0.71 2.6458e-07 -0.08

256 3.8972e-10 1.22 6.2844e-08 2.75 1.7680e-07 0.58

Table 2.9: Relative errors and estimated orders of convergence for the Galerkin
based indirect BEM with piecewise linear basis functions in a unit circle at the
point (0.5, 0.5) for different k values.

Tables 2.8 and 2.9 show the relative error and EOC between the numerical

and analytic solutions for k = 1, k = 10 and k = 25, for both piecewise con-

stant and piecewise linear basis functions. Comparing the results for piecewise

constant basis functions with the results from using the collocation method, we

find that the errors and EOC are very similar for all values of k and that the

errors increase as k gets larger, as expected. Both tables 2.2 and 2.8 show that

for k = 1, k = 10 and k = 25, the solution converges at cubic rate, which as we

have already discussed, is faster than expected. However, the errors are slightly

smaller when using the Galerkin method. In Table 2.9 we observe that the er-

rors for all values of k are small, even for a small number of boundary elements.

We find that the Galerkin method is more accurate with piecewise linear basis

functions than piecewise constant basis functions, as would usually be expected

[4]. But unlike the convergence rates for the piecewise constant basis functions

in Table 2.8, we observe that the convergence rates for piecewise linear basis

functions are more inconsistent. In this case the errors are significantly smaller

than those given by the collocation method in Table 2.3.

Square domain

We consider the homogeneous Helmholtz equation (2.2) with g = 0 and the

boundary conditions (2.41a) - (2.41c), which gives an exact solution of u(x) =

cos(kx1) - see Appendix C.2.

Tables 2.10 and 2.11 show the relative error and EOC between the numerical

and analytic solutions for k = 1, k = 10 and k = 25, for both piecewise constant

and piecewise linear basis functions. From these tables we determine that as

k increases so does the error, which is expected. Comparing the results of the
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Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 0.0020 - 1.0745 - 0.5479 -

32 3.3018e-04 2.60 0.2748 1.97 0.4500 0.28

64 5.4463e-05 2.60 0.0438 2.65 0.0310 3.86

128 8.8885e-06 2.62 0.0069 2.67 0.0042 2.88

256 1.4384e-06 2.62 0.0011 2.65 6.5151e-04 2.69

Table 2.10: Relative errors and estimated orders of convergence for the Galerkin
method based indirect BEM with piecewise constant basis functions in a unit
square at the point (0.5, 0.5) for different k values.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 3.0011e-05 - 0.2076 - 0.5870 -

32 9.0044e-09 11.70 0.0034 5.93 0.0476 3.62

64 7.3582e-09 0.29 9.1827e-05 6.17 6.5978e-04 6.17

128 3.5512e-09 1.05 5.5918e-06 4.03 1.7274e-05 5.26

256 1.1165e-09 1.67 2.8979e-07 4.27 1.0704e-06 4.01

Table 2.11: Relative errors and estimated orders of convergence for the Galerkin
method based indirect BEM with piecewise linear basis functions in a unit square
at the point (0.5, 0.5) for different k values.

errors and EOC for piecewise constant basis functions from Table 2.10 with

those for the collocation method in Table 2.4, we notice the error results for all

values of k are again converging at a consistent rate of approximately 2.6. We

also notice that the errors are smaller for the collocation method. From Table

2.11 we observe that the errors are smaller for piecewise linear basis functions, in

particular when k = 1, but do increase as k increases. The convergence rates for

piecewise linear basis functions are again inconsistent as with the circle results

in Table 2.9. In contrast with the piecewise constant basis function results,

for piecewise linear basis functions the Galerkin method gives the smaller error

values.

L-shaped domain

We consider the BVP for the homogeneous Helmholtz equation (2.2) with g = 0
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on an L-shaped domain with boundary conditions (2.42a) - (2.42b), which has no

exact solution. We therefore calculate the relative error between two consecutive

solutions as we double the number of elements via (2.43).

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 0.0240 - 1.3799 - 2.4839 -

32 0.0205 0.26 0.9846 0.49 1.6000 0.63

64 0.0023 3.16 0.0582 4.08 1.0062 0.67

128 2.7651e-04 3.06 0.0128 2.18 0.4124 1.29

256 3.1711e-05 3.12 0.0042 1.61 0.0335 3.62

Table 2.12: Relative errors and estimated orders of convergence for the Galerkin
method based indirect BEM with piecewise constant basis functions in an L-
shaped domain at the point (0.75, 0.25) for different k values.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

16 2.3156 - 0.1117 - 1.1647 -

32 0.0658 5.14 0.0146 2.94 1.7418 -0.58

64 0.0059 3.48 0.0013 3.49 0.3196 2.45

128 5.1637e-04 3.51 5.8522e-04 1.15 0.0092 5.12

256 2.1010e-04 1.30 2.2806e-04 1.35 0.0028 1.72

Table 2.13: Relative errors and estimated orders of convergence for the Galerkin
method based indirect BEM with piecewise linear basis functions in an L-shaped
domain at the point (0.75, 0.25) for different k values.

Table 2.12 shows the relative errors and the EOC for the Galerkin based

indirect BEM with piecewise constant basis functions on an L-shaped domain

for different values of k. From the table we find that the errors for k = 10 and

k = 25 are quite large but they do decrease as we increase m. We also see

that the EOC is inconsistent for k = 10 and k = 25, which would require more

tests at larger values of m to check if they do eventually stabilise. Comparing

the results from Table 2.12 with those for the piecewise constant collocation

method in Table 2.6, we see that for all k values the errors in Table 2.6 are

smaller. However, the solutions appear to converge at a faster rate in Table

2.12 and so the Galerkin method may eventually become more accurate than

the collocation method for large m. Table 2.13 then shows the relative errors
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and convergence rates for piecewise linear basis functions. From this table we

find the errors are larger in comparison to the unit circle and square cases but

we still observe small errors for large m and all values of k. In comparison to the

error results for the piecewise linear collocation method in Table 2.7, we again

observe smaller error results from using the collocation method when k = 1, but

the Galerkin method gives smaller errors for k = 10 and k = 25.

2.7.3 Comparison of discretisation methods

For the collocation method results in Section 2.7.1, comparing the results be-

tween piecewise constant and piecewise linear basis functions we observed that

all tables showed reasonably small errors, in particular for all examples when

k = 1 and also for all values of k in circle example, as the numerical solution

matched the exact solution well. The results of Section 2.7.1 show that if the

solution is smooth, then piecewise linear basis functions result in smaller er-

rors. However, if the solution is not differentiable (or less regular), which is the

case for the unit square and L-shape examples, then piecewise constant basis

functions perform better. Comparing the different basis function results for the

Galerkin method in Section 2.7.2, we arrive at a similar conclusion that both

choices of basis function give results with small errors. The main advantage of

using the continuous piecewise linear basis functions appears to be for domains

with smooth boundaries and smooth solutions, but we will not be limiting our

study to these smooth cases. As discussed previously, using piecewise linear

basis functions also complicates the calculation slightly and the results take

longer to compute. We also observed that there was no advantage in using

the Galerkin method over the collocation method, and comparing the tables

of results between the two methods for piecewise constant basis functions, all

errors and convergence rates showed no consistent significant difference. The

Galerkin method resulted in a more complex calculation, due to the additional

integral the method requires, and hence results in longer computational times.

Therefore when calculating results for the direct boundary element method in

the next section, we will only consider the simplest and quickest implementation

method, that is the collocation method with piecewise constant basis functions.
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2.8 Numerical examples for the direct BEM

In this section, we present the results for solving the Helmholtz equation (2.2)

with Neumann boundary conditions (2.3b) via the direct BEM, discretising via

the collocation method with piecewise constant basis functions. The Neumann

BVP is of more interest for us to investigate as the Neumann boundary condition

arises naturally in vibro-acoustic problems as a physical quantity. For example,

when modelling an object vibrating in an acoustic medium, the acceleration of

the object’s surface in the normal direction to the boundary is expressed in the

form of a Neumann boundary condition in the corresponding acoustic problem

[37]. In our numerical examples, we consider the cases when Ω is a unit square

and an L-shaped domain. To determine the interior solution to these examples

we are required to first calculate the boundary solution u(x) for x ∈ Γ from

equation (2.23). This equation is discretised via the collocation method with

piecewise constant basis functions as described in Section 2.4. This leads to the

following BIE

m∑
j=1

ûj

(
1

2
δi,j +

∫
Ej

∂Gk
∂n̂

(xi,y)dΓy

)
=

m∑
j=1

∫
Ej

Gk(xi,y)f(xi)dΓy, (2.44)

for i = 1, 2, ...,m. Here δi,j is the Kronecker delta function defined as

δi,j =

 1 if i = j,

0 if i 6= j

In equation (2.44), f is the Neumann boundary condition (2.3b) and

u(x) =

m∑
j=1

ûjbj(x), (2.45)

where ûj are the coefficients that need to be determined and bj are the piece-

wise constant basis functions given by (2.29). Once the coefficients ûj from

(2.44) the boundary solution has been calculated then the interior solution is

calculated via (2.25). It is important to note that u(x) on the left hand side

of equation (2.25) is the interior solution and the u in the term (Dku)(x) on

the right hand side of the equation is the boundary solution calculated pre-

viously. For the numerical examples we consider we examine the errors and

estimated order of convergence (EOC) at different values of the wavenumber
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k. We also consider the case when there is a point source within these two do-

mains. The MATLAB code for these examples are available from the following

URL:https://github.com/JacobRowbottom/BEM/tree/main/Direct .

2.8.1 Inhomogeneous Neumann BVP

Square domain

We consider solving the homogeneous Helmholtz equation with Neumann bound-

ary conditions via the direct BEM for a unit square domain Ω = {(x1, x2) ∈
R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}. The boundary conditions are defined as

∂u

∂n̂
(0, x2) = 1, for 0 ≤ x2 ≤ 1,

∂u

∂n̂
= 0, elsewhere.

(2.46)

That is to say, there is only a non-zero boundary condition on the left edge of

the square and the boundary condition is zero elsewhere. The exact solution to

the above problem is u(x) = 1
k (cot(k) cos(kx1) + sin(kx1)) and is independent

of x2, where x = (x1, x2) is a point inside the domain - see Appendix C.3.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

32 0.0025 - 0.0244 - 0.4548 -

64 8.4609e-04 1.56 0.0082 1.57 0.1192 1.93

128 2.7991e-04 1.60 0.0028 1.55 0.0332 1.84

256 9.1485e-05 1.61 9.13658e-04 1.58 0.0087 1.93

512 2.9639e-05 1.62 3.0998e-04 1.59 0.0022 1.98

Table 2.14: Relative errors and estimated orders of convergence for the direct
BEM in a square domain at the point (0.5, 0.5) for different k values.

Figure 2.8 shows the numerical and analytical interior solutions of the BVP

above for k = 1, k = 10 and k = 25. We observe that the numerical and analyt-

ical solutions are visually identical. Table 2.14 shows the errors and estimated

convergence rates for different values of the wavenumber k. We find similar re-

sults to the indirect method, with the error increasing as k increases. However,

the errors in most cases are larger than for the indirect method examples, but

we do achieve considerably less than 1% error for all values of k. The conver-

gence rate is also lower than for the Dirichlet problem with the indirect BEM
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(a) k = 1 (b) k = 1

(c) k = 10 (d) k = 10

(e) k = 25 (f) k = 25

Figure 2.8: Comparison between the exact and numerical solutions of the Neu-
mann BVP for the Helmholtz equation in a unit square domain. The numerical
solution was calculated using the collocation method based direct BEM with
piecewise constant basis functions and m = 256 boundary elements.

and appears to have decreased from approximately 2.6 to 1.6, which is most

likely due to the change in boundary condition.
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L-Shaped domain

We now consider solving the homogeneous Helmholtz equation with Neumann

boundary conditions via the direct BEM for the L-shaped domain. We define

the boundary conditions as

∂u

∂n̂
(0, x2) = 1, for 0 ≤ x2 ≤

1

2
,

∂u

∂n̂
= 0, elsewhere.

(2.47)

Again, we only have a non-zero boundary condition on the left edge of the

domain and zero elsewhere. This BVP has no exact solution therefore error

results are found by calculating the relative error between two approximate

solutions as we double the number of boundary elements via (2.43).

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

32 0.0108 - 0.6344 - 0.7467 -

64 0.0035 1.63 0.0762 3.06 0.5721 0.38

128 0.0011 1.67 0.0148 2.36 0.1358 2.07

256 3.7223e-04 1.56 0.0031 2.26 0.0384 1.82

512 1.2031e-04 1.63 6.1242e-04 2.34 0.0098 1.97

Table 2.15: Relative errors and estimated orders of convergence for the direct
BEM in an L-shaped domain at the point (0.75, 0.25) for different k values.

Figure 2.9 shows the numerical interior solutions of the BVP for k = 1,

k = 10 and k = 25. We notice that the solution is now more complex than in

the unit square domain as it depends on both x1 and x2. Table 2.15 shows the

approximate errors and convergence orders. From this table, we observe that

even for k = 25 we still eventually obtain small errors below 1% for m = 512. In

comparison to Table 2.6 for the indirect BEM with the collocation method, we

observe that the rate of convergence is more consistent with the direct method

and is approximately second order, although the errors are slightly larger than

for the indirect BEM in most cases.

2.8.2 Point source excitation with a sound hard boundary

We now consider the numerical solution of the inhomogeneous Helmholtz equa-

tion (2.2) with a homogeneous Neumann boundary condition via the direct BEM
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(a) k = 1 (b) k = 10

(c) k = 25

Figure 2.9: Numerical solutions of the Neumann BVP for the Helmholtz equa-
tion in an L-shaped domain. The numerical solution was calculated using the
collocation method based direct BEM with piecewise constant basis functions
and m = 256 boundary elements.

for a unit square domain and also an L-shaped domain as depicted in Figure

2.10. For these numerical examples we consider the case when g(x) = δ(x−x0)

in equation (2.2) and f = 0 in (2.3b). Here x0 = (x0
1, x

0
2) is the position of

the source point inside Ω. The solution to this BVP is discussed in Section 2.1

and may be written as u = v + Gk, where v is the solution to a BVP for the

homogeneous Helmholtz equation with an inhomogeneous Neumann boundary

condition ∂v
∂n̂ = −∂Gk∂n̂ . We numerically solve for v using the direct BEM dis-

cretised via the collocation method with piecewise constant basis functions and

evaluate Gk directly via (2.5).

An analytical solution to the two-dimensional inhomogeneous Helmholtz

problem for a general rectangular domain is given in Appendix C.4. However,
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since we are considering a unit square domain, the solution may be expressed

more simply as

u(x) = 4

∞∑
p=0

∞∑
q=0

cos (pπx1) cos (qπx2) cos
(
pπx0

1

)
cos
(
qπx0

2

)
k2 − π2 (p2 + q2)

. (2.48)

We compare the exact solution to the point source problem with the nu-

merical solution in Figure 2.11, which shows the solutions for a range of dif-

ferent k values resulting from a point source in the centre of the domain at

x0 = (0.5, 0.5). From this figure we observe that the wave oscillates symmetri-

cally outwards from the source point, with an increased oscillation as k increases.

We observe a good agreement between the numerical solutions at m = 256 and

the exact solutions with the sums in (2.48) truncated at p = q = 200.

Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

32 0.0014 - 0.0018 - 0.4357 -

64 4.3055e-04 1.70 0.0023 -0.35 0.1164 1.90

128 1.4831e-04 1.54 0.0012 0.94 0.0317 1.88

256 5.5171e-05 1.52 4.6043e-04 1.38 0.0079 2.00

512 1.7353e-05 1.57 1.6274e-04 1.50 0.0019 2.06

Table 2.16: Relative errors and estimated orders of convergence for the direct
BEM in a square domain at the point (0.25, 0.25) with a homogeneous Neumann
boundary condition and a point source at (0.5, 0.5) for different k values.

Table 2.16 presents the relative errors and convergence rates for the point

source problem in the unit square domain with source point x0 = (0.5, 0.5).

As before, we truncate the sums in (2.48) after p = q = 200 terms. From this

table we observe similar results to before, that is, the relative error increases

as k increases. The order of convergence for k = 1 and k = 10 seems to be

converging to approximately 1.5. However, for k = 25 we appear to achieve

second order convergence, but with larger errors.

In Figure 2.12 we show the numerical solution for the point source problem

in an L-shaped domain with different values of k resulting from a point source

at position x0 = (0.25, 0.25). The solutions appear to be very similar in nature

to those for the unit square, but with an obvious loss of symmetry. Table 2.17

presents the relative errors and convergence rates for the point source problem
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(a) Unit Square

(b) L-shaped domain

Figure 2.10: The unit square and L-shaped BVP for the source point case with
homogeneous Neumann boundary conditions. The source points are highlighted
by the red circle where x0 = (0.5, 0.5) for the unit square and x0 = (0.25, 0.25)
for the L-shape.
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(a) k = 1 (b) k = 1

(c) k = 10 (d) k = 10

(e) k = 25 (f) k = 25

Figure 2.11: Comparison between the exact and numerical solutions of the
Neumann BVP for the inhomogeneous Helmholtz equation in a unit square
domain with source point x0 = (0.5, 0.5). The numerical solution was calculated
using the collocation method based direct BEM with piecewise constant basis
functions and m = 256 boundary elements. The exact solution was calculated
via (2.48) with the sums truncated at p = q = 200.
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in the L-shaped domain, where the error results are found by calculating the

relative error between two approximate solutions as we double the number of

boundary elements via (2.43). From this table, we achieve approximately second

order convergence for all cases of k, but with an increase in the error values as

we increase k. We also observe that for all cases we achieve less than 1% error

when m = 512.

(a) k = 1 (b) k = 10

(c) k = 25

Figure 2.12: Numerical solutions of the Neumann BVP for the inhomogeneous
Helmholtz equation in an L-shaped domain with source point x0 = (0.25, 0.25).
The numerical solution was calculated using the collocation method based direct
BEM with piecewise constant basis functions and m = 256 boundary elements.
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Results at k = 1 Results at k = 10 Results at k = 25

m Error EOC Error EOC Error EOC

32 0.0060 - 0.7942 - 0.6533 -

64 0.0026 1.21 0.1062 2.90 0.5142 0.35

128 6.2311e-04 2.06 0.0218 2.28 0.1242 2.05

256 1.5641e-04 1.99 0.0047 2.21 0.0363 1.77

512 4.3511e-05 1.85 9.9229e-04 2.24 0.0094 1.95

Table 2.17: Relative errors and estimated orders of convergence for the direct
BEM in an L-shaped domain at the point (0.75, 0.25) with a homogeneous
Neumann boundary condition and a point source at (0.25,0.25) for different k
values.

2.9 Conclusion

In this chapter, we derived an indirect boundary integral formulation for the

two-dimensional BVP for the Helmholtz equation with Dirichlet boundary con-

ditions. We applied the indirect BEM to express the solution as a single layer

potential in terms of an unknown layer density σ. We then discretised the re-

sulting BIEs with both the collocation and Galerkin methods, whereby the layer

density σ is approximated as a linear combination of basis functions, leading to

a linear system of m equations. The methods differ as the collocation method

generates an approximate solution by imposing a set of conditions that the inte-

gral equation must be solved exactly at a finite number of points in the domain,

known as collocation points. Whereas the Galerkin method uses a weak form

of the integral equation that is given by multiplying through by each of the

basis functions in turn and integrating over the boundary. This involves com-

puting an additional boundary integral compared with the collocation method,

resulting in a more complicated implementation. We then solved the resulting

BIEs with piecewise constant basis functions as well as piecewise linear basis

functions for different domains including a unit circle, unit square and an L-

shaped domain. An analysis was conducted by examining the relative error as

we double the number of elements and calculating the estimated order of con-

vergence, for different values of k. We found that, in general, as we increased

the wavenumber k that the errors increased. We found also that the errors for

the L-shaped domain were much larger than for the other domains, and showed

a lower order of convergence. However, in this case the errors and convergence

orders were estimated calculated using subsequent approximations, whereas for
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the other domains we could make use of exact solutions.

A comparison between the two discretisation methods showed that there

was no major practical advantage, in terms of accuracy, to using the Galerkin

method over the collocation method. However, the Galerkin method resulted

in a more complex calculation to implement, due to the additional integral the

method requires, and also results in longer computational times. Similarly,

when comparing the results between piecewise constant and piecewise linear

basis functions we observed that there was no significant difference in the error

and the convergence results, and the improvements given by the piecewise linear

basis functions were most evident for smooth domains and solutions, which will

not be the focus of our work in later chapters. Therefore, when calculating

further numerical results using the BEM, we decided to apply the collocation

method with piecewise constant basis functions.

In Section 2.3, we derived the BIEs for the two-dimensional Helmholtz BVP

via the direct BEM with Neumann boundary conditions. The solution to the

BVP can then be expressed in terms of physical quantities. The direct method

involves applying Green’s identities to derive a boundary integral representa-

tion of the Helmholtz equation. Numerical results were computed using the

direct BEM discretised using the collocation method with piecewise constant

basis functions for a unit square and an L-shaped domain. Experiments were

also performed with a point source emitting a wave from inside the domain.

This type of problem involves solving the inhomogeneous Helmholtz equation

as described in Section 2.1. The error and convergence results exhibited a sim-

ilar behaviour to the results found using the indirect BEM. That is, the errors

increased as k increased. Overall the errors were, in general, slightly larger than

for the indirect BEM. The convergence rates were also lower than for the collo-

cation method based indirect BEM on the unit square domain, but higher for

the L-shaped domain. In most cases, the convergence appeared to be between

first and second order.
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Numerical solution of the

wave equation via the

convolution quadrature

boundary element method

In this chapter, we discuss solving the two-dimensional (in space) wave equation

with a Neumann boundary condition via the convolution quadrature boundary

element method (CQBEM). We discretise in time via the convolution quadrature

method and the spatial discretisation is performed using the direct BEM, as

described in Section 2.3. The resulting system of Helmholtz BIEs are solved

using the collocation method with piecewise constant basis functions. Numerical

experiments are conducted to investigate the solution for an inhomogeneous

Neumann initial boundary value problem (IBVP) and also for the case when

there is a point source excitation inside the domain together with a homogeneous

Neumann boundary condition, for a variety of different domain geometries.

73
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3.1 Integral formulation of the wave equation

Let Ω ⊂ R2 be a finite domain with boundary Γ = ∂Ω. We consider the following

Neumann IBVP for the two-dimensional inhomogeneous wave equation

∆Φ− 1

c2
∂2Φ

∂t2
= P (x, t), in Ω× [0, T ], (3.1)

with initial conditions

Φ(·, 0) = ∂tΦ(·, 0) = 0, in Ω, (3.2)

and Neumann boundary condition

∂Φ

∂n̂
= F on Γ× (0, T ], (3.3)

for some T > 0. Where Φ is the solution in two-dimensional space x = (x1, x2) ∈
Ω and time t > 0. Here, we assume F and P are real-valued functions of space

(in two-dimensions) and time, c > 0 is the wave speed and n̂ is the unit outward

normal to the boundary. We will consider problems when internal wave sources

described by P undergo reflections at rigid boundaries (F ≡ 0), or when P ≡ 0

and the boundary Γ corresponds to an interface with a vibrating structure that

generates an inhomogeneous boundary condition F .

In order to treat the inhomogeneous wave equation (3.1) using a boundary

integral formulation, we introduce an incident solution V and a reverberant

solution U in the whole of R2, and write Φ = (U + V )|Ω. We assume that V

solves the free-space problem

∆V − 1

c2
∂2
t V = P̂ , in R2 × [0, T ], (3.4)

where P̂ is an extension of P to the whole of R2. In this work, we will only

consider the spatially localised sources of the form

P (x, t) = δ(x− x0)P0(t), (3.5)

where x0 ∈ Ω is a source point and P0 : [0, T ]→ R defines the time-dependence

of the source term. Hence P̂ is an extension by zero outside Ω. To find the

solution to the free-space problem (3.4) we take the Laplace transform with
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respect to t - see Appendix D.2. The resulting equation is

∆Ṽ − ζ2

c2
Ṽ = δ(x− x0)P̃0(ζ). (3.6)

Here Ṽ and P̃0 represent the Laplace transforms of V and P0 respectively, with

ζ being the Laplace transform parameter. Rewriting (3.6) gives

∆Ṽ +

(
iζ

c

)2

Ṽ = δ(x− x0)P̃0(ζ), (3.7)

and therefore (3.7) is the inhomogeneous Helmholtz equation (2.2) with wavenum-

ber k = iζ/c and g(x) = δ(x − x0)P̃0(ζ). Hence, by linearity, the solution to

(3.7) is a scaled fundamental solution to the Helmholtz equation written as

Ṽ (x, ζ) = P̃0(ζ)Gk(x,x0), (3.8)

where Gk is given by (2.5). Applying the convolution theorem (see Appendix

D) then allows us to express the solution to (3.4) as

V (x, t) =

∫ T

0

G(x− x0, t− τ)P0(τ)dτ, (3.9)

which may be numerically evaluated using an appropriate quadrature rule. Here

G is the fundamental solution to the wave equation in two-dimensions given by

G(x, t) =
H(t− ‖x‖ /c)

2π

√
t2 − ‖x‖2 /c2

, (3.10)

and H is the Heaviside step-function.

We now consider the reverberant solution U . It is easy to see that U must

satisfy the homogeneous wave equation, and since F ≡ 0 in (3.3), then the

boundary condition for U is given by

∂U

∂n̂
= −∂V

∂n̂
. (3.11)

The boundary value problem for U therefore takes the same form as (3.1) –

(3.3) when P ≡ 0 and F = −∂V∂n̂ .

For simplicity in future sections, we define the time-domain single and double
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layer potential operators, respectively, as

(Sφ)(x, t) : =

∫ T

0

∫
Γ

G(x− y, t− τ)φ(y, τ)dΓydτ, x ∈ Ω, (3.12)

(Dψ)(x, t) : =

∫ T

0

∫
Γ

∂G

∂n̂y
(x− y, t− τ)ψ(y, τ)dΓydτ, x ∈ Ω, (3.13)

where ψ and φ are densities. The traces of S and D to the boundary Γ are

defined by time-domain boundary integral operators:

(Vφ)(x, t) :=

∫ T

0

∫
Γ

G(x− y, t− τ)φ(y, τ)dΓydτ, x ∈ Γ, (3.14)

and

(Kψ)(x, t) :=

∫ T

0

∫
Γ

∂G

∂n̂y
(x− y, t− τ)ψ(y, τ)dΓydτ, x ∈ Γ, (3.15)

respectively.

The solution to the wave equation may be represented in a number of differ-

ent ways in terms of the boundary layer potentials. For example, one may apply

the single-layer ansatz, leading to an indirect method for an unknown density

function φ as follows:

Φ(x, t) = (Sφ)(x, t) in Ω× [0, T ]. (3.16)

As for the Helmholtz equation, one can also apply the double-layer ansatz Φ =

Dφ instead of (3.16). Alternatively, one can employ a direct representation,

known as Kirchoff’s formula [73] given by:

Φ(x, t) =

(
S ∂Φ

∂n̂

∣∣∣∣
Γ

)
(x, t)− (DΦ|Γ)(x, t) in Ω× [0, T ]. (3.17)

Kirchoff’s formula (3.17) is derived from Green’s identities similarly to the

derivation given in Section 2.3 for the Helmholtz equation. In fact, one can

repeat the same steps as in Section 2.3, but using G from (3.10) in place of Gk

(2.5) and including an additional integral over the time variable as in (3.12) -

(3.15) above. Moving (3.16) and (3.17) from the interior domain Ω to the bound-
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ary Γ, one then obtains the following time-domain boundary integral equations

Φ(x, t) = (Vφ) (x, t) on Γ× [0, T ], (3.18)(
1

2
I +K

)
Φ(x, t) =

(
V ∂Φ

∂n̂

∣∣∣∣
Γ

)
(x, t) on Γ× [0, T ], (3.19)

again using similar arguments to those in sections 2.2 and 2.3. As before, we

have made use of the continuity of the Green’s function G across Γ to derive

(3.18) and the properties of the Dirac delta distribution to derive (3.19) - see

Appendix A.1. Similar to (3.16) and (3.17), equation (3.19) is known as a

direct boundary integral equation whereas (3.18) is known as an indirect integral

equation. As mentioned before, we note that the direct integral equations are

expressed in terms of physical quantities, while the indirect integral equations

are expressed in terms of unknown densities with no physical interpretation, in

general. Therefore proceeding using the direct boundary integral equations is

advantageous for engineering applications.

In the remainder of this chapter, we consider solving the IBVP for the wave

equation (3.1) - (3.3) by making use of its reformulation as a direct time-domain

boundary integral equation (3.19). We next discuss the time-discretisation of

(3.19) via the convolution quadrature method and then the spatial discretisation

via the BEM with piecewise constant basis functions.

3.2 Time discretisation via CQ

In this section, we outline the semi-discretisation of the BIE (3.19) in time using

Lubich’s convolution quadrature method [119, 120]. In particular, through the

application of CQ we are able to transform the space-time BIE (3.19) into

a series of frequency domain problems with complex wavenumbers. We do

not recall the theoretical framework here but summarise the application of the

method, which is also discussed in [15] in the context of the indirect BEM for

the Dirichlet problem. The CQ method approximates convolution integrals of

the form

y(t) =

∫ t

0

κ(t− τ)h(τ)dτ, (3.20)

for a given kernel κ and function h. We note, that the boundary integral oper-

ators V and K in (3.19) take the form of time convolutions and make use of the
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notation (
Ṽ(∂t)F

)
(x, t) = (VF )(x, t), (3.21)(

K̃(∂t)Φ
)

(x, t) = (KΦ)(x, t), (3.22)

to emphasise this. Note that Ṽ(∂t)F is standard notation for (V ∗ F ) in the

CQ literature [39, 121, 165]. Here Ṽ(ζ) and K̃(ζ) are the Laplace transforms of

V and K respectively, where ζ is the Laplace transform frequency parameter.

That is, Ṽ(ζ) = Lk in equation (2.11) and K̃(ζ) = Mk in equation (2.12) for

k = iζ/c. Explicitly, for x ∈ Γ the Laplace transforms of (3.21) and (3.22) are

given by (
Ṽ(ζ)F̃

)
(x) =

(
LkF̃

)
(x) =

∫
Γ

Gk(x,y)F̃ (y, ζ)dΓy, (3.23)(
K̃(ζ)u

)
(x) = (Mku) (x) =

∫
Γ

∂Gk
∂n̂y

(x,y)u(y, ζ)dΓy, (3.24)

respectively, where Gk is the fundamental solution to the Helmholtz equation

given by (2.5), F̃ denotes the Laplace transform of F and u is the solution to

the Helmholtz equation at wavenumber k = iζ/c. Note that we have made use

of the convolution theorem to derive (3.23) and (3.24) – see Appendix D. It

is also important to note that the Laplace transform of Φ (denoted Φ̃) is the

solution to the Helmholtz equation, u = Φ̃ – see equation (3.7).

To discretise the time convolution
(
K̃(∂t)Φ

)
we split the time interval [0, T ]

into N steps of equal length ∆t = T/N and compute an approximate solution

at the discrete times tn = n∆t, for n = 0, 1, 2, ..., N − 1. The continuous

convolution operator K̃(∂t) at the discrete times tn is replaced by the discrete

convolution operator

(K̃(∂∆t
t )Φ∆t)(·, tn) =

n∑
j=0

w∆t
n−j(K̃)Φj , (3.25)

for n = 0, 1, 2, ..., N − 1, where Φj = Φ∆t(·, tj) and the superscript ∆t is used

to denote quantities that have been semi-discretised in time. The convolution

weights are defined by their Z-transform

K̃
(
γ(z)

∆t

)
=

∞∑
n=0

w∆t
n (K̃)zn, |z| < 1. (3.26)
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The function γ(z) is the quotient of the generating polynomials of a multistep

method used to discretise in time. The general approximation scheme for a

multistep method for a first order ODE dy
dt = f(t, y), whose solution is here

(for CQ) assumed to take the form of the function y in equation (3.20), may be

approximated via

dy

dt
≈ 1

∆t

m∑
j=0

ajy(tn+j−m) =

m∑
j=0

bjf(tn+j−m, y(tn+j−m)), (3.27)

in which m is the number of steps, ∆t is the time-step size and the coefficients

aj and bj , for j = 0, ...,m, determine the multistep method. By convention

a0 = 1, such that yn+1 ≈ y(tn+1) can be conveniently expressed. The quotient

of the generating polynomials γ(z) is then related to the coefficents in (3.27) via

γ(z) =

∑m
j=0 ajz

m−j∑m
j=0 b

m−j
j

. (3.28)

Table 3.1 shows the coefficients of some of the most commonly used A-stable

multistep schemes. An A-stable method is one where all solutions to (3.27) tend

to zero as n → ∞. In our numerical examples in Section 3.4 we consider both

the backward Euler method (BE) and the second order backward difference

formula (BDF2).

Method m a0, ..., am b0, ..., bm γ(z)

Backward Euler 1 1,-1 1,0 1− z
BDF2 2 3

2 ,−2, 1
2 1,0,0 1

2 (z2 − 4z + 3)

Trapezium 1 1,-1 1
2 ,

1
2

2(1−z)
1+z

Table 3.1: Examples of commonly used A-stable multistep methods.

The convolution weights can be calculated via an approximation of Cauchy’s

integral formula using the trapezodial rule. The approximate convolution weights

are then given by a scaled inverse discrete Fourier transform

w∆t
j (K̃) =

1

2πi

∮
C

K̃
(
γ(z)

∆t

)
z−(j+1)dz,

≈ λ−j

Ñ

Ñ−1∑
l=0

K̃(ζl)e
2πilj/Ñ =: w∆t,λ

j (K̃),

(3.29)



Chapter 3 – CQBEM for the wave equation 80

where C is a circular contour centered at the origin of radius λ < 1 and

ζl =
γ(λe−2πil/Ñ )

∆t
, (3.30)

for l = 0, 1, 2, ..., Ñ − 1. In this work we allow the choices of N , the number

of time-steps, and Ñ , the number of frequencies, to be decoupled in order to

potentially over-resolve in the Laplace domain for better accuracy as proposed

in [26, 120]. Typically we choose Ñ = 2N as recommended in [120], although for

the numerical results in this chapter (Section 3.4) we find that N = Ñ provides

sufficient accuracy and hence do not resolve any further.

We now show that applying the semi-discretisation (3.25), together with an

analogous time discretisation procedure for
(
Ṽ(∂t)F

)
, in the integral equation

(3.19) leads to a system of integral equations for the Helmholtz equation with

complex wavenumbers kl = iζl/c for l = 0, 1, 2, ..., Ñ − 1. By extending the

sum in (3.25) to j = N − 1 and substituting the approximate weights (3.29)

into a time discretised version of (3.19), we obtain a system of equations for

Φ∆t,λ(x, tn) = Φλn(x) :

1

2
Φλn +

N−1∑
j=0

w∆t,λ
n−j

(
K̃
)

Φλj =

N−1∑
j=0

w∆t,λ
n−j

(
Ṽ
)
F (·, tj), (3.31)

for n = 0, 1, ..., N − 1.

Substituting the definition of w∆t,λ (3.29) into (3.31), then multiplying by

λn and applying a discrete Fourier transform with respect to n gives

1

2
ul(x) +

(
K̃(ζl)ul

)
(x) =

(
Ṽ (ζl)F̃l

)
(x), x ∈ Γ, (3.32)

for l = 0, 1, ..., Ñ − 1, where

ul =

N−1∑
n=0

Φλnλ
ne−2πiln/Ñ , F̃l =

N−1∑
n=0

F (·, tn)λne−2πiln/Ñ ,

are the Z-transforms of Φ∆t,λ and F respectively. Equation (3.32) is of the

same form as the direct BIE for the Helmholtz equation (2.24), but with kl,

Ṽ and K̃ in place of k, Lk and Mk respectively - see (3.23) and (3.24). We

have thereby transformed the problem of numerically solving the wave equation

to a system of Helmholtz problems with complex wavenumbers kl = iζl/c, for
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l = 0, 1, 2, ..., Ñ − 1. This can be reduced to solving only Ñ/2 + 1 Helmholtz

problems, since the wavenumbers kl (an example is shown in Figure 3.1 (a))

occur in symmetric pairs relative to the imaginary axis, and hence the solutions

to these pairs of Helmholtz problems are complex conjugates. One can see

this by considering the Helmholtz equation ∆u + k2u = 0 and so the solution

only depends on k2. The pairs of wavenumbers take the form k = ±kR + ikI,

where kR, kI denote the real and imaginary parts respectively. This means that

k2 = (k2
R − k2

I ) ± i(2kRkI) and hence are conjugate pairs. Taking the complex

conjugate of the Helmholtz equation we obtain ∆u + k2u = 0 and thus the

solutions for these pairs of wavenumbers occur in conjugate pairs.

