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Abstract—With the rapid development of edge intelligence in
wireless communication networks, mobile edge networks (MEN)
have been broadly discussed in academia. Supported by consid-
erable geographical data acquisition ability of mobile Internet
of Things (IoT), the MEN can also provide spatial locations-
based social service to users. Therefore, suggesting reasonable
points-of-interest (POIs) to users is essential to improve user
experience of MEN. As the simple user-location data is usually
sparse and not informative, existing literature attempted to
extend feature space from two perspectives: contextual patterns
and semantic patterns. However, previous approaches mainly
focused on internal features of users, yet ignoring latent external
features among them. To address this challenge, in this paper, a
deep distributed learning-based POI recommendation (Deep-PR)
method is proposed for situations of MEN. In particular, hidden
feature components from both local and global subspaces are
deeply abstracted via representative learning schemes. Besides,
propagation operations are embedded to iteratively reoptimize
expressions of the feature space. The successive effect of the above
two aspects contributes a lot to more fine-grained feature spaces,
so that recommendation accuracy can be ensured. Two types of
experiments are also carried out on three real-world datasets
to assess both efficiency and stability of the proposed Deep-
PR. Compared with seven typical baselines with respect to four
evaluation metrics, obtained results of the overall performance
of the Deep-PR are excellent.
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I. INTRODUCTION

THE rapid development of novel communication technolo-
gies such as mobile Internet of Things (IoT) has brought

profound changes to human society [1]. On the basis of proper
ability of mobile data integration and management, mobile
IoT provide a resilient information sharing medium for people
[2]. Supported by efficient mobile IoT environment, users of
mobile computing can obtain convenient location-based social
services anytime and everywhere. At the same time, the contin-
uous increase of mobile access also produces growing amount
of data transmission [3]. This not only brings serious workload
to wireless infrastructures, but also affects the privacy security
of users to a great extent [4]. In this context, mobile edge
computing under support of mobile IoT has been regarded
as a promising solution to this problem [5]. It uses nearest
computation nodes in wireless networks to provide computing
service for users, in order to create service environment with
high performance, low latency and high bandwidth [6]. It can
be predicted that mobile edge networks (MEN) will become
important support for 5g communication networks in the future
[7]. Accordingly, it is of great significance to provide efficient
personalized services for users of MEN [8].

The most typical service in MEN is location-based recom-
mendation which has been a hot concern in in general mobile
networks (GMN) [9]. Because users always cannot discover
feasible points-of-interest (POIs) which refer to places they
are interested in [10]. The analysis towards user-location
data, however, is still confronted with two aspects of chal-
lenges [11]. For one thing, simple user-location data are
not informative, and cannot reveal comprehensive preference
characteristics [12]. It is expected to fuse associated multi-
source information to realize distributed learning. For another,
user-location data is usually sparse for it is not easy to be
acquired [13]. It is supposed to enrich sample spaces by
reasonably mining internal associations. As MEN distributes
computational power into a number of edge nodes, these
challenges are even obvious.

In recent years, researchers have dealt with these difficul-
ties by leveraging two types of features: contextual patterns
[14]-[24] and semantic patterns [25]-[34]. The former refers
to inherent characteristics of users, e.g., preferences, social
relations, activity records, while the latter refers to textual
contents associated with locations, such as reviews and tags.
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Fig. 1: A typical example to illustrate potential correlations
among users.

Nevertheless, almost all of previous research view each user
as a unique object, and focus on visible explicit features
inside them. Thus, imperceptible external features such as
latent relevance among users are universally neglected. In fact,
implicit linkages among different users exist to some extent,
and are helpful to enrichment of feature spaces. And the Fig. 1
is developed here as a typical example of MEN to illustrate
such view. User A and User B have their own daily wandering
areas, respectively corresponding to two circles in different
colors. Naturally, edge computing services received by them
are related to nodes close to their activity circles, respectively.
It is assumed that they are both teachers and have correlations
in works. Such point is not explicit, and cannot be directly
indicated by contextual or semantic features. Therefore, the
perspective of distributed learning is required to be introduced
to learn comprehensive feature spaces, so that POI recommen-
dation efficiency in MEN can be promoted. To facilitate this,
deeper-level and more abstract feature expressions need to be
extracted to enhance properly depth of feature space.

