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Abstract 18 

The catalytic steam reforming of oxygenated hydrocarbons has been holding an interest for scientific societies for 19 

the past two decades. The hydrogen production from steam reforming of glycerol, ethanol and other oxygenates 20 

such as ethylene glycol and propylene glycol are more suitable choice not just because it can be produced from 21 

renewable sources, but it also helps to decrease the transportation fuel price and making it more competitive. In 22 

addition, hydrogen itself is a green fuel for transportation sector. The studies on the production of hydrogen from 23 

various reforming technologies revealed a remarkable impact on the environmental and socio-economic issues. 24 

Researchers became more focused on glycerol steam reforming (GSR), ethanol steam reforming (ESR) and other 25 

oxygenates to investigate the catalysts suitability, their kinetics and challenges for sustainability of the oil and gas 26 

production. In the present work, the authors critically addressed the challenges and strategies for hydrogen 27 

production via GSR, ESR and other oxygenates reforming process. This review covers extensively 28 

thermodynamic parametric analysis, catalysts developments, kinetics, and advancement in operational process for 29 

glycerol, ethanol and few other oxygenates. This detailed investigation only highlights the steam reforming 30 

process (SRP) of these oxygenates at laboratory experimental stage. It was found that from this review, there are 31 

many technical issues, which lead to economic challenges. The issues are yet to be addressed and thus these 32 

particular applications require faster accelerations at pilot scale, taking into the consideration of the current 33 

pandemic and economic issues, for a safer and greener environment.  34 

Keywords: steam reforming; hydrogen production; catalysts; oxygenated hydrocarbons, partial oxidation. 35 

1. Introduction 36 

 The pursuit for a greener environment and struggle to reduce the dependency on fossil fuels has driven 37 

mankind to devise better energy solutions. Some of the effective solutions to combat the problem of fossil fuel 38 

dependency are the introduction of renewable energy, such as solar energy, wind power and biomass. Extensive 39 

research has proven that renewable energy not only extends the shelf life of the exhausting non-renewable fossil 40 

fuel but also reduces the level of carbon dioxide in the earth’s atmosphere. In the year 2020 while more than 2/3 41 

of the world population are fighting with COVID-19, there are some good news with regards to the CO2 emission 42 

from the industry. It is expected that there will be a drop in CO2 emission from 4 to 11 % in 2020 [1], but this 43 

drop would not be sustainable. Over the next few years, if the governments do not take serious action now, it may 44 

overshoot as the trade and industries are trying to fulfil the previous demand or trying to justify continuing any 45 
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cancelled CO2-released projects in the past with the reason of relieving the economy. It is also important to provide 46 

green stimulus to the renewable energy companies to provide better technology that safeguarding our environment 47 

further, without further damaging the economy.   48 

Nevertheless, the problems related to renewable energy sources, however, are still persistent. The sources 49 

are generally located at some specific locations. Although they are readily available, these sources are intermittent, 50 

such as solar and wind energy, and therefore unstable[2]. The International Energy Agency (IEA) predicts an 51 

increasing share of primary energy used from renewables in the future due to support from the government, the 52 

falling costs of renewable energy, change in the price of CO2 emissions in certain regions and the rising price of 53 

fossil fuels in the long-term. Due to COVID-19 itself that is considered a blessing in disguise to the world 54 

environment, the only right thing needed by the governments is to ensure that CO2 and other harmful gases 55 

released by the fossil fuels to continue decrease, and therefore their responsibility is to stick by the earlier plan to 56 

ensure the renewables will be continued to be supported despite a shortfall of the fossil fuel prices.   57 

One possible greener energy solution in the future is the utilization of hydrogen, which is always known 58 

as the energy carrier since the hydrogen atom cannot exist on its own.  Hydrogen has been identified as an ideal, 59 

sustainable energy carrier due to its abundance and high energy density [3]. Conventionally, it is produced from 60 

natural gas reforming and coal gasification. Approximately 96% of world hydrogen comes from fossil fuels [4]. 61 

Utilizing hydrogen as an energy carrier in the future is very beneficial as it preserves the environment, is 62 

economical and can be safely handled [5]. Figure 1 shows the hydrogen production through various methods such 63 

as electrochemical, thermochemical and biological methods using various feedstocks. 64 
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 65 

Fig. 1. Hydrogen production using various methods. 66 

Prior to the consumption of hydrogen for the fuel cell and transportation era, large amounts of hydrogen 67 

were used as a feedstock for other chemical productions. Hydrogen is consumed in ammonia production, 68 

petroleum refining industry and methanol production [6]. Hydrogen for petrochemical utilization came in fourth 69 

place in which hydrogenolysis and hydrogenation account for most of the hydrogen consumed in this industry. 70 

This is provided on a large-scale from the steam reforming of natural gas as well as the by-product of petroleum 71 

refining and chemical production, mainly from the catalytic reforming process [7]. In nature, natural gas is not 72 

sustainable; therefore, the utilization of alternative fuels, such as oxygenated hydrocarbons from biomass, is not 73 

only a sustainable source but can be found in abundance. These biomasses can be transformed into different fuels 74 

in solid, liquid or gas forms by applying different technologies, namely, pyrolysis, gasification, reforming, and 75 

other bio-based processes[8,9].  76 

The International Energy Agency (IEA) reported that hydrogen should now be given an important role 77 

as it is impacting the economic potential of the world. Therefore, as reported in 2019 Fuel Technologies Report, 78 

it is imperative now to consider a major preparation towards hydrogen utilization [10]. Additionally, due to the 79 

unprecedented scenario in 2020, it has to be done right from the re-start point i.e. post COVID-19. Hydrogen as a 80 

greener fuel should be utilized worldwide with the strong lobby to the governments. Several researchers estimated 81 
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that clean hydrogen production is cost effective when it is widely installed. However, according to some other 82 

estimation, the cost of the hydrogen production may not dawn until 2030s. Nevertheless, despite of its current 83 

high cost, our future can be surrounded with clean hydrogen that would be affordable soon, which is mainly 84 

dependent the source of hydrogen come from.  85 

Presently, hydrogen is mainly produced from industrial natural gas, which is mainly responsible for CO2 86 

emission known as “grey hydrogen”. Another cleaner version of hydrogen is “blue hydrogen”, of which the 87 

hydrogen is generated from carbon emission captured, stored and reused. Among all cleaner hydrogen, “green 88 

hydrogen” is the cleanest form of hydrogen produced from renewable sources without emitting CO2. Currently, 89 

grey hydrogen is inexpensive than other two types. However, the increase of the carbon footprint cannot be 90 

ignored and to be accepted as a norm. In contrast, the price of blue hydrogen is mainly depending on natural gas 91 

price besides the carbon capture store and reuse cost. In present scenario, blue hydrogen is pricier than grey 92 

hydrogen in Europe, but it is expected that the price will reduce if the price of CO2 emission increases in the 93 

future. Furthermore, when the process of carbon capture is used, and storage process is scaled up, the blue 94 

hydrogen will be cheaper. 95 

For the production cost of green hydrogen, there are several factors, which influence the process cost. 96 

One of them is electrolysis process cost using water as renewable energy source. The global electrolysis capability 97 

is inadequate as well as it is still expensive in nature. It is reported in IEA 2019 report that most of the industrial 98 

experts are expecting that the electrolysis capacity will significantly decrease in future and will reduce the cost 99 

down to 70%, to be the same as the cost of solar and wind energy, which has come down during the past decade.  100 

Reforming is a well-developed thermal technology in which the desired product is mainly hydrogen (H2) 101 

with carbon dioxide (CO2), carbon monoxide (CO) and methane (CH4) being the usual side products. This could 102 

be considered as the ‘blue’ hydrogen technology as the reforming process is still releasing the CO2, but it is a 103 

derivative from the plants and biomass, and hence the CO2 released shall revolve in its own cycle. The reformer’s 104 

effluents can be varied either thermodynamically or by using different types of catalysts to obtain a high yield of 105 

H2 or syngas. To date, many reforming processes utilizing oxygenated hydrocarbons have been researched. 106 

Several reviews has been reported on various technologies [11,12]. These include dry gas reforming, also known 107 

as CO2 reforming, steam reforming, hydrothermal reforming (also known as aqueous phase reforming), partial 108 

oxidation and autothermal reforming [13-15]. Among the growing interests of oxygenated hydrocarbons 109 

undergoing reforming technologies are the short chain alcohols (monohydric alcohols), such as methanol and 110 
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ethanol (or bio-ethanol) [16], and polyhydric alcohols, such as glycerol [17,18]. The biomass oil (bio-oil), which 111 

is obtained via pyrolysis activity, may also be used to undergo the reforming process, however, the bio-oil consists 112 

of a more complex mixture that may include aldehydes, ketones and carboxylic acids [19-21]. Most of these 113 

mentioned oxygenates can be obtained from biomass derivative products [22,23]. Glycerol (C3H8O3), as an 114 

example, is a by-product of biodiesel production [23,24]. Glycerol is widely used in many applications including 115 

personal care, food, oral care, tobacco, polymer and pharmaceutical applications. However, the crude glycerol 116 

that is obtained from biodiesel production has to undergo an energy intensive distillation process to purify glycerol 117 

to an acceptable purity, which is costly [23]. Avasthi et al. [24] reported that, at the moment, biodiesel production 118 

is costlier than the petroleum diesel, and that one of the ways to reduce the cost is to utilize the by-product 119 

(glycerol) effectively, which is further supported by Quispe et al. [25].  120 

There are still many challenges that have not been fully addressed in catalysis and reaction engineering 121 

of oxygenates, such as the most effective reformer design, its performance efficiency as well as the catalyst 122 

development. In terms of the technical aspects, among the challenges that are yet to be tackled at this stage include 123 

the deactivation, resulting from coking of the catalyst, metal sintering of the catalysts at high temperature, high 124 