Figure 3.1 investigates the effect the parameters Ñ = N and λ have on the

range of complex wavenumbers kl. Sub-plot (a) shows a range of the complex

wavenumbers kl = iζl/c for the set of Helmholtz problems obtained using the

BDF2 scheme with N = Ñ = 256, T = 2, c = 1 and λ = ∆t3/N . The

wavenumbers in sub-plots (b) and (c) are calculated by the BDF2 scheme with

T = 2 and c = 1 as the parameters N = Ñ and λ are changed. In sub-plot

(b), we observe that as we double the number of frequencies from Ñ = 256 to

Ñ = 512, the range of wavenumbers approximately doubles. By considering

the imaginary part of the wavenumber at the top of the range of wavenumbers,

when Ñ = 256 (the wavenumber at l = N/2 + 1 with the largest imaginary

part), has Im(k129) ≈ 500. Whereas the wavenumber at the top when Ñ = 512

is Im(k257) ≈ 1000. In [15], Banjai explains that the choice for λ must be chosen

small enough to ensure stability and accuracy, but also large enough to avoid

numerical instability issues as stated in Theorem 5.5 and Remark 5.1. Banjai

shows that the choice of λ is limited by λ = max(∆t3/Ñ , 10−8/Ñ ). Therefore,

we investigate the range of complex wavenumbers for the case when λ = ∆t3/Ñ

and λ = 10−8/Ñ , as shown in sub-plots (b) and (c). Sub-plot (c) shows the

same plot as sub-plot (b) but zoomed in on −250 < Re(kl) < 0, such that the

difference between the two choices of λ is noticeable. In this plot we observe

only a slight difference between the two sets of wavenumbers as a result of the

choice for λ.

In the next section, we describe the spatial discretisation of these Helmholtz

problems via the direct BEM.
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Figure 3.1: Sub-plot (a) shows a range of complex wavenumbers kl = iζl/c for

the set of Helmholtz problems obtained using the BDF2 scheme with N = Ñ =
256, T = 2, c = 1 and λ = ∆t3/N . Sub-plot (b) shows a range of complex
wavenumbers kl = iζl/c for the set of Helmholtz problems obtained using the

BDF2 scheme with T = 2 and c = 1, for different numbers of frequencies N = Ñ
and λ values, as detailed in the legend. Sub-plot (c) shows the same range of
complex wavenumbers as plot (b), but focused in on −250 < Re(kl) < 0.
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3.3 Spatial discretisation: BEM

For the spatial discretisation, we employ a piecewise constant collocation bound-

ary element method as discussed in Section 2.4 and divide Γ into M subinter-

vals (or elements) Em of approximately equal size. For the space-time discrete

solution at time tn, we assume that both the solution of (3.32) ul and the trans-

formed boundary data F̃l, can be approximated by piecewise constant basis

functions as follows

ul =

M∑
m=1

ul,mbm, F̃l =

M∑
m=1

F̃l,mbm, (3.33)

respectively, where bm, for m = 1, 2, ...,M , are the piecewise constant basis

functions defined in (2.29). Again, we note that (3.33) is similar to (2.26)

but with the additional frequency index l, since we are finding ul for a range of

frequencies rather than just one. We substitute (3.33) into our integral equations

(3.32) and solve for the transformed solution coefficients ul,m. The coefficients

of the basis expansions of F̃l are simply given by F̃l,m = F̃l(xm), where xm is

the collocation point taken at the centre of the element Em. The fully discrete

system of equations may then be written as

1

2

M∑
m=1

ul,mbm(xi) +

M∑
m=1

ul,m

(
K̃(ζl)bm

)
(xi) =

M∑
m=1

F̃l,m

(
Ṽ (ζl)bm

)
(xi),

(3.34)

for l = 0, 1, ..., Ñ − 1, where xi, i = 1, 2, ...,M are the collocation points. As

before, we choose these points to be located at the centre of the corresponding

boundary element and the functions
(
Ṽ(ζl)bm

)
and

(
K̃(ζl)bm

)
are defined by

(3.23) and (3.24), respectively. We note that (3.34) describes the same spatial

discretisation method as in Section 2.4, although here the method has been

applied to the direct BIE. The numerical solution to the wave equation Φj

can then be approximated via the trapezoidal rule for evaluating the inverse

Z-transform as

Φλj =
λ−j

Ñ

Ñ−1∑
l=0

ule
2πilj/Ñ , (3.35)

for j = 0, 1, ..., N − 1.

The interior solution is calculated by applying the same time and spatial

discretisation to (3.17). We obtain the Laplace domain interior solution ul, at
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any point x inside the domain Ω for l = 0, 1, ..., Ñ − 1, as

ul(x) =
(
Ṽ(ζl)F̃l

)
(x)−

(
K̃(ζl)ul

)
(x). (3.36)

Note here, that ul is the boundary solution calculated in (3.33) and (3.34).

An analogous inverse transform to (3.35) is used to approximate the interior

solution Φ(x, t) from ul(x) at x ∈ Ω via

Φλn(x) =
λ−n

Ñ

Ñ−1∑
l=0

ul(x)e2πiln/Ñ , (3.37)

for n = 0, 1, ..., N − 1.

3.4 Numerical results

In this section, we present the results for solving the wave equation (3.1) with

Neumann boundary conditions (3.3) via the collocation based direct CQBEM

with piecewise constant basis functions in space, as discussed in sections 3.2

and 3.3. We now present a step-by-step guide which lists the steps required

to apply the collocation based direct CQBEM with piecewise constant basis

functions to the homogeneous two-dimensional wave equation (3.1) with P ≡ 0

and Neumann boundary condition (3.3).

1. To begin, we divide the boundary Γ into M boundary elements Em of

approximately equal size and split the time interval [0, T ] into N steps

of equal length ∆t = T/N . The number of frequencies Ñ must then be

chosen. In the numerical examples we consider in this section, the number

of frequencies are chosen to be Ñ = N as we find it provides sufficient

accuracy. However, it is recommended that using Ñ = 2N frequencies to

over-resolve in the Laplace domain can be used to obtain better accuracy

as proposed in [26, 120].

2. We then calculate the wavenumbers kl = iζl/c for l = 0, 1, ..., Ñ−1, where

ζl are determined via (3.30). The coefficients in (3.30) are dependent on

which multistep method is used. Table 3.1 provides a summary of the

coefficients of some common A-stable multistep methods. In our numerical

examples we consider the BE and BDF2.
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3. Next, we calculate the transformed Neumann boundary data F̃l from

(3.33) where the coefficients F̃l,m are determined via

F̃l,m = F̃l(xm)

N−1∑
n=0

F (xm, tn)λne−2πiln/Ñ .

Here xm, for m = 1, 2, ...,M , are the collocation points chosen to be

the centre of the elements and bm, for m = 1, 2, ...,M , are the piecewise

constant basis functions defined in (2.29). The parameter λ is given by

λ = max(∆t3/Ñ , 10−8/Ñ ).

4. We then solve the system of Helmholtz equations (3.34) for the trans-

formed boundary solution coefficients ul,m, for each wave number kl,

l = 0, 1, ..., Ñ − 1, and for each collocation point xi, i = 1, 2, ...,M . The

functions
(
Ṽ(ζl)bm

)
and

(
K̃(ζl)bm

)
are defined by (3.23) and (3.24), re-

spectively.

5. Once the boundary solution ul,m in the frequency domain has been deter-

mined. The boundary solution to the wave equation in the time domain

is found via the inverse transform given by (3.35).

6. The interior solution in the Laplace domain ul(x) can then be calculated

via (3.36), where x is any point inside the domain Ω. Note that ul in

equation (3.36) is the boundary solution calculated in (3.33) and (3.34).

The interior solution to the wave equation in the time domain Φ(x, t) at

x ∈ Ω is then approximated via the inverse transform to (3.35).

The MATLAB code for these examples are available from the following URL:

https://github.com/JacobRowbottom/CQBEM-HYBRID/tree/main/Neumann%20IBVP.

In our numerical examples, we first consider an inhomogeneous Neumann

IBVP for the cases when Ω is a unit square and an L shaped domain. We

examine the errors and estimated orders of convergence (EOC) for different

multistep methods for the time discretisation. We also later consider the case

when there is a point source inside a square domain, L-shaped domain and an

irregular polygon domain.

3.4.1 Inhomogeneous Neumann IBVP

We consider the results of applying the CQBEM to the homogeneous wave

equation (3.1), when P = 0, with Neumann boundary condition (3.3) for the
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case when Ω is either a unit square or an L-shaped domain, as depicted in Figure

3.2.

(a) Unit square domain

(b) L-shaped domain

Figure 3.2: The Neumann boundary conditions on the square and L-shaped
domains.

Square domain

For the unit square example, we consider one-dimensional wave propagation

that is only dependent on a single spatial coordinate x1. A general solution

to the one-dimensional wave equation was derived by d’Alembert [78] and is
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written as

Φ(x, t) =
1

2
(Φ0(x1 − ct) + Φ0(x1 + ct)) +

1

2c

∫ x1+ct

x1−ct
Φ′0(s)ds, (3.38)

where Φ satisfies the initial conditions

Φ(x, 0) = Φ0(x),

∂tΦ(x, 0) = Φ′0(x),

and Φ0, Φ′0 are given functions. For our numerical examples, we define the

functions Φ0 and Φ′0 to be zero (to machine precision) in Ω ∪ Γ, in order to

(approximately) satisfy the initial conditions (3.2). We consider the Neumann

boundary condition

F (x, t) =− α(x1 − c(t− t0))e−α(x1−c(t−t0))2

− α(x1 + c(t+ t0))e−α(x1+c(t+t0))2

,
(3.39)

along the left edge, where x1 = 0 and zero boundary conditions on all other

edges, as shown in Figure 3.2. Here x = (x1, x2) and in our numerical examples

we choose the wave speed c = 1. The parameters t0 > 0 and α > 0 control the

position of the peak of the wave and its bandwidth, respectively. These param-

eters are chosen carefully to ensure that the initial conditions are approximately

satisfied. For our results, we only consider small times so that we do not observe

any reflections, in order to compare our results with the exact solution

Φ(x, t) =
1

2

(
e−α(x1−c(t−t0))2

+ e−α(x1+c(t+t0))2
)

(3.40)

for an infinite domain (in the x1 direction).

We now analyse the numerical results for the case when the domain is a unit

square. For simplicity, we parameterise a point along the boundary x ∈ Γ by the

boundary arclength parameter s ∈ [0, L), where L is the length of the boundary.

Similarly the parameterised collocation points xi are denoted as si ∈ [0, L).

Figure 3.3 shows the numerical boundary solution Φn, n = 0, 1, ..., N − 1 and

the corresponding exact solution Φ, for N = 256 time-steps and M = 256

boundary elements. From this figure we can see that the numerical and exact

solutions appear identical by eye, exhibiting the same behaviour as the wave

propagates through the domain and along the boundary. The horizontal axis
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shows the arclength parameter s along the boundary Γ. Figure 3.4 shows the

solution against time at a single interior point x = (0.5, 0.5) for N = M = 256.

We observe that the numerical solution is matching the exact solution well.

(a) Exact Solution (real part) (b) Numerical Solution (real part)

(c) Exact Solution (real part) (d) Numerical Solution (real part)

Figure 3.3: Comparison between the exact and numerical boundary solutions
of the Neumann IBVP for the wave equation in a unit square domain along
the boundary Γ. The numerical solution was calculated using the collocation
based direct CQBEM with piecewise constant basis functions in space and a
CQ backward Euler time-stepping method in time with N = M = 256.

To investigate the error of the interior solution at x ∈ Ω we use the following

relative error:

Error(N) =

√√√√∑N−1
n=0 (Φ(x, tn)− Φn(x))

2∑N−1
n=0 (Φ(x, tn))

2
. (3.41)

We choose λ = 10−8/Ñ , to ensure stability as suggested in [15]. The convergence
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Figure 3.4: Plot of the numerical solution Φn(x), versus the exact solution
Φ(x, tn) for n = 0, 1, ..., N − 1, at the point x = (0.5, 0.5) inside the unit square
domain. The numerical solution was calculated using the collocation based
direct CQBEM with piecewise constant basis functions in space and CQ with
the backward Euler time-stepping method in time with N = M = 256.

rates are estimated by log2(Error(N/2)/Error(N)) and the errors and conver-

gence rates are shown in tables 3.2 and 3.3 for the cases when the parameters

are taken as α = 36, t0 = 0.1 and for the case when α = 4096, t0 = 1 in (3.39).

Table 3.2 shows the error and convergence rates for the backward Euler time

discretisation. For the case when α = 36, t0 = 1, if M is chosen large enough,

we observe the expected first order convergence [91] as we double the number

of time-steps and boundary elements together. However, when we consider the

case with α = 4096 and t0 = 0.1 we observe significantly larger errors due to

there not being a large enough number of boundary elements and time-steps

to model the broadband signal. In Table 3.3, we observe the error and conver-

gence rates obtained by implementing BDF2 time discretisation, therefore as

we double the number of time-steps we multiply the number boundary elements

by four, in order to obtain the expected second order convergence for the BDF2

time discretisation [91]. For the case when α = 36 and t0 = 1, the errors are

smaller than those from the backward Euler method and we achieve the expected

second order convergence rate. But for the case when α = 4096, t0 = 0.1, while

the errors are smaller than with backward Euler, we again observe relatively

large errors and an inconsistent convergence rate.
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α = 36, t0 = 1, T = 2 α = 4096, t0 = 0.1, T = 1

N M Error EOC Error EOC

32 4 0.1246 - 2.9893 -

64 8 0.0722 0.79 0.8822 1.76

128 16 0.0460 0.65 0.8325 0.08

256 32 0.0256 0.85 0.7604 0.13

512 64 0.0136 0.91 0.6633 0.20

1024 128 0.0070 0.96 0.5413 0.29

Table 3.2: Relative errors and estimated orders of convergence for the interior
solution in the square domain at the point x = (0.5, 0.5) using the backward
Euler time discretisation in the CQ method with different choices for the pa-
rameters α and t0 in the Neumann boundary condition (3.39).

α = 36, t0 = 1, T = 2 α = 4096 t0 = 0.1, T = 1

N M Error EOC Error EOC

64 4 0.0681 - 0.8715 -

128 16 0.0121 2.49 0.7983 0.13

256 64 0.0018 2.75 0.6372 0.33

512 256 4.5453e-04 1.99 0.3884 0.71

1024 1024 1.1602e-04 1.97 0.1465 0.29

Table 3.3: Relative errors and estimated orders of convergence for the interior
solution in the square domain at the point x = (0.5, 0.5) using the BDF2 time
discretisation in the CQ method with different choices for the parameters α and
t0 in the Neumann boundary condition (3.39).

We next investigate the affect the number frequencies Ñ , the number of

time-steps N and the number of boundary elements M have on the interior

solution plots. Figure 3.5 shows the numerical solution Φ against time at the

interior point x = (0.5, 0.5) for a variety of different frequencies, time-steps

and boundary elements. The numerical solutions were calculated using the

collocation based direct CQBEM with piecewise constant basis functions in

space and a CQ BDF2 time-stepping method in time. Sub-plot (a) shows the

numerical solutions computed while fixing the number of boundary elements

to M = 512, as the number of time-steps Ñ = N is doubled. We observe

that if ∆t is large, when N = 16 (∆t = 0.0125), the numerical solution is

inaccurate compared to the exact solution observed in Figure 3.4. For N > 256,

we observe a numerical solution which appears to match the exact solution
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(c) N = M = 256

Figure 3.5: Plots of the numerical solution Φn(x) at the point x = (0.5, 0.5)
inside the unit square domain. The numerical solution was calculated using
the collocation based direct CQBEM with piecewise constant basis functions in
space and CQ with the BDF2 time-stepping method in time. Sub-plot (a) has
M = 512 boundary elements as the number of time-steps is changed. Sub-plot
(b) hasN = Ñ = 512 time-steps as the number of boundary elements is changed.
Sub-plot (c) has N = M = 256 time-steps and boundary elements as the number

of frequencies Ñ is doubled. The solutions are shown for 1 < t < T = 2 to focus
on the late time behaviour since the solution along the boundary is zero (to
machine precision) for t ≤ 1.

well, this corresponds to ∆t > 1/128 ≈ 0.0078. In sub-plot (b), the numerical

solutions are computed while fixing the number of time-steps and frequencies

to Ñ = N = 512 as the number of boundary elements are doubled. From this

sub-plot, we observe that for only M < 32 do we observe that the numerical

solution is inaccurate as the solutions display some slight oscillation towards

the tail end of the plots when t > 1.6. In sub-plot (c), we fix the number of

time-steps and boundary elements to N = M = 256, as we double the number
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of frequencies, over-resolving in the Laplace domain in each case. In this sub-

plot, we observe no difference between the numerical solutions as Ñ is doubles,

which further supports that for α = 36 we are not required to over-resolve in

order to achieve more accurate results. Comparing sub-plot (a) to sub-plot (b)

in Figure 3.5, we notice that the size of ∆t has a larger impact on the accuracy

of the numerical solution compared to the number of boundary elements.

As a starting point for the choice of the number of boundary elements

required, we follow the recommendation of 6-10 boundary elements per wave

length as suggested in [129]. In this paper the author discusses that six bound-

ary elements per wavelength, often written concisely as kh < 1 where k is the

wavenumber and h is the element size, provides sufficient accuracy. The more

significantly smaller kh is then the more accurate the solution will be. In Fig-

ure 3.5, we observe that M > 256 provides sufficient accuracy for the range

of wavenumbers that we consider for this problem. However, we find that the

choice for the number of time-steps and the number of frequencies required is

dependent on the problem we are considering, in particular the choice for α in

our Neumann boundary condition (3.39). For the choices α = 36 and t0 = 1,

we observe that Ñ = Ñ = 256 time-steps are sufficient enough to model the

boundary data and the interior solution accurately. It is also important to note

that the choice for α and t0 in the Neumann boundary data (3.39) must be

chosen such that the condition erf(
√
αt0) ≈ 1 such that the initial conditions

are satisfied, where erf is the error function. We also observed that there was

no advantage to over-resolving by choosing the number of frequencies indepen-

dently to the number of time-steps. However, when we investigate the choice

for α = 4096 and t0 = 0.1 in Tables 3.2 and 3.3, we discovered that a larger

number of time-steps and frequencies are required to model the behaviour accu-

rately. This in turn will then require a larger number of boundary elements as

the value of wavenumbers will increase as we increase the number of frequencies

due to (3.30). This highlights a disadvantage of the CQBEM in modelling broad-

band frequency content as the requirement for a alrge number of time-steps and

boundary elements results in a longer computational time. This choice of α and

t0 will be investigated further in Section 5.4.1.

We next investigate the bandwidth of the driving force and the interior so-

lution for different choices of the parameters Ñ , N and M . Figure 3.6 shows

the logarithm of the boundary data and the interior solution in the Fourier do-

main against the wavenumber k. The boundary data F̃l is approximated via

F̃l =
∑N−1
n=0 F (xm, tn)λne−2πiln/Ñ , where F is given by (3.39) when α = 36 and
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Figure 3.6: Logarithmic plots of the bandwidth of the Neumann boundary con-
dition F and the interior solution Φ(x), at the point x = (0.5, 0.5), in the
Fourier domain against the wavenumber k. The Neumann boundary condition
F is given by equation (3.39) with α = 36 and t0 = 1. The numerical interior so-
lution was calculated using the collocation based direct CQBEM with piecewise
constant basis functions in space and CQ with the BDF2 time-stepping method
in time. Sub-plot (a) shows the bandwidth of the driving force F . Sub-plot (b)
shows the bandwidth of the interior solution Φ(x).

t0 = 1. Here xm for m = 1, 2, ...,M are the collocation points. The numerical

interior solution in the frequency domain u(x), was calculated using the colloca-

tion based direct CQBEM with piecewise constant basis functions in space and

CQ with the BDF2 time-stepping method in time, for x = (0.5, 0.5). In both
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sub-plots, we observe that the solutions for all different combinations of param-

eters decay by a factor in excess of 10−8 from their peak value. As well, in both

sub-plots, we observe that most solutions have a bandwidth of approximately

70, except for the case when Ñ = 2N = 512 in which the number of frequencies

had been doubled. In this case the bandwidth is broader at approximately 140

and therefore as we double the number of frequencies the bandwidth approxi-

mately doubles. We notice that changing the number of boundary elements M

does not affect the solution in the Fourier domain. However, for the case when

we decrease the number of time-steps by a factor of four we observe that the

bandwidth is slightly lower with the bandwidth being approximately 40.

L-shaped domain

We now consider solving the homogeneous wave equation (3.1) when P = 0,

along with the Neumann boundary data (3.39) along the left edge where x1 = 0

and zero boundary data elsewhere, for the case when Ω is an L-shaped domain

- see Figure 3.2 (b). Physically this represents a wave pulse originating from

the left edge and travelling through the domain and along the boundary. As

the wave travels through the narrow half of the domain, it will behave similarly

to the wave inside the square domain. Once the wave passes and extends into

the wider region of the domain, the wave will travel along the boundary and

through the domain, and the solution then depends on both x1 and x2. Again

we parameterise a position along the boundary x ∈ Γ and the collocation points

xi by the boundary arclength parameter s ∈ [0, L) and si ∈ [0, L), respectively.

α = 36, t0 = 1, T = 1.5 α = 4096, t0 = 0.1, T = 0.5

N M Error EOC Error EOC

32 8 0.3229 - 2.8087 -

64 16 0.1922 0.75 0.8329 1.75

128 32 0.0991 0.96 0.7553 0.14

256 64 0.0501 0.98 0.6566 0.20

512 128 0.0249 1.01 0.5328 0.30

1024 256 0.0124 1.06 0.3948 0.43

Table 3.4: Relative errors and estimated orders of convergence for the interior
solution in the L-shaped domain at the point x = (0.25, 0.25) using the back-
ward Euler time discretisation in the CQ method with different choices for the
parameters α and t0 in the Neumann boundary condition (3.39).
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(a) Numerical solution on the boundary Γ. (b) Exact solution on the boundary Γ.

(c) Numerical solution on the boundary Γ.
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(d) Interior solutions against time, observed
at the point x = (0.25, 0.25) in Ω.

Figure 3.7: Numerical solution of the Neumann IBVP for the wave equation
with parameters α = 36 and t0 = 1 in the Neumann boundary condition (3.39)
for an L-shaped domain. Sub-plots (a) and (c) show the numerical solution along
the boundary Γ over different time periods and sub-plot (d) depicts the numer-
ical solution observed at an interior point x = (0.25, 0.25) against time. The
numerical solution was calculated using the collocation based direct CQBEM
with piecewise constant basis functions in space and CQ with the backward
Euler time-stepping method in time with N = M = 256. Sub-plot (b) shows
the exact solution (3.40) along the boundary Γ over time.

Figure 3.7 shows the mesh plots of the numerical boundary solution and the

interior solution Φn, n = 0, 1, ..., N − 1 calculated for N = 256 time-steps and

M = 256 boundary elements and compared against the exact solution for the

case when α = 36 and t0 = 1. In this figure, the exact solution is only valid up

until approximately t = 0.85 due to wave reflections as well as diffraction from

the re-entrant corner at s = 3. Initially the wave enters the domain from the

left edge and travels along the top edge (3 < s < 3.5) up until it reaches the
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α = 36, t0 = 1, T = 1.5 α = 4096, t0 = 0.1, T = 0.5

N M Error EOC Error EOC

64 8 0.2583 - 0.9533 -

128 32 0.1096 3.12 0.7553 0.38

256 128 0.0306 3.20 0.4772 0.62

512 512 0.0054 2.50 0.2275 1.06

1024 2048 0.0012 2.12 0.0765 1.57

Table 3.5: Relative errors and estimated orders of convergence for the interior
solution in the L-shaped domain at the point x = (0.25, 0.25) using the BDF2
time discretisation in the CQ method with different choices for the parameters
α and t0 in the Neumann boundary condition (3.39).

corner (s = 3) at t = 0.5. From here a diffracted wave travels from the corner at

s = 3 back into the domain towards the interior point x, but does not reach the

interior point until t = 0.5 +
√

0.252 + 0.252 ≈ 0.8536. However, from sub-plot

(d), we do not visibly see these wave contributions in the numerical solution

until after t = 1.5, even though within the time region 0.85 < t < 1.5 there are

very small diffracted wave contributions in the numerical solution. Therefore,

when we calculate the errors in tables 3.4 and 3.5, we calculate up until T = 1.5

for α = 36 and t0 = 1, but note there are very small diffracted contributions

included in the numerical solution, which are not included in the exact solution.

For the case when α = 4096 and t0 = 0.1 we calculate the error up until T = 0.5,

and thus avoid the diffracted wave contributions entirely.

Sub plots (a) - (b) of Figure 3.7 show the exact and numerical boundary

solution up until t = 1.5, which we observe appear identical by eye. Sub-plot

(c) shows the complete boundary solution up until T = 2. Next, we investigate

the errors and convergence rates as we double the number of time-steps for the

cases when α = 36, t0 = 1 and T = 1.5 as well as when α = 4096, t0 = 0.1 and

T = 0.5. Tables 3.4 and 3.5 show the error results and the estimated convergence

rates using backward Euler and BDF2 schemes respectively. From these tables

we can observe that Table 3.4 shows the expected first order convergence rate

for the case when α = 36 and t0 = 1, but for the case when α = 4096 with

t0 = 0.1 the errors are much larger and we do not observe the expected first

order convergence rate. In Table 3.5 we again observe smaller errors and a

slightly faster convergence rate than the expected second order for the BDF2

method when α = 36, t0 = 1 and T = 1.5. However, we observe a big loss of
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accuracy when α = 4096, t0 = 0.1 and T = 0.5. When we choose α to be a

very large value, we find that in these numerical examples there are not enough

time-steps or boundary elements to model the broadband frequency content

accurately enough. Therefore a more efficient method is required to calculate

the numerical solution for large choices of α.

3.4.2 Response to an interior point source

We consider solving the inhomogeneous wave equation (3.1) when P (x, t) =

P0(t)δ(x−x0) with a homogeneous Neumann boundary condition F ≡ 0 in (3.3)

via CQBEM for a unit square domain, an L-shaped domain and an irregular

polygon. We choose P0 to be a Gaussian pulse of the form

P0(t) =

√
α

π
sin(4πt)e−α(t−t0)2

, (3.42)

where α, t0 > 0 are constants that are chosen to be large enough to satisfy the

zero initial conditions (3.2) to machine precision.

As described in Section 3.1, the solution to the IBVP (3.1) - (3.3) is writ-

ten as Φ = (U + V )|Ω, where U is the reverberant solution that satisfies the

homogeneous wave equation (3.1) when P = 0, along with Neumann boundary

condition (3.11). The incident solution V then solves the free-space problem

(3.4) and is calculated via (3.9), which for this numerical example we write as

V (x, t) =

∫ T

0

G(x− x0, t− τ)P0(τ)dτ

=

∫ T

0

√
α

π

1

2π

H(t− τ − r/c) sin(4πτ)e−α(τ−t0)2√
(t− τ)2 − r2/c2

dτ,

=

√
α

2π3/2

∫ max(t−r/c,0)

0

sin(4πτ)e−α(τ−t0)2√
(t− τ)2 − r2/c2

dτ,

(3.43)

where r = ‖x− x0‖. The solution U is then calculated numerically by applying

the collocation based CQBEM with piecewise constant basis functions in space,

together with either the backward Euler or BDF2 based CQ discretisation in

time, as discussed in sections 3.2 and 3.3. Therefore we determine the solutions

of a system of Helmholtz problems (3.34) in the frequency domain for a range of

complex wavenumbers. To implement the collocation based direct CQBEM with

piecewise constant basis functions to calculate the reverberant solution U , we

refer the reader to the step-by-step guide listed at the beginning of Section 3.4
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but with the following amendments. In this case, the solution of each Helmholtz

problem ul corresponds to the numerical approximation Ũl, the Z-transform of

U . The boundary data term F̃l in (3.34) is given by the Z-transform of −∂V∂n̂

evaluated at ζ = ζl. The frequency domain interior solution is then calculated by

evaluating (3.36). The time-domain boundary and interior solution can then be

found via the inverse transforms (3.35) and (3.37), respectively. The MATLAB

code for the solving the two-dimensional (in space) inhomogeneous wave equa-

tion via the collocation based CQBEM with piecewise constant basis functions

in space and CQ discretisation in time are available from the following URL:

https://github.com/JacobRowbottom/CQBEM-HYBRID/tree/main/Point

%20Source.

In all our numerical experiments in this section, we choose α = 36, t0 = 1,

c = 1 and T = 2. To calculate the error at x ∈ Ω we use the relative error

defined by (3.41) using subsequent interior solutions as we double the number

of time steps N . However, as our final solution is of the form Φ = U + V , we

calculate the error using only U , the part of the solution obtained via CQBEM.

Since we are not comparing the numerical solutions to an exact solution we

will not investigate the behaviour of the solutions when choosing α = 4096

and t0 = 0.1, as we did in Section 3.4.1, as we have already shown that these

choices for α and t0 lead to a big loss of accuracy when comparing the numerical

solutions against an exact solution.

Square domain

N M Error EOC

32 4 - -

64 8 0.3403 -

128 16 0.2127 4.16

256 32 0.1604 0.61

512 64 0.1096 0.55

1024 128 0.0621 0.82

Table 3.6: Relative errors and estimated orders of convergence for the interior
solution in a unit square domain at the point x = (0.25, 0.25) for a source point
x0 = (0.5, 0.5) using the backward Euler time discretisation in the CQ method.

We first consider the case when Ω is a unit square with a source point in

the centre at x0 = (0.5, 0.5) and investigate the interior solution at the point
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N M Error EOC

64 4 - -

128 16 0.8467 -

256 64 0.2415 1.81

512 256 0.0571 2.08

1024 1024 0.0092 2.63

Table 3.7: Relative errors and estimated orders of convergence for the interior
solution in a unit square domain at the point x = (0.25, 0.25) for a source point
x0 = (0.5, 0.5) using the BDF2 time discretisation in the CQ method.

x = (0.25, 0.25). Due to the symmetry of the domain, we note that the interior

and boundary solutions are symmetric as the point source is chosen to be at

the centre. We have computed the errors and estimated convergence rates in

tables 3.6 and 3.7. Table 3.6 shows the errors and estimated convergence rates

produced using the backward Euler time discretisation in the CQ method. From

this table we observe that the errors are decreasing and are tending towards first

order convergence. Table 3.7 shows the relative errors and estimated conver-

gence rates obtained from a BDF2 time discretisation in the CQ method. The

errors shown are smaller than for the backward Euler method and second order

convergence is achieved. We note that, as well as the BDF2 scheme being more

accurate than backward Euler, we are also using more boundary elements M

with the BDF2 scheme in order to realise the second order convergence rate of

the time-stepping scheme. Figures 3.8 and 3.9 show the boundary solution Φ

and the interior solutions Φ, U and V , respectively. In Figure 3.9 the reverber-

ant solution U was calculated using the collocation based direct CQBEM with

piecewise constant basis functions in space and CQ with the BDF2 time-stepping

method in time with N = M = 512 and the solution V , which was calculated

using numerical integration to evaluate (3.43) via the integral command in

MATLAB.

We next investigate the impact of changing the number of frequencies Ñ , the

number of time-steps N and the number of boundary elements M has on the be-

haviour of the interior solution Φ. To achieve this we investigate the reverberant

solution U and the incident solution V independently. To begin, we consider the

reverberant solution U only since it is approximated via the collocation based

CQBEM with piecewise constant basis functions in space and BDF2 CQ dis-

cretisation in time. Whereas the incident solution V is approximated via the
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(a) (b)

Figure 3.8: Numerical solution of the Neumann IBVP for the wave equation with
a point source excitation at x0 = (0.5, 0.5) in the centre of a unit square domain.
The solutions are observed along the boundary Γ with arclength parameter
s ∈ [0, 4) and were calculated using the collocation based direct CQBEM with
piecewise constant basis functions in space and CQ with the BDF2 time-stepping
method in time with N = M = 256. The solution is shown for 1 < t < T = 2 to
focus on the late time behaviour since the solution along the boundary is zero
(to machine precision) for t ≤ 1.
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Figure 3.9: Numerical solution for the Neumann IBVP of the wave equation,
where the solution Φ(x, t) = U(x, t) +V (x, t), describes the response to a point
source excitation at x0 = (0.5, 0.5) observed at the point x = (0.25, 0.25) inside
a unit square domain, and is plotted against time t. The numerical solution U is
calculated using the collocation based direct CQBEM with piecewise constant
basis functions in space and CQ with the BDF2 time-stepping method in time
with N = M = 512. The solution V was calculated using numerical integration,
to evaluate (3.43) via the integral command in MATLAB.
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(a) M = 512
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(b) N = 512
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(c) M = N = 256

Figure 3.10: Plots of the numerical reverberant solution U(x, t) subject to a
point source excitation at x0 = (0.5, 0.5) observed at the point x = (0.25, 0.25)
inside a unit square domain. The numerical solution U was calculated using
the collocation based direct CQBEM with piecewise constant basis functions in
space and CQ with the BDF2 time-stepping method in time. Sub-plot (a) has
a fixed number of M = 512 boundary elements as the number of time-steps
is changed. Sub-plot (b) has a fixed number of N = Ñ = 512 time-steps as
the number of boundary elements is changed. Sub-plot (c) has N = M = 256

time-steps and boundary elements as we double the number of frequencies Ñ .
The solution is shown for 1 < t < T = 2 to focus on the late time behaviour
since the solution along the boundary is zero (to machine precision) for t ≤ 1.

integral command in MATLAB, which uses a vectorised adaptive quadrature

method to approximate (3.43). Therefore the reverberant solution is of more in-

terest for us to investigate. Figure 3.10 shows the numerical reverberant solution

U against time subject to a source point excitation at x0 = (0.5, 0.5) observed

at the interior point x = (0.25, 0.25) for different numbers of frequencies, time-

steps and boundary elements. The numerical solutions were calculated using

the collocation based direct CQBEM with piecewise constant basis functions in
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space and a CQ BDF2 time-stepping method in time. Sub-plot (a) shows the

numerical solutions computed while fixing the number of boundary elements to

M = 256 as the number of time-steps Ñ = N is doubled. Again as was the

case for the wave travelling into the domain in Figure 3.5 (a) we observe that

if ∆t is large the numerical solution is inaccurate. For N = 256 and N = 512

the solutions appear to match and therefore when ∆t < 1/128 we achieve an

accurate solution. In sub-plot (b) the numerical solutions are computed while

fixing the number of time-steps and frequencies to Ñ = N = 512 as the number

of boundary elements is doubled. From this plot we observe that when M > 64

the solutions appear to be accurate and similar to each other. In sub-plot (c) we

double the number of frequencies as we fix the number of time-steps and bound-

ary elements. From this plot we observe that there is no significant impact in

over-resolving for the case when α = 36.

Figure 3.11 then displays the numerical incident solution V against time

observed at the interior point x = (0.25, 0.25) subject to a source point exci-

tation at x0 = (0.5, 0.5). Sub-plot (a) shows the numerical solutions computed

while fixing the number of boundary elements to M = 256 as the number of

time-steps is doubled. We observe that the solutions all behave similarly but as

we increase the number of time-steps the line becomes smoother as ∆t becomes

smaller. Sub-plot (b) shows the numerical solutions computed while fixing the

number of time-steps to N = 256 as the number of boundary elements is dou-

bled. Again we observe the same increase in accuracy as we double the number

of boundary elements. Between Figures 3.10 and 3.11 we notice that the number

of time-steps has a much more important impact on the reverberant solution of

U and therefore Φ than the incident solution V .
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Figure 3.11: Plots of the numerical incident solution V (x, t) subject to a point
source excitation at x0 = (0.5, 0.5) observed at the point x = (0.25, 0.25) inside
a unit square domain. The numerical solution V was calculated using numerical
integration, to evaluate (3.43) via the integral command in MATLAB. Sub-
plot (a) has a fixed number of M = 256 boundary elements for all solutions
as the number of time-steps is changed. Sub-plot (b) has a fixed number of

N = Ñ = 256 time-steps for all solutions as the number of boundary elements
is changed.

L-shaped domain

We now consider the L-shaped domain with the source point chosen to be x0 =

(0.25, 0.25) as highlighted by the red dot in Figure 3.12. We investigate the

interior solution behaviour at a number of points, labelled A = (0.1, 0.15),

B = (0.5, 0.25) and C = (0.75, 0.75) - see Figure 3.12. Figure 3.13 shows
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Figure 3.12: The L-shaped domain including the source point and the interior
solution points A, B and C.

(a) (b)

Figure 3.13: Numerical solution of the Neumann IBVP for the wave equation
with a point source excitation at x0 = (0.25, 0.25) in an L-shaped domain. The
solutions are observed along the boundary Γ with arclength parameter s ∈ [0, 4)
and were calculated using the collocation based direct CQBEM with piecewise
constant basis functions in space and CQ with the BDF2 time-stepping method
in time with N = M = 256. The solution is shown for 0.5 < t < T = 2 to focus
on the late time behaviour since the solution is zero for t ≤ 0.5.

the solution Φ along the boundary computed using the collocation based direct

CQBEM with piecewise constant basis functions in space and CQ with the BDF2

time-stepping method in time with N = M = 256. The plots in Figure 3.14
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N M Error EOC

32 8 - -

64 16 0.1569 -

128 32 0.1096 0.52

256 64 0.0544 1.01

512 128 0.0242 1.17

1024 256 0.0107 1.17

Table 3.8: Relative errors and estimated orders of convergence for the interior so-
lution in the L-shaped domain at the point A for a source point x0 = (0.25, 0.25)
using the backward Euler time discretisation in the CQ method.