As consequence, feature space of a user is categorized into
local subspace and global subspace. The local part empha-
sizes inherent features of the user himself, and the global
part focuses on external latent relevance. The two subspaces
are respectively reoptimized through propagation operations.
Thus in this paper, a Deep distributed learning-based POI
Recommendation (Deep-PR) model is proposed for MEN
applications. Specifically, a hybrid adaptive encoder (HAE)
and a correlated adaptive encoder (CAE) are developed for
deep-level encoding of local features and global features,
respectively. Both of the two encoders end with propagation
operations, aiming to reoptimize feature space to enhance
its representative ability. After that, two real-world datasets
are selected as experimental scenarios, and three groups of
experiments are conducted to evaluate overall performance
of the proposed Deep-PR. Experimental results on three real-
world datasets show that the Deep-PR outperforms baselines in
terms of precision and stability. To the best of our knowledge,
no research had deeply extracted both internal and external
features to improve POI recommendations. It is believed that
better POI recommendation effect is able to inversely promote

healthy development of mobile IoT as well as the MEN.
The rest of this paper is organized as follows. Firstly, general

situation of the research problem is explained in Section
II. In Section III, mathematical descriptions of technology
method are given in detail. Then, Section IV demonstrates
empirical experiments that evaluate performance of the Deep-
PR. Finally, Section V concludes this paper.

II. PRELIMINARIES

A. Problem Statement

As location data is a two-dimensional vector with two
precise values of longitude and latitude, close locations always
have different coordinate values. Instead, concept of POI is
defined as follows:

Definition 1 (POI): The whole geographical space is sep-
arated into a number of block cells with roughly equal area.
Each separated cell is defined as a POI, and all the initial
location data is transformed into corresponding POIs.

Let ui (i = 1, 2, · · · , |u|) denote the set of |u| users, and
pj (j = 1, 2, · · · , |p|) denote the set of |p| POIs. Each user is
allowed to interact with any POI once or multiple times. For
user ui, he never has direct preference feedback towards POIs.
Thus, the interaction value qij can be viewed as indirect pref-
erence feedback. The generation of interaction value between
user ui and POI pj is mainly determined by both local features
and global features which are defined as:

Definition 2 (Local Features): Local features are defined
as characteristics existing inside entities: contextual features
of users and semantic features of positions.

Definition 3 (Global Features): Global features are defined
as latent linkages among users of the whole feature space:
static relevance and dynamic relevance.

Due to the general data sparsity of such type of scenes, deep
representation is introduced to construct a more fine-grained
feature space. To begin with, the Deep-PR is established upon
the basis of following assumptions:

Assumption 1: Each user is associated with information of
social relations.

Assumption 2: Each POI is associated with some textual
contents which may come from reviews, tags or descriptions.

Assumption 3: Interaction records of users are associated
with time information, so that they can be ranked sequentially.

B. Related Work

As the people are more and more concerned in service qual-
ity of LBSN, POI recommendation techniques have already
been a key research topic for many LBSN operators. The
macroscopic POI recommendation problem is able to yield
more than one branches. Some researchers consider single
geography features of POIs, some add contextual features of
POIs into consideration, and some further consider preference
characteristics of users in LBSN. Of all the various research
works, technical methods include statistical learning, machine
learning, deep learning, etc. Some typical works are surveyed
in this part.

Liu et al. [38] managed to generate more robust feature
representation format for users inside check-in records. In
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Fig. 2: Workflow of the proposed Deep-PR.

terms of user preference, the relative pair-wise preference
ranking is introduced to represent it.

Yu et al. [39] incorporated user preference and context
information of POIs to propose a context- and preference-
aware model which is named as CPAM for short. It is
composed of two parts: POI embedding and logistic matrix
factorization.

Aliannejadi et al. [33] introduced the collaborative ranking
into temporal POI recommendation, and presented a two-stage
approach for this purpose. The method considered geograph-
ical influence of POIs, and used variance of POIs popularity
to construct regularizer.