CH4 selectivity that leads to difficulties in product separation and non-ideal reactors. Other challenges may 125 

comprise determining the mechanisms and kinetics of the process as well as intensifying the conventional 126 

technology to accelerate the hydrogen production. Although some of the catalysts may give high yield and 127 

selectivity of the desired products, the cost may be expensive and unfeasible to be utilized on an industrial scale.  128 

This comprehensive review will provide a broad view of the previous works carried out by other 129 

researchers focusing on oxygenated hydrocarbons of choice, reforming technologies, thermodynamic analyses of 130 

respective reforming technologies, catalyst and reactor development associated with reforming reactions, and, 131 

finally, the challenges in the reforming of oxygenated hydrocarbons.  132 

2. Reforming Technologies 133 

 Reforming is a well-developed technology for converting hydrocarbon into molecular hydrogen, and 134 

carbon dioxide or syngas (hydrogen and carbon monoxide) at a high temperature of usually between 400 to 800oC. 135 

Generally, several main reactions occur during the reforming process. However, it is vital to be aware that 136 

reforming technology is highly dependent on the type of reactant used during the process. Hydrogen (H2) and 137 

carbon dioxide (CO2) are normally released as the main products of a full reactant conversion. However, there are 138 
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times that carbon monoxide (CO) and methane (CH4) may also be produced during the process. To date, 139 

considerable reforming research and developments have been implemented. These include steam reforming, dry 140 

gas reforming, also known as CO2 reforming, hydrothermal reforming (also known as aqueous phase reforming), 141 

partial oxidation and autothermal reforming. Fig. 2 illustrates the overview of reforming technologies and catalyst 142 

development, focused in this review.143 
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Fig. 2. The overview of reforming technologies, catalysts and its applications.157 
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2.1. Oxygenates for Reforming Technologies 158 

 Oxygenated hydrocarbons are considered to be one of the potential sources of fuel for the reforming 159 

technology to complement the utilization of natural gas (methane) [26].  The growing interest in oxygenated 160 

hydrocarbons includes the short chain alcohols (monohydric alcohols), such as methanol and ethanol (or 161 

bioethanol), and polyhydric alcohols, such as glycerol, due to their availability from bio-derivative resources, 162 

which means that they can be sustainably produced [27].The biomass oil (bio-oil), which is obtained via pyrolysis 163 

of lignocellulosic biomass, may also be reformed [28]. The bio-oil may include water, lignin fragments, aldehydes, 164 

carboxylic acids, carbohydrates, phenols, furfurals, alcohols, and ketones; however, the reactions involved are 165 

complex and may lead to deactivation via coking of the catalyst [29]. For the purpose of this review, particular 166 

attention is focused on four main alcohols forming a series of poly-ols homologues: ethanol (mono-ol), ethylene 167 

glycol and propylene glycol (1,2-propane diol) forming di-ols and glycerol (tri-ols) and some other oxygenates 168 

such as acetone, acetic acid and phenols. Fig. 3 shows commonly used oxygenates produced through chemical 169 

process and biomass for reforming technologies reported in various literatures. 170 

 171 

Since the steam reforming process is an endothermic process, which requires high temperature [30], it is 172 

highly beneficial to use oxygenated hydrocarbons as the fuel source to complement the amount of heat used, and, 173 

ultimately, save the heating cost. Among the alcohols that are beneficial for reforming is ethanol. Ethanol 174 

(C2H5OH) has a relatively high hydrogen content, is widely available, non-toxic and can be stored and handled 175 

safely [13]. Several researches have been conducted for hydrogen production using ethanol and methanol or 176 

polyhydric alcohols. For example, Hou et al. [31]  stated in his review on steam reforming of ethanol that the 177 

production of hydrogen from ethanol is considered as most favorable technique for renewable and sustainable 178 

energy development. Moreover, operating conditions, the production yield of hydrogen mainly depends on nature 179 

of catalysts selected.  180 

 181 

Glycerol is one of the potentials oxygenates for reforming techniques to produce hydrogen. Recently, 182 

with the increased production of biodiesel, a surplus of glycerol is expected in the world market, and, therefore, 183 

it is essential to find useful applications for glycerol [24]. At present, most of the crude glycerol obtained from 184 

biodiesel plants is sent to water treatment for digestion, however, this process is slow, expensive and has low 185 

yield. By observing the current condition, it is obvious that there is a major need to find an alternative use for 186 

glycerol.  187 
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Another two more components that are of interest are ethylene glycol (C2H6O2) and 1,2-propane diol 188 

(C3H8O2), also known as propylene glycol. These polyols are part of the glycerol building block. At the industrial 189 

scale currently, the widely used method of ethylene glycol production is via non-catalytic thermal hydrolysis of 190 

ethylene oxide, which is a product of the direct oxidation of ethylene in air or oxygen. Propylene glycol has a 191 

similar property to ethylene glycol, as reported by Sullivan [32]. In addition, propylene glycol is readily 192 

biodegradable. Sullivan further adds that direct hydrolysis of propylene oxide with water is the only practical and 193 

industrially accepted method for propylene glycol production. 194 

Acetone is produced through cumene process which produced phenol and acetone as the desired products 195 

[33]. Approximately one mole of acetone is produced for one mole of phenol. The demand of phenol in industry 196 

lead to higher production of phenol as well as acetone. Therefore, extensive research should be done to convert 197 

acetone into valuable gas and liquid products. Acetic acid is the simplest carboxylic acid produced from 198 

homogeneous catalytic carbonylation of methanol under mild operating conditions [34]. A recent research has 199 

been reported on catalytic reforming of wood vinegar, which shows high hydrogen production over Ni based 200 

catalysts [35].201 
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 202 

Fig.3. Commonly used oxygenates for reforming technologies reported in literatures.203 
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2.2. Steam Reforming 204 

 Steam reforming is the most common and deep-rooted reforming technology and is well developed in 205 

the petrochemical industry to convert natural gas (mainly methane) into hydrogen. This reaction is endothermic 206 

in nature. Many research works have focused on improving the performance of this technology using other 207 

hydrocarbons, e.g. oxygenated hydrocarbons (e.g. methanol, ethanol, glycerol, dimethyl ether, acetone and acetic 208 

acid) or heavier hydrocarbons (C3 – C10 components).  209 

For oxygenated hydrocarbons, the stoichiometric reaction mechanism is as follows: 210 

𝐶𝑥𝐻𝑦𝑂𝑧 + (2𝑥 − 𝑧)𝐻2𝑂 → 𝑥𝐶𝑂2 + 
2(2𝑥−𝑧)+𝑦

2
𝐻2                                                     (1) 211 

In a complete conversion of an oxygenated hydrocarbon, the reforming reaction is normally accompanied by a 212 

water gas shift reaction, as follows: 213 

𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2    (𝛥𝐻298𝐾
𝑜  = -41.2 kJ/mol)                  (2) 214 

Steam reforming is usually carried out at high temperature (400 – 800oC) and atmospheric pressure, but, 215 

sometimes, at elevated pressure for industrial practice [36]. The operating temperature depends on the type of 216 

reactants of which higher hydrocarbon chains would require a higher reaction temperature for better conversion. 217 

Nonetheless, this is limited to the ability of the catalyst (usually a metal catalyst) to withstand the temperature 218 

from sintering. Although this technology is highly preferred since it is an established technology with minimum 219 

by-products, this process requires intensive energy input to sustain the operating temperature. 220 

The parametric effect of reforming conditions such as temperature, space velocity, steam/biomass ratio 221 

play an important role in catalytic process of steam reforming of biomass. In addition, the challenges of this 222 

technology are often associated with catalyst deactivation resulting from metal sintering at high temperature as 223 

well as coking, which is also linked with thermodynamic limitations and catalyst activity. For most of the 224 

oxygenated hydrocarbons, it is common to have a lower hydrogen selectivity, which is associated with 225 

decomposition of components at high temperature, dehydration resulting from insufficient steam and 226 

dehydrogenation. These side reactions may lead to the formation of alkanes, alkenes, aldehydes and ketones, for 227 

which coke may finally form on the catalyst surface, hence contributing to catalyst deactivation. Table 1. Illustrate 228 

the glycerol steam reforming (GSR) using various catalysts and their optimized conditions. 229 
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Taking ethanol as an example of oxygenated hydrocarbons for steam reforming reaction will generally 230 

follow this stoichiometric reaction: 231 

 +3𝐻2𝑂 → 6𝐻2 + 2𝐶𝑂2  (𝛥𝐻298𝐾
𝑜  = 174kJ/mol)                         (3)  232 

 However, this is not a straightforward reaction as there are several intermediates formed during this 233 

process depending on the catalyst used and the thermodynamic properties. Casanovas et al. [37] and Zhang et al. 234 

[38] reported that during the reforming process, ethanol is highly favored to undergo ethanol dehydrogenation, 235 

which forms acetaldehyde as the reaction intermediate. This is possible since dehydrogenation of ethanol, even 236 

though it is an endothermic reaction, is at a lower magnitude compared to the endothermic steam reforming 237 

process, and thus the choice of catalyst is highly crucial to route the reaction to the desired products. 238 

Dehydrogenation of ethanol follows this stoichiometric reaction [39]:  239 

𝐶2𝐻5𝑂𝐻 → 𝐶𝐻3𝐶𝐻𝑂 + 𝐻2   (𝛥𝐻298𝐾
𝑜  = 68.9 kJ/mol)                 (4) 240 

                                          241 

Acetaldehyde undergoes decomposition to methane and carbon monoxide, respectively: 242 