N M Error EOC

64 8 - -

128 32 0.1280 -

256 128 0.0252 2.34

512 512 0.0044 2.52

1024 2048 8.0524e-04 2.45

Table 3.9: Relative errors and estimated orders of convergence for the interior so-
lution in an L-shaped domain at the point A for a source point x0 = (0.25, 0.25)
using the BDF2 time discretisation in the CQ method.

show the interior solutions Φ, U and V at the interior points A, B and C shown

in Figure 3.12. The interior solution at point C was calculated for a longer time

duration with T = 2.5 to show a similar number of reflections as observed at

points A and B with T = 2. Tables 3.8 and 3.9 show the errors and estimated

convergence rates when discretising in time via CQ with the backward Euler

and BDF2 methods, respectively. From these tables we observe that BDF2

has smaller errors and to achieve similarly small errors for the backward Euler

method we would need to increase the numbers of time-steps and boundary

elements further. We observe approximately first order convergence for the

backward Euler method shown in Table 3.8 and approximately second order

convergence for the BDF2 time-stepping method shown in Table 3.9. Figure

3.14 shows the numerical interior solution at the points A, B and C inside

the L-shaped domain. The plots show the full solution Φ, the reverberant

solution U , which was calculated using the collocation based direct CQBEM

with piecewise constant basis functions in space and CQ with the BDF2 time-
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Vertex x1 x2

1 1.0480 0.6993

2 0.2180 1.1720

3 0.0 0.3582

4 0.7680 0.0

5 1.0480 0.2993

Source 0.648 0.5

Table 3.10: Cartesian coordi-
nates of the vertices and the
point source for the irregular
polygon domain.

Figure 3.15: The irregular polygon domain.

stepping method in time with N = M = 512. The plots also show the solution

V , which was calculated using numerical integration to evaluate (3.43) via the

integral command in MATLAB.

Irregular polygon

We now consider an irregular polygon domain as shown in Figure 3.15, which

also lists the vertices and source point coordinates for the domain in Table 3.10.

The source point is chosen to be x0 = (0.648, 0.5) as highlighted by the red dot in

Figure 3.15 and we determine the interior solutions Φ, U and V at three different

points inside Ω labelled A = (0.29, 0.8), B = (0.42, 0.275) and C = (0.97, 0.6),

as shown in Figure 3.15. Figure 3.16 shows the solution Φ along the boundary

computed using the collocation based direct CQBEM with piecewise constant

basis functions in space and CQ with the BDF2 time-stepping method in time

with N = M = 256. Comparing to the boundary solutions for the unit square

and L-shaped domains shown in Figures 3.8 and 3.13, respectively, the plot here

shows the expected loss of symmetry and lack of regularity corresponding to the

irregular geometry.

Figure 3.17 shows the numerical interior solution at the points A, B and

C. The plots show the full solution Φ, the reverberant solution U , which was

calculated using the collocation based direct CQBEM with piecewise constant

basis functions in space and CQ with the BDF2 time-stepping method in time

with N = M = 512. The plots also show the solution V , which was calculated
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N M Error EOC

32 8 - -

64 16 0.4011 -

128 32 0.3449 0.22

256 64 0.2298 0.59

512 128 0.1479 0.64

1024 256 0.0905 0.71

Table 3.11: Relative errors and estimated orders of convergence for the interior
solution in the irregular polygon domain at the point B for a source point x0 =
(0.648, 0.5) using the backward Euler time discretisation in the CQ method.

N M Error EOC

64 8 - -

128 32 0.5042 -

256 128 0.0801 2.65

512 512 0.0192 2.06

1024 2048 0.0065 1.56

Table 3.12: Relative errors and estimated orders of convergence for the interior
solution in the irregular polygon domain at the point B for a source point
x0 = (0.648, 0.5) using the BDF2 time discretisation in the CQ method.

using numerical integration to evaluate (3.43) via the integral command in

MATLAB. Tables 3.11 and 3.12 show the errors and convergence rates when

discretising in time via CQ with the backward Euler and BDF2 methods, re-

spectively. The errors are larger than those for the L-shaped domain, but we

still observe smaller errors using the BDF2 time discretisation compared against

the backward Euler method for the irregular polygon domain. Again, this is due

to the errors being calculated using more boundary elements M and the BDF2

scheme being more accurate. The BDF2 method achieves its expected conver-

gence rate of second order and we expect the backward Euler method to achieve

first order convergence when using more boundary elements and time-steps.
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(a) Numerical solution at point A.
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(b) Numerical solution at point B.
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(c) Numerical solution at point C.

Figure 3.14: Plots of the numerical solution of the Neumann IBVP for the
wave equation with a point source excitation at x0 = (0.25, 0.25) observed at
the points A,B and C in the L-shaped domain - see Figure 3.12. The rever-
berant solution U was calculated using the collocation based direct CQBEM
with piecewise constant basis functions in space and CQ with the BDF2 time-
stepping method in time with N = M = 512. The solution V was calculated
using numerical integration to evaluate (3.43) via the integral command in
MATLAB.



Chapter 3 – CQBEM for the wave equation 109

(a) (b)

Figure 3.16: Numerical solution of the Neumann IBVP for the wave equa-
tion with a point source excitation at x0 = (0.648, 0.5) in an irregular polygon
domain. The solutions are observed along the boundary Γ with arclength pa-
rameter s ∈ [0, 3.45) and were calculated using the collocation based direct
CQBEM with piecewise constant basis functions in space and CQ with the
BDF2 time-stepping method in time with N = M = 256. The solution is
shown for 1 < t < T = 2 to focus on the late time behaviour since the solution
is zero for t ≤ 1.
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(a) Numerical solution at point A.
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(b) Numerical solution at point B.
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(c) Numerical solution at point C.

Figure 3.17: Plots of the numerical solution of the Neumann IBVP for the
wave equation with a point source excitation at x0 = (0.648, 0.5) observed
at the points A,B and C in the irregular polygon domain - see Figure 3.15.
The reverberant solution U was calculated using the collocation based direct
CQBEM with piecewise constant basis functions in space and CQ with the
BDF2 time-stepping method in time with N = M = 512. The solution V
was calculated using numerical integration to evaluate (3.43) via the integral

command in MATLAB.
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3.5 Conclusion

In this chapter, we described a method to calculate the numerical solution for a

time-domain boundary integral formulation of the two-dimensional wave equa-

tion. The method uses convolution quadrature for the time discretisation and a

direct collocation boundary element method with piecewise constant basis func-

tions for the spatial discretisation. We showed that this problem can be reformu-

lated as the solution of Ñ/2+1 Helmholtz problems with complex wavenumbers.

Firstly, we numerically solved the homogeneous wave equation with Neumann

boundary conditions for the case when a wave function was travelling into both

a unit square and an L-shaped domain. We calculated the errors and esti-

mated convergence rates when applying different time-stepping methods in the

CQ time discretisation. The two methods employed were the backward Eu-

ler method and the second order backwards difference formula (BDF2). The

results showed that both time-stepping methods eventually achieved their ex-

pected convergence rates and the errors calculated via the BDF2 method were

smaller. However, this was in part due to the error results being computed

with larger numbers of spatial boundary elements than the results presented

for backward Euler method. The errors for the L-shaped domain were slightly

larger than those calculated for the unit square domain. The errors computed

for both domains were compared to an analytical solution for the IBVP for dif-

ferent choices of the α and t0 parameters in the boundary condition (3.39). We

observed that when we chose α = 36 we achieved small errors and the expected

convergence rate. However, when we chose α = 4096, to provide a broadband

signal, we observed a big loss of accuracy as there were not enough time-steps

and boundary elements to model the broadband signal accurately.

We then numerically solved the inhomogeneous wave equation for the case

when there was a point source excitation in a unit square, an L-shaped domain

and an irregular polygon. The solution is of the form Φ = U +V as discussed in

Section 3.1, where U is the numerical solution to the IBVP for the homogeneous

wave equation with an inhomogeneous Neumann boundary condition calculated

via the direct CQBEM. The function V is the solution to the inhomogeneous

wave equation in free-space. We considered the case when the source term on

the right hand side of the wave equation takes the form P (x, t) = δ(x−y)P0(t),

where P0 is a Gaussian pulse time profile. The error and estimated convergence

rates were then calculated for the CQ method with the backward Euler and the

BDF2 time-stepping methods. The results achieved the expected convergence
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rates for both time discretisation methods, and in general the errors for the

BDF2 method were smaller than those calculated using the backward Euler

method.



Chapter 4

High frequency

approximation of the

Helmholtz equation via

DEA

In this chapter, we discuss approximating the solution of the two-dimensional

Helmholtz equation at high frequencies via Dynamical Energy Analysis (DEA).

The solutions to the Helmholtz equation can be represented in the infinite fre-

quency limit as a superposition of plane waves whose amplitude A in a par-

ticular direction can be expressed in terms of a wave energy density ρ. We

introduce a boundary integral operator that models the transport of these wave

energy densities through phase-space. The resulting boundary density can then

be projected into the domain. A Petrov-Galerkin discretization of the phase-

space boundary integral equation for transporting wave energy densities in two-

dimensional domains is detailed. We then consider a variety of numerical experi-

ments in different domain geometries and investigate the convergence properties

and the solution behaviour.

113
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4.1 From waves to rays

In this section, we discuss the process of writing the solution to the Helmholtz

equation at high frequencies in terms of ray trajectories. We recall the inhomo-

geneous Helmholtz equation from Section 2.1

∆u(x) + k2u(x) = g(x), (4.1)

where k = ω/c is the wavenumber and g defines a source term within Ω ⊂
R2. Here x = (x1, x2) ∈ Ω ⊂ R2 is the spatial coordinate at which we cal-

culate the solution u. When considering a high frequency, ω � 1, we as-

sume that the solution to the Helmholtz equation can be well described by the

Wentzel–Kramers–Brillouin (WKB) ansatz [88]:

u(x) = eiωS(x)
∞∑
κ=0

aκ(x)(iω)−κ, (4.2)

where S is the phase of a plane wave solution and aκ are the amplitude coeffi-

cients corresponding to each term in the expansion κ = 0, 1, .... Substituting the

leading order (κ = 0) term of (4.2) into the homogeneous Helmholtz equation

(4.1) when g = 0, leads to

∆(a0e
iωS) +

ω2

c2
a0e

iωS = 0,

=⇒
(
a0

(
1

c2
− |∇S|2

)
ω2 + (2∇a0 · ∇S + a0∆S)iω + ∆a0

)
eiωS = 0.

For large values of ω we omit terms of O(ω0). Considering terms of order ω2

leads to the Eikonal equation and collecting terms of order ω yields the transport

equation, respectively, as follows:

|∇S| = 1

c
, (4.3)

2∇A · ∇S +A∆S = 0. (4.4)

Here we have relabelled a0 to A as the amplitude for convenience. The Eikonal

equation (4.3) is a part of a class of PDEs known as the Hamilton-Jacobi equa-

tions [161] and is a non-linear time independent PDE. The transport equation

(4.4) is a linear equation for A with variable coefficients given by the gradient

and Laplacian of S. The two equations are independent of ω and are therefore
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more efficient than solving the Helmholtz equation directly when ω is very large.

The solution to the Eikonal equation can be found via the method of char-

acteristics. This leads to the following ODE system

dx

dt
= ∇pH(x,p) = c

p

|p|
,

dp

dt
= −∇xH(x,p) = −|p|∇c,

(4.5)

with Hamiltonian H(x,p) = c|∇S| = c|p| = E , where E is the total energy of

the system. We consider the case of a fixed constant energy, which we arbitrarily

set as E ≡ 1 and therefore we can write

|p| = 1

c
. (4.6)

The equations in the ODE system (4.5) are known as the ray equations [161]

and by solving (4.5) we obtain solutions S (x(t),p(t)) along ray trajectories in

phase-space X = (x,p), where x is the position of the ray and p the momentum

variable, also known as the slowness vector.

In the above, we have derived the frequency domain versions of the Eikonal

and transport equations instead of the time-dependent versions. Time-harmonic

solutions to the wave equation can also be written in the form Φ(x, t) =

Ã(x, t)eiωS̃(x,t) where S̃(x, t) satisfies the time-dependent Eikonal equation and

Ã(x, t) satisfies the time-dependent transport equation [161]. Recall from Sec-

tion 2.1 that the time-harmonic solution and the frequency domain solution are

related via Φ(x, t) = u(x)eiωt where u(x) = A(x)eiωS(x) satisfies the Helmholtz

equation. The time-dependent amplitude Ã and phase S̃ are therfore con-

nected to the frequency domain amplitude and phase via Ã(x, t) = A(x) and

S̃(x, t) = S(x) + t, meaning that in the time-harmonic case the amplitude is

time-independent.

The solution to the transport equation in (4.5) is driven by the phase solution

S from the Eikonal equation. The solutions to the ray equations (4.5) in phase-

space are determined uniquely via a set of initial conditions. However, the

projection onto position x space leads to the multi-valued phase solutions. It is

therefore advantageous to solve the transport equation in phase-space instead.

We are interested in the long-time evolution of the Hamiltonian system for

approximating the solution to the Helmholtz equation. We therefore write the

system in terms of a general density distribution f in phase-space Y = (x′,p′).
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The density distribution follows a phase-space conservation law known as the

Liouville equation [161]

∂f

∂t
(Y , t) +

∂Y

∂t
· ∇Y f(Y , t) = 0. (4.7)

The phase-space density f may then be written as

f(Y , t) =

R∑
j=1

Ã2
j (x, t)δ(p−∇S̃j(x, t)), (4.8)

which solves (4.7) if S̃j and Ãj satisfy the time-dependent Eikonal and trans-

port equations, respectively, and where R is the number of plane waves, so the

density f corresponds to the squares of the amplitudes Ãj for rays travelling in

a direction defined by S̃j . The method of characteristics leads to an expression

for the solution of (4.7) in terms of a Frobenius-Perron (FP) operator Lτ written

as

Lτ [f ](X) =

∫
δ(X − φτ (Y ))f(Y , 0)dY . (4.9)

The FP operator describes the evolution through time τ of a density f along

the solution trajectories of the Hamiltonian system defined by the ray equations

(4.5). The solutions of the Hamiltonian system define trajectories in phase-space

and may be written in the form X(τ) = φτ (X(0)), where φτ is the associated

flow map. However, for the frequency domain problems we consider, we are

interested in the stationary density ρ accumulated in the long-time limit of the

dissipative FP operator [45] given by

ρ(X) = lim
T→∞

∫ T

0

∫
w(Y , τ)δ(X − φτ (Y )f(Y , 0)dY dτ, (4.10)

for a given initial density distribution f(Y , 0) and dissipative factor w. Typi-

cally, w will take the form of an exponential decay along ray trajectories.

4.2 Propagating phase-space densities via bound-

ary integral operators

In this section we outline the underlying model for propagating phase-space

densities along ray trajectories within bounded domains Ω ⊂ R2 using the

Frobenius-Perron operator (4.9). In some examples we consider transporting
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densities through multiple sub-domains which may be considered as subdivisions

of the domain Ω, we denote these sub-domains Ωi, i = 1, ..., %, where % is the

number of sub-domains. We assume that the wave speed c is constant through-

out all sub-domains. We define the phase-space coordinates Y j = (s′j , p
′
j) on

the boundary of Ωj , denoted Γj , j = 1, ..., %, where s′j is the arclength parameter

along the boundary and p′j = sin(θ′j)/c denotes the component of the momen-

tum vector that is tangential to the boundary Γj at s′j . Note that θ′j is the

angle formed between the outgoing ray trajectory and the unit normal vec-

tor to Γj pointing inwards, as shown in Figure 4.1. The boundary flow map

φi,j(s
′
j , p
′
j) = (φs(s

′
j , p
′
j), φp(s

′
j , p
′
j)) describes the flow from s′j on the boundary

of Ωj in the direction θ′j to (φs(s
′
j , p
′
j), φp(s

′
j , p
′
j)), where φs(s

′
j , p
′
j) is the posi-

tion on the boundary of the domain Ωi and φp(s
′
j , p
′
j) = sin

(
θ′i(s

′
j , p
′
j)
)
/c is the

corresponding tangential momentum. Likewise, θi is the angle formed between

outgoing ray trajectory and unit normal pointing inwards from Γi at φs(s
′
j , p
′
j).

The phase-space densities are transported through Ω using a modified form

of the FP operator (4.9), in which the continuous flow map φτ is replaced by

the discrete boundary map φi,j as described above and depicted in Figure 4.1.

Thus the FP operator can be written as a local boundary integral operator Bj ,
which describes the transport of a density ρ from the phase-space on boundary

Γj to the next boundary intersection with Γi via

Bj [ρ](Xi) :=

∫ c−1

−c−1

∫
Γj

wi,j(Y j)T (Xi,Y j)ρ(Y j)dY j , (4.11)

where

T (Xi,Y j) = e−µjD(Xi,Y j)δ
(
si − φs(s′j , p′j)

)
δ
(
pi − φp(s′j , p′j)

)
. (4.12)

Here Xi = (si, pi) ∈ Γi × (−c−1, c−1) for i = 1, 2, ..., %, and wi,j is a weight-

ing factor which takes into account absorption factors at boundaries as well as

reflection/transmission coefficients. The coefficient µj > 0 is used to include dis-

sipation as the ray travels through Ωj and D(Xi,Y j) represents the Euclidean

distance between s′j and the solution point si. The global boundary integral

operator B =
∑
j Bj is then found by taking the sum over each sub domain Ωj

that shares a common edge with Ωi, including Ωi itself [12]. The stationary

boundary density induced by an initial boundary density ρ0 can be obtained
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from a Neumann series [76] via

ρ =

∞∑
n=0

Bn[ρ0] = (I − B)−1[ρ0], (4.13)

where Bn represents n iterates of the operator B.

Figure 4.1: The boundary map φi,j(s
′
j , p
′
j) taking the phase-space coordinate

Y j = (s′j , p
′
j) on the boundary to φi,j(s

′
j , p
′
j) = (φs(s

′
j , p
′
j), φp(s

′
j , p
′
j)), which

corresponds to the next intersection with a boundary edge where the ray un-
dergoes either transmission or a specular reflection.

We now discuss the projection of the boundary density (4.13) into the interior

domain via the Hamiltonian ODE system (4.5). Our derivations are given for

the case of a single domain Ω with boundary Γ, but extend directly to the

case of multiple sub-domains where the domain Ω would simply be replaced by

any Ωj , j = 1, ..., % with boundary Γj . We first introduce local coordinates in

a neighbourhood of the boundary Γ by extending the phase-space coordinates

X = (s, p) of a particle on Γ to the full four-dimensional phase-space coordinates

of the particle in Ω as X = (x‖, x⊥, p‖, p⊥)T . We denote a position xΓ =

(x‖, x⊥) such that along the boundary Γ, x‖ = s and x⊥ = 0 correspond to

the position parallel and perpendicular to the boundary, respectively. We then

denote the local momentum vector pΓ = (p‖, p⊥) where p‖ = p = |pΓ| sin(θ) is

the component parallel to the boundary and p⊥ = |pΓ| cos(θ) is perpendicular

to the boundary. The phase-space coordinates of a particle tracing out a ray
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trajectory are then given by

dX
dt

=

[
∂H
∂p‖

∂H
∂p⊥

− ∂H
∂x‖

− ∂H
∂x⊥

]T
. (4.14)

Recall from Section 4.1 that the Hamiltonian is H = c|pΓ| = c
√
p2
‖ + p2

⊥ = 1,

and so (4.14) can be written as

dX
dt

=
c

|pΓ|



p‖

p⊥

0

0


. (4.15)

We now introduce ρ4D(X ) ∈ [0,∞) as the stationary boundary density in Ω

with respect to the local coordinate system X . The relationship between the

restriction of ρ4D to Γ and the stationary boundary density ρ(s, p) is given by

fixing coordinates on the fixed energy surface H = E = 1 to find the boundary

density ρ.

We next introduce the following change of variables

s = x‖, t =
pΓ · (xΓ − x0)

c|pΓ|
, p = p‖, E = c

√
p2
‖ + p2

⊥,

where x0 ∈ Γ is the initial position of the ray expressed in the same coordinate

system as xΓ. The change of variables for t is unapparent and we will therefore

discuss it in more detail now. We begin with the
dx‖
dt =

cp‖
|pΓ|

entry from (4.15)

and multiply both the numerator and denominator by p‖ to obtain

dx‖

dt
=

cp2
‖

p‖|pΓ|
. (4.16)

Next, we recall that |pΓ| =
√
p2
‖ + p2

⊥ and replace p2
‖ with |pΓ|2 − p2

⊥ in (4.16).

We then split the fraction into two terms leading to

dx‖

dt
=
c|pΓ|
p‖
− p⊥
p‖

(
cp⊥
|pΓ|

)
,

=
c|pΓ|
p‖
− p⊥
p‖

∂x⊥
∂t

.

(4.17)
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To obtain the second line of equation (4.17) we use the result dx⊥
dt = cp⊥

|pΓ|
from

(4.15). We now integrate (4.17) with respect to t, noting that we treat p‖, p⊥

as constants due to (4.15). We obtain an equation for x‖ given by

x‖ =
c|pΓ|
p‖

t− p⊥
p‖
x⊥ + constant. (4.18)

Applying the initial conditions when t = 0 and recalling that the initial position

of the ray is xΓ(0) = x0, we determine the constant to be

constant = p‖x‖(0) + p⊥x⊥(0) = pΓ · x0. (4.19)

We substitute the integration constant (4.19) into (4.18) and rearrange for t to

obtain

t =
pΓ · (xΓ − x0)

c|pΓ|
,

which is the expression for t in the change of variables introduced earlier.

The Jacobian matrix for this change of variables is then

J =



∂x‖
∂s

∂x‖
∂t

∂x‖
∂p

∂x‖
∂E

∂x⊥
∂s

∂x⊥
∂t

∂x⊥
∂p

∂x⊥
∂E

∂p‖
∂s

∂p‖
∂t

∂p‖
∂p

∂p‖
∂E

∂p⊥
∂s

∂p⊥
∂t

∂p⊥
∂p

∂p⊥
∂E


=



1
cp‖
|pΓ|

0 0

0 cp⊥
|pΓ|

0 0

0 0 1 0

0 0 − p‖
p⊥

E
c2p⊥


(4.20)

and it follows that det(J) = 1. The integration over X is then equivalent to

integrating over the new variables∫∫∫∫
dx‖dx⊥dp‖dp⊥ =

∫∫∫∫
dsdtdpdE ,

and therefore ρ4D(x‖, x⊥, p‖, p⊥) = ρ4D(s, t, p, E).

The stationary boundary density is then related to ρ4D(s, t, p, E) by restrict-

ing to a fixed energy c|pΓ| = E = 1, which gives the stationary boundary density

ρ(s, p) as follows

ρ(s, p)δ(c|pΓ| − 1) = ρ4D(s, 0, p, E). (4.21)

Note also that ρ4D(s, t, p, E) = ρ4D(x,p), where x(s) = (x1(s), x2(s)) ∈ Ω are

the Cartesian coordinates of s ∈ Γ and p = (p1, p2) are the Cartesian coordinate

components of the corresponding momentum vector. In the latter case, we note
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that ρ4D(x,p) extends directly to any x ∈ Ω, not just local to s ∈ Ω.

The stationary interior density ρΩ(x) at x ∈ Ω is defined as

ρΩ(x) =

∫∫
ρ4D(x,p)dp,

=

∫∫
e−µD(x,s)ρ4D(s, 0, p, E(p))dp,

=

∫∫
e−µD(x,s)ρ(s, p)δ(c|p| − 1)|p|d|p|dΘ.

(4.22)

In the above, we change the Cartesian momentum vector p to polar coordinates

via dp = dp1dp2 = |p|d|p|dΘ. We implement the Dirac delta property (A.4)

with g(|p|) = c|p| − 1, so then we may write δ(c|p| − 1) = δ(|p|−1/c)
c . By then

applying the property (A.3) we obtain the interior stationary density as

ρΩ(x) =
1

c2

∫ 2π

0

e−µD(x,s)ρ(s, p)dΘ, (4.23)

where Θ ∈ [0, 2π) is the polar angle parametrising trajectories approaching x

from s(x,Θ) ∈ Γ. The notation for the distance D is used again, albeit here,

the distance D is used to represent the Euclidean distance between the solution

point x ∈ Ω and the boundary position s ∈ Γ.

4.3 Discretisation

In this section we discuss a direction preserving discretisation of the local bound-

ary operator (4.11) using a Petrov-Galerkin projection in order to numerically

solve for the stationary density ρ via (4.13). This discretisation was first intro-

duced in [11]. We discuss how to simplify the corresponding integrals for the

case of polygonal sub-domains Ωj , j = 1, 2, ..., %, that we will consider in our

numerical experiments.

We recall the Galerkin method from Section 2.5 in which we considered a BIE

of the form Av = B, where A, v and B were combinations of linear operators

and functions depending on whether the indirect or the direct method was used,

as detailed in Table 2.1. The Galerkin method imposes the following

M∑
j=1

φj〈Abj , bi〉 = 〈B, bi〉,
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Figure 4.2: The local direction coordinates ϕκ ∈ (−π/2, π/2), κ = 1, 2, 3 given
by the global directions Ψβ = 2π(β − 1)/Λ for β = 1, 2, ..., 8 when Λ = 8 for
the case when Ω is an L-shaped domain. The map between local and global
directions is of the form ϕκ = α − Ψκ+1 for κ = 1, 2, 3, where the constant α
relates to the global direction that corresponds to the inward normal vector at
s′j . For this example, when the ray is travelling from the bottom edge, α = π/2.

for i = 1, 2, ...,M , where M is the number of boundary elements. Here bi are

test functions, bj are basis functions and φj , j = 1, 2, ...,M , are the unknown

basis coefficients to be determined. In the Galerkin method, the test and basis

functions are chosen to be the same. In our numerical experiments in sections

2.7 and 2.8, bi and bj were chosen to be either piecewise constant or piecewise

linear basis functions. Later, the stationary density ρ is discretised such that

the standard Galerkin approach is applied to the space variable. In this case,

the basis and test functions are both the same scaled piecewise constants. For

the momentum variable, the Petrov-Galerkin method is considered, in which

the test and basis functions are chosen to be in different spaces. The test

function is denoted by χi and the basis function as bj . The basis functions for

the momentum variable are chosen to be Dirac delta generalised functions and

the test functions are chosen to be piecewise constants. Therefore imposing the

Petrov-Galerkin method to the BIE Av = B, results in the following

M∑
j=1

φj〈Abj , χi〉 = 〈B,χi〉, (4.24)
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for i = 1, 2, ...,M .

Now we discuss discretising the boundary operator (4.11). We begin by di-

viding the boundary Γj into elements Ejm′ for m′ = 1, 2, ...,Mj and we define

a set of global ray directions Ψβ ∈ [0, 2π), where β = 1, 2, ...,Λ, defined anti-

clockwise relative to the positive x1-axis. Here we choose Ψβ = 2π(β − 1)/Λ.

We also perform the boundary element subdivision in such a way that any

two sub-domains sharing a common edge will have identical boundary elements

along the common edge. Furthermore, we set up the subdivision such that

Ejm′ does not extend over any of the vertices of the polygon Γj . We now define

ϕκ′(s
′
j) ∈ (−π/2, π/2), κ′ = 1, 2, ..., Rm′ to be the local ray directions at s′j ∈ Γj .

The local directions correspond to the subset of the global directions that are

directed into Ωj at s′j and have been re-labelled according to the angle they

make with the interior normal vector at s′j - see Figure 4.2 for further details.

We now approximate the stationary density ρ on Γj × (−c−1, c−1) using a

finite dimensional approximation of the form

ρ(s′j , p
′
j) ≈

Mj∑
m′=1

Rm′∑
κ′=1

ρ(j,m′,κ′)b̂m′(s
′
j)δ
(
p′j − p̃κ′(s′j)

)
, (4.25)

where p̃κ′(s
′
j) = sin

(
ϕκ′(s

′
j)
)
/c and

b̂m′(s
′
j) =

 |E
j
m′ |−1/2 for s′j ∈ E

j
m′ ,

0 otherwise,
(4.26)

with |Ejm′ | = diam(Ejm′). For m′ = 1, 2, ...,Mj , b̂m′ defines an orthonormal basis

of piecewise constant functions with respect to the standard L2 inner product,∫
Ej
m′
b̂m′(s

′
j)

2ds′j = 1. We apply a standard Galerkin projection onto our basis

in the position variable s′j .

For the momentum variable, we choose a set of test functions that are orthog-

onal in the L2 inner product to δ(p′j − p̃κ′(s′j)) for κ′ = 1, 2, ..., Rm′ . Therefore,

the test functions can be chosen as the set of characteristic functions χκ′(p
′
j)

given by

χ(p′j) =

 1 if θ′j ∈ Iκ′ ,

0 otherwise.
(4.27)
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Here Iκ′ are subdivisions of the local direction range

(−π/2, π/2) =

Rm′⋃
κ′=1

Iκ′

such that

I1 = (−π/2, ϕ1 + ∆ϕ1/2],

IRm′ = (ϕRm′−1
+ ∆ϕRm′−1

/2, π/2),

and

Iκ′ = (ϕκ′−1 + ∆ϕκ′−1/2, ϕκ′ + ∆ϕκ′/2], κ′ = 2, 3, ..., Rm′ − 1,

where ∆ϕκ′ = ϕκ′+1 − ϕκ′ , see Figure 4.3. Therefore we have the property

∫ c−1

−c−1

δ(p′j − p̃κ′(s′j))χκ(p′j)dp
′
j = 1, if κ′ = κ,∫ c−1

−c−1

δ(p′j − p̃κ′(s′j))χκ′(p′j)dp′j = 0, otherwise.

(4.28)

A Petrov-Galerkin projection of the operator Bj (4.11) on to the basis and

test function combination described above for s′j and p′j leads to a matrix B

defined by

BI,J =∫ 1
c

− 1
c

∫
Γi

(∫ 1
c

− 1
c

∫
Γj

wi,j(Y j)T (Xi,Y j )̂bm′(s
′
j)δ(p

′
j − p̃κ(s′j))ds

′
jdp
′
j

)
× b̂m(si)χκ(pi)dsidpi,

(4.29)

with I and J denoting the multi-indices I = (i,m, κ) and J = (j,m′, κ′). We

enforce the Dirac δ property (A.3) twice (see equation (4.12)) to evaluate the

integrals with respect to si and pi. This leads to the simplified form
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BI,J =∫ 1
c

− 1
c

∫
Γj

e−µjD(φi,j(Y j),Y j)wi,j(Y j )̂bm′(s
′
j)δ(p

′
j − p̃κ(s′j))̂bm(si)χκ(pi)ds

′
jdp
′
j .

(4.30)

We now substitute the spatial basis (4.26) into (4.30) to give

BI,J =

∫
Ej
m′

wi,j(p̃κ(s′j))e
−µjDi(s′j)

|Eim|1/2|E
j
m′ |1/2

χκ(pi)ds
′
j , (4.31)

where the notation Di(s
′
j) is the Euclidean distance between s′j ∈ Γj and

si(s
′
j , p̃κ′(s

′
j)) ∈ Γi. We have therefore reduced the four-dimensional integra-

tion to a single integral over the boundary element Ejm′ ⊂ Γj as a result of

the spatial basis and the properties of the Dirac delta generalised function. We

have also assumed that the weight function wi,j is independent of s′j ∈ Ejm′

and can either define locally constant damping at boundaries or direction only

dependent reflection/transmission coefficients [45].

Figure 4.3: An illustration of the case when the entries of the discretised bound-
ary matrix BI,J are non-zero for a reflected ray, when i = j. The ray is initially
positioned at s′j travelling at a local direction θ′j , it arrives at the boundary el-

ement Eim and the local direction of the reflected ray must fall within the local
direction sub-interval Iκ.
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The calculation of the matrix element BI,J is therefore relatively simple,

since the two basis functions are locally constant and will be zero unless the di-

rection θi ∈ Iκ and si ∈ Eim, meaning that the majority of the matrix elements

will be zero. The case when the matrix elements are non-zero is illustrated

in Figure 4.3 and the calculation only involves the integral of the exponen-

tial term e−µjDi(s
′
j) over the element Ejm′ and multiplication by the pre-factor

wi,j(p̃κ(s′j))̂bm′(s
′
j )̂bm(si) = wi,j(p̃κ(s′j))(|E

j
m′ ||Eim|)−1/2. For polygonal bound-

aries, the Euclidean distance function Di(s
′
j) is linear in s′j ∈ E

j
m′ and hence

the integral in the equation (4.31) can be performed analytically with relative

ease. The only issue that arises is when si(s
′
j , p̃κ(s′j)) coincides with one of the

vertices, and the integral must be sub-divided at the corresponding value of s′j .

Once the boundary operator B has been calculated in (4.31), then the

coefficients ρJ in (4.25) can be calculated by solving the linear system ρ =

(I−B)−1ρ0, which corresponds to the discretised form of equation (4.13). Here

ρ and ρ0 represent the coefficients of the expansions of ρ and ρ0, respectively,

when projected onto the finite dimensional basis. The entries of the source vec-

tor ρ0 corresponding to an initial density ρ0 are given using the property (4.28)

and the definition of the spatial basis functions (4.26) via

[ρ0]J =

∫
Γj×(−c−1,c−1)

ρ0(s′j , p
′
j )̂bm′(s

′
j)χκ′(p

′
j)dYj

=
1

|Ejm′ |1/2

∫
Ej
m′

∫
Iκ′

ρ0(s′j , p
′
j)dp

′
jds
′
j .

(4.32)

Once ρ has been computed and substituted into (4.25), then the interior

density ρΩ can be approximated using (4.23) as follows

ρΩ(x) ≈

1

c2

Mj∑
m′=1

Rm′∑
κ′=1

ρJ

∫ 2π

0

e−µjD(x,s′j(x,Θ))δ
(
p′j (x,Θ)− p̃κ′

(
s′j(x,Θ)

))
b̂m′(s

′
j(x,Θ))dΘ.

(4.33)

Equation (4.33) can be simplified further by rewriting the term δ(p′j(x,Θ) −
p̃κ′(s

′
j(x,Θ))) as

δ(p′j(x,Θ)− p̃κ′(s′j(x,Θ))) =
cδ(θ′j(x,Θ)− ϕκ′)

cos(θ′j(x,Θ))
=

cδ(Θ−Ψβ)

cos(θ′j(x,Θ))
, (4.34)

via the property (A.5) of the Dirac delta. In (4.34) Ψβ is the global direction
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corresponding to the local direction ϕκ′ , which arises in the term p̃κ′(s
′
j(x,Θ)) =

sin(ϕκ′(s
′
j(x,Θ)))/c. The dependence on s′j in ϕκ′ relates to the differences

in the local direction set on each edge of Γj , and is independent of s′j along

a given edge of Γj . To apply the Dirac delta property (4.34) to (4.33) we

first divide the integral into a set of sub-integrals, split at the angles Θ where

s′j(x,Θ) corresponds to a vertex of Γj . The second equality in (4.34) is due

to the fact that the mapping between local and global directions is a switch

of orientation (multiplication by −1) and then a translation by a local edge

dependent constant. The denominator in (4.34) is calculated from the derivative

of p′j(x,Θ) = sin(θ′j(x,Θ)) with respect to θ′j [45]. The global ray summation

result for the interior density is then given by

ρΩ(x) ≈ 1

c

Λ∑
β=0

e−µjD(x,s′j(x,Ψβ))ρJ(x,Ψβ)

|Ejm′(x,Ψβ)|1/2 cos(θ′j(x,Ψβ))
. (4.35)

Note that the integral in (4.33) only results in a non-zero value when Θ corre-

sponds with a direction from the global direction set and therefore the double

sum over boundary elements and local directions is reduced to a single summa-

tion over global directions Ψβ , β = 1, 2, ...,Λ. The boundary position s′j and

local direction θ′j can be determined from the solution point x and ray direction

Ψβ .

4.4 Numerical results

In this section, we approximate the boundary integral operator Bj via the

Petrov-Galerkin discretisation (4.31), which transports wave energy densities

between intersections with the boundary Γj , j = 1, 2, ..., %. We then apply the

ray summation (4.35) to evaluate the projection of these phase-space densities

into Ω. We investigate the errors and estimated convergence rates for a number

of examples, including for the case when there is a line source propagating into

either a unit square or an L-shaped domain. We also consider the case when

there is a source point inside the domain for either a unit square, an L-shape

or an irregular shaped polygon. The following is a step-by-step guide for im-

plementing DEA to approximate the Helmholtz equation in two-dimensions as

described in Sections 4.1 - 4.3.

1. We begin by defining s′j as the arclength parameter along the boundary
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Γj , j = 1, 2, ..., %, and the momentum p′j = sin(θ′j)/c. The variable θ′j is

the angle formed between the outgoing ray trajectory and the unit normal

vector to Γj and c is the wave speed which is chosen to be a constant value.

Next we divide the boundary Γj , j = 1, 2, ..., %, into elements Ejm′ for

m′ = 1, 2, ...,Mj and we define a set of global ray directions Ψβ ∈ [0, 2π),

where β = 1, 2, ...,Λ, defined anticlockwise relative to the positive x1-axis.

In our numerical examples we choose Ψβ = 2π(β − 1)/Λ.