Wang et al. [16] developed a geography-aware inductive
matrix completion model to suggest unknown POIs for users.
It utilized Gaussian mixture model to extraction features for
POIs, and constructed an inductive matrix completion model
for output.

Huang et al. [41] proposed introduced attention mechanism
to propose a novel spatiotemporal long short-term memory
model which is named as ATST-LSTM for short. It can
take both geographical context and influence of POIs into
consideration.

It can be deduced from the existing literatures that they were
mostly developed under emphasis of some specific aspects.
There still lacks a comprehensive framework that can deeply
fuse global information for POI recommendation. Therefore,
this paper aims at this point and proposes the Deep-PR.

III. METHODOLOGY

A. Overview

Fig 2 gives main workflow of the proposed Deep-PR which
is actually an architecture of deep information fusion. It is
composed of three major parts: HAE part, CAE part, and
recommendation part. On the one hand, an HAE is developed

to learn a representative vector Lij between user ui and
POI pj . The dimension of Lij equals to the number of his
interaction records. On the other hand, a CAE is developed
to learn a representative matrix Gi for user ui. It denotes
relevance between user ui and every other (|u| − 1) users.
Having encoded two aspects of features, expressions of gener-
ating interaction values can be formulated accordingly. Given
known interaction values between users and POIs, the task is
to suggest user ui other POIs he may be interested in.

As is shown in Fig. 2, major novelty of the proposed Deep-
PR actually lies in a deep information fusion framework. The
HAE part and CAE part implement deep representation oper-
ation towards different features, respectively. Macroscopically,
the Deep-PR can be viewed as a distributed learning frame-
work between HAE and CAE, contributes a robust and deep-
level recommendation system. To this end, main contributions
of the proposed Deep-PR approach can be summed up as
following aspects:

1) To recommend a more precise POI for users of MEN,
the Deep-PR enhances feature spaces by refining both
internal and external features.

2) The Deep-PR implements a distributed learning frame-
work, in which two modules carry out deep information
fusion operations separately. Such design leads to a
deep-level recommendation framework.

B. Modeling of Local Features

Major goal of this subsection is to learn the parametric
representative vector Lij between user ui and POI pj . Such
function is mainly realized by the HAE part. Fig. 3 gives main
workflow of the HAE part which is composed by two basic
models: convolutional neural network (CNN) and bidirectional
attentive network (Bi-AN). The CNN manages to encode
contextual patterns of user ui, and the Bi-AN manages to
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encode semantic patterns of pj . The two factors are further
fused into the final Lij via a multi-round propagation process.

1) Contextual Features: In this research, contextual features
mainly refer to social relations of users. In the CNN part of
developed HAE, a combination of convolution operation and
pooling operation is viewed as a processing layer. Role of
each processing layer is to carry out feature extraction and
dimension reduction towards initial features. The number of
processing layers is a variable and denoted as M . In other
words, initial input features are transformed into a contextual
feature vector R(Co)

i via M successive processing layers.
As for user ui, his social relation vector can be established

through binary encoding and is represented as:

As =
{
si,1, si,2, · · · , si,i−1, si,i+1, · · · , si,|u|

}
(1)

where si,i−1 denotes social status between user ui and user
ui−1. Note that si,i−1 equals to 1 if the social relation exists
and equals to 0 otherwise. To construct input matrix for CNN,
it is expected to map the vectorized As into another |u− 2|×
3-dimensional matrix A

(1)
S . Each adjacent three elements are

selected in turn to construct rows of the A(1)
S whose format is

as:

A(1)
s =


si,1 si,2 si,3
si,2 si,3 si,4

...
...

...
si,(|u|−2) si,(|u|−1) si,|u|

 (2)

As the rank of A(1)
S is only three, it is required to be further

transformed into the input feature matrix A
(2)
S through the

following nonlinear mapping:

A(2)
s = σ1

{
WL1 · F1

[
A(1)
s

]
+ bL1

}
(3)

where WL1 is weight parameter, bL1 is bias parameter,
σ1 (x) = max (0, x) denotes the Rectified Linear Unit (ReLU)
activation function, and F1 (·) is a non-linear mapping function
represented as:

F1

[
A(1)
s

]
=

1

η

η∑
θ=1

{
ai ·

[
A

(1)
s,θ

]T}
(4)

where ai is the attention weight, A(1)
s,θ (θ = 1, 2, · · · , η) is the

enumeration of all elements in A(1)
s . The obtained A(2)

s is an
(m− 2)× (m− 2)-dimensional matrix.