𝐶𝐻3𝐶𝐻𝑂 → 𝐶𝐻4 + 𝐶𝑂   (𝛥𝐻298𝐾
𝑜 = -19.2 kJ/mol)                     (5)  243 

Otherwise, acetaldehyde may undergo steam reforming, as follows: 244 

𝐶𝐻3𝐶𝐻𝑂 + 𝐻2𝑂 → 3𝐻2 + 2𝐶𝑂  (𝛥𝐻298𝐾
𝑜   = 296.5 kJ/mol)                    (6)  245 

If reaction (5) has high methane selectivity, eventually, CH4 will undergo steam reforming to produce hydrogen 246 

with CO2 and/or CO, as shown in equations 7 and 8. CO will further undergo water gas shift reaction (WGS) to 247 

produce CO2 and H2, as shown earlier in equation (2).  248 

𝐶𝐻4 + 2𝐻2𝑂 ↔ 𝐶𝑂2 + 4𝐻2     (𝛥𝐻298𝐾
𝑜   = 165 kJ/mol)               (7)  249 

𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2    (𝛥𝐻298𝐾
𝑜   = 206 kJ/mol)                 `          (8)  250 

 The temperature range for operating ethanol steam reforming is quite wide, ranging from 300 – 650oC 251 

[40-42,38]. With the presence of a catalyst, it is possible to achieve complete conversion of ethanol at 350oC and 252 

at atmospheric pressure, whilst a non-catalytic reaction may require a higher temperature for a complete 253 
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conversion [42]. Glycerol steam reforming research work has been reported by many researchers [43-46] in last 254 

decades. Glycerol steam reforming follows this stoichiometric reaction: 255 

+3𝐻2𝑂 → 3𝐶𝑂2 + 7𝐻2 (𝛥𝐻298𝐾
𝑜   = 128 kJ/mol)                       (9)                      256 

 257 

 There are a few possible routes of reactions, depending on the type of catalyst and conditions provided 258 

to the system, e.g. enough steam to fuel ratio as well as operating temperature. However, most of the research 259 

works reported that glycerol decomposed into acetaldehyde, propanal, acetone, acrolein and other short chain 260 

alcohols, resulting from competing dehydration and dehydrogenation [47]. Chiodo et al. [48], however, reported 261 

that glycerol underwent the phenomenon of pyrolysis at high temperature in which it was decomposed into 262 

primary and secondary pyrolysis products prior to reaching the catalyst surface. Thus, reaction (2), (8) and glycerol 263 

decomposition, as shown in equation (10), may occur apart from the glycerol steam reforming reaction: 264 

𝐶3𝐻8𝑂3  → 4𝐻2 + 3𝐶𝑂                (𝛥𝐻298𝐾
𝑜   = 251 kJ/mol)             (10) 265 

Other possible decomposition reaction resulting from dehydration of glycerol to 3-hydroxypropanal, which 266 

becomes the precursor of acrolein formation [49]:  267 

  
𝑑𝑒ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛
→          +  𝐻2𝑂   (𝛥𝐻298𝐾

𝑜    = 450 kJ/mol)    (11) 268 

 
𝑑𝑒ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛
→          + 𝐻2𝑂   (𝛥𝐻298𝐾

𝑜    = -36 kJ/mol)                     (12) 269 

Slinn et al. [50] demonstrated that steam reforming of pure glycerol and raw glycerol from a biodiesel 270 

plant produces hydrogen. The reaction pathways, as adapted from  271 

Sutton et al. [51], are shown as follows with the respective reaction enthalpy (𝛥𝐻298𝐾
𝑜 ): 272 
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Recently, glycerol steam reforming has been researched under supercritical water conditions with or 273 

without the presence of a catalyst [52-58]. Markoḉiḉ et al. [56], in their review article, explained that supercritical 274 

water condition means the operating pressure and the temperature exceeds the water critical point, i.e. Tc = 647 K 275 

(274oC) and Pc = 221 bars. They highlighted several researches works conducted earlier in which supercritical 276 

water reforming of glycerol may yield lighter molecular weight aqueous phase hydrocarbons and gases within the 277 

temperature range of 300 to 600oC. Most of the work reported the presence of acrolein and acetaldehyde, apart 278 

from the production of hydrogen, CO2, CO, and other CxHy gases.  279 

 + 2𝐻2𝑂 →  2𝐶𝑂2  +  5𝐻2  (𝛥𝐻298𝐾
𝑜    = 85.9 kJ/mol)            (21) 280 

 To date, in respect of propylene glycol, although none of the work mentioned above covered propylene 281 

glycol steam reforming or other reforming technologies, it is a possible reaction with the following theoretical 282 

stoichiometric equation: 283 

+ 4𝐻2𝑂 →  3𝐶𝑂2  +  8𝐻2               (22) 284 

 The maximum hydrogen molecular yield possible to be achieved in propylene glycol steam reforming is 285 

2.67 mol/mol C, which is higher than ethylene glycol (YH2 = 2.5) and glycerol (YH2 = 2.33), but relatively lower 286 

than ethanol (YH2 = 3). Propylene glycol however has been researched to be produced by glycerol, via 287 

𝐶3𝐻8𝑂3  +  3𝐻2𝑂 →  7𝐻2  +  3𝐶𝑂2  +128 kJ/mol             (13) 

 𝐶3𝐻8𝑂3 →  4𝐻2  +  3𝐶𝑂    +251 kJ/mol             (14) 

𝐶 +  𝐻2𝑂  ↔  𝐶𝑂 + 𝐻2    +131 kJ/mol             (15) 

𝐶𝑂 + 𝐻2𝑂  ↔   𝐶𝑂2  +  𝐻2      -41 kJ/mol             (16) 

𝐶 +  2𝐻2  ↔  𝐶𝐻4    +75 kJ/mol             (17) 

𝐶𝑂 +  3𝐻2 ↔  𝐶𝐻4 + 𝐻2𝑂   -206 kJ/mol             (18) 

𝐶𝑂2  +  4𝐻2  ↔   𝐶𝐻4  +  2𝐻2𝑂     -165 kJ/mol             (19) 

𝐶 +  𝐶𝑂2  ↔   2𝐶𝑂    +172 kJ/mol             (20) 
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hydrogenolysis [59]. All four oxygenated hydrocarbons chosen to make up a series of homologues, which form 288 

an interesting set for investigation.  289 

Hydrogen production through reforming technology has gained interests many of researches as this 290 

technology utilize oxygenated hydrocarbons such as ethanol, glycerol and acrolein which is produced as by-291 

products in some industry as the raw materials. There are several reforming technologies studied which are steam 292 

reforming, dry reforming, aqueous phase reforming, partial oxidation and autothermal reforming. However, these 293 

reforming processes are prone to undergo other side reaction such as decomposition, dehydration and 294 

dehydrogenation which can cause coke formation and catalysts deactivation at high temperature. Therefore, the 295 

selection of the catalyst is very important to prevent catalyst deactivation and to ensure high selectivity of 296 

hydrogen. The thermodynamic properties such as steam to fuel ratio (steam reforming and APR), temperature and 297 

oxygen to carbon ratio (in autothermal reforming) also need to be considered for the processes. Steam reforming 298 

of oxygenated hydrocarbons is extensively studied by many researchers over the other reforming technologies as 299 

it is the most feasible reforming technology with high hydrogen selectivity and minimum production of by-300 

products. Oxygenated hydrocarbons, mainly from polyol group has gain interest as there is oxygen atom present 301 

that weakens the C-C bonds which cause easier splitting between H and CO. A general reaction routes are 302 

represented for glycerol in Fig. 4. Based on the literature, it can be seen that ethanol and glycerol are the common 303 

polyols studied for the reforming technology. However, propylene glycol was less studied for the reforming 304 

technology.  305 

Very few studies have been reported for steam reforming of acetone i.e. one of the major by-products of 306 

bio-oil. This might be due to very low boiling point and high vapor pressure. Recently, the study was performed 307 

by Elias et al. [60] investigated the Ni/ZnO/CeO2 based catalysts for the steam reforming of acetone for the 308 

production of hydrogen. The study revealed that Ni/ZnO with in cooperation of CeO2 performed better than barely 309 

Ni/ZnO. Elias et al. [60] particularly investigated in detail the carbon deposition and catalytic behavior. 310 

Ni/xCeZnO firstly produced low coke deposition compared to Ni/ZnO. Secondly, the increase of CeO2 loading 311 

significantly increased the hydrogen production and changed the carbon nature from hard carbon to carbonaceous 312 

graphite.  313 

Some other catalysts such as Mn, Fe, Ni, Co, Cu and Zn were investigated for aqueous phase reforming 314 

of acetic acid and acetone by Li et al. [61] recently. Based on Li et al. screening of different metal catalysts, it was 315 

reported that Mn, Fe and Zn based catalysts were not significantly active for steam reforming of acetone. This 316 
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result mainly due to low capacity of metals to break the C-O bond. According to Li et al. [61] findings, Co and 317 

Cu based catalysts were found to be more active only for methanol steam reforming rather than acetone. The main 318 

difference of catalytic activity of Co and Ni was also insignificant. Nonetheless, the reforming of acetone was 319 

comparatively more difficult than that of acetic acid due to large molecular size. The difference of catalytic 320 

behavior and physicochemical properties of transition metal catalysts should be considered carefully to use in 321 

steam reforming of other organic compounds such as acetone, acetic acid and methanol.  322 