2. Next we approximate the stationary density vector ρ0 via (4.32), where

ρ0 is the initial density of the given problem.

3. Next we determine the matrix entries of the boundary integral operator B
which has been discretised using the Petrov-Galerkin projection given by

(4.31). The Euclidean distance between s′j ∈ Γj and si(s
′
j , p̃κ′(s

′
j)) ∈ Γi is

given by Di(s
′
j). The weight function wi,j is independent of s′j ∈ E

j
m′ and

can either define locally constant damping at boundaries or direction only

dependent reflection/transmission coefficients, in the numerical results to

follow these are defined for each problem. The characteristic function

χ(p′j) as part of the momentum variable discretisation is defined by (4.27).

4. Once the boundary operator B has been calculated in (4.31), then the

coefficients ρJ in (4.25) can be calculated by solving the linear system

ρ = (I − B)−1ρ0, which corresponds to the discretised form of equation

(4.13). Here ρ and ρ0 represent the coefficients of the expansions of ρ and

ρ0, respectively, when projected onto the finite dimensional basis.

5. Finally, the interior density ρΩ(x) is a summation of all global rays given

by (4.35). Where ρJ was determined via the previous step. The boundary

position s′j and local direction θ′j can be determined from the solution

point x and ray direction Ψβ .

The MATLAB code for these examples are available from the following URL:

https://github.com/JacobRowbottom/DEA.

4.4.1 Constant line source

Square domain

We consider a unit square domain Ω with sound-hard reflections at the bound-

ary. Since the unit square consists of only one sub-domain, we simply write
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the phase-space boundary coordinates as (s, p) and xs denotes the Cartesian

coordinates of the arclength parameter s. We enforce a spatially constant line

source defined by

ρ0(s, p) =

 δ(p− ξ) cos(ξ) for xs = 0,

0 otherwise,
(4.36)

along the left edge, propagating rays into the domain directed at angle ξ ∈
(−π/2, π/2). The angle ξ is the angle between the interior normal vector and

the ray leaving the boundary.

We first consider the case when ξ = 0, i.e. the source is directed perpen-

dicularly to the edge. Physically this represents a very simple problem, since

the rays only bounce between the source edge on the left and the opposite edge

on the right, and are always directed perpendicular to these edges. Therefore

the ray density will simply be constant along these two edges and will be zero

on the remaining two edges. We choose the damping coefficient µ = π/2 and

then the interior ray density ρΩ may be calculated at x = (x1, x2) ∈ Ω via a

geometric series [74] over the reflection order, as derived in Appendix E for a

rectangle of length l in the x1 coordinate here applied with l = 1 to give

ρΩ(x) =
e−µx1 + e−µ(2−x1)

1− e−2µ
. (4.37)

Figure 4.4 shows the exact solution for the interior ray density ρΩ and the

numerical solution ρ̂Ω, which is approximated via (4.35). The solutions were

calculated at Nx = 3638 interior points xi, i = 1, 2, ..., Nx, which are taken to

be the centroids of a triangle mesh generated by the Distmesh package [147]

for MATLAB with mesh spacing 0.025. The calculation of ρ̂Ω was computed

by choosing the global direction set to be Ψβ = 2π(β − 1)/Λ for β = 1, ...,Λ,

which will also be the case for all future calculations of ρ̂Ω. The choice of

Ψβ can be made dependent on the given problem or geometry, but our choice

for Ψβ is based on a simple equispaced subdivision of directions that include

Ψ1 = 0, which corresponds to the source direction in this example. From Figure

4.4 we observe the predicted behaviour of the rays bouncing between the left

and right edges meaning the solution is independent of x2. We also notice

that the numerical solution matches the exact solution accurately, which is also
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(a) Numerical solution ρ̂Ω
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(b) Exact solution ρΩ

Figure 4.4: The numerical and exact solutions for the interior density inside a
unit square domain in the case when there is a constant line source travelling
into the domain in the direction ξ = 0 from the left edge. The numerical interior
density ρ̂Ω was calculated via DEA using M = 256 boundary elements and with
Λ = 32 global directions. Both solutions were evaluated at Nx = 3638 interior
points.

supported by the error results in Table 4.1.

Λ/2 Error

4 1.4737e-16

8 1.4736e-16

16 1.4736e-16

32 1.4736e-16

64 1.4736e-16

128 1.4736e-16

256 1.4736e-16

Table 4.1: Relative mean errors for the interior density inside a unit square
domain for the case when there is a constant line source travelling into the
domain in the direction ξ = 0 from the left edge. We investigate the errors as
we double the number of global directions Λ. The numerical interior density
was calculated using M = 256 boundary elements and evaluated at Nx = 3638
interior points.

Table 4.1 shows the relative error as we increase the number of degrees of

freedom in the momentum approximation on a given boundary element, which

for our direction set is Λ/2− 1, since just under half of the global direction set

will be directions propagating within the unit square domain from any given
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edge. The error is calculated via the relative mean error:

Error =

∑Nx

i=1 |ρ̂Ω(xi)− ρΩ(xi)|∑Nx

i=1 ρΩ(xi)
. (4.38)

We find that even when the direction basis contains only four directions Ψ1 =

0, Ψ2 = π/2, Ψ3 = π and Ψ4 = 3π/2, we still achieve machine precision

accuracy when approximating ρΩ. This is because the exact solution for ρ on

the boundary Γ lies in the approximation space, since it takes only a constant

value on each edge and propagates only in the directions Ψ1 and Ψ3.

Λ = 8 Λ = 16 Λ = 32

M Error EOC Error EOC Error EOC

20 - - - - - -

40 0.0528 - 0.0358 - 0.0358 -

80 0.0289 0.87 0.0170 1.07 0.0170 1.07

160 0.0152 0.93 0.0086 0.98 0.0086 0.98

320 0.0079 0.94 0.0039 1.14 0.0039 1.14

640 0.0039 1.02 0.0020 0.96 0.0020 0.96

Table 4.2: Relative mean errors and estimated orders of convergence for the
interior density inside a unit square domain for the case when there is a constant
line source travelling into the domain in the direction ξ = −3π/8. We investigate
the errors and convergence rates as the number of boundary elements M is
doubled when Λ = 8, 16 and 32 global directions. The numerical interior density
was calculated via DEA and was evaluated at Nx = 3638 interior points.

We also consider the case when the source is travelling into the domain from

the left edge (4.36) at an angle ξ = −3π/8. For this example the rays do not

simply travel between the left and right edges but instead reflect on all boundary

edges giving a more complex solution as shown in Figure 4.5(a). Figure 4.5(a)

displays the numerical solution for the interior density ρ̂Ω which is approximated

via (4.35) using the Dirac delta basis with Ψβ for Λ = 64 global directions. The

solution was calculated at Nx = 3638 interior points xi, i = 1, 2, ..., Nx, which

are again taken to be the centroids of a Distmesh triangle mesh with mesh

spacing 0.025. From this figure, we observe the rays reflecting from all edges of

the domain with the density ρΩ decaying as the rays move away from the source

edge on the left. Sub-plot (b) shows the interior density for the case when ξ is

not included in the direction set, Ψβ for Λ = 8. In this sub-plot, we observe

that the interior density does not display the expected behaviour as shown in
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(a) Λ = 64
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(b) Λ = 8

Figure 4.5: The numerical solution for the interior density inside a unit square
domain in the case when there is a constant line source travelling into the domain
in the direction ξ = −3π/8 from the left edge. The numerical interior density
ρ̂Ω was calculated via DEA using M = 160 boundary elements and with Λ = 64
global directions in sub-plot (a) and with Λ = 8 global directions in sub-plot
(b). The interior density was evaluated at Nx = 3638 interior points.

sub-plot (a) instead we observe that the rays travelling from the left edge do not

bounce along the top and bottom edges of the domain but travel from corner to

corner, because the direction the true direction of −3π/8 is mapped to the next

direction within the global set, which here is ξ = −π/4 when Λ = 8. Next we

investigate the error results for the approximate interior density ρ̂Ω at a fixed set

of global directions when Λ = 8, Λ = 16 and Λ = 32 as we double the number

of boundary elements M . Table 4.5 shows the respective errors and estimated

orders of convergence for these choices for Λ. The errors are calculated using

subsequent interior densities ρ̂Ω as we double M . We write this error of the

mean interior density as follows

Error(M) =

∣∣∣∑Nx

i=1 ρ̂M (xi)−
∑Nx

i=1 ρ̂2M (xi)
∣∣∣∑Nx

i=1 ρ̂2M (xi)
, (4.39)

where ρ̂M is the approximation of ρ̃Ω calculated using M boundary elements

compared to the result ρ̂2M , which approximates ρ̃Ω at double the number of

boundary elements 2M . The estimated convergence rate was calculated via

log2(Error(M/2)/Error(M)). We can deduce that for the case when we have

Λ = 8 global directions, the angle ξ = 3π/8 is not included in the global direction
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set Ψβ , β = 1, 2, ...,Λ. However for the cases when Λ = 16 and 32, we observe

the same error results since Ψ4 = 3π/8 when Λ = 16 and Ψ7 = 3π/8 when

Λ = 32, and hence ξ = 3π/8 is included in the set of global directions for both

cases. Due to the simple geometry of Ω and the choice of our direction set

we observe that if 3π/8 is included in the direction set then all reflected ray

directions are also included in the global direction set. This results in a better

accuracy than when Λ = 8 and all cases of Λ demonstrate approximately first

order convergence in the number of boundary elements M , as shown in Table

4.2.

L-shaped domain

Figure 4.6: The L-shaped domain.

We now consider an L-shaped domain Ω with sound-hard reflections at the

boundary. The domain is divided into two sub-domains as shown in Figure

4.6, such that we have Ω = Ω1 ∪ Ω2, since the L-shape is non-convex. We

enforce a spatially constant line source defined by (4.36) along the left edge in

the first sub-domain Ω1, propagating rays into the domain directed at an angle

ξ ∈ (−π/2, π/2).

We first consider the case when ξ = 0, which physically represents the rays

bouncing between the source edge on the left and the opposite edge on the

right in Ω1 only, and there should be no propagation into Ω2. Figure 4.7 shows
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(a) Numerical solution ρ̂Ω
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Figure 4.7: The numerical and exact solutions for the interior density inside the
L-shaped domain in the case when there is a constant line source travelling into
the domain at an angle ξ = 0 from the far left edge. The numerical interior
density ρ̂Ω was calculated via DEA using M = 256 boundary elements and with
Λ = 8 global directions. Both solutions were evaluated at Nx = 1820 interior
points in Ω1 and Nx = 900 points in Ω2.

the exact interior density ρΩ calculated via (4.37) in Ω1, and zero in Ω2 as

well as the numerical interior ray density ρ̂Ω calculated via DEA using Λ = 8

global directions. Both the exact and the numerical interior ray densities were

evaluated at Nx = 1820 interior points in Ω1 and Nx = 900 points in Ω2, that

were taken to be the centroids of a Distmesh triangle mesh with spacing 0.025,

as before. The damping coefficient was again taken to be µ = π/2. From the

figure, we observe the predicted physical behaviour of the rays reflecting between

the two side edges of sub-domain Ω1 and zero in Ω2, with both the exact and

numerical interior densities appearing identical.

We now investigate the relative error of the numerical interior ray density

ρ̂Ω in sub-domain Ω1 only, since the interior density in Ω2 is zero. We compute

the relative error in sub-domain Ω1 via (4.38) as we double the number of global

directions Λ for a fixed number of boundary elements M = 256. Table 4.3 shows

the relative error computed this way against Λ/2, since only (approximately)

half of the directions Ψβ , β = 1, 2, ...,Λ, will propagate within the domain from

any given edge as before. The error is calculated using Nx = 1820 interior

points that are the centroids of a triangle mesh with spacing 0.025. As before



Chapter 4 – HFA of the Helmholtz equation via DEA 135

we achieve machine precision for all error calculations, even for the coarse dis-

cretisation with Λ/2 = 4, since the exact solution on the boundary Γ lies in

the approximation space due to the boundary density being a constant value on

each edge and propagating only in the directions Ψ1 and Ψ3.

Λ/2 Error

4 1.0179e-16

8 1.0179e-16

16 1.0179e-16

32 1.0179e-16

64 1.0179e-16

128 1.0179e-16

256 1.0179e-16

Table 4.3: Relative mean errors for the interior density inside the L-shaped
domain for the case when there is a constant line source travelling into the
domain in the direction ξ = 0. We investigate the errors as we double the
number of global directions Λ. The numerical interior density was calculated
using M = 256 boundary elements and evaluated at Nx = 1820 interior points.

We also consider the case when the left edge is a line source (4.36) propagat-

ing at an angle of ξ = 3π/8. Figure 4.8 shows the interior density calculated via

DEA for this problem with Λ = 128 global directions and plotted at Nx = 7320

interior points in Ω1 and Nx = 3638 points in Ω2, which in both cases are

generated from the centroids of a Distmesh triangular mesh with mesh spacing

0.0125. From this figure, we observe a higher density of ray trajectories close to

the source edge in Ω1 before the damping becomes more evident and the density

is then lower throughout the rest of the domain, in particular in Ω2. We now

have a non-zero interior density in sub-domain Ω2, whereas for the case when

ξ = 0 we only observed a zero value for the interior density in Ω2 due to the

optical shadowing effect.

We investigate the relative error results for the approximate interior density

ρ̂Ω. We calculate the interior density using Λ = 16 global directions such that

the angle ξ = 3π/8 is included in the global direction set. Therefore the results

show an accurate representation of the ray trajectories inside the domain. Table

4.4 shows the estimated convergence rate and the mean errors of the numerical

interior density ρ̂Ω as we double the number of boundary elements M . The mean

errors were calculated in each sub-domain individually using subsequent mean

errors as the number of boundary elements is doubled via (4.39). From this
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table, we observe approximately first order convergence in both sub-domains

with both sets of errors being similar.
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Figure 4.8: The numerical solution for the interior density inside the L-shaped
domain in the case when there is a constant line source travelling into the domain
in the direction ξ = −3π/8 from the far left edge. The numerical interior density
ρ̂Ω was calculated via DEA using M = 160 boundary elements and with Λ = 128
global directions. The interior density was evaluated at Nx = 7320 points in Ω1

and Nx = 3638 points in Ω2.

Ω1 Ω2

M M1 Error EOC M2 Error EOC

40 30 0.0411 - 20 0.0672 -

80 60 0.0245 0.75 40 0.0278 1.27

160 120 0.0122 1.01 80 0.0110 1.34

320 240 0.0062 0.98 160 0.0060 0.91

640 480 0.0023 1.49 320 0.0026 1.21

Table 4.4: Relative mean errors for the interior density inside the L-shaped
domain in the case when there is a constant line source travelling into the
domain in the direction ξ = −3π/8. We investigate the errors and convergence
in each sub-domain individually as we double the number of boundary elements
M with a fixed number of global directions Λ = 16. The numerical interior
density was evaluated at Nx = 7320 points in Ω1 and Nx = 3638 points in Ω2.
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4.4.2 Response to an interior point source

In this section, we consider the numerical interior density ρ̂Ω for the case when

there is a point source inside either a unit square, an L-shape or an irregular

polygon. We now describe how the initial density ρ0 is obtained for a source

point x0 ∈ Ω propagating ray trajectories in all directions. We begin by recalling

that the ray density ρ is given by the square amplitudes of a plane decomposition

of the solution to the Helmholtz equation (2.2) as

ρ(x,p) = |u(x)|2δ(p− p0).

The slowness or momentum vector p0 corresponds to the direction arriving from

x0. Replacing u with the high frequency asymptotic formula for the fundamen-

tal solution of the Helmholtz equation (2.5), taken from [74], yields the initial

density

ρ0(x,p) =

∣∣∣∣ i4H(1)
0 (k ‖x− x0‖)

∣∣∣∣2 δ(p− p0)

≈
Re(k)�1

e−2Im(k)‖x−x0‖δ(p− p0)

8π|k| ‖x− x0‖
.

(4.40)

The energy density in the high frequency limit decays in all directions due to

the ‖x− x0‖−1
term.

In what follows, we consider examples where Ω is either treated as a single

domain or divided into two sub-domains Ω = Ω1 ∪ Ω2. For the former case,

we omit the index j to denote the number of sub-domains and consider only a

single domain Ω with boundary Γ, for simplicity. To obtain the source density

ρ0 along the boundary Γ, we set

ρ0(x,p) = ρ0(s, p)δ(c|p| − 1), (4.41)

where s parameterises Γ and p denotes the momentum component tangential

to Γ at s - see (4.21). We will use local coordinates on the boundary p =

(p‖, p⊥), where p‖ and p⊥ are the components of the momentum vector parallel

and perpendicular to Γ, respectively. If we also denote p0 = (p0
‖, p

0
⊥) then

δ(p− p0) = δ(p‖ − p0
‖)δ(p⊥ − p

0
⊥) and one obtains using property (A.5) that

|p0|δ(p‖ − p0
‖)δ(p⊥ − p

0
⊥) = cp0

⊥δ(p‖ − p0
‖)δ(c|p| − 1). (4.42)
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We note that p = p‖ and p0
⊥ = |p0| cos(θ0). Then, combining (4.42) with (4.40)

and (4.41) leads to the initial boundary density on Γ written as

ρ0(s, p) =
c cos(θ0)e−µD(x0,s)δ(p− p0)

8π|k|D(x0, s)
, (4.43)

where we have replaced p0
‖ by p0 and Im(k) by µ.

The extension to multidomains when Ω = Ω1 ∪ Ω2 is straight forward and

gives the initial boundary density as

ρ0(s′j , p
′
j) =

c cos(θ0)e−µD(x0,s
′
j)w1,j(s

′
j , p
′
j)δ(p

′
j − p0)

8π|k|D(x0, s′j)
, (4.44)

assuming that x0 ∈ Ω1 and where p0 = sin(θ0)/c is the tangential momentum

of the ray emerging from s′j that arrived from x0, and θ0 ∈ (−π/2, π/2). For

domains which are divided into two sub-domains such as the L-shape, the initial

density ρ0 will only be non-zero along the edges that are directly illuminated

by the point source rays [11]. Therefore we can write w1,j in equation (4.44) as

w1,j(s
′
j , p
′
j) =



1 if j = 1 and s′j is on a free edge,

A(p′j) if j = 1 and s′j is on the inner edge connecting to Ω2,

B(p′j) if j = 2 and s′j is on the inner edge connecting to Ω1,

0 otherwise.

(4.45)

We define a free edge as an edge not connected to another sub-domain and A,

B denote the reflection and transmission probabilities for rays in Ω1 arriving at

the shared edge between Ω1 and Ω2. Here we choose A(p′j) ≡ 0 and B(p′j) ≡ 1,

corresponding to pure transmission with c = 1 for j = 1, 2, as shown in Figure

4.9(a). Sub-plot (b) shows the problem set up for the source point problem

for the case when the domain is a L-shape consisting of two sub-domains. The

lines and arrows show the trajectories of the rays from the source point x0,

highlighted by the red circle, travelling towards the boundary. For all numerical

examples to follow we choose with µ = π/2.

Square domain

We first consider the case when Ω is a unit square domain with the point source

chosen to be in the centre at x0 = (0.5, 0.5). Figure 4.10 shows the numerical
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interior density ρ̂Ω with M = 256 boundary elements, Λ = 512 global directions

and plotted at Nx = 3638 interior points using a Distmesh internal mesh with

spacing 0.025. The figure shows that the interior solutions vary between lighter

and darker regions with the lighter regions being more locally concentrated near

the source point, physically representing a higher ray density.

We estimate the relative error using (4.39) with subsequent approximate

interior densities ρ̂Ω, although here we double the number of boundary elements

M and the number of directions Λ in the global direction set. Table 4.5 shows the

error evaluated using Nx = 14632 interior points. From this table, we observe

that the errors decrease as we increase the number of elements and directions,

eventually achieving small errors that are less than 1% with a convergence rate

between first and second order.

Λ M Mean Error EOC

8 10 - -

16 20 0.0165 -

32 40 0.0137 0.27

64 80 0.0046 1.57

128 160 0.0010 2.06

Table 4.5: Relative mean errors for the interior density inside a unit square
domain for the case when there is a point source at x0 = (0.5, 0.5). We investi-
gate the errors and convergence as we double the number of boundary elements
M and the number of global directions Λ. The numerical interior density was
averaged over Nx = 7320 interior points.
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L-shaped domain

We now consider the L-shaped domain, Ω = Ω1 ∪ Ω2 as shown in Figure 4.6,

with a point source located at x0 = (0.25, 0.25). We calculate the relative

error via (4.39) using subsequent interior densities ρ̂Ω as we double both the

number of boundary elements M and the number of directions Λ in the global

direction set. Table 4.6 shows the relative error calculated using Nx = 3638

interior points in Ω1 and Nx = 1796 in interior points in Ω2, the points were

chosen to be the centroids of a Distmesh triangular mesh with mesh spacing

0.0175 and M1 and M2 denote the number of boundary elements on the sub-

domains Ω1 and Ω2, respectively. From this table we observe that in both

sub-domains as we increase the number of boundary elements and directions

the mean error decreases and we achieve approximately first order convergence.

Figure 4.11 shows the approximate interior density solution computed with a

total of M = 256 boundary elements with M1 = 192 in Ω1 and M2 = 128

in Ω2, as well as Λ = 256 global directions and Nx = 7320 interior points in

Ω1 and Nx = 3638 points in Ω2. From this figure we observe the rays are

more concentrated around the source point as the density is concentrated more

strongly in sub-domain Ω1 than in sub-domain Ω2. We also observe a shaded

region inside sub-domain Ω2 from the left edge to the top edge of sub-domain

Ω2. This is due to the fact that the rays travelling from the source point never

directly intersect with these edges and only rays which have reflected from other

edges will enter this region.

Ω1 Ω2

Λ M M1 Error EOC M2 Error EOC

8 8 6 - - 4 - -

16 16 12 0.0157 - 8 0.1989 -

32 32 24 0.0112 0.49 16 0.0611 1.70

64 64 48 0.0060 0.90 32 0.0224 1.45

128 128 96 0.0028 1.10 24 0.0083 1.43

Table 4.6: Relative mean errors for the interior density inside an L-shaped
domain for the case when there is a point source at x0 = (0.25, 0.25). We
investigate the errors and convergence in each sub-domain individually as we
double the number of boundary elements M and number of global directions Λ.
The numerical interior density was averaged over Nx = 7320 interior points in
Ω1 and Nx = 3638 points in Ω2.
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Irregular polygon

We now consider the irregular shaped polygon domain Ω as shown in Figure

3.15, with a source point x0 = (0.648, 0.5). The Cartesian coordinates of the

vertices and source point are also given in Table 3.10. Figure 4.12 shows the

interior density approximation ρ̂Ω calculated via DEA with Λ = 256 global

directions, M = 256 boundary elements and with Nx = 11003 interior points

that are the centroids of the triangular mesh with mesh spacing 0.0125.

Table 4.7 shows the mean errors calculated via (4.39) using subsequent ap-

proximations for the interior density with Nx = 1820 as we double the number

of boundary elements M and the number of global directions. From this table,

we observe that we eventually achieve small errors as we increase the number

of boundary elements and directions with a varying convergence rate between

approximately first and second order. Typically, when considering a domain

such as the irregular polygon, one could potentially expect larger errors com-

pared to the square and L-shaped domain because the true reflection directions

are not necessarily included in the direction basis set. Comparing the results

in tables 4.5 to 4.7 we actually observe similar errors for the irregular polygon

results in Table 4.7, but it is difficult to compare directly since the M and Λ

combinations are not the same. All relative errors are also significantly less than

1% for Λ ≥ 64 global directions.

Λ M Mean Error EOC

8 5 - -

16 10 0.0223 -

32 20 0.0375 -0.75

64 40 0.0076 2.30

128 80 0.0023 1.72

Table 4.7: Relative errors for the interior density inside an irregular polygon
domain for the case when there is a point source at x0 = (0.648, 0.5). We
investigate the errors and convergence as we double the number of boundary
elements M and number of global directions Λ. The numerical interior density
was averaged over Nx = 3791 interior points.
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(a)

(b)

Figure 4.9: Sub-plot (a) shows the weight function w1,j on the L-shaped do-
main which has been divided into two sub-domains with the source point
x0 = (0.25, 0.25), highlighted by the red circle. Sub-plot (b) shows the schematic
of the point source to the boundary.
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Figure 4.10: The numerical solution of the interior density inside a unit square
domain for the case when there is a point source at x0 = (0.5, 0.5). The nu-
merical interior density ρ̂Ω was calculated via DEA using M = 256 boundary
elements and with Λ = 512 global directions. The interior density was evaluated
at Nx = 3638 interior points.
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Figure 4.11: The numerical solution of the interior density inside an L-shaped
domain for the case when there is a point source at x0 = (0.25, 0.25). The
numerical interior density ρ̂Ω was calculated via DEA using a total of M = 256
boundary elements with M1 = 192 in Ω1 and M2 = 128 in Ω2 and with Λ = 256
global directions. The interior density was evaluated at Nx = 7320 points in Ω1

and Nx = 3638 points in Ω2.
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Figure 4.12: The numerical solution of the interior density inside the irregular
polygon domain for the case when there is a point source at x0 = (0.648, 0.5).
The numerical interior density ρ̂Ω was calculated via DEA using M = 256
boundary elements and with Λ = 256 global directions. The interior density
was evaluated at Nx = 11003 interior points.
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4.5 Conclusion

In this chapter, we have discussed the approximation of the Helmholtz equation

by representing the solutions as a superposition of plane waves, whose amplitude

A in a particular direction can be expressed in terms of a wave energy density

ρ. We introduced a boundary integral operator, that is a modified version of

the Frobenius-Perron operator, which forms part of a phase-space boundary

integral equation that can be solved for the energy density ρ on the boundary.

The resulting boundary density can then be projected into the domain. We then

applied a Petrov-Galerkin discretisation of the phase-space boundary integral

equation, which is used to model the transport of wave energy densities along

a finite set of global directions through phase-space. One advantage of this

discretisation is that it reduces the arising four-dimensional integral to a single

integral over a boundary element that is simple to calculate without needing to

resort to numerical integration. The evaluation of the interior solution is then

reduced to a finite sum over the global direction set.

Numerical experiments were undertaken for which we considered a line source

travelling from the left edge of both a unit square and an L-shaped domain. We

achieved machine accuracy in both domains when the source was travelling

perpendicularly to the edge. The direction of the source was then changed to

ξ = −3π/8, which resulted in small errors when the error was computed relative

to subsequent solutions as we double the number of boundary elements, but we

still obtained first order convergence. The errors were compared, coinciding

with and above, the smallest number of directions when choosing the number

of global directions such that the angle ξ was included within the direction set.

Once ξ = −3π/8 was included within the direction set, increasing the number

of directions further had no effect on the error. We then considered experiments

when there was a point source inside a unit square, an L-shape and an irregular

polygon shaped domain. We investigated the relative errors as we doubled the

number of boundary elements and the number of directions and we achieved

small errors in all cases as well as a convergence rate between first and second

order.



Chapter 5

Hybrid methods for the

wave equation

In this chapter, we solve the two-dimensional wave equation via two newly pro-

posed hybrid methods. These hybrid methods employ a convolution quadrature

method for the time discretisation, which leads to a system of Ñ Helmholtz

problems with complex wavenumbers, in the frequency domain. For a range of

wavenumbers that will be considered low frequency content, the Helmholtz prob-

lems will be solved numerically using a piecewise constant collocation BEM for

the spatial discretisation, as discussed in Chapter 3. For a range of wavenumbers

that will be considered as the high frequency content, the Helmholtz problems

will be replaced by one of two alternative high frequency approximations. The

first of these high frequency approximations will be based on a plane-wave ap-

proximation for which the amplitudes are approximated via DEA with a Petrov-

Galerkin discretization, as discussed in Chapter 4. The phase terms will then

be approximated by matching the solutions calculated via BEM and an expres-

sion for the plane-wave approximation, as discussed in more detail in Section

5.3.2. The second high frequency approximation that we propose is to use an

incident illumination approximation where only the direct contribution of the

source term on the boundary is considered, and reflected contributions are as-

sumed to play an insignificant role. Numerical experiments are then performed

investigating both hybrid methods for the cases when the wave problems are

driven by either a plane wave travelling into the domain or a point source inside

the domain. Error and convergence rates will be explored as well as investigat-

147
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ing the importance of the choice of frequency value where we switch between

applying the BEM and a high frequency approximation.

5.1 Convolution quadrature for the wave equa-

tion: recap

Let Ω ⊂ R2 be a finite domain with boundary Γ = ∂Ω. We consider the

Neumann IBVP for the inhomogeneous wave equation from Chapter 3:

∆Φ− 1

c2
∂2Φ

∂t2
= P (x, t), in Ω× [0, T ], (5.1)

with initial conditions

Φ(·, 0) = ∂tΦ(·, 0) = 0, in Ω, (5.2)

and Neumann boundary condition

∂Φ

∂n̂
= F on Γ× (0, T ], (5.3)

for some T > 0. Here, we assume F and P are real-valued functions of space

and time, c > 0 is the wave speed and n̂ is the unit outward normal to the

boundary. As before, we will consider problems when internal wave sources

described by P undergo reflections at rigid boundaries (F ≡ 0), or when P ≡ 0

and the boundary Γ corresponds to an interface with a vibrating structure that

generates an inhomogeneous boundary condition F .

We consider solving the IBVP of the wave equation (5.1) when P ≡ 0 with

initial conditions (5.2) together with an inhomogeneous boundary condition

(5.3) by reformulating it as a direct boundary integral equation

Φ(x, t) =

(
S ∂Φ

∂n̂

∣∣∣∣
Γ

)
(x, t)− (DΦ|Γ)(x, t) in Ω× [0, T ]. (5.4)

Here S and D are given by (3.12) and (3.13), respectively. Moving (5.4) from

the interior domain Ω to the boundary Γ, one then obtains the following direct

time-domain boundary integral equation(
1

2
I +K

)
Φ(x, t) =

(
V ∂Φ

∂n̂

∣∣∣∣
Γ

)
(x, t) on Γ× [0, T ]. (5.5)
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Here V and K are the traces of S and D on to Γ, that are given by (3.14) and

(3.15), respectively. Following the same steps as in Chapter 3, we employ the

BDF2 time-stepping CQ method for the semi-discretisation in time of the BIE

(5.5). The result is a system of boundary integral equations for the Helmholtz

equation given by

1

2
ul(x) +

(
K̃(ζl)ul

)
(x) =

(
Ṽ(ζl)F̃l

)
(x), x ∈ Γ, (5.6)

where

ul =

N−1∑
n=0

Φλnλ
ne−2πiln/Ñ , F̃l =

N−1∑
n=0

F (·, tn)λne−2πiln/Ñ ,

are the Z-transforms of Φ∆t,λ and F respectively, and Φλn = Φ∆t,λ(·, n∆t) de-

notes the solution of (5.5) after it has been semi-discretised in time using CQ -

see (3.31). In addition, Ṽ (ζl) and K̃(ζl) are the single and double layer bound-

ary integral operators (3.23) and (3.24), respectively. The index l runs over a

set of complex wavenumbers kl = ζl/c for l = 0, 1, ..., Ñ − 1, as shown in Figure

3.1. In the numerical experiments we consider in this chapter, we choose the

number of time-steps to typically be N = Ñ/2, where Ñ are the number of

frequencies. Here, we allow the choice of N and Ñ to be independent, as before,

in order to potentially over-resolve in the Laplace domain for better accuracy

as proposed in [26, 120].

Once we have computed the Helmholtz solutions ul for l = 0, 1, ..., Ñ − 1,

the discrete solution to the wave equation Φl can then be approximated via

a trapezoidal rule for the inverse Z-transform given by (3.35). The interior

solution is also calculated by applying the same time and spatial discretisation

to (5.4). The Laplace domain interior solution u, at any point x inside the

domain is given by (3.36). An analogous inverse transform is used to calculate

the interior solution Φ(x, t) from u(x) via the transform given by (3.37).

In the next section we briefly describe the spatial discretisation of these

Helmholtz problems via the BEM as discussed previously in Section 3.3, as well

as discussing the use of a high-frequency approximation for cases when Re(kl)

is large relative to a typical length scale of the domain Ω.
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5.2 Hybrid methods framework

For the spatial discretisation we either employ a piecewise constant collocation

BEM to (5.6) as shown previously in Section 3.3 for the low frequency approxi-

mation, or for the high frequency region (to be specified in terms of Re(kl)), we

employ a high-frequency approximation (HFA). We specify a threshold k∗ for

which we employ the BEM when |Re(kl)| ≤ k∗ and let η ≤ Ñ/2 be the minimal

integer valued index of the minimal |Re(kl)| > k∗, which is the region for which

we apply the high frequency approximation - see Figure 5.1. We note that the

indexing l = 0, 1, ..., Ñ − 1 starts from Re(k0) = 0 at the bottom of the loop

and runs clockwise. Therefore we specify the location of the wavenumber kη to

be within the lower left quarter of the loop of possible kl values. As before in

Section 3.2, we are only required to solve Ñ/2 + 1 Helmholtz problems since

the wavenumbers kl, l = 0, 1, ..., Ñ − 1 occur in symmetric pairs of the form

kl = ±Re(kl) + iIm(kl), for l = 0, 1, ..., Ñ/2.

The first HFA will be provided by a plane-wave approximation in which

the plane-wave amplitudes are determined using the DEA method described

in Chapter 4. The phases are constructed by performing a matching of the

high frequency approximation with the BEM results at the highest frequencies

for which the BEM is applied, as discussed later in Section 5.3.2. The second

HFA we consider is an incident illumination approximation where only the di-

rect contribution of the source term on the boundary is included and reflected

contributions are assumed to play an insignificant role. This approximation

therefore relies on there being sufficient decay before any reflections occur. For

wavenumbers which have a very large imaginary part, we expect that the inci-

dent illumination approximation will be a reasonable approach since the magni-

tude of Im(kl) determines the decay rate of the plane waves as they propagate.

The DEA numerical approach will be able to go beyond the incident illumina-

tion model in terms of the reflection order, but will introduce additional sources

of error due to the numerical discretisation procedures.

At low frequencies, we employ a piecewise constant collocation boundary ele-

ment method as discussed in Sections 2.4 and 3.3, in which we divide the bound-

ary Γ into M subintervals (or elements) Em of approximately equal size. Recall

that approximating the solution with piecewise constants bm, m = 1, 2, ...,M
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Figure 5.1: Example of a hybrid method implementation with the threshold
k∗ = 100 chosen to be the wavenumber where the method switches from the
BEM to a high frequency approximation.

(2.29) via (3.33) leads to the system of equations

1

2

M∑
m=1

ul,mbm(xi) +

M∑
m=1

ul,m

(
K̃(ζl)bm

)
(xi) =

M∑
m=1

F̃l,m

(
Ṽ (ζl)bm

)
(xi), (5.7)

for {l = 0, 1, ..., Ñ/2 : |Re(kl)| ≤ k∗}, where xi, i = 1, 2, ...,M are the col-

location points. The collocation point xi is chosen to be at the centre of the

corresponding boundary element Ei.

In the following section, we discuss how the transformed boundary solution

ul,m in the high frequency region can be calculated using the two HFAs discussed

above.

5.3 High frequency approximations

We consider two high frequency approximations for solving the set of Helmholtz

problems (5.6) for {l = 0, 1, ..., Ñ/2 : |Re(kl)| > k∗}. Firstly we recall that

the solution to the Helmholtz equation (2.2) at high frequencies may be well
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described as a plane-wave superposition solution of the form

u(x) =

R∑
κ=1

Aκ(x, ω)eiωSκ(x), (5.8)

where ω = Re(ck). The amplitude terms Aκ are approximated using DEA as

described in Chapter 4, by making use of the following relationship between the

stationary phase-space density ρ and the phases Sκ via

ρ(x,p) =

R∑
κ

A2
κ(x, ω)δ(p−∇Sκ(x)), (5.9)

see also (4.8) for the equivalent statement in the time-dependent case. Here

p ∈ R2 is the momentum vector that satisfies |p| = c−1. For a plane wave

that has direction relative to the x1 axis defined by the angle Θ, then cp =

(cos(Θ), sin(Θ)). Therefore the phase-space density ρ is equal to the super-

position of squares of the amplitudes Aκ corresponding to rays travelling in

directions defined by Sκ. The approximation of the phase terms Sκ in our

plane-wave superposition solution (5.8) will be calculated by setting the solu-

tion calculated via the BEM (3.33) equal to the expression (5.8) at l = η − 1

and l = η, in which the amplitude terms have been determined from DEA, and

the phase terms are the only unknowns in the expression to be determined. The

calculation of the phase terms Sκ will be described in more detail in Section

5.3.2.

5.3.1 DEA approximation of the amplitudes

In this section, we briefly recall the DEA method from Chapter 4 and give an

overview of the approach in terms of its implementation within a hybrid method.