In convolution operation of the m-th processing layer, inner
product calculation is conducted between A(2)

s and a series of
N -core filtering matrices Wn. Among, n is the index number
of convolutional cores. Another matrix A

(m)
L is obtained via

the following nonlinear mapping:

A
(m)
L = σ1

{
W

(n)
L ⊗A(2)

s + b
(n)
L

}
(5)

where ⊗ denotes convolution operator, and bL−n is the series
of N bias parameters. In pooling operation of the m-th
processing layer, A(m)

L is further compacted through common
max-pooling criteria, leading to another matrix A

(m)
L−pool. It

Fig. 3: Illustration of the HAE architecture.

will be transformed via a fully connected computation. The
process is expressed as the following formula:

R
(Co)
i = σ1

{
M∑
m=1

[
WL2 ⊗A(m)

L−pool + bL2

]}
(6)

The obtained R(Co)
i is the feature factor of contextual features.

2) Semantic Features: As for j-th POI, all the textual
information is viewed as a sentence including V words. The
gated recurrent unit (GRU) network is utilized to model
sequential characteristics from both forward and backward
directions. Hidden semantic embeddings of two directions are
represented as:

H
(f)
j,v =

−−−→
GRU

[
H

(f)
j,(v−1)

]
(7)

H
(b)
j,v =

←−−−
GRU

[
H

(b)
j,(v+1)

]
(8)

where v is the index number of V words in the sentence.
The hidden semantic vector is constructed by concatenation
of above two objects:

Hj,v = H
(f)
j,v ⊕H

(b)
j,v (9)

It will then be mapped into semantic feature vector via the
following formula:

R
(Se)
j = σ1 {WL3 · F2 (Hj,v) + bL3} (10)

where WL3 is weight parameter, bL3 is bias parameter, and
F2 (·) is an attention-based mapping function represented as:

F2 (Hj,v) =

V∑
v=1

[
aj · (Hj,v)

T
]

(11)

3) Fusion: The fusion of above two representative vectors
is designed as a propagation process with cross iterations. Dur-
ing each round of updating, their computational expressions
are correlated with each other. The index number of updating
rounds is denoted as q which ranges from 1 to Q.

In the q-th round, the R(Co)
i is updated through the follow-

ing formula:

R
(Co)(q+1)
i = σ2

R(Co)(q)
i +

1

|p|

|p|∑
j=1

T
(q)
ij

 (12)
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Algorithm 1 Encoding of Local Features

INPUT: ui, pj , γ, θ, m, n, q
OUTPUT: Lij
1 : for i = 1→ |u| do
2 : Represent social relation vector as Eq. (1)
3 : Transform As into A(1)

s as Eq. (2)
4 : for θ = 1→ η do
5 : Transform A

(1)
s into A(2)

s as Eq. (3) and Eq. (4)
6 : end for
7 : for m = 1→M do
8 : for n = 1→ N do
9 : Compute A(m)

L as Eq. (5)
10 : Compute R(Co)

i as Eq. (6)
11 : end for
12 : end for
13 : for j = 1→ |p| do
14 : Compute R(Se)

i as Eq. (10) and Eq. (11)
15 : for q = 1→ Q do
16 : Update R(Co)

i as Eq. (12), Eq. (13) and Eq. (14)
17 : Update R(Se)

i as Eq. (15) and Eq. (16)
18 : end for
19 : Represent Lij as Eq. (17)
20 : end for
21 : end for

among, σ2 (·) is sigmoid activation function represented as:

σ2 (x) =
1

1 + exp (−x)
(13)

and T
(q)
ij denotes transition matrix between user ui and POI

pj , and is represented as:

T
(q)
ij = σ1

[
WL4 ·R(Se)(q)

j + bL4

]
(14)

where WL4 is weight parameter and bL4 is bias parameter.
Similarly, the R(Se)

j is updated through the following formula:

R
(Se)(q+1)
j = σ2

R(Se)(q)
j +

1

|u|

|u|∑
i=1

T
(q)
ji

 (15)

and T
(q)
ji denotes transition matrix between POI pj user ui

and , and is represented as:

T
(q)
ji = σ1

[
WL5 ·R(Co)(q)

i + bL5

]
(16)

After Q rounds of iterations, the final representative vector
is obtained as:

Lij =
[
R

(Co)(Q)
i ⊕R(Se)(Q)

j

]
(17)

Pseudo code of this subsection is displayed in Algorithm 1.