One of the remaining challenges in glycerol steam reforming is high conversion versus high selectivity 323 

towards hydrogen production. From Table 1, in general, high conversion of GSR over transition metal catalysts 324 

yield less hydrogen compared to noble metal catalysts or support other than alumina. The correlation can be built 325 

among the metal support and selectivity, low hydrogen yield and high conversion will lead the reaction to other 326 

side reactions or by products. High selectivity of hydrogen only can be achieved over activated carbon or modified 327 

alumina support under almost similar operating condition. The tabulated results from various literatures mainly 328 

focused on screening of catalysts under similar operating condition, which gives a comprehensive outcome to 329 

select the most suitable catalysts.  330 

Suitable vaporization temperature prior to entering the main reactor must also be carefully selected, as 331 

high vaporization temperature would favor the glycerol to be decomposed first into other homogeneous reaction 332 

products such as ally alcohol, acetol and acrolein[62].In addition to this, different type of promoters and supports 333 

would favor either hydrogenolysis, dehydrogenation, condensation, polymerization, hydrogenation or dehydration 334 

reactions, which can be explained from Fig. 4, using example of Ni-Ca/Al203 catalyst. As such, GSR is a delicate 335 

process, for which the kinetics need to be investigated with care prior to any pilot studies or commercialization 336 

purposes. On top of these, the crude glycerol from the biodiesel production may contain a lot more impurities with 337 

inconsistent compositions and hence making the technology is much more challenging.  338 

  339 
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Table 1. Glycerol Steam Reforming (GSR) using various catalysts and their optimized conditions. 340 

 

 

 

Catalyst 

Operating Conditions GSR 

Conversion 

 % 

H Yield 

(%)  

 

Ref 

T 

(°C) 

P 

(atm) 

FFR 

 (mL min-1) 

WGFR (h) 

wt. % 

glycerol 

10 wt% Ni/ZrO2 650   1  0.06 10  72  65 [63] 

10 wt% Ni/SiC 400 1 WHSV=33.3 h−1 9 95.2 NA [64] 

10 wt% Ni/Al 500 1 GHSV=0.95 min-1 W: 

G=3.5:1 

W: G=6:1 

25 

62 

1.2 

2.6 

[65] 

10 wt% Ni/Al 600 1 GHSV=0.95 min-1 W: 

G=3.5:1 

W: G=6:1 

56 

84 

2.2 

3.6 

[65] 

10 wt% Ni-3 wt% 

Mg/Al 

500 1 GHSV=0.95 min-1 W: 

G=3.5:1 

W: G=6:1 

40 

70 

1.8 

2.9 

[65] 

10 wt%Ni-3 wt% 

Mg/Al 

600 1 GHSV=0.95 min-1 W: 

G=3.5:1 

W: G=6:1 

61 

92 

2.5 

4 

[65] 

10 wt% Ni-5 wt% 

Mg/Al 

500 1 GHSV=0.95 min-1 W: 

G=3.5:1 

W: G=6:1 

32 

64 

1.4 

2.5 

[65] 

10 wt% Ni-5 wt% 

Mg/Al 

600 1 GHSV=0.95 min-1 W: 

G=3.5:1 

W: G=6:1 

56 

82 

2.2 

3.8 

[65] 

10 wt% Ni-10 wt% 

Mg/Al 

500 1 GHSV=0.95 min-1 W: 

G=3.5:1 

W: G=6:1 

26 

30 

1.2 

1.4 

[65] 

10 wt% Ni-10 wt% 

Mg/Al 

600 1 GHSV=0.95 min-1 W: 

G=3.5:1 

44 

78 

2 

3.4 

[65] 
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W: G=6:1 

Ni/γ-Al2O3 400-

600 

1 W/F=1.05 mg min 

ml-1 

20 42-90 

 

22-80 [66] 

Ni/B2O3-Al2O3 400-

600 

1 W/F=1.05 mg min 

ml-1 

20 20-70 10-60 [66] 

Ni/ La2O3-Al2O3 400-

600 

1 W/F=1.05 mg min 

ml-1 

20 72-92 

 

46-70 [66] 

Ni/Al 400-

750 

 

1 0.12 

WHSV=50000 

mL g-1 h-1 

20 85-95 

 

0.4-4.4 

 

[67] 

Ni/modAl 400-

750 

 

1 0.12 

WHSV=50000 

mL g-1 h-1 

20 88-95 

 

0.8-6 

 

[67] 

Ni/LaAl 450-

750 

1 0.12 

WHSV=50000 

mL g-1 h-1 

20 18-90 5-50 [68] 

Ni/AC 650 1 0.03 30 40 44 [69] 

NiY/AC 650 1 0.03 30 30 80 [69] 

NiLa/AC 650 1 0.03 30 70 80 [69] 

NiMg/AC 650 1 0.03 30 85 85 [69] 

Rh/NiMg/AC 650 1 0.03 30 82 90 [69] 

        

ND: Not determined 341 

WHSV: Weight hour space velocity 342 

GHSV: gas hour space velocity 343 
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 344 

Fig.4. Proposed reaction pathway to the production of primary products in glycerol steam reforming over Ni based catalyst. 345 
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Conclusively, very few literatures are available for reforming of acetone for hydrogen or value-added 346 

chemical production. From above discussion it can be concluded that acetone conversion to hydrogen and other 347 

oxygenates mainly depends on metallic state, type of metal doping, acidity of support and reaction temperature. 348 

It can also be concluded that thermodynamic equilibrium for the reduction of acetone mainly depends redox 349 

potential and reaction temperature. Several reports highlighted the metallic interaction and significance of metal 350 

and support interaction for acetone reforming, and it can be concluded that Ni is essential part of catalytic design 351 

for acetone reforming. Whereas, several compositions such as Ni-Mo/Al2O3, Ni, Co, Mg, different Ni oxides, 352 

mixed oxide, spinel structure, NiZnO/CeO, Mn, Fe, Cu, Zn, Cu, CuPt and Pt have been investigated by different 353 

researcher. Conclusively, each metal behaved differently for reforming of acetone depends on their stability, coke 354 

formation, deactivation and synthesis design. Among all the reported metals Mn, Fe, and Zn were revealed as not 355 

significantly active for reforming of acetone. Whereas, Ni, Co, Pt, Cu were reported as more significant metals 356 

for acetone reforming for hydrogen production.  Fig. 5 represented a general chemical reactions (resketched) 357 

occurs during glycerol hydrogenolysis as summarized by  (a) Miyazawa et al. and (b) Bildea et al [70,71]. 358 
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Fig. 5. Chemical reactions occurs during glycerol hydrogenolysis as summarized from (a) Miyazawa et al. and 360 

(b) Bildea et al. [70,71].361 

2.3. Catalytic Reforming 362 

 Catalytic reforming in a petroleum refinery is usually operated near the range of 500oC and the reactor’s 363 

operation pressure is varied according to the high-pressure processes (20-50 bar), medium pressure (10-20 bar) 364 

and low-pressure (3-10 bar), depending on the feedstock quality [72]. To date, very few research has been carried 365 

out on the selected oxygenated hydrocarbons catalytic reforming, specifically, without steam addition; however, 366 
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several works were published earlier with reference to glycerol degradation [73], glycerol hydrogenolysis [74,59], 367 

glycerol and bio-oil valorization to bio-fuels [75], as well as aqueous phase reforming, which will be discussed in 368 

section 2.6 It is anticipated that via catalytic reforming of oxygenated hydrocarbons, a large amount of hydrogen 369 

may be produced as its by-products, however, this is highly demanded for hydrodeoxygenation in bio-fuel 370 

refineries [76,77].   371 

2.4. Autothermal Reforming 372 

 Autothermal reforming, also called oxidative steam reforming, is a combination of a partial oxidation 373 

process, which is a highly exothermic reaction, and steam reforming as an endothermic reaction [78].  374 

Autothermal, emerging from the idea of self-sustained reforming, is an attractive option since it has higher energy 375 

efficiency, improves the system temperature control, reduces the formation of hot spots and avoids catalyst 376 

deactivation by sintering or carbon deposition [78]. Aartun et al. [79] reported that autothermal reforming or 377 

oxidative steam reforming has the main advantage of initial oxidation reaction that is extremely exothermic, in 378 

which it can generate heat for the subsequent endothermic reforming reactions. Thus, this technology has high 379 

potential for saving heating costs that complements the amount of hydrogen produced. However, autothermal 380 

reforming poses difficulty in controlling for a steady-state operation, and, therefore, utilization of the catalyst is 381 

under optimized [80]. 382 

 The efficiency of autothermal reforming is always countered by lower hydrogen yield compared to steam 383 

reforming due to its thermodynamic limitation. Another setback is the cost of the separation process if air is used. 384 

Otherwise, if pure oxygen is used, there is a requirement to set up an additional plant for oxygen generation, hence 385 

incurring very high cost [36]. A general stoichiometric reaction for a complete conversion of an oxygenated 386 

hydrocarbon is as follows: 387 

𝐶𝑥𝐻𝑦𝑂𝑧 + [2𝑥 − (𝑧 + 1)]𝐻2𝑂 +
1

2
𝑂2 → 𝑥𝐶𝑂2 +

2[2𝑥−(𝑧+1)]+𝑦

2
𝐻2                                   (23) 388 

 Taking the example of ethanol as one type of oxygenated hydrocarbon undergoing autothermal reforming 389 

process, ethanol is converted to the products, following the combination of partial oxidation of ethanol and steam 390 

reforming of ethanol, as follows: 391 

Partial oxidation:  392 

𝐶2𝐻5𝑂𝐻 + 
1 

2
𝑂2  →  2𝐶𝑂 +  3𝐻2                 (24) 393 
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Combining with equation 23, autothermal reforming of ethanol (ATRE) is as follows:: 394 

𝐶2𝐻5𝑂𝐻 + 
1

2
 𝑂2  +  2𝐻2𝑂 →  2𝐶𝑂2  +  5𝐻2                  (25) 395 

 The autothermal reforming of ethanol is usually operated between 500 – 800oC and it operates at 396 

atmospheric pressure [81].  The feedstock, which consists of the mixture of hydrogen and ethanol, is vaporized 397 

between 180 and 200oC [82]. Prior to feeding the reactants into the reactor, the mixture is injected with oxygen, 398 

which heats up the reactor and thus enables it to reach a higher temperature range.   399 