We define the phase-space coordinatesX = (s, p) on the boundary of Ω, where s

is the arclength parameter along the boundary Γ and p denotes the component of

the momentum vector that is tangential to Γ at s. The phase-space densities are

transported through Ω using a modified form of the FP operator (4.9), written

as a boundary integral operator B, which describes the transport of a density

ρ from the phase-space on the boundary Γ to the next boundary intersection

with Γ via

B[ρ](X) :=

∫
w(Y )δ(X − φ(Y ))ρ(Y )dY . (5.10)
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Here the map φ is the boundary map for Γ that transports a phase-space bound-

ary coordinate Y = (s′, p′) along a ray path starting from the position specified

by s′ and travelling in the direction specified by p′ until reaching Γ. The bound-

ary map φ(Y ) = (φs(Y ), φp(Y )) has position φs(Y ), which is determined from

the intersection of the ray with the boundary and has tangential slowness φp(Y )

corresponding to a specular reflection of the incoming ray once it reaches the

boundary. The term w is a weighting factor containing a damping term and is

defined as

w(Y ) = e−2Im(kl)D(φ(Y ),Y ), (5.11)

where D(φ(Y ),Y ) represents the Euclidean distance between φs(Y ) and s′ on

Γ.

The stationary boundary density ρ resulting from an initial boundary density

ρ0 is given via

ρ =

∞∑
n=0

Bn[ρ0] = (I − B)−1[ρ0], (5.12)

where Bn denotes n iterates of the operator B. The initial density term ρ0

is related to the amplitude of the prescribed boundary condition F̃l for the

frequency domain Helmholtz problem - see (5.6). The details of this relation

are given in Section 5.4 for each of the numerical examples considered.

As in Chapter 4, we approximate the density ρ by solving a finite dimen-

sional approximation of (5.12). We implement the Petrov-Galerkin discretisa-

tion scheme detailed in Section 4.3, meaning that the spatial approximation

by piecewise constant basis functions is consistent with that applied for the

BEM at low frequencies. We divide the boundary Γ into elements Em for

m = 1, 2, ...,M and define a set of global ray directions Θβ ∈ [0, 2π), where

β = 1, 2, ...,Λ, defined anticlockwise relative to the positive x1-axis. Here we

choose Θβ = 2π(β − 1)/Λ. Furthermore, we set up the subdivision such that

Em does not extend over any of the vertices of the polygon Γ. We now define

θκ(s) ∈ (−π/2, π/2), κ = 1, 2, ..., Rm to be the local ray directions at s ∈ Em,

for any m = 1, 2, ...,M . The local directions correspond to the subset of the

global directions that are directed into Ω at s and have been re-labelled accord-

ing to the angle they make with the interior normal vector at s as described in

Section 4.3 and depicted in Figure 4.2. We approximate the stationary density
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ρ on Γ× (−c−1, c−1) using a finite dimensional approximation of the form

ρ(s, p) ≈
M∑
m=1

Rm∑
κ=1

ρ(m,κ)b̂m(s)δ (p− p̃κ(s)) , (5.13)

where p̃κ(s) = sin (θκ(s)) /c and b̂m defines an orthonormal basis of piece-

wise constant functions (4.26) with respect to the standard L2 inner product,∫
Em

(̂bm(s))2ds = 1. As detailed in Section 4.3, for the momentum variable we

choose a set of test functions that are orthogonal in the L2 inner product to

δ(p− p̃κ(s)) for κ = 1, 2, ..., Rm. The test functions are the set of characteristic

functions χκ given by (4.27), satisfying (4.28) as described in Section 4.3.

A Petrov-Galerkin projection of the operator B (5.10) on to the basis and

test function combination described in Section 4.3 and summarised above leads

to a matrix B defined by

BI,J =

∫
Γ

∫ c−1

−c−1

w(Y )̂bm′(s
′)̂bm(φs(Y ))δ(p′ − p̃κ′(s′))χκ(φp(Y ))dY ,

=

∫
Γ

w(s′, p̃κ′(s
′))̂bm′(s

′)̂bm(φs(s
′, p̃κ′(s

′)))χκ(φp(s
′, p̃κ′(s

′)))ds′,

=
1

|Em′ |1/2

∫
Em′

w(s′, p̃κ′(s
′))̂bm(φs(s

′, p̃κ′(s
′)))χκ(φp(s

′, p̃κ′(s
′)))ds′,

(5.14)

where I = (m,κ) and J = (m′, κ′). Therefore the two-dimensional integral in

(5.14) (that has already been simplified from a four-dimensional integral of the

form (4.29)) has been reduced to a single integral over the boundary element

Em′ ⊂ Γ due to the spatial basis and the properties of the Dirac δ distributions

arising in equations (5.10) and (5.13). The calculation when the matrix elements

are non-zero only involves the integral of the exponential term (5.11) over the

element Em′ with a multiplication of the pre-factor (|Em||Em′ |)−1/2.

The coefficients of the expansion (5.13) can be found by solving the linear

system ρ = (I −B)−1ρ0, which corresponds to the discretised form of equation

(5.12). Here ρ0 and ρ represent the coefficients of the expansions of ρ0 and

ρ, respectively, when projected onto the finite dimensional basis. Note that

the invertibility of I − B is a consequence of the fact that for A-stable CQ

time discretisations, we have Im(kl) > 0 for all l = 0, 1, ..., Ñ − 1 and hence

the damping term (5.11) will ensure that the leading eigenvalue of the matrix

B is smaller than 1 in absolute value. The entries of the source vector ρ0
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corresponding to an initial density ρ0 are given using the property (4.28) and

orthonormality of the spatial basis via

[ρ0]J =

∫
Γ

∫ c−1

−c−1

ρ0(s, p)̂bm(s)χκ(p)dX,

=
1

|Em|1/2

∫
Em

∫
Iκ

ρ0(s, p)dpds,

(5.15)

where Iκ are a set of subintervals that satisfy ∪Rmκ=1Iκ = (−π/2, π/2) for κ =

1, 2, ..., Rm as discussed in Section 4.3.

5.3.2 Wave matching approximation of the phase terms

We now discuss how to determine the phase terms Sκ in (5.8), given that the

amplitudes Aκ for each direction κ have been found by combining (5.9) and

(5.12), and choosing the directions in the sum over κ in (5.9) to correspond

to those of the discretisation represented in (5.13). A new methodology is

required to determine the unknown phase terms Sκ. We propose a method that

reconstructs the phase terms from a full wave solution calculated via BEM at the

maximal frequency before we switch to the high frequency formulation and also

at the lowest frequency at which we apply the high frequency formulation. These

frequency values are denoted ωη−1 = Re(ckη−1) and ωη = Re(ckη), respectively.

We apply both the BEM and DEA to obtain a set of equations of the form

ul(x) =

R∑
κ=1

Aκ(x, ωl)e
iωl(sin(θκ)s/c+γlκ), (5.16)

for l = η − 1 and also for l = η. The left hand side of (5.16) is provided by

the solutions calculated from the BEM and x ∈ Γ are the Cartesian coordinates

corresponding to the arclength value s.

Before proceeding any further, we now discuss the representation of the phase

terms in (5.16) as the linear function Sκ(x) = sin(θκ)s/c+ γlκ. This stems from

the fact that the wave speed c is assumed to be constant. We reintroduce from

Section 4.2 a position vector xΓ = (x‖, x⊥) such that along the boundary Γ,

x‖ = s and x⊥ = 0 correspond to the position parallel and perpendicular to

the boundary, respectively. We further recall the local momentum vector pΓ =

(p‖, p⊥), where p‖ = p = sin(θ)/c is the component parallel to the boundary and

p⊥ = cos(θ)/c is perpendicular to the boundary, where θ is the angle formed
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between the ray direction and the inward normal vector to Γ at s. The phase

term δ(p−∇Sκ(x)) from (5.9) can then be rewritten as

δ(pΓ −∇Sκ(xΓ)) = δ

(
p‖ −

∂Sκ
∂x‖

)
δ

(
p⊥ −

∂Sκ
∂x⊥

)
. (5.17)

Substituting (5.17) into (5.9), the delta generalised functions specify that the

phase-space density ρ is non-zero when ∂Sκ
∂x‖

= p‖ and ∂Sκ
∂x⊥

= p⊥, and so ∇Sκ
is independent of xΓ. In general, after integration, we obtain the following

expression for the phase term Sκ:

Sκ(xΓ) = p‖x‖ + p⊥x⊥ + γlκ,

=
sin(θκ)

c
s+ γlκ,

(5.18)

on the boundary Γ. The constants γlκ, κ = 1, 2, ..., R, l = η, η + 1 are the

unknowns to be determined by imposing (5.16) at a set of points s on Γ. The

variables θκ, κ = 1, 2, ..., R are the local angles with respect to the unit normal

introduced in the previous section. To calculate the undetermined constants

γlκ we calculate the solutions to the Helmholtz problems using the BEM at the

frequencies ωη−1 and ωη, which correspond to a pair of frequencies where we

switch from using the BEM in the low frequency region to using DEA in the

high frequency region. The choice of ωη−1 and ωη will be studied numerically

later on.

The phase reconstruction procedure must be performed at more than one

frequency due to the non-uniqueness of the phase solution at a single frequency

owing to the periodicity of the plane waves. The phase terms at ωη−1 and ωη

may then be related via

γη−1
κ +

sin(θκ)s

c
+

2πν

ωη−1
= γηκ +

sin(θκ)s

c
+

2πν

ωη
. (5.19)

Solving (5.19) for ν ∈ Z allows us to recover a unique set of phase constants γκ

via

γκ = γlκ +
2πν

ωl
, (5.20)

for either l = η − 1 or l = η. Once γκ are known we calculate the solutions

to the Helmholtz problems using (5.16) for all frequencies with absolute value

larger than |ωη−1|.
The calculation of γη−1

κ (and γηκ) will be dependent on the numerical exam-
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ple we are considering. In our numerical examples we only consider polygonal

domains and therefore the values for γηκ will need to be calculated for each edge

separately since each edge will have a different subset of the global directions

Θβ , β = 1, 2, ...,Λ, associated to it and hence the γηκ values will be different on

each edge. We generate a system of M equations of the form (5.16) by choosing

x = xi for i = 1, 2, ...,M as the collocation points from the BEM approximation

in (5.16). The next task is to determine how many of the amplitudes Aκ are

non-zero at every collocation point xi on a given edge, since this provides a

reduction in the number of phase constants γlκ that we need to recover. The

system of equations (5.16) can then be solved as a linear system

ul(xi) =

R∑
κ=1

Aκ(xi, ωl)e
iωl(sin(θl)si/c)vlκ, (5.21)

for i = 1, 2, ...,M , l = η − 1 or l = η and where si is the arc-length parameter

for the point xi. The unknowns vlκ = eiωlγ
l
κ may be determined using the

Moore-Penrose pseudo-inverse to obtain the least squares solution. Once each

vlκ term has been found, one can directly calculate the phase constants via

γlκ = −i log(vlκ)/ωl.

To summarise this new methodology described above, the following is a list

of steps on how to implement it.

1. The new methodology requires us to solve (5.21) for the unknown co-

efficients γκ, that arise due to the reconstruction of the phase informa-

tion Sκ as a linear function. This is solved at two frequencies denoted

ωη−1 = Re(ckη−1) and ωη = Re(ckη), whereby ωη is the maximal fre-

quency before we switch from using the BEM to the HFA.

2. We calculate the left hand side term of equation (5.21) ul(xi) via the

BEM, at the collocation points xi, for i = 1, 2, ...,M , for ωη−1 and ωη.

3. Next we must determine the amplitudesAκ. The amplitudes are computed

via (5.9) where ρ is calculated by applying DEA on the Helmholtz equation

at ωη−1 and ωη, at both at every collocation point xi on a given edge, as

described in Section 5.3.1.

4. Then we solve (5.21) for vlκ for either l = η or l = η − 1. Once each

vlκ term has been found, we directly calculate the phase constants via

γlκ = −i log(vlκ)/ωl.
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5. Due to the non-uniqueness of the phase solution we then find γκ via (5.20)

where ν is found by rearranging (5.19) as

ν ==
ωη−1ωη(γηκ − γη−1

κ )

2π(ωη − ωη−1)
.

5.3.3 Simple high frequency approximation

In this section, we describe a simple high-frequency approximation [SHFA] based

on the observation that the wavenumbers kl in the high frequency range typi-

cally have large imaginary part. The dissipative factor (5.11) appearing in the

operator B will then damp out all contributions except those from very short ray

trajectories, meaning that the approximation ρ ≈ ρ0 will be reasonably good.

In this case there is no need to perform any DEA calculations and the solution

for a wavenumber kl with a large enough imaginary part can be approximated

by simply rescaling the Z-transformed boundary data F̃l. In particular we set

ul(x) =
F̃l(x)

ikl cos (θ0(x))
, (5.22)

where θ0(x) defines the direction of the source term at x ∈ Γ relative to the

normal direction. For example, for a point source from x0 ∈ Ω, then

cos (θ0(x)) =
n̂ · (x− x0)

‖x− x0‖
.

For a boundary value problem with boundary data related to a plane wave

entering the domain from one or more edges, then the angle θ0 can be found

directly from the plane wave direction.

In the next section, we will present numerical results produced using the

hybrid methods described above for both the interior and the boundary solutions

in a variety of different examples.

5.4 Numerical results

In this section, we consider numerically solving the wave equation (5.1) with

Neumann boundary conditions (5.3) via the two hybrid methods introduced

in this chapter. We first consider an inhomogeneous Neumann IBVP for the

cases when Ω is a unit square or an L-shaped domain and the boundary data
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corresponds to a plane wave travelling into the domain. We also later consider

the case when there is a point source inside either a square domain or an irregular

polygon domain. We now present a step-by-step guide of how to implement the

hybrid methods to determine the interior solution of the wave equation.

1. To begin, we divide the boundary Γ into M boundary elements Em of

approximately equal size and split the time interval [0, T ] into N steps of

equal length ∆t = T/N . We then chose the number of frequencies Ñ , in

the numerical results we investigate the affect of potentially over-resolve

in the Laplace domain for better accuracy by allowing the choice of N and

Ñ to be independent Therefore we typically choose Ñ = 2N .

2. We then choose the cut-off frequency k∗ at which we switch from the

BEM to a high frequency approximation. For the frequencies evaluated

via the BEM, the choice for the the number of boundary elements should

be chosen such that there is a good level of accuracy up to the BEM cut-off

frequency. This follows on the rule of thumb described earlier in Section

3.4 in which at least six boundary elements per wavelength as discussed

by [129].

3. We then calculate the wavenumbers kl = ζli for l = 0, 1, ..., Ñ − 1, where

ζl = are calculated via the BDF2 time-stepping method.

4. Next we calculate the transformed Neumann boundary data F̃l to be im-

plemented into the CQBEM solutions for where the coefficients F̃l,m are

determined via

F̃l,m = F̃l(xm)

N−1∑
n=0

F (xm, tn)λne−2πiln/Ñ .

5. For the low frequency region we employ a piecewise constant collcoat-

ion BEM in order to determine the transformed boundary solution ul,m

for {l = 0, 1, ..., Ñ/2 : |Re(kl)| ≤ k∗}, for m = 1, 2, ...,M . This re-

quires to solve the system of equations of the form (5.7) where bm, m =

1, 2, ...,M are the piecewise constant basis functions given by(2.29) and

xi, i = 1, 2, ...,M are the collocation points. The functions
(
Ṽ(ζl)bm

)
and

(
K̃(ζl)bm

)
are defined by (3.23) and (3.24), respectively.

6. Next we solve the set of Helmholtz problems (5.6) in the high frequency
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region via either the DEA or the SHFA for the high frequency approxi-

mation .

(a) To employ the SHFA one must simply approximate equation (5.22)

for {l = 0, 1, ..., Ñ/2 : |Re(kl)| > k∗} where F̃l is approximated as

before.

(b) For the DEA approximation for the high frequency approximation,

we must first reformulate the boundary data Fl in to terms of a

source term ρ such that it can be input into the calculation of DEA

approximation. The reformulation of the boundary data is described

in more detail for each problem we consider. Next, we must calculate

the unknown constants γ as part of the wave matching approxima-

tion of the hybrid method in equation (5.16) as described in Section

5.3.2. Once γ has been calculated the boundary solution is calcu-

lated via (5.16), where the amplitudes Aκ are provided by the DEA

approximation described in Section 5.3.1.

7. Once the boundary solution ul has been computed for all wavenumbers.

The boundary solution to the wave equation in the time domain is found

via the inverse transform given by (3.35).

8. The interior solution in the Laplace domain ul(x) can then be calculated

via (3.36), where x is any point inside the domain Ω. Note that ul in

equation (3.36) is the boundary solution calculated in (3.33) and (3.34).

The interior solution to the wave equation in the time domain Φ(x, t) at

x ∈ Ω is then approximated via the inverse transform to (3.35).

The MATLAB code for these examples are available from the following URL:

https://github.com/JacobRowbottom/CQBEM-HYBRID.

5.4.1 Plane wave boundary data

We consider the results of applying the two hybrid methods to the homogeneous

wave equation (5.1), when P = 0, with Neumann boundary condition (5.3) for

the case when Ω is either a unit square or an L-shaped domain, as depicted in
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Figure 5.2. We define our Neumann boundary condition (5.3) to be

F (x, t) =


W (x2 sin(Θ0)− ct) if x1 = 0,

W (x1 cos(Θ0)− ct) if x2 = 0 and Θ0 > 0,

0 otherwise,

(5.23)

where Θ0 ∈ [0, π/2) is a direction relative to the positive x1 axis. Here x =

(x1, x2) and the angle Θ0 is in general distinct from the global direction set

Θβ , β = 1, 2, ...,Λ. However, for accuracy reasons, we choose Θ0 to correspond

to one of the global directions. The choice of the global direction set can be

made in a problem specific manner, and therefore this choice does not indicate

a limitation of the method. We consider the case when the function W takes

the form of the normal derivative of a Gaussian pulse written as

W (x) = −α(x+ ct0)(n1 cos(Θ0) + n2 sin(Θ0))e−α(x+ct0)2

, (5.24)

for x ∈ R and where n̂ = (n1, n2) are the entries of the unit normal vector

n̂. The parameters t0 > 0 and α > 0 control the position of the peak of the

Gaussian pulse and its bandwidth, respectively. These parameters are chosen

carefully to ensure that the initial conditions are approximately satisfied and the

pulse has decayed sufficiently at t = 0. In this section we only consider regular

geometric domains and directions Θ0 for the boundary condition, as illustrated

in Figure 5.2, such that we will only need to use Λ = 8 global directions in the

DEA implementation in order to include all possible propagation directions.

We now discuss how the Neumann boundary condition is implemented in

the DEA scheme by writing it in the form of the square modulus of a plane

wave solution to the Helmholtz equation, which is then used to determine the

initial density ρ0. Here we will denote ∂ul
∂n̂ = F̃l as the Z-transform of F , where

F is the Neumann boundary condition (5.23). Recall that the solution may be

approximated (at high frequencies) as a plane-wave superposition of the form

(5.8) as follows:

ul(x) ≈
R∑
β=1

Aκ(x, ωl)e
iωl(x1 cos(Θβ)+x2 sin(Θβ))/c, (5.25)

where x ∈ Γ and Θβ are the global angles relative to the x1 axis. Differentiating

(5.25) with respect to the unit normal will either be with respect to x1 if we
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(a) Unit square domain (b) L-shaped domain

Figure 5.2: The domains considered in the numerical experiments for solving
the homogeneous wave equation (5.1), when P = 0, with Neumann boundary
condition (5.23) showing the value of the boundary arclength s at each ver-
tex, the propagation direction Θ0 for the plane wave boundary data and the
interior evaluation point as a red dot. The bold boundary lines indicate the
positions where the plane wave may enter the domain and therefore provide the
inhomogeneous boundary data.

differentiate along the left edge of the domain or with respect to x2 if we consider

differentiating along the bottom edge of the domain, as shown in Figure 5.2. By

first considering differentiating (5.25) along the left edge with respect to x1 and

considering a boundary condition generated by a single plane wave (R = 1)

travelling at an angle Θ0, we obtain the following

∂ul
∂n̂

(x) = ikl cos(Θ0)A(x, ωl)e
iωl(x1 cos(Θ0)+x2 sin(Θ0))/c. (5.26)

Substituting the approximation of ul(x) from (5.25) into (5.26) gives

∂ul
∂n̂

(x) = ikl cos(Θ0)ul(x). (5.27)

Now rearranging (5.27) and taking the absolute value squared we obtain an

expression for |ul(x)|2 follows as

|ul(x)|2 =

∣∣∂ul
∂n̂ (x)

∣∣2
|kl|2| cos(Θ0)|2

. (5.28)

An analogous procedure can be applied for the case when we differentiate (5.25)
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with respect to x2 along the bottom edge, which leads to

|ul(x)|2 =

∣∣∂ul
∂n̂ (x)

∣∣2
|kl|2| sin(Θ0)|2

. (5.29)

We note that for the case when Θ0 = 0, this corresponds to the plane wave

travelling from the left edge only and the boundary data along the bottom edge

is assumed to be homogeneous. We may write |ul(x)|2 more concisely as follows

|ul(x)|2 =


∣∣∂ul
∂n̂ (x)

∣∣2 / (|kl|2| cos(Θ0)|2
)

if x1 = 0,∣∣∂ul
∂n̂ (x)

∣∣2 / (|kl|2| sin(Θ0)|2
)

if x2 = 0 and Θ0 > 0,

0 otherwise.

(5.30)

Note that here ∂ul
∂n̂ = F̃l, for

{
l = 0, 1, ..., Ñ/2 : |Re(kl| > k∗

}
. The source term

ρ0 is then calculated via

ρ0(s, p) = |ul(x)|2δ(p− p0), (5.31)

where p0 = sin(θ0)/c and θ0 is the local direction (corresponding to the global

direction Θ0) of the plane wave inducing the boundary data, relative to the

normal vector to Γ at position s and, as before, s is the arclength representation

of x ∈ Γ.

Square domain

We now present the numerical results for the case when Ω is a unit square as

shown in Figure 5.2 (a). For all cases in this section, we let the wave speed

c = 1. We first investigate solving the IBVP for the case when α = 36, t0 = 1

and Θ0 = 0 in (5.24), such that we can perform an error analysis from the results

and compare against the error results computed via CQBEM in Section 3.4.1.

Note that the boundary data (5.23) is equivalent to (3.39) in the case Θ0 = 0

along the edge where x1 = 0. The second part of the boundary data (3.39)

propagates to the left away from Ω with an initial peak position at x1 = −ct0
and we always choose t0 sufficiently large so that the boundary data is zero to

machine precision throughout Ω at t = t0. The error of the time-dependent
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interior solution is calculated via

Error(N) =

√√√√∑N−1
n=0 (Φ(x, tn)− Φn(x))

2∑N−1
n=0 (Φ(x, tn))

2
, (5.32)

and the convergence rates are estimated by log2(Error(N/2)/Error(N)). We

compare the numerical solution Φn against the exact solution Φ(x, tn) given by

Φ(x, t) =
1

2
e−α(x1−c(t−t0))2

(5.33)

for an infinite domain (in the x1 - direction). We consider only early times such

that we do not observe any reflections and the solution matches (5.33). Note

also that (5.33) is equivalent to (3.40) if we omit the second left-propagating

term in (3.40) that travels away from Ω and therefore has no effect on Φ for

x ∈ Ω.

Figure 5.3 shows a comparison between the exact and numerical interior

solutions Φn(x), n = 0, 1, ..., N −1 at x = (0.5, 0.5). We apply a high frequency

approximation whenever |Re(kl)| > 80 and apply M = 512 boundary elements

to provide a good level of accuracy up to the BEM cut-off frequency. The

plots compare the results of using the SHFA with the DEA based plane wave

approximation up to T = 2, as well as computing the interior solution at all

frequencies via the CQBEM approximation. These approximations were all

compared with the exact solution for a total of N = Ñ = 512 time-steps. From

this figure, we observe that all numerical solutions match the behaviour of the

exact solution well by eye. Even with a large number of Helmholtz problems

(237 of the 257 problems) being approximated via a high frequency method, the

hybrid methods solutions match well for the case when α is reasonably low.

Table 5.1 shows the error results and convergence rates for the interior so-

lution calculated via the DEA and SHFA based hybrid methods, in which the

high frequency approximations are implemented whenever |Re(kl)| > 80. The

table shows that both hybrid methods have almost identical error results and

convergence rates as well as achieving the desired second order convergence for

BDF2 based CQ. In comparison to the error results and convergence rates cal-

culated using CQBEM for all frequencies shown in Table 3.3, we can determine

that the results from Table 5.1 are almost identical. Therefore for the low choice

of α we can deduce that the hybrid methods can numerically solve this example

accurately. We note that for the case when N = 64, the numerical solution was
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Figure 5.3: Interior solution to the wave equation at x = (0.5, 0.5) inside a unit
square with boundary data (5.24) and parameters Θ0 = 0, α = 36, t0 = 1, with

M = 512 boundary elements and N = Ñ = 512 time-steps. The high frequency
approximations are applied whenever |Re(kl)| > 80.

computed fully via CQBEM, since |Re(kl)| ≤ 80 for all l = 0, 1, ..., Ñ − 1 here.

DEA SHFA

N M η Error EOC Error EOC

64 4 - 0.0681 - 0.0681 -

128 16 23 0.0121 2.49 0.0121 2.49

256 64 24 0.0018 2.75 0.0018 2.75

512 256 25 4.5863e-04 1.97 4.5454e-04 1.99

1024 1024 26 1.1835e-04 1.95 1.1836e-04 1.94

Table 5.1: Errors and convergence rates for the interior solution on the unit
square domain observed at the point x = (0.5, 0.5) for the case when the bound-
ary data are given by (5.24) with parameters Θ0 = 0, α = 36, t0 = 1 and T = 2.
The interior solutions were calculated numerically using the DEA and SHFA
based hybrid CQ schemes, whereby the high frequency approximations were
applied whenever |Re(kl)| > 80.

We now investigate solving the IBVP for the case when α = 36, t0 = 1

and Θ0 = π/4 in (5.24). Figure 5.4 shows a comparison between the numer-

ical interior solutions at the point x = (0.5, 0.5). We apply a high frequency

approximation whenever |Re(kl)| > 80, with N = Ñ = 512 time-steps and

M = 512 boundary elements. The plots compare the results of approximating
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Figure 5.4: Interior solution to the wave equation at x = (0.5, 0.5) inside a unit
square with boundary data (5.24) and parameters Θ0 = π/4, α = 36, t0 = 1,

with N = Ñ = 512 time-steps and M = 512 boundary elements. The high
frequency approximations are applied whenever |Re(kl)| > 80.

the high frequency Helmholtz solutions via either the DEA or SHFA approxi-

mations. Here we compare the numerical results against a numerical solution

calculated using CQBEM. From this figure, we observe that all numerical so-

lutions behave identically by eye. This is supported further by the error and

convergence results in Table 5.2. The errors in Table 5.2 were computed us-

ing (5.32), but with subsequent interior solutions as we double the number of

time-steps in place of the exact solution. From this table, we observe that both

hybrid methods achieve similar error results that are eventually less than 1%

error when N = Ñ = M = 1024, with the SHFA method obtaining a slightly

smaller error. The convergence rates are larger than the expected second order

convergence for the BDF2 based CQ, but we expect that as we increase the

number of time-steps and boundary elements further, the rates will eventually

converge to second order.

We now present the numerical results when α = 4096, t0 = 0.1 and Θ0 = 0

in (5.24), in order to obtain a broadband signal. For this example we can

compare our numerical results against the exact solution given by (5.33) up to

time T = 1, such that we do not observe any reflections.

Figure 5.5 shows a comparison between the exact and numerical interior
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DEA SHFA

N M η Error EOC Error EOC

64 4 - - - - -

128 16 23 1.1614 - 1.1614 -

256 64 24 0.1762 2.72 0.1762 2.72

512 256 25 0.0148 3.57 0.0148 3.41

1024 1024 26 0.0021 2.82 0.0018 3.04

Table 5.2: Errors and convergence rates for the interior solution on the unit
square domain observed at the point x = (0.5, 0.5) for the case when the bound-
ary data are given by (5.24) with parameters Θ0 = π/4, α = 36, t0 = 1 and
T = 2. The interior solutions were calculated numerically using the DEA and
SHFA based hybrid CQ schemes, whereby the high frequency approximations
were applied whenever |Re(kl)| > 80.

solutions at x = (0.5, 0.5). We apply a high frequency approximation whenever

|Re(kl)| > 350 and employ M = 1024 boundary elements to provide a good level

of accuracy up to the BEM cut-off wavenumber k∗ = 350. The plots compare

the results of using the SHFA and the DEA based plane wave approximations

with the exact solution up to T = 1, for N = Ñ/2 = 4096 time-steps. In

this case both high frequency approximations produce identical looking results

matching the exact solution. Figure 5.6 shows the solution along the boundary

using both the DEA and SHFA high frequency approximations. We observe that

the two solutions are visually identical over the entire boundary and the plots

show the Gaussian pulse moving over the left edge of the square (3 < s < 4) at

around t = t0 = 0.1 and then travelling along the upper and lower edges.

Figure 5.8 shows the Z-transformed boundary solution ul. The left sub-plot

(a) shows the absolute value of ul at l = η, where we switch from using the

BEM and instead use one of the high frequency approximations. We compare

the values calculated using the BEM to the solutions calculated using the high

frequency approximations. We observe that the main differences between the

three methods are along the upper (2 < s < 3) and lower (0 < s < 1) edges

where the high frequency approximations give zero and the BEM does not.

This is because the high frequency approximations of ul omit waves tangential

to the boundary. The right sub-plot (b) shows a zoomed in panel focusing on

the values along the right edge (1 < s < 2). We notice that the difference

between DEA and the SHFA is that the DEA approximation includes reflected

wave contributions along the right edge, but the SHFA does not. We also
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Figure 5.5: Interior solution to the wave equation at x = (0.5, 0.5) inside a unit
square with boundary data (5.24) and parameters Θ0 = 0, α = 4096, t0 = 0.1,

with M = 1024 boundary elements and N = Ñ/2 = 4096 time-steps. The high
frequency approximations are applied whenever |Re(kl)| > 350.

notice that the BEM appears to be double that of the DEA approximation and

oscillates more. This is due to the contributions of the diffracted waves being

included in the BEM, but not in DEA. The bottom sub-plot (c) shows a plot

of Re(ul) computed using the DEA based approximation for |Re(kl)| > 350 for

wavenumbers close to Re(kl) = k∗ = 350. Along the top edge (2 < s < 3),

the value of Re(ul) jumps to zero when we switch from the BEM to the DEA

approximation as would be expected from the upper left sub-plot (a). Along

the rest of the boundary, the solutions from the two methods match up very

well demonstrating the success of the phase reconstruction process outlined in

Section 5.3.2.

Figure 5.7 shows the logarithm of the boundary data and the interior solution

in the Fourier domain against k the wavenumber. The transformed boundary

data F̃l is approximated via F̃l =
∑N−1
n=0 F (·, tn)λne−2πiln/Ñ where F is given

by (5.23) with α = 4096, t0 = 0.1 and Θ0 = 0. The interior solution was

calculated using the DEA based hybrid CQ scheme, whereby the high frequency

approximation was applied whenever |Re(kl)| > 350, for Ñ/2 = N = 4096,

M = 1024. In this figure, we observe that the two solutions decay by a factor

of 10−8 from their peak values at approximately k = 680 for the driving force

and approximately k = 560 for the interior solution, which in comparison to
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(a) DEA (b) SHFA

Figure 5.6: Solution to the wave equation along the boundary of a unit square
domain with boundary data (5.24) and parameters Θ0 = 0, α = 4096, t0 = 0.1,

with M = 1024 boundary elements and N = Ñ/2 = 4096 time-steps. The
high frequency approximations (a) DEA and (b) SHFA are applied whenever
|Re(kl)| > 350.

Figure 3.6 displays both a significantly more broadband solution and boundary

condition. This is a consequence of increasing the parameter α from 36 to 4096.

In Table 5.3 we investigate the relative errors and convergence rates of the

interior solutions observed at the point x = (0.5, 0.5), calculated via both hybrid

methods, as we double the number of time-steps N = Ñ/2 and increase the

number of boundary elements M by a factor of four. The interior solutions

were calculated for the parameters Θ0 = 0, α = 4096 and t0 = 0.1, with the

high frequency approximations being implemented whenever |Re(kl)| > 350.

Here η corresponds to the index l = η of the first wavenumber in the list kl,

l = 1, 2, ..., Ñ such that |Re(kl)| exceeds k∗ - see also page 156 -157. The relative

errors were computed via (5.32) using the exact solution (5.33) up until T = 1.

From the table we observe that both hybrid methods produce identical results

and convergence rates. On the last row of the table we achieve errors of less

than 1% as there are enough boundary elements to model the highly oscillatory

behaviour, and we also observe a convergence rate close to the expected second

order.

In the problems considered so far, we have demonstrated that the hybrid ap-

proaches can both provide accurate results, but owing to the choice of wavenum-

ber threshold, whether it be k∗ = 80, for when α = 36 and t0 = 1 or k∗ = 350
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Figure 5.7: Logarithmic plots of the bandwidth of the Neumann boundary con-
dition F and the interior solution Φ(x) observed at the point x = (0.5, 0.5) in
the Fourier domain against the wavenumber k. The Neumann boundary condi-
tion F is given by equations (5.23) - (5.24) with α = 4096, t0 = 0.1 and Θ0 = 0.
The numerical interior solution was calculated using the DEA based hybrid
CQ scheme, whereby the high frequency approximation was applied whenever
|Re(kl)| > 350 for parameters for Ñ/2 = N = 4096, M = 1024 and Λ = 8.

DEA SHFA

Ñ N M η Error EOC Error EOC

1024 512 4 101 0.4518 - 0.4518 -

2048 1024 16 108 0.4629 -0.04 0.4629 -0.04

4096 2048 64 111 0.1372 1.75 0.1372 1.75

8192 4096 256 112 0.0142 3.27 0.0142 3.27

16384 8192 1024 112 0.0026 2.45 0.0026 2.45

Table 5.3: Errors and convergence rates for the interior solution in the unit
square domain observed at the point x = (0.5, 0.5) for the case when the bound-
ary data are given by (5.24) with parameters Θ0 = 0, α = 4096, t0 = 0.1 and
T = 1. The wavenumber threshold is chosen to bek∗ = 350. The interior
solutions were calculated numerically using the DEA and SHFA based hybrid
CQ schemes whereby the high frequency approximations were applied whenever
|Re(kl)| > 350.

when α = 4096 and t0 = 0.1, we find that the computational cost saving rel-

ative to using CQBEM is relatively modest. The corresponding full CQBEM

calculation would take approximately 5 times longer than the DEA based hy-
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Figure 5.8: The Z-transformed boundary solution ul on the unit square with
boundary data (5.24) and parameters Θ0 = 0, α = 4096, t0 = 0.1, with M =

1024 boundary elements and N = Ñ/2 = 4096 time-steps. The left sub-plot
(a) shows |ul| for l = η, which corresponds to the wavenumber kη where we
switch between using the BEM and a high frequency approximation. The right
sub-plot (b) shows the same result as plot (a), but zoomed in along the right
edge (1 < s < 2). The bottom sub-plot (c) shows Re(ul) computed using the
DEA based hybrid CQ scheme along the boundary of the square for a range of
wavenumbers in the vicinity of Re(k) = k∗ = 350.

brid calculation and around 6 times longer than the SHFA based calculation

when N = 4096, but the cost saving improves as N increases. This is true for

the SHFA in particular since the cost is approximately O(1) in N , the same

as for the high frequency approximation introduced in [133] for exterior wave

problems.

In Table 5.4 we investigate the effect of lowering the wavenumber threshold
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k∗ with final time T = 1 in the range where the exact solution is valid. However

we keep the number of time-steps fixed, overresolving for each case with Ñ =

2N , and investigate the error as we decrease the number of boundary elements

together with k∗, since the minimal wavelength that we need to resolve in the

BEM increases. From this table, we determine that lowering the wavenumber

threshold from k∗ = 350 to k∗ = 175 increases the error from 1.7% to 6.2%

and that as the threshold continues to be lowered, the error increases further,

although we observe a significant decrease in the computational time.

In Table 5.5, we investigate further the effect of lowering the wavenumber

threshold k∗ with final time T = 1 in the range where the exact solution is

valid. We now consider the effect of increasing the number of frequencies Ñ

by overresolving in the Laplace domain [26] to a greater degree that is approx-

imately inversely proportionate to the factor by which we decrease k∗. In this

case we observe that although the number of Helmholtz problems to be solved

increases overall, the number solved using the BEM remains approximately the

same. We find that reducing the wavenumber threshold to k∗ = 175 does not

have a significant effect on the error, but again we observe a significant decrease

in computational time. Decreasing the threshold further gives improvements

in computational efficiency, but at the cost of more significant increases to the

error. We note also that the phase reconstruction process involved in the DEA

based solution fails when the wavenumber threshold is reduced to k∗ = 45,

leading to significantly larger errors than for the SHFA. For the larger choices

of wavenumber threshold considered, the performance of the DEA and SHFA

based schemes was very similar, but with the DEA approach requiring more

computational resources as would be expected. The computational times listed

in the tables are using non-optimised MATLAB codes.

We now investigate the same IBVP as discussed previously, but now we

consider the case when the plane wave boundary data enters the domain at

an angle of Θ0 = π/4. Figure 5.9 shows the boundary solution versus time

calculated using DEA for the high frequency approximation in sub-plot (a) and

using the SHFA in sub-plot (b). We observe that these boundary solutions

appear visually identical. They both depict the Gaussian pulse entering along

the lower and left edges of the square (0 < s < 1 and 3 < s < 4) at the bottom

left corner (s = 0 = 4) around t = t0 = 0.1 and then travelling along those

edges until reaching the corners of the right and top edges (s = 1 and s = 3)

at around t ≈ 0.81s, where there are slight wave reflections heading back along

the lower and left edges, but the majority of the wave propagation continues
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Ñ N M k∗ η DEA Error DEA time SHFA Error SHFA time

4096 2048 1024 350 111 0.01664 13.0h 0.01608 10.5h

4096 2048 512 175 56 0.0620 1.5h 0.0408 1.35h

4096 2048 256 90 29 0.2336 1h 0.0663 42 mins

4096 2048 128 45 15 0.1196 35 mins 0.1176 20 mins

4096 2048 64 25 8 0.2546 25 mins 0.1617 9.8 mins

Table 5.4: Errors and computation times for the DEA and SHFA based hybrid
CQ schemes on the unit square domain for T = 1 when lowering the choice
of wavenumber threshold k∗. As the maximal BEM wavenumber is decreased,
there is also a proportionate decrease in the number of boundary elements while
fixing the number of time-steps and frequencies.

Ñ N M k∗ η DEA Error DEA time SHFA Error SHFA time

4096 2048 1024 350 111 0.01664 13.0h 0.01608 10.5h

8192 2048 512 175 112 0.01817 2.6h 0.01778 1.4h

16382 2048 256 90 115 0.03340 1.5h 0.03383 48 mins

32768 2048 128 45 115 0.4632 48 mins 0.06427 23 mins

65536 2048 64 25 128 0.4272 28 mins 0.09393 14 mins

Table 5.5: Errors and computation times for the DEA and SHFA based hybrid
CQ schemes on the unit square domain for T = 1 when lowering the choice
of wavenumber threshold k∗. As the maximal BEM wavenumber is decreased,
there is also a proportionate decrease in the number of boundary elements to-
gether with an increase in the number of Helmholtz problems solved overall.

along the right and top edges. In sub-plot (c) we compare the interior solutions

at the point x = (0.5, 0.5) computed using the DEA and SHFA high frequency

approximations with the parameters Θ0 = 0, α = 4096 and t0 = 0.1. In this

figure we observe that both solutions behave identically.

Figure 5.10 shows the Z-transformed boundary solution ul. The left sub-

plot (a) shows the absolute value at l = η and in this plot we notice that

there is no visual difference between the BEM solution and the high frequency

approximations since there are no edges where the wave direction is tangential

to the boundary. Hence, the hybrid methods perform better here than for the

case when Θ0 = 0. Sub-plot (b) is a zoomed in section of sub-plot (a) focusing

on the right and top edges (1 < s < 3) where we observe a difference between

the approximations. In particular, the SHFA prediction is zero as it does not

include any reflected wave contributions. The DEA solution shows a smooth
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Figure 5.9: Solutions to the wave equation for a unit square domain with bound-
ary data (5.24) and parameters Θ0 = π/4, α = 4096, t0 = 0.1, with M = 1024

boundary elements and N = Ñ/2 = 4096 time-steps. The high frequency ap-
proximations in all cases are applied whenever |Re(kl)| > 350. The sub-plots
(a) and (b) show the solution along the boundary computed via the DEA based
and the SHFA based hybrid methods, respectively. Sub-plot (c) shows the in-
terior solution observed at the point x = (0.5, 0.5) calculated via both hybrid
methods.

continuation of the solution across the edges whereas the BEM solution exhibits

a small jump and oscillation close to the bottom-right (s = 1) and top-left

(s = 3) vertices, before continuing as a smooth solution along the top and right

edges. The discrepancy is a result of the DEA not including contributions from

diffracted waves. The bottom sub-plot (c) shows Re(ul) for wavenumbers close

to k∗ = 350 for which the solution is only shown along the bottom edge since it

is the most dominant region of the solution. The solution is computed using the
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DEA based approximation above the threshold k∗ = 350, and using the BEM

otherwise. We again observe that the solutions from the two methods match

up very well, demonstrating the success of the phase reconstruction process

outlined in Section 5.3.2.
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Figure 5.10: The Z-transformed boundary solution ul on the unit square domain
with boundary data (5.24) and parameters Θ0 = π/4, α = 4096, t0 = 0.1, with

M = 1024 boundary elements and N = Ñ/2 = 4096 time-steps. The left sub-
plot (a) shows |ul| for l = η, which corresponds to the wavenumber kη where we
switch between using the BEM and a high frequency approximation. The right
sub-plot (b) shows the same result as plot (a) but zoomed in along the right
and top edges (1 < s < 3). The bottom sub-plot (c) shows Re(ul) computed
using the DEA based hybrid CQ scheme along the bottom edge (0 < s < 0.5)
for a range of wavenumbers in the vicinity of Re(k) = k∗ = 350.

Tables 5.6 and 5.7 investigate the relative errors and convergence rates of
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the interior solutions, observed at the point x = (0.5, 0.5), calculated via both

hybrid methods with parameters Θ0 = π/4, α = 4096 and t0 = 0.1, with

the high frequency approximations implemented whenever |Re(kl)| > 350. The

errors were computed via (5.32), but using subsequent interior solutions as we

double the number of time-steps. Table 5.6 investigates the error as we double

the number of time-steps N = Ñ/2 and we increase the number of boundary

elements M by a factor of four. From this table, we observe that the errors and

convergence rates for both methods are approximately the same, although we

note that the SHFA will have a faster calculation time due to the additional

discretisation in DEA. The errors in this table do not show an error below 1%

since there are not enough boundary elements in the interior solution when

M = 256 to model the highly oscillatory behaviour. We then investigated

further by fixing the number of boundary elements at M = 1024 and doubling

the number of time-steps in Table 5.7. In this table, we observe the expected

second order convergence rate for BDF2 based CQ schemes and errors smaller

than 1% for both methods. Again the errors for both methods are approximately

equal when comparing against subsequent interior solutions.

DEA SHFA

Ñ N M η Error EOC Error EOC

1024 512 4 101 - - 0.0606 -

2048 1024 16 108 1.9917 - 1.9918 -

4096 2048 64 111 1.3707 0.54 1.3707 0.54

8192 4096 256 112 0.4821 1.51 0.4821 1.51

16384 8192 1024 112 0.0445 3.44 0.0445 3.44

Table 5.6: Errors and convergence rates for the interior solution on the unit
square domain observed at the point x = (0.5, 0.5) for the case when the bound-
ary data are given by (5.24) with parameters Θ0 = π/4, α = 4096, t0 = 0.1 and
T = 1. The interior solutions were calculated numerically using the DEA and
SHFA based hybrid CQ schemes whereby the high frequency approximations
were applied whenever |Re(kl)| > 350.

When to implement either the DEA based or SHFA based hybrid method

the choice of k∗ is dependent on the choices for the parameters α and t0 in

the Neumann boundary condition (5.23). For a broadband signal such as when

α = 4096, the method requires a large number of time-steps and may also be

required to be potentially over-resolved by choosing the number of frequencies

independently. If the interior solution plot appears to include additional os-
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DEA SHFA

Ñ N M η Error EOC Error EOC

256 128 1024 80 - - - -

512 256 1024 92 0.5919 - 0.5919 -

1024 512 1024 101 0.3769 0.65 0.3769 0.65

2048 1024 1024 108 0.1455 1.37 0.1455 1.37

4096 2048 1024 111 0.0397 1.87 0.0397 1.87

8192 4096 1024 112 0.0100 2.80 0.0100 2.80

16384 8192 1024 112 0.0025 2.00 0.0025 2.00

Table 5.7: Errors and convergence rates for the interior solution on the unit
square domain observed at the point x = (0.5, 0.5) for the case when the bound-
ary data are given by (5.24) with parameters Θ0 = π/4, α = 4096, t0 = 0.1 and
T = 1. The interior solutions were calculated numerically using the DEA and
SHFA based hybrid CQ schemes whereby the high frequency approximations
were applied whenever |Re(kl)| > 350.

cillations or appears noisy, then the model may require more time-steps and

frequencies to model the highly oscillatory behaviour. The choice of k∗ is im-

portant for this choice of α as it determines the number of boundary elements

required for the BEM to provide sufficient accuracy for the Helmholtz problems

calculated for the low frequency region. For our choices of α and t0 in this work

we have followed the suggestion from Marburg in [130] and ensured that there

are six boundary elements per wavelength. For different choices of Θ0 one may

require to include more ray directions Λ. In the numerical results we included

we our choices of Θ0 were chosen such that we could choose Λ = 8and hence our

global direction set would include the angle Θ0 to ensure high accuracy, result-

ing in a faster computational time. To improve accuracy one may increase the

choice of k∗ such that more wavenumbers are calculated via the BEM as part

of the low frequency region. However one must ensure that there are enough

boundary elements chosen to provide a good level of accuracy up to the BEM

cut-off frequency. To understand if the phase matching was constructed suc-

cessfully one can investigate the behaviour of the Re(ul) along the boundary

in the vicinity of the cut off wavenumber chosen. The solutions calculated via

the BEM and those calculated via a HFA should appear smooth as they cross

over the switch frequency. If one can clearly view a discrepancy between the

two methods then perhaps more refined discretisations are required or the phase

reconstruction has been performed incorrectly.



Chapter 5 – Hybrid methods for the wave equation 178

L-shaped domain

We now present the numerical results for solving the same IBVP as above for

the case when Ω is an L-shaped domain as shown in Figure 5.2 (b). The DEA

approximation process needs to be modified for non-convex domains such as the

L-shape and we implement the DEA approximation on a sub-divided version of

the domain where each of the (two) sub-domains is convex as shown in Figure

5.11. In this case the sub-division was implemented by introducing an (artifi-

cial) internal interface connecting the vertices at s = 1 and s = 3 to form two

convex quadrilateral sub-domains. The extension of the DEA approximation to

multi-domains is discussed in more detail in Chapter 4. The sub-domains in

Figure 5.11 are set up where Ω1 is the quadrilateral with vertices 1, 2, 5 and

6 and sub-domain Ω2 is quadrilateral with the vertices 2, 3, 4 and 5. For this

example the amplitudes are calculated for each sub-domain but we must omit

any amplitudes associated with the internal interface from the DEA result and

reorder the amplitudes such that they are consistent with the low frequency

BEM calculations before integrating into the CQ algorithm, that is that the

amplitudes are ordered for the domain Ω with vertices 1, 2, 3, 4, 5, 6. The

internal interface will have identical boundary elements for each sub-domain

along this edge. We would like to note that there is no computational advan-

tage in the difference between the subdividing of the L-shape domain shown in

Figures 4.6 and 5.11. The subdivision of Figure 4.6 was a conscious choice such

that the interior density for the problem where a spatially constant line source

travels into the domain perpendicular to the left edge provided a more visually

informative plot.

We first investigate the case when α = 36, t0 = 1 and Θ0 = 0 in (5.24), such

that we can perform an error analysis for the results and compare against the

error results for CQBEM reported in Section 3.4.1. For this case we can also

compare the numerical solutions with the same exact solution (5.33) as before,

but only consider short time periods where there are no reflections or diffraction

from the reentrant corner at s = 3.

Figure 5.12 shows the numerical interior solutions observed at the point

x = (0.25, 0.25) calculated via the CQBEM, as well as the DEA and SHFA based

hybrid methods, and compared against the exact solution for N = Ñ = 512

time-steps and M = 512 boundary elements. The high frequency approxima-

tions are applied whenever |Re(kl)| > 80. From this figure, we observe that

all numerical solutions match well until t = 1.5. However, we note that for
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Figure 5.11: The L-shaped domain Ω = Ω1 ∪ Ω2 with the vertices numbered.
Here sub-domain Ω1 is the quadrilateral with vertices 1,2,5 and 6 and sub-
domain Ω2 is quadrilateral with the vertices 2, 3, 4 and 5. The internal interface
is the dashed edge connecting vertices 2 and 5.

DEA SHFA

N M η Error EOC Error EOC

64 8 - 0.2583 - 0.2583 -

128 32 23 0.1096 3.12 0.1096 3.12

256 128 24 0.0305 3.21 0.0306 3.20

512 512 25 0.0054 2.50 0.0054 2.50

1024 2048 26 0.0026 1.05 0.0026 1.05

Table 5.8: Errors and convergence rates for the interior solution on the L-
shaped domain observed at the point x = (0.25, 0.25) for the case when the
boundary data are given by (5.24) with parameters Θ0 = 0, α = 36, t0 = 1 and
T = 1.5. The interior solutions were calculated numerically using the DEA and
SHFA based hybrid CQ schemes whereby the high frequency approximations
were applied whenever |Re(kl)| > 80.

t > 0.85, the numerical solutions contain contributions due to diffraction from

the reentrant corner at s = 3 and therefore the exact solution is not valid after

this time - see the results for the L-shaped domain reported in Section 3.4.1 for

further details. For t > 1.5 the diffracted contributions are noticeable in the nu-

merical solution. For a low switch frequency k∗ = 80, the majority of Helmholtz

problems are being treated with a high frequency approximation as shown in

Figure 5.13 which shows that 464 out of the 512 Helmholtz problems are being
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Figure 5.12: Interior solution to the wave equation at x = (0.25, 0.25) inside the
L-shaped domain with boundary data (5.24) and parameters Θ0 = 0, α = 36,

t0 = 1, with N = Ñ = 512 time-steps and M = 512 boundary elements. The
high frequency approximations are applied whenever |Re(kl)| > 80.

computed via a high frequency approximation. The solution computed via the

hybrid methods behaves identically to those computed using the CQBEM. This

observation is further supported by the error results and convergence rates found

in Table 5.8, for which we calculate the error up until T = 1.5 so that we can

compare against the exact solution, but note that there are small contributions

due to diffraction included in the numerical solution.

First, comparing the DEA and SHFA hybrid methods against each other

we determine that both have identical errors (to the quoted number of digits)

that are small, and similar convergence rates that vary between first and second

order. By comparing the results from Table 5.8 with the results computed

via the CQBEM in Table 3.5, we observe that the errors are similar until the

case N = 1024 when the CQBEM error is smaller. This is due to the additional

error introduced by the high frequency approximations since the majority of the

Helmholtz problems are treated with the high frequency approximation and the

results could be improved by increasing the choice of the threshold k∗. However,

such an increase would also incur additional computational costs. For the case

when we have N = Ñ = 512 frequencies, only fifty of these Helmholtz problems

are approximated using the BEM. Even for this low frequency switch value, we

still observe low errors from the hybrid methods.
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Figure 5.13: The range of complex wavenumbers kl = iζl/c for the set of

Helmholtz problems obtained using the BDF2 scheme with Ñ = N = M = 512,

T = 2, c = 1 and λ = 10−8/Ñ . The threshold k∗ = 80 is chosen to be the
wavenumber where the hybrid method switches from the BEM to a high fre-
quency approximation.

We now consider the case when α = 36, t0 = 1 and Θ0 = π/4 in (5.24).

Figure 5.14 shows the numerical interior solutions observed at the point x =

(0.25, 0.25) calculated using CQBEM, as well as the DEA and SHFA based hy-

brid methods for N = Ñ = 512 time-steps and M = 512 boundary elements.

The high frequency approximations are implemented whenever |Re(kl)| > 80.

From the figure, we observe that the numerical solutions are all behaving sim-

ilarly by eye. Even with a large number of Helmholtz problems being approxi-

mated via a high frequency method, the solution matches well for the case when

α is reasonably low. Table 5.9 shows the error and convergence rates for this

problem, where the errors are calculated via (5.32) using subsequent solutions

as we double the number of time-steps. From this table we observe that again
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Figure 5.14: Interior solution to the wave equation at x = (0.25, 0.25) inside the
L-shaped domain with boundary data (5.24) and parameters Θ0 = π/4, α = 36,

t0 = 1, with N = Ñ = 512 time-steps and M = 512 boundary elements. The
high frequency approximations are applied whenever |Re(kl)| > 80.

both methods behave very similarly obtaining small errors, which are eventually

smaller than 1%, and achieve approximately a second order convergence rate.

DEA SHFA

N M η Error EOC Error EOC

64 8 - - - - -

128 32 23 0.3040 - 0.3040 -

256 128 24 0.0747 2.02 0.0747 2.02

512 512 25 0.0110 2.76 0.0111 2.75

1024 2048 26 0.0019 2.53 0.0019 2.55

Table 5.9: Errors and convergence rates for the interior solution on the L-shaped
domain observed at the point x = (0.25, 0.25) for the case when the boundary
data are given by (5.24) with parameters Θ0 = π/4, α = 36, t0 = 1 and
T = 2. The interior solutions were calculated numerically using the DEA and
SHFA based hybrid CQ schemes whereby the high frequency approximations
were applied whenever |Re(kl)| > 80.

We now present the numerical results when α = 4096, t0 = 0.1 and Θ0 = 0
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(a) Boundary solution (DEA) (b) Boundary solution (SHFA)
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(c) Interior solution

Figure 5.15: Solutions to the wave equation for an L-shaped domain with bound-
ary data (5.24) and parameters Θ0 = 0, α = 4096, t0 = 0.1, with M = 1024

boundary elements and N = Ñ/2 = 4096 time-steps. The high frequency ap-
proximations in all cases are applied whenever |Re(kl)| > 350. The sub-plots
(a) and (b) show the solution along the boundary computed via the DEA based
and the SHFA based hybrid methods, respectively. Sub-plot (c) shows the inte-
rior solution observed at the point x = (0.25, 0.25) calculated via both hybrid
methods and compared to the exact solution.

in (5.24), in order to obtain a broadband signal. For this example we can

compare our numerical results against the exact solution given by (5.33) up to

the time t = 0.5 so that we do not observe any reflections at the solution point

x = (0.25, 0.25). Figure 5.15 (a) - (b) shows the solution along the boundary

computed using the DEA and SHFA based hybrid methods, respectively, with

M = 1024 boundary elements and N = Ñ/2 = 4096 time-steps. We observe
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that the DEA and SHFA based approaches give visually identical solutions over

the entire boundary. The plots show the Gaussian pulse moving over the left

edge of the L-shape (3.5 < s < 4) at around t = t0 = 0.1 and then travelling

along the upper and lower edges. At around t = 0.6, we observe a reflection

of the pulse, which partially travels back along the upper edge from the corner

at s = 3, but with the majority of the pulse continuing along the boundary

where 2.5 < s < 3. Along the lower edge the pulse instead simply continues

along the boundary. Figure 5.15 (c) shows a comparison between the exact

and numerical interior solutions at x = (0.25, 0.25). We again apply a high

frequency approximation whenever |Re(kl)| > 350 and use N = Ñ/2 = 4096

time-steps and M = 1024 boundary elements. We observe that both high

frequency approximations produce identical looking results up to t = 0.9. For

t > 0.9 we observe that the numerical solutions deviate from the exact solution

because the numerical solutions include contributions due to corner diffraction

from the reenterant corner at s = 3 and therefore the exact solution is not valid,

as discussed in more detail in Section 3.4.1.

Figure 5.16 shows the Z-transformed boundary solution ul. The left sub-

plot (a) shows the absolute value at l = η. The values of |uη| calculated using

the BEM are compared to both of the proposed high frequency approximations.

The main difference between the three methods occurs along the left-upper (3 <

s < 3.5) and lower (0 < s < 1) edges where the high frequency approximations

give zero and the BEM does not, since both high frequency approximations of

ul omit waves tangential to the boundary. In sub-plot (b) we highlight that

the main difference between DEA and the SHFA is apparent on the lower part

of the right hand edge when 1 < s < 1.5. The BEM and DEA approaches

include reflected wave contributions, but the SHFA does not. These results

are consistent with those for the unit square, however in this problem we also

observe an optically shaded region when x2 ≥ 0.5, which corresponds to the

upper right quadrant of the L-shape where the high frequency approximations

are zero (between 1.5 < s < 3). Near the edges of the shadowed region, when

s = 1.5 and s = 3, we observe deviations between the BEM and the high

frequency approximations where the diffracted contributions are most dominant.

Sub-plot (c) shows Re(ul) for wavenumbers close to the wavenumber threshold

k∗ = 350 computed using the DEA approximation when |Re(kl)| > 350 and the

BEM otherwise. The plot focuses on the left (3.5 < s < 4) and left-upper edges

(3 < s < 3.5). The value of Re(ul) jumps to zero on the left-upper edge when

we switch from the BEM to the DEA approximation as would be expected from
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sub-plot (a). For wavenumbers Re(k) > 350 along the boundary 3 < s < 3.5

we observe no phase change in the DEA approximation. This is expected since

the wave is travelling parallel to the boundary and therefore the solution will

be constant because the amplitude is zero. Again, we observe that the solutions

from the DEA and the BEM methods match up very well around the threshold

k∗ = 350 along the left edge, demonstrating that the phase reconstruction is

working well.

In Table 5.10 we investigate the relative errors and convergence rates of the

interior solutions observed at the point x = (0.25, 0.25) calculated via both

hybrid methods as we double the number of time-steps N = Ñ/2 and increase

the number of boundary elements M by a factor of four. The interior solutions

were calculated for the parameters Θ0 = 0, α = 4096 and t0 = 0.1, with the high

frequency approximations being implemented whenever |Re(kl)| > 350. The

relative errors were computed via (5.32) against the exact solution (5.33) up

until T = 0.5, since for the L-shaped domain the solution after t = 0.5 contains

contributions due to reflections as well as diffraction from the reentrant corner

at s = 3, and therefore the exact solution is not valid after this time. From

the table we observe that both methods give approximately the same error and

convergence results with both methods obtaining less than 1% error with N ≥
4096 time-steps and M = 512 boundary elements. We also eventually achieve

approximately second order convergence for the BDF2 based CQ scheme when

we choose M large enough to accurately model up to the threshold wavenumber

k∗ = 350.

DEA SHFA

Ñ N M η Error EOC Error EOC

1024 512 8 101 0.2898 - 0.2898 -

2048 1024 32 108 0.1836 0.66 0.1836 0.66

4096 2048 128 111 0.0433 2.08 0.0433 2.08

8192 4096 512 112 0.0037 3.55 0.0037 3.55

16384 8192 2048 112 5.0609e-4 2.87 5.0609e-4 3.55

Table 5.10: Errors and convergence rates for the interior solution on the L-
shaped domain observed at the point x = (0.25, 0.25) for the case when the
boundary data are given by (5.24) with parameters Θ0 = 0, α = 4096, t0 = 0.1
and T = 0.5. The interior solutions were calculated numerically using the DEA
and SHFA based hybrid CQ schemes whereby the high frequency approxima-
tions were applied whenever |Re(kl)| > 350.
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Figure 5.16: The Z-transformed boundary solution ul on the L-shaped domain
with boundary data (5.24) and parameters Θ0 = 0, α = 4096, t0 = 0.1, with

M = 1024 boundary elements and N = Ñ/2 = 4096 time-steps. The left
sub-plot (a) shows |ul| for l = η, which corresponds to the wavenumber kη
where we switch between using the BEM and a high frequency approximation.
Sub-plot (b) shows a zoomed in version of plot (a) along the right and upper
edges (1 < s < 3). The bottom sub-plot (c) shows Re(ul) computed using
the DEA based hybrid CQ scheme along the upper and left edges of the left
part of the L-shape (3 < s < 4) for a range of wavenumbers in the vicinity of
Re(k) = k∗ = 350.

Table 5.11 demonstrates the effect of lowering the wavenumber threshold k∗

with final time T = 0.5. As for the unit square, we investigate the error as we
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lower the threshold k∗ and increase the number of frequencies Ñ by overresolving

in the Laplace domain [26], allowing us to decrease the number of boundary el-

ements M . Note that the number of Helmholtz problems solved using the BEM

remains approximately unchanged. We find again that reducing the wavenum-

ber threshold from k∗ = 350 to k∗ = 175 makes only a small difference to the

error but gives a significant decrease in the computational time, and decreasing

further gives more moderate improvements in computational efficiency whilst

causing more significant increases in the error. In this case the phase reconstruc-

tion process does not fail until we reduce the wavenumber threshold to k∗ = 25

(compared to k∗ = 45 for the unit square), leading to significantly larger errors

than for the SHFA. For the larger choices of wavenumber threshold considered,

the performance of the DEA and SHFA based schemes was again very similar,

but with the DEA approach requiring more computational resources as before.

Ñ N M k∗ η DEA Error DEA time SHFA Error SHFA time

4096 2048 1024 350 56 0.01612 7.3h 0.01611 5.3h

8192 2048 512 175 56 0.02125 2.0h 0.01887 46mins

16382 2048 256 90 58 0.05513 1.0h 0.05429 20 mins

32768 2048 128 45 58 0.1173 47 mins 0.1145 11 mins

65536 2048 64 25 64 0.4740 41 mins 0.1552 6.5 mins

Table 5.11: Errors and computation times for the DEA and SHFA based hybrid
CQ schemes on the L-shaped domain for T = 0.5 when lowering the choice
of wavenumber threshold k∗. As the maximal BEM wavenumber is decreased,
there is also a proportionate decrease in the number of boundary elements to-
gether with an increase in the number of Helmholtz problems solved overall.

We now investigate the same IBVP as discussed previously, but consider

the case when the plane wave boundary data enters the domain at an angle

of Θ0 = π/4. Figure 5.17 (a) - (b) shows the solution along the boundary

computed using the DEA and SHFA based hybrid methods, respectively, with

the parameters Θ0 = π/4, α = 4096, t0 = 0.1, with M = 1024 boundary

elements and N = Ñ/2 = 4096 time-steps. The boundary solutions in sub-plots

(a) - (b) appear identical and show the Gaussian pulse entering along the lower

and left edges of the L-shaped domain (0 < s < 1 and 3.5 < s < 4) at the

origin, (s = 0 = 4) at around t = t0 = 0.1. The pulse then travels along those

edges until we observe some small amplitude reflections when the wave reaches

the top of the left edge at s = 3.5, but most of the wave continues along the left
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(a) Boundary solution (DEA) (b) Boundary solution (SHFA)
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Figure 5.17: Solutions to the wave equation for an L-shaped domain with bound-
ary data (5.24) and parameters Θ0 = π/4, α = 4096, t0 = 0.1, with M = 1024

boundary elements and N = Ñ/2 = 4096 time-steps. The high frequency ap-
proximations in both cases are applied whenever |Re(kl)| > 350. The sub-plots
(a) and (b) show the solution along the boundary computed via the DEA and
SHFA based hybrid methods, respectively. Sub-plot (c) shows the interior solu-
tion observed at the point x = (0.25, 0.25) calculated via both hybrid methods.

most upper edge (3.5 < s < 3). We also observe some interference, indicated

by the darker blue lines, which follows the pulse up along the left most upper

edge. When the pulse reaches the reenterant corner at s = 3 we again observe

that the majority of the pulse continues to travel along the upper most left edge

(2.5 < s < 3) with some small amplitude reflections indicated by the lighter

blue lines, as well as some interference. Similarly along the bottom edge the

wave continues to travel until it reaches the bottom right vertex (s = 1) where
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we observe some small amplitude reflection back along the bottom edge, but the

majority of the wave continues up along the right edge (1 < s < 2). In sub-plot

(c), we observe that the interior solution at x = (0.25, 0.25) is visually identical

for each of the methods.
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Figure 5.18: The Z-transformed boundary solution ul on the L-shaped domain
with boundary data (5.24) and parameters Θ0 = π/4, α = 4096, t0 = 0.1, with

M = 1024 boundary elements and N = Ñ/2 = 4096 time-steps. The left sub-
plot (a) shows |ul| for l = η, which corresponds to the wavenumber kη where we
switch between using the BEM and a high frequency approximation. Sub-plot
(b) shows the same result as plot (a), but zoomed in along the right and upper
edges (1 < s < 3). Sub-plot (c) shows Re(ul) computed using the DEA based
hybrid CQ scheme along the left edge of the L-shape (3.5 < s < 4) for a range
of wavenumbers in the vicinity of Re(k) = k∗ = 350.
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Figure 5.18 (a) - (b) shows the Z-transformed boundary solution |ul| at

l = η. For this problem as we are considering Θ0 = π/4, there is no optically

shaded region, but we do expect to see a diffracted contribution originating from

the re-entrant corner where s = 3 that is not captured by the high frequency

approximations. In this case there are also no edges where the wave direction is

tangential to the boundary and hence the agreement between the BEM solution

and the high frequency approximations is better than for Θ0 = 0. We observe

the main difference between the models in sub-plot (b), which is zoomed in

between the left-upper edge (3 < s < 3.5) and the lower part of the right edge

(1 < s < 1.5) where the SHFA prediction is zero due to not including the

reflected wave contributions. The DEA solution shows a smooth continuation

across all edges, whereas the BEM solution exhibits some oscillation close to

the bottom-right vertex (s = 1) and along the entire left-upper edge (3 < s <

3.5). The bottom sub-plot (c) shows Re(ul) for wavenumbers close to kη, where

Re(kη) ≈ 350. The solution is only shown for the left-most edge (3.5 < s < 4)

where the solution Re(ul) is more dominant in comparison along to the rest of

the boundary. The solution is computed using the DEA based approximation

for |Re(kl)| > 350, and using the BEM otherwise. We observe that the solutions

from the two methods match up very well, once again demonstrating the success

of the phase reconstruction process.

DEA SHFA

Ñ N M η Error EOC Error EOC

1024 512 8 101 - - - -

2048 1024 32 108 1.5715 - 1.5715 -

4096 2048 128 111 0.8745 0.85 0.8745 0.85

8192 4096 512 112 0.4669 0.91 0.4669 0.91

16384 8192 2048 112 0.0501 3.22 0.0445 3.39

Table 5.12: Errors and convergence rates for the interior solution on the L-
shaped domain observed at the point x = (0.25, 0.25) for the case when the
boundary data are given by (5.24) with parameters Θ0 = π/4, α = 4096,
t0 = 0.1 and T = 1. The interior solutions were calculated numerically us-
ing the DEA and SHFA based hybrid CQ schemes whereby the high frequency
approximations were applied whenever |Re(kl)| > 350.

Tables 5.12 and 5.13 investigate the relative errors and convergence rates

of the interior solutions, observed at the point x = (0.25, 0.25), calculated via

the DEA and SHFA hybrid methods with parameters Θ0 = π/4, α = 4096,
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t0 = 0.1 and T = 1, with the high frequency approximations being implemented

whenever |Re(kl)| > 350. The errors were computed via (5.32), but using sub-

sequent interior solutions as we double the number of time-steps. Table 5.12

investigates the error as we double the number of time steps N = Ñ/2 and

increase the number of boundary elements M by a factor of four. From this

table, we observe that the errors and convergence rates for both methods are

approximately the same, until the final row when N = 8192 where the SHFA

has a slightly lower error. However, both methods do not show an error below

1% since there are not enough boundary elements when M = 512 to model the

highly oscillatory behaviour when |Re(kl)| ≈ 350. We therefore investigated

further by fixing the number of boundary elements at M = 1024 and doubling

the number of time-steps in Table 5.13. In this table, we observe the expected

second order convergence rate and errors smaller than 1% for both methods.

Again the errors for both methods are approximately equal when comparing

against subsequent interior solutions.

DEA SHFA

Ñ N M η Error EOC Error EOC

256 128 1024 80 - - - -

512 256 1024 92 0.4338 - 0.4338 -

1024 512 1024 101 0.2346 0.89 0.2346 0.89

2048 1024 1024 108 0.0789 1.57 0.0789 1.57

4096 2048 1024 111 0.0209 1.92 0.0209 1.92

8192 4096 1024 112 0.0053 1.98 0.0053 1.98

16384 8192 1024 112 0.0013 2.03 0.0013 2.03

Table 5.13: Errors and convergence rates for the interior solution on the L-
shaped domain observed at the point x = (0.25, 0.25) for the case when the
boundary data are given by (5.24) with parameters Θ0 = π/4, α = 4096, t0 =
0.1 and T = 1. The interior solutions were calculated numerically for fixed
M = 1024 using the DEA and SHFA based hybrid CQ schemes whereby the
high frequency approximations were applied whenever |Re(kl)| > 350.

5.4.2 Response to an interior point source

In this section we consider solving the wave equation for the case when there

is a point source inside either a unit square or an irregular shaped polygon, as

shown in Figure 5.19, which also depicts the source point x0. The point source

excitation is of the form P (x, t) = δ(x−x0)P0(t), where we choose the temporal



Chapter 5 – Hybrid methods for the wave equation 192

source profile to be a Gaussian pulse either of the form (3.42) or as follows

P0(t) =

√
α

π
e−α(t−t0)2

. (5.34)

The parameters t0 > 0 and α > 0 control the peak position and bandwidth of

the Gaussian pulse, respectively.

(a) Unit square domain (b) Irregular polygon domain

Figure 5.19: Set-up of the numerical experiments for the case when there is a
point source excitation. This figure shows the domains considered, the source
point x0 and the interior point x at which the solution is evaluated.

As described in Chapter 3, the solution to the IBVP (5.1) - (5.3) is writ-

ten as Φ = (U + V )|Ω, where U is the reverberant solution that satisfies the

homogeneous wave equation (5.1) when P = 0, along with Neumann bound-

ary condition (3.11) and V solves the free-space problem (3.4). The boundary

condition (3.11) is implemented into the DEA scheme by writing it in the form

of the square modulus of the solution to the Helmholtz equation, which is then

used to determine the initial density ρ0. The DEA initial boundary density ρ0

corresponding to a point source excitation is then given by

ρ0(s, p) = c cos(θ0)|Ṽl(x− x0)|2e−2Im(kl)‖x−x0‖δ(p− p0), (5.35)

where kl = iζl/c, p0 = sin(θ0)/c and Ṽl is the Z-transform of V . The angle θ0

defines the direction of the outgoing ray at position s on Γ relative to the normal

direction at s. In particular, it is the direction given by a specular reflection at s

after arriving from x0. The initial density (5.35) therefore represents the square

amplitude of the Z-transformed Dirichlet boundary data transported along the

direction corresponding to a specular reflection at s on Γ after arriving from
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x0. The exponential term represents the energy decay between leaving x0 and

arriving at s, and we have used x to represent the Cartesian coordinates corre-

sponding to the arclength position s. The c cos(θ0) pre-factor is a consequence

of projecting the density in Ω induced by the point source onto the boundary

Γ [42]. Applying the CQ discretisation to the convolution (3.9) provides an

expression for |Ṽl|2 in (5.35) as follows

|Ṽl(x− x0)|2 = |Gkl(x− x0)|2
∣∣∣P̃ l0∣∣∣2 ,

≈

∣∣∣P̃ l0∣∣∣2
8π|kl| ‖x− x0‖

,

(5.36)

where P̃ l0 is the Z-transform of P0 for l = 0, 1, ..., Ñ − 1. Here we have imple-

mented a high frequency asymptotic formula for the H
(1)
0 (k ‖x‖) term, which

arises in the Green’s function Gkl , and can be derived from the formulae given

in Section 8.451 of [74]. In particular, we find

|H(1)
0 (k ‖x‖)|2 ≈

|k|�1

2

π|k| ‖x‖
.

Square domain

We first consider the case when Ω is a unit square with the source point in the

centre at x0 = (0.5, 0.5). We choose c = 1 for simplicity and investigate the

examples where P0(t) is given by (3.42) with parameters α = 36 and t0 = 1,

such that we can compare results against those computed via CQBEM in Sec-

tion 3.4.2. This choice ensures P0(0) is zero to double precision meaning that

the initial conditions (5.2) will be satisfied. Figure 5.20 (a) shows the numerical

interior solution observed at x = (0.25, 0.25) calculated using both the SHFA

and the DEA based hybrid methods. These interior solutions are compared

against a solution which has been computed using the CQBEM. The discretisa-

tion parameters are chosen as N = Ñ/2 = 512 time-steps, M = 512 boundary

elements, Λ = 128 global directions and λ = 10−8/Ñ . A high frequency approx-

imation is applied whenever |Re(kl)| > 80. The plots compare approximations

of the reverberant solution U , which is equivalent to the full solution Φ with the

contribution of the direct source excitation removed, calculated using both hy-

brid methods and the CQBEM for T = 2. In addition, the solid line shows a plot

of Φ for completeness. From this figure we observe that all numerical solutions

of U appear identical by eye. For this problem it is reasonable to compare the
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interior solutions against the CQBEM solution since when α = 36, we only re-

quire M = 256 boundary elements to model the oscillatory behaviour accurately

and therefore the computation time is reasonable. However, the computation

times for the hybrid methods are still faster. Sub-plot (b) shows the solution

Φ along the boundary computed using the DEA based hybrid method with the

same discretisation parameters that were used for the interior solution in sub-

plot (a). The DEA and SHFA based approaches give visually identical solutions

over the entire boundary and so just one of the plots is shown for brevity. In

this figure we observe the expected symmetry, with identical solutions along all

four edges of the square. We also observe the expected physical behaviour since

the Gaussian pulse reaches the centre of each edge (s = 0.5, 1.5, 2.5, 3.5) first

and then spreads across to the corners, after which time the peaks represent

reflected waves propagating in a regular and symmetric fashion. In comparison

to the boundary solution calculated using the CQBEM shown in Figure 3.8, we

observe that the boundary solution shown in 5.20 (b) also matches the CQBEM

calculation well, as expected.