 In our recent studies, the thermodynamic analysis of autothermal reforming of oxy alcohols consist of 400 

homologues series of “OH” group such as ethanol, propylene glycol, ethylene glycol and glycerol were 401 

studied[83-86]. The main concern of this study was to compare the effect of thermoneutral condition where no 402 

external air/oxygen supplied for the reaction to sustain and controlled amount of air/oxygen supplied. Our findings 403 

were included that the higher number of oxygen atoms in these homologues’ molecule, the higher tendency of the 404 

reaction to be sustained at the desired temperature, and thus it only requires lesser amount of air for heating. The 405 

hydrogen selectivity however depends on the ratio of hydrogen atoms with respect to the oxygen atoms in each 406 

molecule. The presence of air however, though providing extra heating to the reactor, is offset by a lower hydrogen 407 

production[87]. 408 

Veiga et al.[69] investigated the production of hydrogen rich gaseous mixture from steam and oxidative 409 

reforming of crude glycerol over Ni (12 wt.%)-La2(Ce1-xZrx)2O7 (x=0, 0.5, 1). The catalysts were prepared by 410 

polymerized complex method based on the reaction route. The steam reforming was performed at 650ºC in fixed 411 

bed reactor with feed 30wt.% glycerol solution. The catalysts with highest basicity (Ni-La2(Ce0.5Zr0.5)2O7 was 412 

proven to be the best catalyst in terms of activity. Oxidative steam reforming was successfully achieved with 413 

highest hydrocarbon yield over all the catalysts. Whereas, the catalyst containing both Ce and Zr showed best 414 

catalytic performance for hydrogen production and low deactivation of the catalyst.  415 

2.5.  Dry Reforming 416 

 Dry reforming, also known as carbon dioxide reforming, is a reforming reaction between oxygenates and 417 

carbon dioxide to produce syn gas, i.e. hydrogen and carbon monoxide. To date, in comparing among all 418 

oxygenates selected; only ethanol has been researched so far in the context of dry reforming [88,89]. Although 419 

research on carbon dioxide reforming of ethanol, known as dry reforming of ethanol (DRE), is not as established 420 

as SRE and ATRE, there is a growing interest in this reforming technology due to cheap reactant costs and a 421 
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commitment to the reduction of CO2 in the environment, hence converting the syngas into a valuable product [39]. 422 

DRE is a strongly endothermic reaction (∆Ho
298K= 296.7 KJ/mol). The stoichiometric reaction of DRE is as 423 

follows: 424 

𝐶2𝐻5𝑂𝐻 + 𝐶𝑂2  →  3𝐶𝑂 +  3𝐻2                 (27) 425 

 However, the above reaction needs to be carefully controlled since there are many competitive side 426 

reactions taking place, such as dehydrogenation of ethanol to acetaldehyde, dehydration of ethanol to ethylene or 427 

decomposition of ethanol into CO, CO2 or acetone. Thus, enough CO2 supply is highly crucial to ensure optimum 428 

H2 production. DRE may take place between 500 – 1100oC with the optimum range reported to be between 950 429 

– 1050oC. It is important to operate DRE at a high temperature to reduce coke formation, and, ultimately, high H2 430 

selectivity [39]. 431 

In recent studies another experiment was designed by Moretti et al. [90] to study the ethanol steam reforming by 432 

using Nickel and bimetallic Ni-Co supported on ceria zirconia mixture. The investigation revealed that ceria and 433 

zirconia facilitated the metal oxide reduction of metal supported oxide phases. Among all the reported catalysts 434 

formulation  Moretti et al. [90] suggested the CZ91NiCo catalysts showed the high ethanol conversion to hydrogen 435 

and selectivity towards CO2  was found to be more than 500°C [90]. Recently, our studies showed that the 15% 436 

of NiCaO give the highest hydrogen yield and glycerol conversion that peaked at 24.59 % and 30.32% [91]. 437 

2.6.  Partial Oxidation 438 

 Partial oxidation is another reforming technology to convert the oxygenated hydrocarbons into hydrogen 439 

and CO2 or syn gas. In this reforming technology, the reaction is exothermic in nature, where it is not required to 440 

provide external heating other than the supply of air or pure oxygen. Complete oxidation (air supply in excess) 441 

will burn the fuel or reactant completely, hence reducing the amount of hydrogen produced. Therefore, the amount 442 

of air or oxygen supplied may need to be carefully controlled to yield the optimum products. The stoichiometric 443 

equation of partial oxidation is as follows and applies to all oxygenates: 444 

𝐶𝑥𝐻𝑦𝑂𝑧 + 
(2𝑥−𝑧)

2
𝑂2 → 𝑥𝐶𝑂2 +

𝑦

2
𝐻2                 (28) 445 

 In order to obtain syn gas (CO and H2), ethanol and propylene glycol would require ½ mol of oxygen 446 

additionally, which is less than what is required for conversion to CO2 and H2.  However, ethylene glycol and 447 

glycerol stoichiometrically would not require any additional air to decompose into syn gas as both O/C ratios are 448 
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1. Partial oxidation studies (thermodynamic study or experimental work) have been carried out extensively on 449 

ethanol [92-94] but very few have been conducted on glycerol [95,96] and recently one on sorbitol [97]. Catalytic 450 

partial oxidation needs to be operated at high temperature and low pressure to inhibit coke formation, and, 451 

ultimately, obtain high hydrogen selectivity [98].  452 

2.7.  Aqueous Phase Reforming 453 

 Aqueous phase reforming [99], also known as hydrothermal reforming, is the reforming in an aqueous 454 

phase. This is a reforming technology that operates in excess water content, at lower temperature (generally 455 

between 200 – 300oC) and high pressure up to 60 bars. APR is highly suitable for oxygenated hydrocarbons, 456 

mainly polyols, due to the presence of oxygen that weakens the C-C bond, and thus allows for easier splitting 457 

between hydrogen and CO. CO could further undergo the water gas shift reaction to be converted to CO2 [100]. 458 

However, for the case of typical hydrocarbons, which only contain C & H atoms, the bonding energy is greater, 459 

hence APR is not an attractive choice.  Fig. 6 shows a typical reaction pathway for reforming technology using 460 

various renewables raw materials such as bio-oil, carbohydrates and bioethanol for hydrogen production. 461 



27 
 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

Fig 6. A summary of hydrogen production using reforming technologies.474 
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In order to improve the hydrogen production and lower the CO level, in their work, Xu et al. [101] improved the 475 

alkalinity of the process, i.e. by using alkaline-based support for the catalyst. This is supported by Wen et al. [102] 476 

who, by using Pt on alkaline support, yielded a much higher hydrogen molar concentration as well as a higher 477 

hydrogen formation rate. In addition, by using acidic support, the formation of alkanes is increased. APR was also 478 

conducted in glycerol [103] and ethylene glycol [104]. Manfro and colleagues [103] outlined the reaction route 479 

of the process, which involves the breaking of C-C cleavage bonds as well as C-H bonds to form adsorbed species 480 

on the catalyst surface, especially CO (Equation 29). Once CO is adsorbed, it will undergo a water gas shift 481 

reaction, as shown in Equation 30. The reaction scheme is shown as follows: 482 

𝐶3𝐻8𝑂3  →  3𝐶𝑂 +  4𝐻2                  (29) 483 

𝐶𝑂 + 𝐻2𝑂 ↔  𝐶𝑂2  +  𝐻2                 (30) 484 

 The reaction was carried out by purging He to remove air, in which 250 mL of aqueous solution was 485 

used, consisting of either 1 or 10 wt.% of glycerol. The catalytic test was performed at 250 and 270oC, resulting 486 

in autogenous pressure of 37 and 52 atm. The maximum conversion reached during the catalytic test was 30%, 487 

within 6 reaction hours, with the hydrogen mole fraction on a dry basis being between 70 – 90%. Based on the 488 

test, they suggested that by increasing the weight percentage of glycerol from 1% to 10%, a decrease in glycerol 489 

conversion and hydrogen production was discovered. 490 

Similarly, the thermodynamic studies  of glycerol was carried out by Seretis et al. [105] via aqueous phase 491 

reforming using the Gibbs free energy minimization method. Seretis et al investigated the effects of different 492 

parameters such as water to glycerol mass ratio (W/G =4-14), temperature (3 - 227oC) and pressure ratio P=P sat 493 

H2O ¼ 1−2 for production of hydrogen, methane and carbon. The critical investigation suggested glycerol 494 

conversion reached up to 100% with hydrogen selectivity up to 70% under the broad-spectrum examination 495 

conditions. Under the similar conditions the methane formation was observed to be less at low pressure and high 496 

temperature. Since the reported results showed that methanation was thermodynamically preferred over hydrogen 497 

production. Beside this, it was also observed that glycerol conversion into carbon was found to be up to 80%. 498 

From all the investigation Seretis et al. [105] suggested that carbon can be eliminated at pressure ratio P=P sat 499 

H2O ≤1:4 and temperature values T N 126.85 oC. The overall conclusion for all investigation suggest that the 500 

optimal W/G for H2 production was found equal to 9 under thermodynamic equilibrium conditions [105].  501 

 502 
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3. Catalyst development 503 

The catalysts that can be used for other oxygenates are classified into noble metal and non-noble metal (Transition 504 

Metal) catalysts.  505 

3.1. Transition metal catalyst  506 

 A common non-noble metal catalyst that is usually used is nickel, which has been long established for 507 

natural gas reforming, with alumina (γ-Al2O3) as its support [106]. However, oxygenates can easily dehydrate and 508 

form ethylene, which can pose serious coking problems by undergoing polymerization that is promoted by the 509 

acid sites of alumina [107]. Ethanol steam reforming via Ni/Al2O3 was also studied by several researchers[108-510 