Table 5.14 shows the error results and convergence rates for the interior so-

lution calculated via the DEA and SHFA based hybrid methods, in which the

high frequency approximations are implemented whenever |Re(kl)| > 80. This

table uses the same parameters as before, with a fixed discretisation of Λ = 180

global directions and we investigate the errors and convergence rates as we dou-

ble the number of time-steps and increase the number of boundary elements by

a factor of four. The errors are computed using (5.32) with subsequent interior

solutions as we double the number of time-steps. From the table we observe

that the DEA and SHFA based hybrid methods have identical error results and

convergence rates. In comparison to the error results and convergence rates

calculated using CQBEM, as shown in Table 3.7, we can determine that the re-

sults from Table 5.1 are identical. Therefore for the this choice of α the hybrid

methods can numerically solve this example as accurately as CQBEM but with

faster computations.

We next investigate examples with temporal profile (5.34) and parameters

α = 4096, t0 = 0.1 in order to obtain a broadband signal. This choice also

ensures P0(0) is zero to double precision meaning that the initial conditions

(5.2) will be satisfied. Figure 5.21 (a) shows the numerical interior solution

observed at x = (0.25, 0.25) calculated using both the SHFA and the DEA

based hybrid methods. Most of the plotted lines represent the reverberant

solution U , which is equivalent to the full solution Φ with the contribution of
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Figure 5.20: Solution to the wave equation for a unit square domain driven by
a point source located at the centre x0 = (0.5, 0.5) with temporal profile (3.42)
and parameters α = 36 and t0 = 1. The discretisation parameters are chosen

as M = 512 boundary elements, Λ = 128 global directions, λ = 10−8/Ñ and
N = Ñ/2 = 512 time-steps. The left-hand plot (a) shows either the interior
solution Φ or the reverberant solution U observed at the point x = (0.25, 0.25).
Sub-plot (b) shows the solution along the boundary of the unit square domain
calculated via the DEA based hybrid CQ scheme. The solution is shown for
1 < t < T = 2 to focus on the late time behaviour, since the solution is zero for
t ≤ 1. In both hybrid methods, the high frequency approximations are applied
whenever |Re(kl)| > 80.

DEA SHFA

Ñ N M η Error EOC Error EOC

128 64 4 - - - - -

256 128 16 23 0.8467 - 0.8467 -

512 256 64 24 0.2415 1.81 0.2415 1.81

1024 512 256 25 0.0571 2.08 0.0571 2.08

2048 1024 1024 26 0.0092 2.63 0.0092 2.63

Table 5.14: Errors and convergence rates for the reverberant solution U at
the point x = (0.25, 0.25) for a unit square domain driven by a point source
located at the centre x0 = (0.5, 0.5) with temporal profile (3.42) and parameters
α = 36, t0 = 1, T = 2 and Λ = 180 global directions. The interior solutions
were calculated numerically using the DEA and SHFA based hybrid CQ schemes
whereby the high frequency approximations were applied whenever |Re(kl)| >
80.
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Figure 5.21: Solution to the wave equation for a unit square domain driven
by a point source located at the centre x0 = (0.5, 0.5) with temporal profile
(5.34) and parameters α = 4096 and t0 = 0.1. The discretisation parameters
are chosen as M = 1024 boundary elements, Λ = 180 global directions and

λ = 10−8/Ñ . The left-hand plot (a) shows either the interior solution Φ or the

reverberant solution U observed at the point x = (0.25, 0.25) for N = Ñ/2 time-
steps for as specified in the legend. Sub-plot (b) shows the solution along the

boundary of the unit square domain for N = Ñ/2 = 4096 using the DEA based
hybrid CQ scheme. In both hybrid methods, the high frequency approximations
are applied whenever |Re(kl)| > 350.

the direct source excitation removed, calculated using both hybrid methods for

T = 1. The solid line shows a plot of Φ for completeness. The high frequency

approximations are implemented whenever |Re(kl)| > 350 and we employ M =

1024 boundary elements to provide a good level of accuracy up to the BEM

cut-off wavenumber kη. We observe that both high frequency approximations

produce identical looking results. Figure 5.21 (b) shows the solution Φ along

the boundary computed using the DEA based hybrid method when discretising

using M = 1024 boundary elements, N = Ñ/2 = 4096 time-steps and Λ =

180 global directions. The DEA and SHFA based approaches give visually

identical solutions over the entire boundary and so just one of the plots is shown

for brevity. In this figure we observe the expected symmetry, with identical

solutions along all four edges of the square. We also observe the expected

physical behaviour since the Gaussian pulse reaches the centre of each edge

(s = 0.5, 1.5, 2.5, 3.5) first and then spreads across to the corners as in Figure

5.20 (b).

Figure 5.22 shows the Z-transformed boundary solution ul corresponding to
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Figure 5.22: The Z-transformed boundary solution ul on the boundary of a unit
square domain driven by a point source located at the centre x0 = (0.5, 0.5)
with temporal profile (5.34) and parameters α = 4096 and t0 = 0.1. The
discretisation parameters are chosen to be M = 1024 boundary elements, N =

Ñ/2 = 4096 time-steps, Λ = 180 global directions and λ = 10−8/Ñ . Sub-plots
(a) - (b) show |ul| for l = η, which corresponds to the wavenumber kη where we
switch between using the BEM and a high frequency approximation. Sub-plot
(b) is a zoomed in section along the bottom edge (0 < s < 1) only. Sub-plots
(c) and (d) show Re(ul) computed using the DEA and SHFA based hybrid CQ
schemes, respectively. The results are shown for a range of wavenumbers near
to the case l = η, which approximately corresponds to Re(k) = 350.

the parameters t0 = 0.1, α = 4096 and discretising using M = 1024 boundary

elements, N = Ñ/2 = 4096 time-steps and Λ = 180 global directions. The

sub-plots (a) - (b) show |ul| at l = η calculated using the BEM as well as
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the proposed high frequency approximations. In sub-plot (a) we observe the

solution is symmetric along all four edges of the square. In sub-plot (b), we

investigate the solutions focused along the bottom edge (0 < s < 1) of the

square only, to observe the solutions more clearly instead of showing all four

symmetrically repeated copies. In this sub-plot, the BEM solution oscillates

rapidly and has a noisy appearance, particularly near the corners. The SHFA

result has a smooth slowly varying appearance in comparison as a consequence

of the SHFA not including any reflected waves. However, the DEA result does

include the reflected wave contributions but loses accuracy due to difficulties

relating to phase reconstruction when the amplitudes approximated by the full

wave BEM simulation are rapidly oscillating. Recall that one of the fundamental

assumptions of the plane wave solution ansatz (5.8) is that the amplitude is

slowly varying. One reason that this assumption is less valid here is due to

the fact that the solution is now a superposition of circular waves that we are

approximating by a superposition of plane waves. The result is that the DEA

based scheme underestimates the oscillation amplitude near the corners and

an overestimates on either side of the peak at the centre of the edge. These

inaccuracies are further shown in sub-plots (c) and (d), which present the DEA

and SHFA based hybrid method approximations of Re(ul), respectively along

the bottom edge, for wavenumbers close to kη where Re(kη) ≈ 350. In these

plots we can see a difference in the results when Re(k) ≈ 350, where we switch

between the BEM and a high frequency approximation. In sub-plot (c), the

solution for Re(k) > 350 appears to be corrupted by noise, which is most visible

around the middle of the edge at s = 0.5. In sub-plot (d) for SHFA, the solution

suffers from the omission of wave interference patterns, which is most evident

close to the corners at s = 0 and s = 1.

Although we observed some limitations of the high frequency approximations

in Figure 5.22, there does not appear to be any significant differences between

the methods in the time-dependent solution, as shown in Figure 5.21. We

therefore investigate further by repeating the analysis with the same parameters

but using a lower threshold k∗ = 90 for switching between the BEM and a

high frequency approximation. We choose the discretisation parameters to be

N = Ñ/2 = 4096 time-steps, M = 256 boundary elements and Λ = 180 global

directions. The results are shown in Figure 5.23. Sub-plot (a) depicts the time-

dependent interior reverberant solutions U for the DEA and SHFA based hybrid

methods for the case when the threshold is k∗ = 90 compared to the reverberant

solutions when k∗ = 350 taken from Figure 5.21 and discretised with M = 1024
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boundary elements. The solid line shows a plot of Φ for completeness. From

this figure, we observe that the peak of the pulse at t = 0.9 for U when k∗ = 90

is smaller than when k∗ = 350. In addition, for the DEA based hybrid method

we observe some oscillation in the time region 0.6 < t < 0.8 suggesting that

there are some inaccuracies in the numerical solution for this choice of k∗. In

sub-plots (b) - (d) we again observe the same limitations with the high frequency

approximations. Sub-plot (b) shows the absolute value of the boundary solution

ul at l = η, along the bottom edge of the square, calculated using the BEM,

DEA and SHFA approximations. Sub-plots (c) and (d) show the DEA and

SHFA based hybrid method approximations of Re(ul) for wavenumbers close to

kη where |Re(kη)| ≈ 90. In these plots we observe that the inaccuracies are even

more noticeable with both methods displaying the same discrepancies as before.

Sub-plot (e) shows Re(ul) for wavenumbers close to kη where |Re(kη)| ≈ 90,

where ul was computed using the BEM for all values of k. Comparing sub-plots

(c) and (d) to sub-plot (e), we observe how inaccurate the DEA solution is in

comparison to the BEM solution when the cut-off frequency is chosen to low.

We also observe the SHFA behaving similarly to the BEM solution.

We next investigate the behaviour of the solution by changing the number of

global directions, Λ, in the DEA based hybrid method. Until this point in the

results for α = 4096, we have only performed calculations with a fixed number

of global directions Λ = 180. We now repeat the analysis above with the same

parameters, t0 = 0.1 and α = 4096, but investigate the solutions with Λ = 90

and Λ = 360, while implementing the switch from the BEM to the DEA based

high frequency approximation whenever |Re(kη)| > 350. Figure 5.24 shows the

results computed using N = Ñ/2 = 4096 time-steps and M = 1024 boundary

elements. Sub-plot (a) shows either the interior solution Φ or the reverberant

solution U observed at the point x = (0.25, 0.25) using different choices of Λ

for the number of global directions as specified in the legend. From this plot,

we observe that there is no clear difference between the choices. Sub-plot (b)

shows the absolute value of the boundary solution ul at l = η calculated using

the DEA based approximation for different choices of Λ along the bottom edge

only (0 < s < 1). Again, we observe the DEA solutions lose accuracy even

if we increase the number of directions. The sub-plots (c) and (d) show the

DEA approximations of Re(ul) for wavenumbers close to kη where we consider

wavenumbers, Re(kη) ≈ 350 with Λ = 90 and Λ = 360, respectively. We

observe that by increasing the number of directions Λ in the global set, there is

no significant difference. In comparison to Figure 5.22 (c), we observe similar
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behaviour in the appearance of noise being most visible around the middle

of the edge at s = 0.5. We now calculate the relative errors up to T = 1

using (5.32) with subsequent solutions U for time-steps N = Ñ/2 = 4096 and

N = Ñ/2 = 2048 with a fixed number of boundary elements M = 1024. The

error calculated when Λ = 90 is 0.0198 , the error when Λ = 180 is 0.0194 and

the error when Λ = 360 is 0.0240. Therefore, as we increase the number of

directions, from Λ = 90 to Λ = 180 there is a slight increase in accuracy, which

is not visible by eye from the time-domain interior solutions in Figure 5.24 (a).

However, once we double the number of directions again, the error increases

slightly.

In the DEA based scheme to model the point source, the number of ray

directions Λ required to ensure an accurate solution is much larger than in the

case with the plane-wave boundary data. However, as mentioned in the results

above, the DEA based scheme for point sources suffers from poor accuracy as

the method was unable to accurately represent circular waves without using

a large number of ray directions Λ that would remove any advantage in the

computational run time compared to implementing the CQBEM. Therefore the

recommendation for implementing the SHFA based scheme is now discussed.

As mentioned previously at the end of the square domain results in Section

5.4.1, the choice of k∗ is dependent on the choices for the parameters α and

t0 in the Neumann boundary condition (5.23). For the point source case, this

is dependent on the choices for α and t0 in the temporal profile (5.34). For

a broadband signal such as was the case when α = 4096 the method requires

a large number of time-steps and may also be required to be over-resolved by

choosing the number of frequencies independently. One must still ensure that

there are enough boundary elements as suggested in [130] up to the cut-off

frequency to ensure sufficient accuracy for the solutions calculated via the BEM.

If the interior solution plot appears to include additional oscillations or appears

noisy, then the model may require more time-steps and frequencies to model the

highly oscillatory behaviour. To improve accuracy one may increase the choice

of k∗ such that more wavenumbers are calculated via the BEM as part of the

low frequency region. Again to better understand if the phase matching was

constructed successfully one can investigate the behaviour of the Re(ul) along

the boundary in the vicinity of the cut off wavenumber chosen. The solutions

calculated via the BEM and those calculated via a HFA should appear smooth

as they cross over the switch frequency. If one can clearly view a discrepancy

between the two methods then perhaps more refined discretisations are required
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or the phase reconstruction has been performed incorrectly.

Irregular polygon domain

We now consider the case when the domain is an irregular polygon as shown in

Figure 5.19 (b), taking the source point to be x0 = (0.648, 0.5). We choose c = 1

as before and initially consider the temporal profile to be (3.42) with parameters

α = 36 and t0 = 1 so that we can compare against the results from Section 3.4.2.

Figure 5.25 (a) shows the numerical interior solution at x = (0.42, 0.275) and

compares the results of using the DEA and SHFA based hybrid methods and a

solution computed using the CQBEM up to T = 2. In this sub-plot, most of the

plotted lines represent the reverberant solution U except the solid line, which

shows a plot of the full solution Φ. We apply a high frequency approximation

whenever |Re(kl)| > 80 with M = 512 boundary elements, N = Ñ/2 = 512

time-steps and Λ = 180 global directions. We again observe that both hybrid

methods produce identical looking results, which are similar to the CQBEM

solution. Figure 5.25 (b) shows the solution Φ along the boundary computed

using the DEA based hybrid method with the same parameter choices as before.

In comparison to the results for the unit square shown in Figure 5.20, the plot

here shows the expected loss of symmetry and lack of regularity corresponding

to the irregular geometry. In comparison to the boundary solution calculated

using CQBEM shown in Figure 3.16, we observe that the boundary solution

also matches those from the DEA and SHFA based hybrid methods.

DEA SHFA

Ñ N M η Error EOC Error EOC

128 64 8 - - - - -

256 128 32 23 0.5042 - 0.5042 -

512 256 128 24 0.0801 2.65 0.0801 2.65

1024 512 512 25 0.0192 2.06 0.0192 2.06

2048 1024 2048 26 0.0065 1.56 0.0065 1.56

Table 5.15: Errors and convergence rates for the reverberant solution U at
the point x = (0.42, 0.275) for an irregular polygon domain driven by a point
source located at x0 = (0.648, 0.5) with temporal profile (5.34) and parameters
α = 36, t0 = 1, T = 2 and Λ = 180 global directions. The interior solutions
were calculated numerically using the DEA and SHFA based hybrid CQ schemes
whereby the high frequency approximations were applied whenever |Re(kl)| >
80.
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Table 5.15 shows the error results and convergence rates for the interior

solution calculated via the DEA and SHFA based hybrid methods, in which the

high frequency approximations are implemented whenever |Re(kl)| > 80. This

table uses the same parameters as before, with a fixed discretisation of Λ = 180

global directions and we investigate the error and convergence rates as we double

the number of time-steps and increase the boundary elements by a factor of four.

The errors are computed using (5.32) with subsequent interior solutions as we

double the number of time-steps. From the table we notice that the DEA and

SHFA based methods again have identical error results and convergence rates,

as was the case for the unit square in Table 5.14. In comparison to the error

results and convergence rates calculated using CQBEM, as shown in Table 3.12,

we can determine that the results are also identical. Therefore for the this choice

of α the hybrid methods can numerically solve this example as accurately as

CQBEM, but with faster computation times.

We next investigate the results on the irregular polygon domain for the

case when P0 is chosen to be (5.34) with the parameters α = 4096 and t0 =

0.1. Again, the source point is chosen to be at x0 = (0.648, 0.5) and c =

1. Figure 5.26 (a) shows the numerical interior solution at x = (0.42, 0.275),

comparing the results of using the SHFA with the DEA based hybrid methods up

to T = 1. The plot shows the reverberant solutions U and also the full solution

Φ represented by the solid line. We apply a high frequency approximation

whenever |Re(kl)| > 350 with M = 1024 boundary elements and Λ = 180

global directions. We again observe that both high frequency approximations

produce identical looking results. Figure 5.26 (b) shows the solution Φ along

the boundary computed using the DEA based hybrid methods with the same

parameter choices as before, with N = Ñ/2 = 4096. Compared to the boundary

solution for the unit square shown in Figure 5.21 (b), the plot here shows the

expected loss of symmetry and lack of regularity corresponding to the irregular

geometry. One can relate the position of the initial wavefront reaching Γ shown

in Figure 5.26 (b) to the geometry shown in Figure 5.19 (b), where the vertices

appear as cusp points in the initial wavefront at s = 0, 0.96, 1.8, 2.6 and 3.1.

Figure 5.27 shows the Z-transformed boundary solution ul corresponding

to the same parameter choices as for Figure 5.26. Sub-plot (a) shows |ul| at

l = η calculated using the BEM as well as both of the proposed high frequency

approximations. We observe similar behaviour as for the unit square domain,

in which the BEM solution has a noisy appearance owing to the highly os-

cillatory interference patterns, particularly close to the vertices and along the
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two shorter edges (s > 2.6). The SHFA result again has a smooth and slowly

varying appearance corresponding to the fact that the SHFA does not include

reflected wave contributions. The DEA result also corresponds to the previous

observations for the unit square and includes some of the oscillations seen in

the BEM result, but to a poor level of accuracy with the same root causes as

before. The issues present in both the DEA and SHFA approximations are also

shown in the sub-plots (b) and (c), respectively, which show plots of Re(ul) for

wavenumbers close to Re(k) = 350. In sub-plot (b) for DEA, we see the influ-

ence of the spurious noise in the DEA result, particularly for the shorter edges

when s > 2.6. In sub-plot (c) for the SHFA, the omission of wave interference

patterns can be observed, particularly in the vicinity of the vertex at s = 0.96,

but this deficiency also appears to be less noticeable than for the unit square.

We repeat the investigation of the effect of lowering the wavenumber thresh-

old to k∗ = 90, as we did for the unit square domain and the results are shown

in Figure 5.28. We choose the discretisation parameters to be N = Ñ/2 = 4096

time-steps, M = 256 boundary elements and Λ = 180 global directions. Sub-

plot (a) depicts the time-dependent interior reverberant solutions U for the DEA

and SHFA based hybrid methods for the case when the threshold is k∗ = 90

compared to the reverberant solutions when k∗ = 350 taken from Figure 5.26

using the same discretisation parameters but with M = 1024 boundary ele-

ments instead. The solid line shows a plot of Φ for completeness. From this

figure, we observe that the reverberant solutions computed using both hybrid

methods with k∗ = 90 have additional oscillations after the initial peak, but

the oscillations are more dominant in the solution computed via the DEA based

hybrid method. In sub-plots (b) - (d) we again observe the same limitations

with the high frequency approximations. Sub-plot (b) shows the absolute value

of the boundary solution ul at l = η calculated using the BEM, DEA and SHFA

approximations. Sub-plots (c) and (d) show the DEA and SHFA based hybrid

approximations of Re(ul) for wavenumbers close to |Re(k)| = 90. In these plots

we observe that the inaccuracies are even more noticeable for k∗ = 90, with

both methods displaying the same shortcomings as before.
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Figure 5.23: (a): Solution to the wave equation for a unit square domain driven
by a point source located at the centre x0 = (0.5, 0.5) with temporal profile
(5.34) and parameters α = 4096 and t0 = 0.1. Plot (a) shows the interior solu-
tion Φ or the reverberant solution U at x = (0.25, 0.25) for different thresholds
k∗. Solutions calculated with a threshold of k∗ = 90 used M = 256 boundary
elements, whereas the solutions calculated using a threshold of k∗ = 350 used
M = 1024 boundary elements. (b) - (e): The Z-transformed boundary solution
ul on the boundary of the unit square driven by the point source excitation
used for plot (a). Sub-plot (b) shows |ul| for l = η, which corresponds to the
wavenumber kη where we stop using the BEM and instead use a high frequency
approximation. Sub-plots (c) - (e) show Re(ul) computed using either the DEA
or SHFA based hybrid CQ schemes, or fully using the BEM. The results are
shown for a range of wavenumbers in the vicinity of l = η, which approximately
corresponds to Re(k) = 90. Discretisation parameters: N = Ñ/2 = 4096 time-

steps, Λ = 180 global directions and λ = 10−8/Ñ .
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Figure 5.24: (a): Solution to the wave equation for a unit square domain driven
by a point source located at the centre x0 = (0.5, 0.5) with temporal profile
(5.34) and parameters t0 = 0.1 and α = 4096. Plot (a) shows the reverberant
solution U at x = (0.25, 0.25) for different numbers of global directions Λ, as
specified by the legend. (b) - (d): The Z-transformed boundary solution ul on
the boundary of the unit square driven by the point source excitation used for
plot (a). Sub-plots (c) and (d) show Re(ul) computed using the DEA based
hybrid CQ scheme for Λ = 90 and Λ = 360, respectively. The results are
shown for a range of wavenumbers in the vicinity of l = η, which approximately
corresponds to Re(k) = 350. Discretisation parameters: M = 1024 boundary

elements, N = Ñ/2 = 4096 time-steps and λ = 10−8/Ñ .
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Figure 5.25: Solution to the wave equation for the irregular polygon domain
driven by a point source located at x0 = (0.648, 0.5) with temporal profile (3.42)
and parameters α = 36 and t0 = 1. The discretisation parameters are chosen
as N = Ñ/2 = 512 time-steps, M = 512 boundary elements, Λ = 180 global

directions and λ = 10−8/Ñ . The left-hand plot (a) shows either the interior
solution Φ or the reverberant solution U observed at the point x = (0.42, 0.275).
Sub-plot (b) shows the solution along the boundary of the irregular polygon
domain computed using the DEA based hybrid CQ scheme. The solution is
shown for 1 < t < T = 2 to focus on the late time behaviour since the solution
is zero for t ≤ 1. In both hybrid methods, the high frequency approximations
are applied whenever |Re(kl)| > 80.
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Figure 5.26: Solution to the wave equation for the irregular polygon domain
driven by a point source located at x0 = (0.648, 0.5) with temporal profile
(5.34) and parameters α = 4096 and t0 = 0.1. The discretisation parameters
are chosen as M = 1024 boundary elements, Λ = 180 global directions and

λ = 10−8/Ñ . The left-hand plot (a) shows either the interior solution Φ or the

reverberant solution U observed at the point x = (0.42, 0.275) for N = Ñ/2
time-steps as specified in the legend. Sub-plot (b) shows the solution along

the boundary of the irregular polygon domain for N = Ñ/2 = 4096 using the
DEA based hybrid CQ scheme. In both hybrid methods, the high frequency
approximations are applied whenever |Re(kl)| > 350.
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Figure 5.27: The Z-transformed boundary solution ul on the boundary of the
irregular polygon domain driven by a point source located at x0 = (0.648, 0.5)
with temporal profile (5.34) and parameters α = 4096 and t0 = 0.1. Sub-plot
(a) shows |ul| for l = η, which corresponds to the wavenumber kη where we
switch between using the BEM and a high frequency approximation. Sub-plots
(c) and (d) show Re(ul) computed using the DEA and SHFA based hybrid CQ
schemes, respectively. The results are shown for a range of wavenumbers near to
the case l = η, which approximately corresponds to Re(k) = 350. Discretisation

parameters are chosen to be M = 1024 boundary elements, N = Ñ/2 = 4096

time-steps, Λ = 180 global directions and λ = 10−8/Ñ .
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Figure 5.28: (a): Solution to the wave equation for a irregular polygon domain
driven by a point source located at x0 = (0.648, 0.5) with temporal profile (5.34)
and parameters α = 4096 and t0 = 0.1. Plot (a) shows either the interior solu-
tion Φ or the reverberant solution U at x = (0.97, 0.6) for different thresholds
k∗. Solutions calculated with a threshold of k∗ = 90 used M = 256 boundary
elements, whereas the solutions calculated using a threshold of k∗ = 350 used
M = 1024 boundary elements. (b) - (d): The Z-transformed boundary solution
ul on the boundary of the irregular polygon driven by the point source excita-
tion used for plot (a). Sub-plot (b) shows |ul| for l = η, which corresponds to
the wavenumber where we stop using the BEM and instead use a high frequency
approximation, when k∗ = 90. The lower sub-plots (c) and (d) show Re(Φl)
computed using the DEA and SHFA based hybrid CQ schemes, respectively.
The results are shown for a range of wavenumbers in the vicinity of l = η,
which approximately corresponds to Re(k) = 90. Discretisation parameters:

N = Ñ/2 = 4096 time-steps, Λ = 180 global directions and λ = 10−8/Ñ .
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5.5 Conclusion

We have introduced two hybrid CQ based discretisations of the wave equa-

tion for interior acoustic Neumann problems with broadband boundary data or

source terms. The CQ method was applied to reformulate the time-domain wave

problem into a series of frequency domain Helmholtz problems with complex-

valued wavenumbers, in which the boundary data and solutions are connected to

those of the original time-dependent problem through the Z-transform. The hy-

brid methods used alternative approaches for approximating the solution of the

Helmholtz problems, dependent on the frequency, or more specifically the mag-

nitude of the real part of the wavenumber. For a specified low frequency region,

we applied a direct piecewise constant collocation BEM for the discretisation

of the Helmholtz problems, while for the remaining (high) frequency region we

developed two high frequency approximation methods, both of which are based

on a plane wave decomposition of the acoustic field on the boundary. The first

approach was based on dynamical energy analysis, which is used to numerically

approximate the plane-wave amplitudes. The phases were then reconstructed by

matching the BEM solution to the plane wave ansatz at the maximal frequency

where we apply the BEM and the minimal frequency where we apply the plane

wave ansatz. The second approach that we used was a simple high frequency

approximation (SHFA) method based on applying the Neumann-to-Dirichlet

map for plane waves to the given boundary data. This approach is only valid

if reflected wave contributions are negligible, which can often be the case for

CQ discretisations if the imaginary part of the wavenumber is relatively large

leading to high levels of dissipation. We then performed numerical experiments

to demonstrate the effectiveness of both hybrid approaches for the cases of plane

wave boundary data and excitation by an interior point source. In both situa-

tions the hybrid methods were able to provide faster computations than using

the conventional CQBEM. However, the DEA based scheme for point sources

suffered from poor accuracy as the method was unable to accurately represent

circular waves without using a large number of ray directions that would remove

any efficiency gains. A promising direction for further work in this case could

be to use an image-source type method for the high frequency approximation,

in which the solution would be expressed more efficiently as a series of circular

waves.

Comparing the DEA and SHFA high frequency approximations against each

other, we determine that in terms of computational efficiency and simplicity of
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implementation then the SHFA is highly preferable since it can be implemented

at low cost within a single line of code. It also has the advantageous prop-

erty that when refining ∆t alone and fixing constant the maximal frequency

at which a BEM calculation is performed, then the computational cost of the

method overall then scales as O(1) [133]. The DEA approach is in theory able to

provide better approximations that include reflected wave contributions. How-

ever, we found that these improvements did not always make any significant

improvement to the time-domain result and that when we used a lower thresh-

old wavenumber k∗ for switching from BEM to the high frequency approxima-

tion, then DEA often performed worse owing to inaccuracies introduced in the

phase reconstruction process, in particular for the interior point source case.

Since the DEA approach also results in a greater computational run time, due

to requiring a large number of discretised directions when considering larger

models, then we conclude that the accuracy gains from including higher order

reflections in the hybrid CQ schemes here do not typically provide sufficient im-

provements to choose DEA over the SHFA based scheme. One significant reason

for this appears to be the large imaginary parts of the wavenumbers within the

BDF2 based CQ method that provide a strong damping effect within the DEA

calculations, making the reflected wave/ray contributions relatively small.



Chapter 6

Conclusions and further

work

In this thesis we have introduced two new hybrid CQ based discretisations for

numerically solving the wave equation when the solution includes broadband

frequency content. After undergoing a thorough investigation of the literature

on numerical methods used to solve the wave equation in Chapter 1, it was de-

cided that the CQ method would be applied to the time-domain wave problem.

The CQ method provides a simple way to obtain a stable time stepping scheme

using the Laplace transform of the kernel function and aside from stability its

main advantage, when applied to the wave equation, is that it avoids having to

evaluate the convolution kernel in the time-domain by instead solving a simpli-

fied system of frequency domain boundary integral equations for the Helmholtz

equation. The boundary data and solutions are then connected to those of the

original time-dependent problem via the Z-transform. The hybrid methods pro-

posed alternative approaches for the approximation of the Helmholtz problems,

dependent on the frequency, or more specifically the magnitude of the real part

of the wavenumber. For a specified low frequency region, we applied the BEM

for the discretisation of the Helmholtz problems. However, as we discussed in

Chapter 2, to model rapidly oscillating waves requires a large number of bound-

ary elements and results in a large computational cost to obtain a reasonable

level of accuracy (say 1% relative error). Therefore for the high frequency prob-

lems we developed two high frequency approximation methods, both of which

are based on a plane wave decomposition of the acoustic field on the boundary.

212
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The first approach is based on dynamical energy analysis, which is used to

numerically approximate the plane-wave amplitudes. DEA uses a linear integral

operator for transporting densities along ray trajectories in phase-space, between

intersections with the boundary of a domain or sub-domain. A Petrov-Galerkin

discretisation is applied to the operator in which the directivity is modelled using

a finite global set of Dirac delta distributions that can simulate highly directive

problems to high accuracy. The phases were reconstructed by matching the

BEM solution to the plane wave ansatz at the maximal frequency where we

apply the BEM and the minimal frequency where we apply the plane wave

ansatz. The second approach that we proposed was a simple high frequency

approximation (SHFA) method based on applying the Neumann-to-Dirichlet

map for plane waves to the given boundary data. This approach is only valid

if reflected wave contributions are negligible, which can often be the case for

CQ discretisations if the imaginary part of the wavenumber is relatively large

leading to high levels of dissipation.

We now summarise the conclusions of each chapter in this thesis, before dis-

cussing some possible further research directions related to the newly proposed

hybrid methods.

6.1 Conclusions

In Chapter 2, we first considered solving the Helmholtz equation via the indi-

rect BEM such that the solution is represented via a single layer potential in

terms of an unknown layer density σ. We then compared two discretisation

methods, the collocation method and the Galerkin method, which were used to

discretise the BIE resulting from applying the indirect BEM to the Helmholtz

problem. Furthermore, for each discretisation method we also investigated the

solution to the Helmholtz problems when using either piecewise constant basis

functions or linear basis functions. An analysis was conducted by examining

the relative errors and calculating the estimated order of convergence as we

increased the wavenumber, physically representing more oscillatory behaviour.

We found that, in general, as we increased the wavenumber k that the errors

increased. A comparison between the two discretisation methods showed that

there was no significant difference, in terms of accuracy, when using the Galerkin

method compared to the collocation method. However, the implementation of

the Galerkin method results in a more complex calculation due to the additional
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integral that the method requires, leading to longer computational times. Sim-

ilarly, when comparing the results between constant and linear basis functions

we observed that there was no significant difference in the errors obtained or

the convergence results. The improvements given by the linear basis functions

were most evident for smooth domains, which are not the focus of the work in

the later chapters of this thesis.

Next in Chapter 2, we derived the BIEs for solving the two-dimensional

Helmholtz BVP via the direct BEM with Neumann boundary conditions. The

direct BEM expresses the solution in terms of physical quantities. The numerical

experiments were performed using the collocation method with constant basis

functions. The error and convergence results exhibited a similar behaviour to

the results found using the indirect BEM. That is, the errors increased as k

increased. Overall the errors were, in general, slightly larger than for the indirect

BEM and in most cases, and the convergence rate appeared to be between first

and second order.

In Chapter 3, we applied the CQBEM to calculate the numerical solution

for a time-domain boundary integral formulation of the two-dimensional wave

equation. The CQBEM used a convolution quadrature method for the time

discretisation and a direct collocation boundary element method with piecewise

constant basis functions for the spatial discretisation. The CQ method refor-

mulates the time-domain wave problem as a system of Helmholtz problems with

complex wavenumbers. For our numerical experiments, we considered the ho-

mogeneous wave equation with Neumann boundary conditions for the case when

a wave propagates into either a unit square and an L-shaped domain. We inves-

tigated the errors and estimated convergence rates when applying different mul-

tistep methods in the CQ time discretisation. The two methods employed were

the backward Euler method and the second order backwards difference formula

(BDF2). The results showed that both multistep methods eventually achieved

their expected convergence rates and the errors calculated via the BDF2 method

were smaller. When considering problems which had no analytical solutions, the

error results were estimated from subsequent approximations.

We also considered the case when there is a point source excitation inside

the domain. We investigated the errors and estimated convergence rates when

using either the backward Euler or the BDF2 time-stepping methods in the CQ

approach for the time discretisation. The results showed the expected conver-

gence rates for the time discretisation methods, and in general the errors for

the BDF2 method were again smaller than those calculated using the backward
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Euler method. We concluded Chapter 3 by discussing how the CQBEM would

not be efficient for broadband signal, since the numerical simulations would re-

quire a large number of time-steps and boundary elements to model the high

frequency content.

In Chapter 4 we considered other options to model the high frequency wave

components. We decided that geometrical optics methods, such as ray tracking

methods, were not a viable option since the methods become inefficient when

considering frequency domain wave problems in bounded domains. We then

considered frequency domain approaches such as SEA and DEA. It was decided

that a DEA approach would be more advantageous because some of the SEA

assumptions are removed, which provides flexibility to apply to different prob-

lems without a loss of accuracy. We approximated the Helmholtz equation by

representing the solutions as a superposition of plane waves, whose amplitude

in a particular direction can be expressed in terms of a wave energy density. We

introduced a phase-space boundary integral operator, that is a modified ver-

sion of the Frobenius-Perron operator, such that the resulting boundary wave

energy density can be propagated through the domain. We then applied a

Petrov-Galerkin discretisation of the phase-space boundary integral operator.

Numerical experiments were undertaken for which we considered a line source

travelling from the left edge of either a unit square and an L-shaped domain.

We achieved machine accuracy in both domains when the source was travelling

perpendicularly to the edge. The direction of the source was then changed to an

angle of 3π/8 with respect to the unit normal of the edge, which also resulted

in small errors. We then considered experiments when there was a point source

in the domain of a unit square, an L-shape or an irregular shaped polygon. We

investigated the mean errors as we doubled the number of boundary elements

and the number of directions and we achieved small errors in all cases as well

as a convergence rate between first and second order.

In Chapter 5, we introduced two novel hybrid CQ based discretisations of the

wave equation for interior acoustic Neumann problems with broadband bound-

ary data or source terms. As discussed at the beginning of this chapter, these

methods involve applying a CQ method to reformulate the time-domain wave

problem into a series of frequency domain Helmholtz problems with complex-

valued wavenumbers. The hybrid methods propose alternative approaches for

the approximation of the Helmholtz problems, whereby at lower frequencies we

use a BEM and at higher frequencies we use a plane-wave approximation. The

first hybrid approach applied DEA to numerically approximate the plane-wave
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amplitudes. The phases were reconstructed by matching the BEM solution

to the plane wave ansatz at the maximal frequency where we apply the BEM

and the minimal frequency where we apply the plane wave ansatz. The sec-

ond approach that we proposed was a SHFA method based on applying the

Neumann-to-Dirichlet map for plane waves to the given boundary data.

We then performed numerical experiments to demonstrate the effectiveness

of both hybrid approaches for the cases of plane wave boundary data and ex-

citation by an interior point source. In both situations the hybrid methods

were able to provide faster computations than using the CQBEM with simi-

lar accuracy, including when we considered plane wave boundary data with a

low bandwidth. However, when we considered the broadband behaviour, the

DEA based scheme for point sources suffered from poor accuracy owing to its

inability to accurately represent circular waves without using a large number

of ray directions that would remove any efficiency gains. Comparing the DEA

and SHFA based hybrid methods against each other, the SHFA based hybrid

approach has a simpler implementation and is more computationally efficient

than the DEA based scheme. Although the DEA approach is able to provide

better approximations that include reflected wave contributions, these improve-

ments did not typically make any significant improvement to the time domain

result. Furthermore, when using lower threshold frequencies for switching from

BEM to the high frequency approximation, DEA often performed worse owing

to inaccuracies introduced in the phase reconstruction process.

6.2 Further work

We now discuss further research ideas related to the newly proposed hybrid

methods.

6.2.1 Extension to non-convex geometry

In our numerical examples, we consider calculating the interior solution to the

inhomogeneous wave equation subject to a source propagating inside the domain

via the hybrid methods in Section 5.4.2. In these numerical problems we did

not consider domains that are divided into more than one sub-domain in the

DEA model and only considered the unit square and irregular polygon domains.