110], mainly to investigate any possibility of modification in catalysts formulations .  511 

As for glycerol, a Ni-based catalyst has also been widely used in much of the research. Sanchez et al. 512 

[111], Adhikari et al. [112] and Cheng et al. [113] demonstrated steam reforming of glycerol using a Ni-catalyst. 513 

Sanchez et al. and Cheng et al. worked on a Ni/Al2O3 catalyst. Both findings agreed that coke formation is 514 

inevitable with this type of catalyst. Sanchez and colleagues focused on a Ni catalyst with Al2O3 as support and 515 

operating at a very high steam to fuel ratio (16:1) to avoid possible dehydration. Based on the Temperature 516 

Programmed Reduction (TPR) analysis, Ni- in Al2O3 existed within three states: (i) Bulk or free NiO (< 400oC) 517 

[114] NiO bonded to Al2O3 (between 400 and 690oC) and (iii) NiO incorporated into Al2O3, i.e. formation of 518 

NiAl2O4 (> 700oC). The formation of NiAl2O4 may result in a difficulty to reduce the nickel prior to the reforming 519 

reaction. They further concluded that the catalyst deactivation was associated with the increase in the weight 520 

hourly space velocity (WHSV), i.e. operating at low catalyst loading, hence affecting the hydrogen selectivity. 521 

However, the changes of temperature (within range of 600–700oC), did not significantly affect the hydrogen 522 

selectivity. Nevertheless, a stable catalyst can be achieved for a longer period at a higher operating temperature. 523 

Researchers have focused on selectivity of catalysts towards the hydrogen production from various 524 

oxygenates, glycerol is one of them for steam reforming. Similarly, Sad et al. [115] recently investigated Pt based 525 

catalysts for glycerol steam reforming reaction for production of hydrogen. As the steam reforming reaction based 526 

on two steps firstly decomposition of glycerol and secondly water gas shift reaction (WGS). Sad et al. [115] tested 527 

Pt supported by different physiochemical properties catalysts (SiO2, MgO, Al2O3 and TiO2) for steam reforming 528 

of glycerol (10 wt.% aqueous solution). The reaction carried out at the temperature range of 300-350ºC. The 529 

glycerol conversion was found to be 100% with 78.8% hydrogen yield over Pt/SiO2. Acidic support like Al2O3 530 
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and MgO favored the adverse reaction directing towards the liquid product and coke precursors. Sad et al. [115] 531 

reported the water gas steam reaction at compatible reaction conditions over Pt/SiO2 and Pt/TiO2 and Pt/CeO2 and 532 

Pt/ZrO2 were found with highest CO conversion at 350ºC. They also tested the double bed catalytic system of 0.5 533 

wt. % Pt/SiO2 and 0.5 wt.% Pt/TiO2 to study the effect on hydrogen production. It was observed that by using 534 

double bed catalytic system the hydrogen yield increased up to 100% without deactivation on stream [115].  535 

Recently, Ochoa et al. [116] has investigated the hydrogen production in two step process, comprising 536 

of pyrolysis and subsequent steam reforming of volatiles produced during pyrolysis. Pyrolysis was performed at 537 

500°C in a conical spouted bed reactor in line with catalytic steam reforming of volatile products of pyrolysis in 538 

fluidized bed reactor at 600°Cover Ni supported catalysts. Ochoa et al. [116] reported for satisfactory conversion 539 

above 98% of volatiles with 90% hydrogen yield within first 50 minutes of time on stream. However, catalysts 540 

led to deactivation due to sintering Ni on the catalyst. Ochoa et al. [116] reported that his research team was able 541 

to decrease temperature and other reaction parameters but it ultimately lowered the hydrogen yield.  542 

Doukki et al. [117] investigated the glycerol steam reforming over Ni and NiPt/-Al2O3 catalysts in 543 

aqueous phase reforming for hydrogen production. Doukki et al. [117] actually investigated the hydrothermal 544 

stability of the catalysts that were prepared with different preparation methods i.e. solgel in basic medium and 545 

impregnation on an in-house sol gel -Al2O3 support. After the detail investigation on characterization Doukki et 546 

al. [117] revealed that sol gel impregnation method was found to be crucial in extending the catalyst life due to 547 

adequate distribution of Ni-Pt metallic particles and good thermal stability of -Al2O3 for aqueous phase reforming 548 

process. Whereas, Sol gel basic catalyst exhibited homogenous dispersion of Ni particles but unstable to show 549 

good catalytic behaviour. Among all the formulations of catalysts ASGI (Alumina SolGel Impregnation) the 550 

activity was reported as NiPt/ASGI7>NiPt/ASGI6 > NiPt/ASGI5 > NiPt/ASGB7). NiPt/ASGI7 showed good 551 

catalytic activity with stability of 56 hours of time on stream with highest glycerol conversion of 79% and gaseous 552 

products of 57% for hydrogen production.  553 

In the same way, Dou et al. [118] investigated  the effect of H2S and HCl impurities in steam reforming 554 

of naphthalene  over synthesized Ni and Fe supported over alumina catalysts and commercial catalysts. The 555 

purpose of the study was to investigate the poisoning effect of HCL and H2S on catalysts. Steam reforming was 556 

performed over 790, 850 and 900°C over synthesized and commercial catalysts. Dou et al. [118] revealed that 557 

there was no significant effect of Fe addition on steam reforming and water gas shift reaction. The main effect on 558 

catalytic behavior was mainly due to generation of active sites by H2S and HCl. He further reported that H2S 559 
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mainly effects the reforming of naphthalene compared to HCl. Similarly, poisoning was also affected by H2S not 560 

by HCl. H2S chemisorbed on Ni surface catalysts and forms NiS and start to decrease the active sites available for 561 

hydrocarbons in steam reforming. Whereas, poisoning for water gas shift reaction was affected by both H2S and 562 

HCl, and activity was completely restored by removal of H2S and HCl from gas. Dou et al. [118] further reported 563 

that H2S poisoning can be prevented by performing reforming reaction at higher temperature for naphthalene. The 564 

increase of temperature 790°C to 900°C increased the naphthalene conversion from 40% to 100%. Whereas, 565 

poisoning of water gas shift reaction of reforming of naphthalene was significantly influenced by the structure of 566 

the catalyst. Dou et al. [118] findings revealed that strong binding energy between Ni and alumina support 567 

significantly influenced the minimum loss of water gas shift reaction.  568 

Recently Arregi et al. [119] investigated the renderability of commercial Ni catalyst used in steam 569 

reforming of volatiles from pyrolysis of biomass for hydrogen production in successive regeneration cycles. 570 

Catalytic activity for steam reforming was not fully enclosed by coke combustion in first cycle mainly due to 571 

deactivation of Ni sintering but the catalyst reached a pseudo-stable state further from fourth cycle, repeating its 572 

behavior in following cycles. The commercial catalyst was reported as highly active and selective for hydrogen 573 

production. The conversion and hydrogen yield at initial time on stream decreased from first to the sixed cycle, 574 

from 99.7-90.1% and from 93.5 to 72.4% respectively. Fig. 7 shows a general representation of active metal sites 575 

of Ni-Ca/ Al2O3 catalyst in GSR reactions.  576 



32 
 

 577 

Fig. 7. Schematic of Ca doped Nickel alumina surface activity from glycerol steam reforming reaction.578 
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3.2. Noble Metals and Other Catalysts 579 

Apart from nickel[120], noble metal catalysts such as Rh[48], Ru[121], Pt[122], Pd[123], and Ir[124] 580 

have also been widely investigated. It was claimed that the Rh catalyst is among the most efficient catalysts for 581 

the reforming process as experimented by Cai et al. [82]. Though, alumina as an excellent support, CeO2 is another 582 

support that has gained high interest. CeO2 is claimed to be a better promoter that can lead to higher dispersion of 583 

metal particles and strong interaction between the metal and the support. Improved stability has also been reported 584 

[125]. However, a frequent start-up and shutdown of the system may lead to the -CeO2 deactivation due to the 585 

formation of carbonate on the surface of the catalyst [126]. The use of noble metals has also been reported by 586 

several authors in either ethylene glycol or glycerol reforming technologies, such as Dauenhauer et al. [127] on 587 

autothermal reforming of both components (Rh, Rh-Ce, Rh-La, Pt with ceramic as support), and Chiodo et al. 588 

[48] on the comparison of Rh- with Ni- performance on glycerol steam reforming.  589 

Lately, Ramesh et al. [128] further studied the steam reforming of glycerol to hydrogen at low 590 

temperature by using copper decorated perovskite catalysts under the reaction condition of vapor phase. In 591 

comparative studies of all catalysts, LaNi0.9Cu0.1nO3 showed best conversion (73%) of glycerol and selectivity 592 

for (67%) hydrogen. The catalyst characterization was performed before and after the reaction. During the TPRO-593 

H2, it was observed that perovskite structure decomposed to La2O3, Ni and Cu. The nano particles were generated 594 

by the deposition of Cu on Ni. The decoration of Cu increased the reduction of active Ni species with adequate 595 

basicity. It was observed that the activity of catalysts decreased with increment of Cu concentration. 596 

(LaNi0.9Cu0.1O3) was found to be active till 24 h at 650ºC. The researchers observed that TGA analysis showed 597 

that the copper decorated catalysts have enough resistance for coke formation as compared to perovskite catalysts. 598 

It was determined by the authors that the accumulation of copper in perovskite oxide and generation of Cu/Ni 599 

nano particles enabled the dehydrogenation and decomposition of glycerol in steam reforming [128].   600 

 Li et al. [129] performed the ethanol steam reforming over BaZr0.1Ce0.7 Y0.1Yb0.1O3ed catalyst over 601 

Ni supported catalysts [129]. The catalyst is reported for 100% conversion into various gaseous products such as 602 

H2, CO, CO2 and CH4 depending on reaction temperature range between 500-750ºC. The hydrogen yield of 603 

hydrogen and CO was reported as 85% only for the reaction carried out below 600ºC and decrease to 80% at 604 

650ºC and 750ºC. Li et al. [129] stated that methane amount below 10% at all temperatures. By decreasing 605 

hydrogen to ethanol ratio from 5 to 3 results in several percent increase for CO and decrease for hydrogen and 606 

CO2.      607 
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Huang et al. [130] performed the glycerol steam reforming over Ni/Al2O3 catalyst with addition of Ca-608 

Mg and La-Ce-Zr oxides as support exhibit the excellent catalytic activity for higher production of syngas. Huang 609 

et al. [130] reported CO2 <2.8% and methane (0.07%) in syngas produced via glycerol steam reforming. Author 610 

also reported that reforming gas (H2-CO2)/(CO+CO2) molar ratio was determined approximately 2.09. Author 611 

introduced methane in glycerol steam reforming system in order to inhibit the CO2 production through dry 612 

reforming. The optimized condition for syngas yield was determined as 87.7% on glycerol conversion, that was 613 

much higher than that in glycerol steam reforming without methane.  614 

Recently Remiro et al. [131] reported the deactivation mechanism of commercial catalyst Rh/CeO2-ZrO2 615 

for steam reforming of raw bio-oil. Moreover, regeneration, reusability and reason for deactivation of fresh and 616 

regenerated catalysts was also investigated in detail. Steam reforming was followed by pyrolysis oil in two unit 617 

in series as reactor under suitable temperature. Remiro et al. [131] reported that structural changes were 618 

irreversible and occurred rapidly. The deactivation selectivity affects the reforming of oxygenates from lowest to 619 

highest reactivity. Rh sintering was not significantly cause deactivation at reaction temperature; it was an 620 

unindustrialized deactivation cause at (700ºC). 621 

3.3.  Effect of promoters 622 

Promoters are usually added to the catalyst for modifying the catalytic support structure, and, hence, the electron 623 

distribution property within the catalyst system to enhance its reaction performance. However, using it alone had 624 

no catalytic effect on the reaction. Among the promoters that have been tested since las decade for the purpose of 625 

research in reforming works were: Ca [132], Mg [133,134],  Gd [135], Nb[136] , Zr [137], and La [138]. The 626 

research work on group II-doped catalysts on oxygenated hydrocarbons reforming is one of recent interest. Due 627 

to its basicity, doping with calcium and magnesium is hypothesized to be able to reduce the acidity of alumina as 628 

support; hence, inhibiting the dehydration of oxygenates that lead to the formation of ethylene. The research works 629 

associated with promoting calcium to Ni/Al2O3 were carried out by Choong et al. [132], Elias et al. [139] and 630 

Vizcaino et al. [140] on ethanol steam reforming. Vizcaino et al. also studied on Mg addition to Ni/Al2O3 [140]. 631 

A comprehensive literature is tabulated in Table 2 based on transition metal and noble metal catalysts for 632 

oxygenates reforming. 633 

  634 
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Table 2. The performances of metal-supported and noble metal catalysts in oxygenates reforming. 635 

 

 

Feedstock Catalyst 

Temp 

(oC) 

C2H6O/H2O/O2 

(molar ratio) 

X C 2 H 6 O  

(%) SH 2 (%) 

 

 

Ref 

Bioethanol Ni/CeO2-ZrO2 

RhNi/CeO2-ZrO2 600 

1:9:0.35 

91-100 3.5-4.6 

[141] 

Ethanol Ce:Zr = 9:1) Nickel, Cobalt, 

Nickel-Cobalt (CZ91NiCo) 

250-

750 

1:6 

90 

80 

 

[90] 

Ethanol 

and 

Methanol 

(Ni, Cu, Ru, Pt) and 

bimetallic (Pt-Ni, Pt-Cu, Pt-

Ru/ detonation 

nanodiamond (DND) 

150-

650 

1:1 (for 

MSR) or 1:3 (for 

ESR) 

High High 

[142] 

Bioethanol Ni/La2O3-Al2O3 and 

Ni/CeO2-Al2O3 

150- 

350 

43.69 g/L 

90 63.6 

[143] 

Ethanol 18 wt% Ni /α-Al2O3, 25 

wt% Ni/α-Al2O3 

600  

78 17 

[144] 

Methanol Cu/Zn/Al/Zr/ porous copper 

fiber sintered felt (PCFSF) 

240-

400 

GHSV 16,252.4 

ml/g h). 90 high 

[145] 

Bio-oil Ni-Co/Al-Mg 650 S/C ¼ 12 

mol/mol, Liquid 

flow rate ¼ 0.12 

mL/min, high 

0.101 to 

0.182 g H2 

[146] 

Bio-oil Ce-Ni/Co/Al2O3 700 LHSV of 0.23 h_1 94.1 83.8 [147] 

Methanol Cu/Zn-Al2O3 200-

350 

ND 

51.87 75.4 

[148] 

Acetic 

acid 

Ni/Ce0.75Z0.25O2 

Co/Ce0.75Z0.25O2 

450-

650 

WHSV=134h-1 100 

 

High 

 

[34] 

Bio-oil Ni/CeO2-Al2O3 

Rh-Ni/ CeO2-Al2O3 

Ru-Ni/ CeO2-Al2O3 

800 

 

S/C=5 

WHSV=21.15h-1 

100 

 

 

High 

 

 

[149] 
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Ethylene 

glycol 

5 wt% Ni/Al2O3 

3.75 wt% Ni-1.25 wt% 

Pt/Al2O3 

2.5 wt% Ni-2.5 wt% Pt 

/Al2O3 

1.25 wt% Ni-3.75 wt% Pt 

/Al2O3 

5 wt% Pt/Al2O3 

600 1:9 36 

60 

 

50 

 

40 

 

30 

20 

44 

 

40 

 

30 

 

30 

[150] 

ND: Not determined;CFeed: Feed conversion;  SH2: Hydrogen selectivity 636 

 637 

This is justified from the literature that the catalyst plays an important role in hydrogen production via 638 

steam reforming. Hammoud et al. [148] recently studied the synthesis of copper supported on calcined hydrotalcite 639 

catalysts using the resulting effect of Zn-/Alumina hydrotacite. The steam reforming reaction was carried out in a 640 

fixed bed reactor under the mild conditions at the temperature of 200-350ºC. The physiochemical properties were 641 

identified in result of characterization technique. From the experimental database of Hammoud et al. [148] it was 642 

evaluated that 10%Cu/Zn-Al showed higher activity (75.44%) of hydrogen was produced with 51.87% of 643 

methanol conversion at 250ºC. It was confirmed from the experiment that methanol conversion was found to be 644 

strong function of catalysts reducibility and copper concentration. The activity of catalysts like Cu2O also depends 645 

on temperature provided [148]. In our recent studies we reported the CO2 dry reforming of glycerol for syngas 646 

production. The dry reforming was performed using Ag promoted Ni-based catalysts supported on SiO2, the 647 

reaction was performed in tubular reactor at 700oC and CO2: glycerol ratio of 1, at ambient pressure. The gaseous 648 

products such as H2, CO, and CH4 with H2: CO < 1.0 were included in our findings. The detail reaction studies 649 

revealed that Ag(5)NiSiO2 showed outcomes in highest glycerol conversion and hydrogen yield, accounted for 650 

32.6% and 27.4%, respectively [151]. 651 

Bastan et al. [152] also examined the effect of promoter over a series of Ni nano catalysts supported with 652 

alumina and MgO for aqueous phase reforming of glycerol in order to determine the optimum catalysts for 653 

hydrogen production. Bastan et al. [152] revealed that the APR activity mainly depend on catalysts promotor ratio. 654 

Furthermore, catalytic activity of NiMgO and Ni/ Al2O3 for both were lower than their corresponding mixed 655 

oxides and catalytic activity increased with Al/Mg ratio. Bastan et al. [152] reported conversion of glycerol  (92%) 656 

and hydrogen selectivity (76%).  657 
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Aqueous phase reforming of crude glycerol was conducted by Larimi et al. [83]. Over 5wt.% PtM/Al2O3 658 

i.e. (M ¼ Pd, Rh, Re, Ru, Ir, Cr) catalysts for hydrogen production. Larimi et al. [83] reported that the catalytic 659 

performance mainly depend on both active metal loading and type of promoters.  Among all the formulations 5 660 

wt.% Pt loading with Rh/ Al2O3 was observed to be the best for the catalytic activity for hydrogen production rate 661 

42625 mmol/gcat h-1) and selectivity of (89%) in APR of 10wt.% pure glycerol solution.  662 

Phongprueksathat et al. [34] performed the catalytic steam reforming of acetic acid over Ni, Co supported 663 

by Ce-Zr oxide at reaction temperature of 450-650ºC. The author reported that Ni/CeZrO2 and CoCeZrO were 664 

found to be potential catalysts to activate the Ce-C bond cleavage and reforming of cracked intermediates. He 665 

found Ce-ZeO2 (CZO as an active support in steam reforming of acetic acid that favours the ketonization reaction 666 

rather than C-C bond cleavage reaction at lower temperature. He reported that Ni/CZO catalyst was more active 667 

for acetic acid steam reforming due to higher Ce-C bond cleavage activity than Co-CZO catalysts.  668 