When we consider a domain with multiple sub-domains in DEA, the direct

source contribution from the fundamental solution to the free-space problem
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is included but must be manually added in the source sub-domain. This can

be resolved by also solving the BEM problem in each sub-domain separately

as well as implementing the high frequency approximations separately for each

sub-domain.

6.2.2 Three-dimensional geometry

In our numerical examples throughout this work we only considered solving

the two-dimensional acoustic wave equation. To fully implement the hybrid

methods for modelling more realistic scenarios, extending the proposed meth-

ods to model three-dimensional domains would be crucial. For the low frequency

content, an application of a collocation based CQBEM for numerically solving

three-dimensional transient acoustic problems was considered in [133] for large

scale domains. The acoustic wave equation is reformulated as a boundary inte-

gral representation with the same single and double layer potentials, but now

the Green’s function is the three-dimensional free-space fundamental solution

to the wave equation instead of the two-dimensional one. For the spatial dis-

cretisation, the BEM now divides the domain into two-dimensional boundary

surface elements instead of the one-dimensional boundary elements, which will

result in a longer computational run time and increased storage. For the high

frequency content, we refer to [10] in which the DEA was extended to model

three-dimensional domains by propagating wave energy densities through tetra-

hedral meshes. The energy densities to be computed are transported along

ray trajectories through tetrahedral mesh elements using the finite dimensional

approximation of a ray transfer operator. An orthonormal piecewise-constant

basis approximation was applied for the spatial discretisation and orthonormal

Zernike polynomials were applied for the direction coordinate discretisation.

Therefore the hybrid methods could be extended to three-dimensional domains

by considering the research we have discussed above.

6.2.3 Alternative high frequency approximations

For the high frequency content in the hybrid methods, we could consider other

high frequency approximations to compare against the current models proposed

in this work. An overview of some high frequency approximations can be found

in [161] and in Section 1.3 of this work, in which we discuss different mathemat-

ical models based on geometrical optics. Geometrical optics approximations are

asymptotic approximations obtained when the frequency tends to infinity. Some
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general geometrical optics methods which could be considered include wave front

methods, moment methods, full phase-space methods and the Hamilton–Jacobi

method. However a promising alternative high frequency approximation to the

DEA method for point source problems, such as those considered here, is the

image source method [152, 166]. The image source method is based on a set of

image sources, which is a mirror image of the original sound source created by

the surface. The image-sources are then reflected against all the surfaces again

and this process is repeated until a termination condition is satisfied, result-

ing in accurate solutions. However, if it becomes necessary to calculate many

reflections, then the computational run time would rapidly increase. In the con-

text of a BDF2 based CQ scheme, the (typically) large imaginary parts of the

wavenumbers considered will probably mean that only a moderate number of

reflections must be accounted for though.

6.2.4 Higher-order basis functions

The CQBEM used to solve the Helmholtz problems within the low frequency

region uses a collocation based BEM with piecewise constant basis functions for

the spatial discretisation. Further work could be undertaken to investigate using

higher order basis functions for the spatial discretisation, such as high order

polynomial basis functions. Although high order methods have not received a

lot of interest recently in room acoustics, an overview of BEM discretisation

methods can be found in the literature review of [82].

6.2.5 Alternative time-stepping schemes

The hybrid approaches that we consider in this work solve Helmholtz problems

in a low frequency region via the collocation based CQBEM with piecewise

constant basis functions in space and a BDF2 based CQ method in time. In our

numerical examples in Section 3.4, we compared error and convergence rates for

a variety of problems using a collocation based CQBEM with piecewise constant

basis functions in space and either a backward Euler or BDF2 method for the

time discretisation. In our future work one could consider applying alternative

time-stepping methods such as high-order Runge-Kutta methods, which have

been implemented by Banjai and co-authors for a variety of wave problems

[16, 17, 18] and have shown excellent stability properties.
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Appendix A

Green’s functions and the

Dirac delta

A.1 The Dirac generalised function δ

The shifted Dirac generalised function delta, δa(x) = δ(x−a), x, a ∈ R, has the

following properties

δa(x) = 0, if x 6= a, (A.1)∫ ∞
−∞

δa(x)dx = 1, (A.2)

∫ ∞
−∞

δa(x)f(x)dx = f(a). (A.3)

The latter of these properties (A.3) is known as the sifting property and holds

for all continuous and bounded functions f . When composed with a function g,

then δa satisfies ∫ ∞
−∞

f(x)δ (g(x)) dx =
∑
i

f(xi)

|g′(xi)|
, (A.4)

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

, (A.5)

where xi are the roots of g(x) = 0 and δ = δ0 is known simply as the Dirac

generalised function delta. Finally, extending to multiple dimensions and letting
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x = (x1, x2, ..., xn) and a = (a1, a2, ..., an), then

δa(x) = δa1
(x1)δa2

(x2)...δan(xn). (A.6)

Physically, δa(x) corresponds to a unit impulse located at x = a. Note that

properties (A.1) to (A.3) extend directly to the multidimensional case by re-

placing x with x, a with a and integrating over Rn instead of R.

A.2 Green’s functions

A free space Green’s function in two dimensions G(x,y) is a solution to an

inhomogeneous differential equation of the form

LG(x,y) = δ(x− y), (A.7)

where L is a regular nth order linear differential operator, x,y ∈ R2 and δ(x−
y) is the Dirac generalised function delta. A particular solution to the linear

differential equation Lu(x) = f(x), with forcing term f , is then given by

u(x) =

∫∫
R2

G(x,y)f(y)dy. (A.8)

It is easy to check that (A.8) is a solution of Lu = f by applying L to both

sides as follows

Lu(x) =

∫∫
R2

LG(x,y)f(y)dy =

∫∫
R2

δ(x− y)f(y)dy = f(x),

and using the delta function property (A.3). Physically, G(x,y) represents the

response of the system Lu = f at x to a unit impulse at y. The Green’s function

is continuous and has continuous derivatives with respect to x up to order n−2

for all values of x and y.

We are interested in the free space Green’s functions for the two-dimensional

Laplace equation (2.2) when k = 0, the Helmholtz equation (2.2) and the wave

equation (3.1). The free space Green’s function for the Laplace equation is given

by [100]

G0(x,y) :=
1

2π
ln(‖x− y‖), (A.9)

and satisfies

∆G0(x,y) = δ(x− y). (A.10)
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The free space Green’s function for the Helmholtz equation is given by [100]

Gk(x,y) := − i
4
H

(1)
0 (k ‖x− y‖) , (A.11)

where H
(1)
0 is the zeroth order Hankel function of the first kind, and Gk, satisfies

∆Gk(x,y) + k2Gk(x,y) = δ(x− y). (A.12)

The free space Green’s function for the wave equation is given by [100]

G(x, t) :=
H(t− ‖x‖ /c)

2π

√
t2 − ‖x‖2 /c2

, (A.13)

where H is the Heaviside step-function

H(x) =

 0 x < 0

1 x > 0
. (A.14)

Then G satisfies(
∆− 1

c

∂2

∂t2

)
G(x− y, t− τ) = δ(x− y)δ(t− τ),

and represents the response to a unit impulse at time t = τ , located at x = y.



Appendix B

Evaluation of some integrals

containing the Green’s

function for the Laplace

equation

In this appendix we determine exact formulae for the following boundary inte-

grals that arise after implementing the singularity subtraction procedure for the

Helmholtz equation outlined in Section 2.6. In particular, we consider evaluating

the boundary integral from equation (2.40):∫
Ej

ln (‖x− y‖) bj(y)dΓy, (B.1)

for the case when x ∈ Ej . Here the boundary Γ was divided into n elements Ej

for j = 1, 2, ..., n, x = (x1, x2) and y = (y1, y2) are points along Ej . The basis

functions bj are either piecewise constants defined by (2.29) or piecewise linears

defined by (2.31). For simplicity, we parameterise x and the integration point

y by an arclength parameter which we denote as s(x) ∈ [0, L) and t(y) ∈ [0, L),

respectively, where L is the total boundary length. We will consider evaluating

(B.1) for both a circle and a polygon domain.
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B.1 Polygon domain

B.1.1 Piecewise constant basis function

For the case when the domain is a polygon, and bj are piecewise constant basis

functions the boundary integral (B.1) simplifies to∫
Ej

ln(|s(x)− t(y)|)dΓy = (|s(x)− t(y)|) (ln(|s(x)− t(y)|)− 1)
∣∣∣
Ej
. (B.2)

Here we have made use of the fact that bj(y) = 1 for y ∈ Ej and that for a

straight line elements as on a polygon, ‖x− y‖ = |s(x)−t(y)|, where s, t ∈ [0, L)

are arclength parameters with the same origin as introduced previously.

B.1.2 Piecewise linear basis function

For piecewise linear basis functions, we denote h by the size of element Ej and

set tj = t(yj) for j = 1, 2, ..., n, as the boundary node connecting Ej and Ej+1,

as shown in Figure 2.2. The boundary integral (B.1) with piecewise linear basis

functions (2.31) for j = 1, 2, ..., n, may be written as∫
Ej

ln(|s(x)− t(y)|) (t(y)− tj−1)

h
dΓy

+

∫
Ej+1

ln(|s(x)− t(y)|) (tj+1 − t(y))

h
dΓy.

(B.3)

Note that the periodicity of the boundary curve Γ means that En+1 = E1. We

now just consider the first integral term over element Ej in equation (B.3). We

rewrite the integral by adding and subtracting the term (s(x)/h) ln(|s(x)− t(y)|)
to the integral as follows∫

Ej

ln(|s(x)− t(y)|) (t(y)− tj−1 + s(x)− s(x))

h
dΓy.

We then split the above expression into two integrals

(s(x)− tj−1)

h

∫
Ej

ln(|s(x)− t(y)|)dΓy

−
∫
Ej

(s(x)− t(y))

h
ln(|s(x)− t(y)|)dΓy.

(B.4)



Appendix B – Useful integrals for the BEM 225

By considering the first integral of (B.4), since the integration point is with

respect to y, the evaluation of the integral is given analytically by (B.2) and

then, multiplied by the factor of (s(x)− tj−1)/h, written as

(s(x)− tj−1)

h

∫
Ej

ln(|s(x)− t(y)|)dΓy

=
(s(x)− tj−1)

h
[|s(x)− t(y)| (ln(|s(x)− t(y)|)− 1)]

∣∣∣
Ej
.

(B.5)

For the second integral in (B.4) we investigate the behaviour of the integral as

s(x) → t(y). If the integral is finite, then a numerical approximation method

can be used to evaluate the integral. We investigate using L’Hopitals rule [104],

which states that if

lim
x→a

(
f(x)

g(x)

)
,

is indefinite, where f and g are differentiable functions on an open interval [a, b),

then

lim
x→a

(
f(x)

g(x)

)
= lim
x→a

(
f ′(x)

g′(x)

)
,

provided the latter limit exists. For our case, in the second integral in (B.4), we

have f(s) = ln(|s(x)− t(y)|) and g(s) = ((1/h)(s(x)− t(y)))
−1

for s, t ∈ [0, L).

Applying L’Hopitals rule, the limit of the integrand as s(x) → t(y) is written

as

lim
s(x)→t(y)

(
ln(|s(x)− t(y)|)

((1/h)(s(x)− t(y)))
−1

)
= (1/h) lim

s(x)→t(y)

(
(s(x)− t(y))−1

−(s(x)− t(y))−2

)
= −(1/h) lim

s(x)→t(y)
(s(x)− t(y)) = 0.

(B.6)

Therefore, the second integral in equation (B.4) may be computed numerically

using a standard quadrature rule, since when s(x) → t(y) the integrand will

tend to zero and is therefore finite.

Now returning to equation (B.3) and evaluating the second integral over

Ej+1, we apply an analogous method by adding and subtracting the term
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(s(x)/h) ln(|s(x)− t(y)|) and splitting the integral into two, written as

(tj+1 − s(x))

h

∫
Ej+1

ln(|s(x)− t(y)|)dΓy

+

∫
Ej+1

(s(x)− t(y))

h
ln(|s(x)− t(y)|)dΓy.

(B.7)

Again, the first integral term has an analytical solution given by (B.2), but now

multiplied by a factor of (tj+1 − s(x))/h, and the second integral term can be

evaluated numerically using a standard quadrature rule.

Combining the evaluations of both integrals, we may write (B.3) as follows :

(s(x)− tj−1)

h
[|s(x)− t(y)| (ln(|s(x)− t(y)|)− 1)]

∣∣∣
Ej

+
(tj−1 − s(x))

h
[|s(x)− t(y)| (ln(|s(x)− t(y)|)− 1)]

∣∣∣
Ej+1

−
∫
Ej

(s(x)− t(y))

h
ln(|s(x)− t(y)|)dΓy

+

∫
Ej+1

(s(x)− t(y))

h
ln(|s(x)− t(y)|)dΓy,

(B.8)

where the two integrals are computed numerically and both have integrands

which tend to zero as s(x)→ t(y).

B.2 Circle domain

B.2.1 Piecewise constant basis functions

For the case when the domain is a circle, the distance between two points on

the boundary is given by the length of a chord written as

‖x− y‖ = 2 sin

(
s(x)− t(y)

2

)
. (B.9)

The boundary integral (B.1) for a circle domain with bj(y) = 1 for y ∈ Ej is

then written as

Ij(x) =

∫
Ej

ln

(
2 sin

(
s(x)− t(y)

2

))
dΓy, (B.10)
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which can be evaluated analytically to give

Ij(x) =

[
1

4
(s(x)− t(y))

(
4 ln (1− exp(i(s(x)− t(y)))− 4 ln

(
2 sin

(
s(x)− t(y)

2

))

−is(x) + it(y)

)
− iLi2 (exp(i(s(x)− t(y)))

]∣∣∣∣∣
Ej

,

(B.11)

where Li2 is the polylogarithm function of order two [116].

B.2.2 Piecewise linear basis functions

We now consider solving (B.1) for the case when bj are given by piecewise linear

basis functions (2.31). We follow the same method as we applied for polygon

domains in Section B.1.2. We first apply (B.9) and (2.31) to write the integral

(B.1) as ∫
Ej

ln

(
2 sin

(
s(x)− t(y)

2

))
(t(y)− tj−1)

h
dΓy

+

∫
Ej+1

ln

(
2 sin

(
s(x)− t(y)

2

))
(tj+1 − t(y))

h
dΓy.

(B.12)

As before, we begin to evaluate (B.12) by first considering only the integral term

over element Ej . We rewrite the integral by adding and subtracting the term(
s(x)

h

)
ln

(
2 sin

(
s(x)− t(y)

2

))
,

and then splitting into two integrals as follows

(s(x)− tj−1)

h

∫
Ej

ln

(
2 sin

(
s(x)− t(y)

2

))
dΓy

−
∫
Ej

(s(x)− t(y))

h
ln

(
2 sin

(
s(x)− t(y)

2

))
dΓy.

(B.13)

Since the integration point is with respect to y, the evaluation of the first integral

in equation (B.13) is given analytically by (B.11), multiplied by the factor of
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(s(x)− tj−1)/h, written simply as(
s(x)− tj−1

h

)
Ij(x). (B.14)

For the second integral term in (B.13), we investigate the behaviour of the

integrand as s(x) → t(y) using L’Hopitals rule as discussed in Section B.1.2.

Again we find that the limit of the integrand as s(x) → t(y) is finite and

therefore a standard quadrature rule can be used to numerically evaluate the

corresponding integral.

Returning to equation (B.12), we evaluate the integral over Ej+1 via an

analogous method in which we add and subtract the term(
s(x)

h

)
ln

(
2 sin

(
s(x)− t(y)

2

))
,

and split into two integrals as follows

(tj+1 − s(x))

h

∫
Ej+1

ln

(
2 sin

(
s(x)− t(y)

2

))
dΓy

+

∫
Ej+1

(s(x)− t(y))

h
ln

(
2 sin

(
s(x)− t(y)

2

))
dΓy.

(B.15)

The first integral term has an analytical solution Ij+1(x) given by (B.11), evalu-

ated over Ej+1 instead of Ej , and then multiplied by a factor of (tj+1−s(x))/h.

The second integral term can be evaluated numerically using a standard quadra-

ture rule, which can be verified using L’Hopitals rule as before.

Combining the evaluations of both integrals, we may write (B.12) as follows:(
s(x)− tj−1

h

)
Ij(x) +

(
tj+1 − s(x)

h

)
Ij+1(x)

−
∫
Ej

(s(x)− t(y))

h
ln

(
2 sin

(
s(x)− t(y)

2

))
dΓy

+

∫
Ej+1

(s(x)− t(y))

h
ln

(
2 sin

(
s(x)− t(y)

2

))
dΓy,

(B.16)

where the final two integrals are computed numerically and both have integrands

which tend to a finite value as s(x)→ t(y).
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Exact solutions to interior

boundary value problems

for the Helmholtz equation

C.1 Inhomogeneous Dirichlet problem on a cir-

cle

We consider the homogeneous case of the Helmholtz equation (2.2) with a

Dirichlet boundary condition on a unit circle domain. The two-dimensional

homogeneous Helmholtz equation can be written in polar coordinates as

urr +
1

r
ur +

1

r2
uθθ + k2u = 0 inside Ω = [0, 1)× [0, 2π). (C.1)

We consider (C.1) with the boundary condition

u(1, θ) = sin(θ), for 0 ≤ θ < 2π. (C.2)

To find a solution to the BVP above we apply separation of variables in the

form u(r, θ) = R(r)Θ(θ), which leads to

r2R
′′

R
+ r

R
′

R
+ k2r2 = −Θ

′′

Θ
. (C.3)

229
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The left hand side and right hand side of (C.3) will not be equal in general, as

they contain functions of different variables, and so (C.3) can only hold if both

sides are equal to a constant, say λ. This leads to the following pair of ODEs

r2R
′′

R
+ r

R
′

R
+ k2r2 = λ, (C.4)

Θ
′′

Θ
= −λ. (C.5)

The solutions to equation (C.5) are periodic functions and letting λ = n2, for

n = 1, 2, ..., then Θ(θ) = An cos(nθ) + Bn sin(nθ). Equation (C.4) is a Bessel

ODE [74] and we assume that the solution will be finite at x = 0. Therefore we

only consider Bessel functions of the first kind and thus solutions of the form,

R(r) = Jn(kr), for n = 1, 2, ..., where Jn demonstrate Bessel function of the

first kind of order n. The general solution to (C.1) is then of the form

u(r, θ) =

∞∑
n=0

Jn(kr) (An cos(nθ) +Bn sin(nθ)) .

Applying the boundary condition (C.2) gives An = 0 for all n = 0, 1, ..., Bn = 0

for n = 0, 2, 3, ..., and B1 = 1
J1(k) . The exact solution is therefore

u(r, θ) =
J1(kr) sin(θ)

J1(k)
. (C.6)

C.2 Inhomogeneous Dirichlet problem

on a square

We determine the analytical solution to the homogeneous Helmholtz equation

(2.2) with g = 0 and Dirichlet boundary conditions defined by (2.41a) - (2.41d)

in a unit square domain. Let x = (x1, x2) be a point inside the domain. Since

the left and right edges of the square have constant boundary conditions, this

indicates that the solution is indpendent of the x2 coordinate. Therefore the

BVP simplifies to a one-dimensional problem in the x1 coordinate, such that we

can write the solution as u(x) = v(x1) with boundary conditions v(0) = 1 and

v(1) = cos(k). Substituting the solution v(x1) into the homogeneous Helmholtz

equation leads to
∂2v

∂x2
1

+ k2v = 0.
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The general solution to the above equation is then

v(x1) = A cos(kx1) +B sin(kx1),

where A and B are constants to be determined from the boundary conditions.

Applying the first boundary condition when x1 = 0 leads to

v(0) = 1 = A cos(0) +B sin(0),

=⇒ A = 1.

Applying the boundary condition when x1 = 1 along with the fact that A = 1

leads to

v(1) = cos(k) = cos(k) +B sin(k),

=⇒ B = 0.

Therefore the solution to the BVP is simply

u(x) = cos(kx1).

C.3 Inhomogeneous Neumann problem on a

square

We consider finding the analytical solution to the homogeneous Helmholtz equa-

tion (2.2) with g = 0 and boundary conditions defined by (2.46) inside a unit

square domain. The boundary conditions specify constant Neumann boundary

data on the left edge of the square and homogeneous data on the other three

edges. Let x = (x1, x2) be a point in the domain, then as there is no dependence

on the x2 coordinate in the boundary conditions and since ∂u
∂n̂ = 0 on the upper

and lower edges, the BVP can be reformulated as a one-dimensional problem.

The solution can therefore be written in the form u(x) = v(x1) with boundary

conditions

∂v

∂x1

∣∣∣∣
x1=0

= 1,

∂v

∂x1

∣∣∣∣
x1=1

= 0.
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Substituting the one-dimensional solution v(x1) into the homogeneous Helmholtz

equation leads to
∂2v

∂x2
1

+ k2v = 0.

The general solution to the above equation is then

v(x1) = A cos(kx1) +B sin(kx1).

To find the constants A and B we differentiate and apply the first boundary

condition when x1 = 0, to give

∂v

∂x1

∣∣∣∣
x1=0

= 1 = −Ak sin(0) +Bk cos(0),

=⇒ B =
1

k
.

Applying the boundary condition at x1 = 1 and substituting in B = 1/k leads

to

∂v

∂x1

∣∣∣∣
x1=1

= 0 = −Ak sin(k) +
1

k
k cos(k)

=⇒ A =
1

k
cot(k).

Therefore the final solution to the BVP can be written as

u(x) =
1

k
(cot(k) cos(kx1) + sin(kx1)) .

C.4 Homogeneous Neumann problem on a rect-

angle

We consider finding the analytical solution to the two-dimensional inhomoge-

neous Helmholtz equation (2.2) with a homogeneous Neumann boundary condi-

tion on a rectangular domain Ω = {(x1, x2) ∈ R2 : 0 < x1 < a, 0 < x2 < b}. By

letting x = (x1, x2) be an interior point and x0 = (x0
1, x

0
2) be the source point,

such that x0
1 ∈ (0, a), x0

2 ∈ (0, b) and with g(x) = δ(x − x0) in (2.2). We seek

solutions in the form of an eigenfunction expansion as described in [83], written

as

u(x) =
∑
λ

cλuλ(x), (C.7)
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where uλ are eigenfunctions of the Laplacian corresponding to the eigenvalue λ,

that is ∆uλ + λuλ = 0. Applying the Laplacian operator to (C.7) gives

∆
∑
λ

cλuλ(x) =
∑
λ

cλ∆uλ(x) = −
∑
λ

cλλuλ(x). (C.8)

By substituting (C.7) and (C.8) into the Helmholtz equation (2.2) we obtain

−
∑
λ

cλλuλ(x) + k2
∑
λ

cλuλ(x) = δ(x− x0),

=⇒
∑
λ

cλ
(
k2 − λ

)
uλ(x) = δ(x− x0).

We then multiply by uλ̃(x), where λ̃ is another eigenvalue, and integrate over

the domain Ω to give

∑
λ

cλ
(
k2 − λ

) ∫
Ω

uλ(x)uλ̃(x)dx =

∫
Ω

uλ̃(x)δ(x− x0)dx. (C.9)

The orthogonality of eigenfunctions means that the integral on the left hand

side of (C.9) is non-zero only when λ = λ̃. Therefore, (C.9) can be written as

cλ
(
k2 − λ

)
=

∫
Ω
uλ(x)δ(x− x0)dx∫

Ω
(uλ(x))

2
dx

. (C.10)

Applying the sifting property (A.3) and dividing by (k2 − λ) yields

cλ =
uλ(x0)

(k2 − λ)
∫

Ω
(uλ(x))

2
dx
. (C.11)

Substituting (C.11) into (C.7) gives that the corresponding solution to the

Helmholtz equation is of the form

u(x) =
∑
λ

uλ(x)uλ(x0)

(k2 − λ)
∫

Ω
(uλ(x))

2
dx
. (C.12)

We now determine the eigenfunctions and eigenvalues for the homogeneous

Neumann BVP by considering the homogeneous Helmholtz equation in the rect-

angle domain,

∆u+ k2u = 0, (C.13)
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subject to the homogeneous Neumann boundary conditions

∂u

∂n̂
(0, x2) = 0,

∂u

∂n̂
(a, x2) = 0,

∂u

∂n̂
(x1, 0) = 0,

∂u

∂n̂
(x1, b) = 0,

for x1 ∈ [0, a] and x2 ∈ [0, b]. We determine a solution to the BVP above by

applying separation of variables in the form u(x) = X(x1)Y (x2), which leads

to
X ′′

X
+ k2 = −Y

′′

Y
. (C.14)

The left hand side and right hand side of (C.4) will not be equal in general, as

they contain functions of different variables, and so (C.4) can only hold if both

sides are equal to a constant, say γ. This leads to the following pair of equations

X ′′

X
+ k2 = γ,

−Y
′′

Y
= γ.

The general solution for X is then of the form

X(x1) =



C cos(
√
λx1) +D sin(

√
λx1), if λ > 0,

Ce−
√
−λx1 +De−

√
λx1 if λ < 0,

C +Dx1 λ = 0,

(C.15)

where we set λ = k2 − γ for convenience. Non-trivial solutions only exist for

the cases when λ = 0 and λ > 0. For the case when λ = 0, we apply the

Neumann boundary condition ∂u
∂n̂ (0, x2) = 0, which results in D = 0 and hence

X(x1) = C. For the case when λ > 0, we apply the Neumann boundary

conditions ∂u
∂n̂ (0, x2) = ∂u

∂n̂ (a, x2) = 0. Hence, we determine that D = 0 and λ =

λp =
(
pπ
a

)2
for p = 1, 2, 3, ..., are the eigenvalues, with each one corresponding

to a solution

Xp(x1) = cos(
√
λx1) = cos

(pπx1

a

)
,

where Xp are the eigenfunctions. For p = 0, we determine that λ = λ0 = 0

and the corresponding eigenfunction is X0(x1) = 1. We follow an analogous

method to find Y (x2) and obtain the eigenfunctions Ym(x2) = cos
(
qπx2

b

)
and
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eigenvalues λq =
(
qπ
b

)2
for q = 0, 1, 2, .... Hence the eigenfunctions uλ(x) can

be written by replacing λ with a multi-index (p, q) as follows

u(p,q)(x) = cos
(pπx1

a

)
cos
(qπx2

b

)
, (C.16)

for p, q = 0, 1, 2, ..., with eigenvalues

λ(p,q) = λp + λq =
(pπ
a

)2

+
(qπ
b

)2

. (C.17)

In this case ∫ b

0

∫ a

0

(
u(p,q)(x)

)2
dx1dx2 =

ab

4
(C.18)

and therefore substituting into (C.12), the eigenfunction expansion of the solu-

tion u(x) is

u(x) =
4

ab

∞∑
p=0

∞∑
q=0

cos
(
pπx1

a

)
cos
(
qπx2

b

)
cos
(
pπx0

1

a

)
cos
(
qπx0

2

b

)
k2 − π2

(
p2

a2 + q2

b2

) .
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Properties of Fourier and

Laplace transforms

D.1 Fourier Transform

Let f : R → C, then the Fourier transformation is defined to be the map

F : f → f̃ :

f̃(w) =

∫ ∞
−∞

f(x)e−2πiwxdx. (D.1)

If this integral exists, then f̃ = Ff is called the Fourier transform of f . In the

case when F is bijective, the inverse transformation F−1 : f̃ → f is given by

f(w) =

∫ ∞
−∞

f̃(w)e2πiwxdw. (D.2)

Lemma D.1 (Differentiation) For all w ∈ R,

dn

dwn
(Ff) (w) = (−2πi)nF [xnf(x)](w), (D.3)

(Ff (m))(w) = (2πiw)m(Ff)(w). (D.4)

Proof.

To prove (D.3) we begin by differentiating the Fourier transform n times and

236
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apply the definition (D.1)

dn

dwn
(Ff) (w) =

dn

dwn

∫ ∞
−∞

f(x)e−2πiwxdx =

∫ ∞
−∞

f(x)
∂n

∂wn
e−2πiwxdx.

Note that this is allowed since the nth derivative of e−2πiwx with respect to f

is integrable with respect to x. Hence

dn

dwn
(Ff) (w) =

∫ ∞
−∞

f(x)(−2πix)ne−2πiwxdx = (−2πi)n
∫ ∞
−∞

f(x)xne−2πiwxdx

= (−2πi)nF [xnf(x)](w).

To prove (D.4) we first begin by noting that the mth derivative of e−2πiwx with

respect to x is given by

∂m

∂xm
(
e−2πiwx

)
= (−2πiw)me−2πiwx,

=⇒ 1

(−2πiw)m
∂m

∂xm
(
e−2πiwx

)
= e−2πiwx.

We now substitute the above into (D.3), which yields

(Ff)(n)(w) = (−2πi)n
∫ ∞
−∞

f(x)xn
(

1

−2πiw

)m
∂m

∂xm
(
e−2πiwx

)
dx,

and integrating by parts m times gives

(Ff)(n)(w) = (−2πi)n(−1)m
∫ ∞
−∞

dm

dxm
(f(x)xn)

(
e−2πiwx

(−2πiw)m

)
dx.

Note that here we have assumed that f(x) and its derivatives vanish fast enough

as x→ ±∞ so that the non-integral term is zero each time we integrate by parts.

Hence,

(−2πi)−n(2πiw)m(Ff)(n)(w) =

∫ ∞
−∞

dm

dxm
(f(x)xn)e−2πiwxdx.

Setting n = 0 in the above proves the result. �
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Theorem D.2 (Convolution) Let f, g ∈ L1(R), then

F(f ∗ g) = (Ff)(Fg) (D.5)

F−1(f ∗ g) = (F−1f)(F−1g). (D.6)

Proof.

F(f ∗ g)(w) =

∫ ∞
−∞

e−2πiwx

(∫ ∞
−∞

f(x− t)g(t)dt

)
dx,

=

∫ ∞
−∞

e−2πiwtg(t)

(∫ ∞
−∞

e−2πiw(x−t)f(x− t)dx
)
dt, [let s = x− t]

=

∫ ∞
−∞

e−2πiwtg(t)dt

∫ ∞
−∞

e−2πiwsf(s)ds,

= (Ff)(Fg).

The inverse transformation case is proved analogously. �

D.2 Laplace Transform

Let f : R → C be locally integrable for t ≥ 0. The Laplace transform of f is

the function

F (ζ) =

∫ ∞
0

e−ζtf(t)dζ, (D.7)

if this integral is absolutely convergent. That means∫ ∞
0

e−tx|f(t)|dt <∞, (D.8)

where x = Re(ζ). For f locally integrable,

x0 = inf

{
x ∈ R :

∫ ∞
0

e−xt|f(t)|dt <∞

}

is called the abscissa of absolute convergence, meaning that by definition (D.8)

is satisfied for all x > x0, but not for any x ≤ x0. Note that the Laplace

transform F (ζ) is often denoted (Lf)(ζ) and only depends on values of f for

t ≥ 0. Hence two functions that are equal (almost everywhere) for t ≥ 0, but

arbitrarily different for t < 0 have the same Laplace transform. To avoid this

ambiguity it is assumed that f(t) = H(t)f(t) = 0 for all t < 0, where H is the
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Heaviside step function as before.

Lemma D.3 (Differentiation) Suppose (Lf)(ζ) = F (ζ) for x > x0. Then

for all ζ such that x > x0 we have

(Lf (n))(ζ) = ζnF (ζ)−
n∑
j=1

ζn−jf (j−1)(0), (D.9)

(L[tnf(t)])(ζ) = (−1)n
dn

dζn
F (ζ). (D.10)

Proof.

To prove (D.9) we first show it is true for the case when n = 1, then the result

for n > 1 follows by induction. For n = 1 we have

(Lf ′)(ζ) =

∫ ∞
0

f ′(t)e−ζtdt,

= [f(t)e−ζt]∞0 +

∫ ∞
0

ζe−ζtf(t)dt,

= ζF (ζ)− f(0).

To prove (D.10), we first show that

dn

dζn
(
e−ζt

)
= (−t)ne−ζt,

= (−1)ntne−ζt,

and hence

(−1)n
dn

dζn
(
e−ζt

)
= (−1)2ntne−ζt,

= tne−ζt.
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We then replace the tne−ζt term arising in the left side of (D.10) with the above,

which results in

(L[tnf(t)])(ζ) =

∫ ∞
0

tne−ζtf(t)dt,

=

∫ ∞
0

(−1)n
dn

dζn
e−ζtf(t)dt,

= (−1)n
dn

dζn

∫ ∞
0

e−ζtf(t)dt,

= (−1)n
dn

dζn
F (ζ). �

Theorem D.4 (Convolution) Suppose f , g are locally integrable with Laplace

transforms Lf , Lg defined for Re(ζ) > x0, x̃0, respectively. Then

L(f ∗ g) = (Lf) (Lg) . (D.11)

Proof.

L(f ∗ g)(ζ) =

∫ ∞
0

e−ζt
(∫ t

0

f(t− s)g(s)ds

)
dt,

=

∫ ∞
−∞

∫ ∞
−∞

H(t− s)f(t− s)H(s)g(s)e−ζtdsdt,

=

∫ ∞
−∞

∫ ∞
−∞

H(t− s)f(t− s)e−ζ(t−s)H(s)g(s)e−ζsdsdt.

Let u = t− s, then

L(f ∗ g)(ζ) =

∫ ∞
−∞

∫ ∞
−∞

H(u)f(u)e−ζuH(s)g(s)e−ζsdsdu,

=

(∫ ∞
−∞

H(u)f(u)e−ζudu

)(∫ ∞
−∞

H(s)g(s)e−ζsds

)
,

=

(∫ ∞
0

f(u)e−ζudu

)(∫ ∞
0

g(s)e−ζsds

)
,

= (Lf) (ζ) · (Lg) (ζ). �

Theorem D.5 (Bromwich formula) If F (ζ) = F (x+ iy) is analytic for x >

x0 and is absolutely integrable as a function of y, i.e.
∫∞
−∞ |F (x+ iy)|dy <∞,

then F (ζ) is the Laplace transform of the function f(t) given by the Bromwich
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integral:

f(t) = f(t)H(t) =
1

2πi

∫ x+i∞

x−i∞
F (ζ)eζtdζ. (D.12)

Proof.

Note that since f(t) = f(t)H(t) then

F (ζ) =

∫ ∞
0

e−(x+iy)tf(t)dt =

∫ ∞
−∞

e−iyte−xtf(t)dt.

Let t = 2πs, which gives

F (ζ) =

∫ ∞
−∞

e−2πiyse−2πxsf(2πs)2πds = F [2πe−2πxsf(2πs)](y).

Since F is absolutely integrable as a function of y then we can invert this Fourier

transform:

2πe−2πxsf(2πs) = F−1(F (ζ)) =

∫ ∞
−∞

e2πisyF (x+ iy)dy.

Since t = 2πs, the above becomes 2πe−xtf(t) =
∫∞
−∞ eiytF (x+ iy)dy. We thus

conclude:

f(t) =
1

2π

∫ ∞
−∞

exteiytF (x+ iy)dy =
1

2πi

∫ ∞
−∞

e(x+iy)tF (x+ iy)idy,

=
1

2πi

∫ x+i∞

x−i∞
eζtF (ζ)dζ. �



Appendix E

Interior density on a

rectangle for rays

orthogonal to the boundary

We consider evaluating the stationary ray density in a rectangular domain Ω =

{(x1, x2) ∈ R2 : 0 < x1 < l, 0 < x2 < 1}, at the interior point x = (x1, x2).

We prescribe a constant initial ray density ρ0 along the boundary at x1 = 0

with a fixed inward direction taken to be perpendicular to the boundary. At

all other boundaries of the rectangle we prescribe a homogeneous Neumann (or

sound hard) boundary condition. This leads to a one-dimensional solution in

the variable x1, which is independent of x2. Due to the geometric simplicity, this

example possesses an exact geometrical optics solution. We denote the damping

coefficient as µ.

The underlying ray tracing model involves transporting a source density ρ0

from x1 = 0 towards x1 = l, where it is then reflected back towards x1 = 0.

After being transported though n reflections at both x1 = 0 and x1 = l, the ray

density travelling from left to right is given by

ρn+(x1) = e−µ(2ln+x1)ρ0, n = 0, 1, 2, ...

Similarly, the ray density travelling from right to left at the point x after n

242
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reflections at x1 = l is given by

ρn−(x1) = e−µ(2ln−x1)ρ0, n = 1, 2, ...

The final stationary density ρΩ is accumulated from the contributions from both

directions after each reflection and leads to a geometric series solution of the

form

ρΩ(x) =

∞∑
n=0

ρn+(x1) +

∞∑
n=1

ρn−(x1). (E.1)

The geometric series of ρn+ and ρn− are given by

∞∑
n=0

ρn+(x1) =
ρ0e
−µx1

1− e−2µl
, (E.2)

and
∞∑
n=1

ρn−(x1) =
ρ0e

µx1

1− e−2µl
+ ρ0e

µx1 =
ρ0e
−µ(2l−x1)

1− e−2µl
, (E.3)

respectively. Substituting (E.2) and (E.3) into (E.1) leads to the final stationary

density

ρΩ(x) =
e−µx1 + e−µ(2l−x1)

1− e−2µl
ρ0. (E.4)
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