3.4. Catalysts preparation methods 669 

The effectiveness of the reforming process is also influenced by the catalyst preparation method. The 670 

most common catalyst preparation method demonstrated by most of the researchers are wet impregnation, 671 

incipient wetness impregnation and co-precipitation methods. Each method of catalysts preparation gives different 672 

effect on the physicochemical properties of the catalysts such as surface area, metal-support interaction, binding 673 

energy, particle shapes and sizes, and the dispersion of metal particle over the surface of the catalyst. The choice 674 

of catalyst preparation method helps in reducing the agglomeration of the particles which usually cause sharp 675 

deactivation of the catalysts[153]. 676 

Neto et al. [154] studied on the effect of preparing Ni based catalysts supported on γ-Al2O3 using three 677 

different methods which are nanocasting (NiAlN) , co-precipitation(NiAlC) and incipient wetness 678 

impregnation(NiAlW) for glycerol dehydration reaction. It was found that different catalyst preparation method 679 

possesses different physicochemical properties of the catalysts. NiAlN exist in mesoporous structure with the 680 

highest specific area and pore size compared followed by NiAlW and NiAlC which both exist in micropores 681 

structure. The XRD results obtained shows that NiAlC has the highest peak of cubic phase which indicate high 682 

crystallinity of the catalyst compared to NiAlN and NiAlC catalysts. The performance of the catalysts evaluated 683 

for dehydration of glycerol shown that NiAlW had the highest catalytic performance with 19.7% glycerol 684 

conversion and no catalysts deactivation during the reaction. However, the performances of NiAlN and NiAlC 685 
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decreased with glycerol conversion of only 3.3% and 8% respectively due catalyst deactivation. Table 3 presents 686 

various methods of catalysts preparation implemented in reforming technologies. There is still a huge gap to be 687 

focused on catalysts preparation method and study the physicochemical properties on various applications.  688 

Table 3. Catalysts preparation method for reforming process. 689 

 

 

 

Catalyst 

 

 

Preparation 

method 

 

 

Reforming 

technique 

 

 

 

Feed 

Operating condition Results  

 

 

Ref 

Temp 

(oC) 

Pressure 

(atm) 

Feed 

conc 

(wt%) 

CFeed 

(%) 

SH2 

(%) 

Ru/γ-Al2O3 Wet co-

impregnation  

Steam 

reforming 

Glycerol 400-

800 

1 20 35-

92 

High [155] 

Ru/B2O3-

Al2O3 

Wet co-

impregnation  

Steam 

reforming 

Glycerol 400-

800 

1 20 15-

85 

High [155] 

Ru/MgO-

Al2O3 

Wet co-

impregnation  

Steam 

reforming 

Glycerol 400-

800 

1 20 20-

55 

High [155] 

2 wt% 

Mo/Al 

Sol-gel Steam 

reforming 

Glycerol 400-

500 

1 10 10-

40 

42-

55 

[156] 

5 wt% 

Mo/Al 

Sol-gel Steam 

reforming 

Glycerol 400-

500 

1 10 15-

40 

40-

50 

[156] 

12 wt% 

Mo/Al 

Sol-gel Steam 

reforming 

Glycerol 400-

500 

1 10 18-

50 

35-

45 

[156] 

10 wt% Ni/ 

CeO2 

Co-

precipitation 

Aqueous 

phase 

reforming 

Glycerol 250 25 10 62 85 [120] 

10 wt% Ni/ 

Ce0.7Zr0.3O2 

Co-

precipitation 

Aqueous 

phase 

reforming 

Glycerol 250 25 10 87 66 [120] 

10 wt% Ni/ 

ZrO2 

Co-

precipitation 

Aqueous 

phase 

reforming 

Glycerol 250 25 10 55 79 [120] 
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12Ni-

1Cu/MWNT 

Sonochemical 

method 

Aqueous 

phase 

reforming 

Glycerol 240 40 10 84 86 [157] 

Pt 

(2.77wt%)/

Al2O3 

Incipient 

wetness 

impregnation 

Aqueous 

phase 

reforming 

Glycerol 225 29.3 10 ND 31 [158] 

Ni/Al2Mg 

 

Co-

precipitation  

Aqueous 

phase 

reforming 

Glycerol 250 50 10 92 76 [152] 

Pt/Al2O3 Incipient 

wetness 

impregnation 

Aqueous 

phase 

reforming 

Glycerol 225 29 10 ND 17 [159] 

ND: Not determined;CFeed: Feed conversion;  SH2: Hydrogen selectivity 690 

 691 

4. Merits and Demerits    692 

  The renewable and sustainable energy system has been developed in the last few decades. To develop 693 

the most promising clean system, energy produced from hydrogen has been targeted for an interest of many 694 

researchers. Hydrogen produced from glycerol and ethanol steam reforming are the most common among them. 695 

Glycerol is by-product of many industrial processes such as methyl and ethyl esters, soap and biodiesel production. 696 

The GSR process has been developed for hydrogen production on lab-scale because it does not need any further 697 

changes in industrial process based on steam reforming. The selection of catalysts for hydrogen production via 698 

GSR process is an important and fundamental need. Catalysts have been developed using various noble metal for 699 

hydrogen production in GSR process such as Rh, Ru, Pt, Pd and Ir. Although these expensive catalysts give good 700 

yield of hydrogen, but researcher are always interested in finding cheaper and highly active catalysts. Based on 701 

these results Ni based catalysts become significant in hydrogen production for many researchers. The Ni based 702 

catalysts are quite cheaper, highly active, and more stable and allow working at lower temperature. Nevertheless, 703 

in the last few decades great efforts have been put on for Ni-based catalysts with development of various promoters 704 

to enhance the catalytic performance. For any catalytic activity and efficiency, support must play an important 705 

role. The influence of support must be considered during the development of catalysts. The support as neutral 706 

shows higher thermal stability and lower coke formation. The proper promoter used and wt.% doped on support 707 
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also necessary in order to enhance the catalytic activity and stability. This is still an interesting field to work for. 708 

Subsequently, further research needs to be done for this area, to ensure that the catalyst is active at lower 709 

temperature and stable for longer time utilization, without significant coking issues.   710 

  Various mechanisms have been proposed for GSR and ESR reactions. The most common is Langmuir–711 

Hinshelwood dual site mechanism with adsorption phenomenon. Nonetheless, a detail study has not been done 712 

yet for this process, and thus further research is required to deal with its mechanism. Furthermore, since the GSR 713 

reaction prone to high carbon deposition, the detailed studies for coke formation with its kinetics has been done 714 

but more investigation is required.  However, more focus is required to study how these cokes may form on the 715 

catalyst surface and how to reduce the production of it, or catalyst regeneration that allow the coke to be removed. 716 

The good catalysts together with more suitable operating conditions have been widely studied for GSR and ESR, 717 

but the thermodynamic limitations for glycerol and ethanol conversion and hydrogen yield are still part of 718 

discussions for many researchers. 719 

In order to deal with intensified process of GSR, the separation of CO2 from H2 within the same pot 720 

continuously while reacting can be a great deal.  It has been found that the removal of CO2 or H2 from the reaction 721 

mixture, moves the thermodynamic equilibrium towards higher glycerol conversion and high H2 yields, which 722 

obey the Le Chatelier’s principle. However, other operating conditions such as temperature, WGFR, WHSV and 723 

pressure must be dealt carefully  to achieve optimum outcome. The CO2 emissions can easily be evaded through 724 

SEGSR, However, the new solutions combining with catalytic GSR within situ CO2 and H2 removal would be an 725 

interesting phenomenon that needs to be researched.  726 

5. Conclusion  727 

 As per our understanding and analysis from literature, several conclusions could be drawn. Hydrogen 728 

can be produced via various technologies such as steam reforming, autothermal reforming, partial oxidation, dry 729 

reforming, and aqueous phase reforming. These reforming processes for hydrogen production using oxygenated 730 

hydrocarbons production are highly feasible and economical friendly. However, these processes are susceptible 731 

to other side reactions, such as decomposition, dehydration and dehydrogenation that lead to the formation of coke 732 

and hence deactivate the catalyst. Therefore, the choices of catalysts and catalyst preparation method are important 733 

in ensuring high hydrogen selectivity, apart from the manipulation of thermodynamic properties, such as steam to 734 

fuel ratio (steam reforming and APR), temperature and oxygen to carbon ratio (in autothermal reforming). 735 
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Addition of promoters on the metal based catalyst enhanced the catalyst activity in reforming by either inhibiting 736 

the carbon formation or enhancing the reaction for higher hydrogen yield. These parameters are important to 737 

reduce the side products that would lead to coke formation, hence deactivating the catalyst.  738 

 Based on this literature study, it is found that the oxygenated hydrocarbons steam reforming is feasible 739 

as demonstrated by many researchers. However, with relation to the series of polyols homologues chosen, only 740 

propylene glycol reforming research has not been reported elsewhere, while researches are intensely focused on 741 

ethanol and glycerol reforming. Nickel is a common catalyst, with many modifications carried out to improve its 742 

performance by either using a different support other than alumina or introducing a promoter to enhance the outlet 743 

gas selectivity. The research on calcium doping to nickel/alumina had only been investigated to date on ethanol 744 

steam reforming, but not yet on other homologues, such as ethylene glycol, propylene glycol and glycerol. While 745 

it was reported that encapsulating carbon and graphitic carbon might form on a typical nickel/alumina catalyst 746 

surface, the presence of calcium as a promoter to this nickel/alumina catalyst is yet to be investigated.  747 

While it is found that these technologies are heavily researched in the lab scale, pilot scale research works 748 

are yet to be reported. It is believed that more extensive pilot scale research works need to be carried out within 749 

these few years so the blue hydrogen from the oxygenated steam reforming process can be realized within this 750 

decade. Due to COVID-19, this is the right time to start it right for a greener technology. While the solution is 751 

nearly there, an accelerated study needs to be conducted before the ‘old norm’ i.e. the fossil fuels claimed their 752 

place again.  753 
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