C. Modeling of Global Features

In this research, global features mainly refer to latent
relevance between users, and contain two aspects: static rele-
vance and dynamic relevance. The CAE part is responsible
for encoding the global features by considering two types

of relevance. Fig. 4 illustrates main workflow of the CAE
part, and utilizes two parts to demonstrate two types of
relevance encoding. The former comes from static features
such as personal profiles, and the latter derives from dynamic
features like sequential POI records. They are respectively
encoded into feature factors, and then concatenated into the
final representative vector.

1) Static Relevance: As for user ui, his profile generally
contains multiple attributes which can be divided into struc-
tured types and unstructured types.

Structured attributes refer to those whose formats are one of
several fixed options, e.g., sex, location. This type of data can
be represented as vectorized formation via one-hot encoding
mechanism. In one-hot encoding, only one bit is valid in a
long coding sequence. It is a binary encoding rule in which the
valid bit is denoted as 1. Unstructured attributes refer to those
whose contents are not optional items, e.g., personal tags. This
type of data can be further classified into numerical data and
textual data. The former can be directly utilized for calculation,
yet the latter needs to be encoded into vectorized forms. In
particular, ten high-frequency words are selected as the word
plate for counting. And the TF-IDF method is employed for
such encoding procedure. A number of high-frequency words
correspond to ten elements in the encoded vector. An element
is set to 1 if corresponding word is involved, and 0 otherwise.

Encoding results of both types of attributes are integrated
into a total vector. To unify value range, normalization pro-
cessing is required to produce a vector Q(st)

i . Supposing that
uz (z = 1, 2, · · · , |u| ; z 6= i) denotes another different from
user ui, the static relevance between user ui and user uz is
measured as:

F3 (ui, uz) = σ1

[
α

(st)
i,z ·WG1 ·

∥∥∥Q(st)
i −Q(st)

z

∥∥∥+ bG1

]
(18)

where WG1 is weight parameter, bG1 is bias parameter, and
a

(st)
i,z is the relevance weight between them which is defined

as:

a
(st)
i,z =


ψs(i∩z)
ψs(z)∑|u|

f=1;f 6=i,z [ψs(i∩f)ψs(f)
]
, i 6= z

0, i = z
(19)

where uf (f = 1, 2, , |u| ; f 6= i, z) denotes another user differ-
ent from ui and uz , ψs (z) counts friends of user uz , ψs (f)
counts friends of user uf , ψs (i ∩ z) counts common friends
between ui and uz , and ψs (i ∩ f) counts common friends
between ui and uf . Thus, the static relevance vector between
user ui and user uz is represented as:

R
(st)
i,z = σ1 [WG2 · F3 (ui, uz) + bG2] (20)

where WG2 is weight parameter, and bG2 is bias parameter.
2) Dynamic Relevance: Let Pi,β (β = 1, 2, · · · , Y ) denote

Y positions in location sequences of user ui, where β is the
index number. It is encoded into a more abstract feature vector:

Φ
(dy)
i,β = λ1 ·WG3 ·Pi,β+(1− λ1) ·WG4 ·Pi,(β−1) +bG3 (21)

where λ1 is the trade-off parameter, WG3 and WG4 are weight
parameters, and bG3 is the bias parameter. For the first position,
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Fig. 4: Illustration of the CAE architecture.

the Pi,(β−1) equals to 0. As the number of location records
varies with different users, Φ

(dy)
i,β can be further computed as:

X
(dy)
i,β =

1

Y

Y∑
β=1

ωΩ · Φ(dy)
i,β (22)

where ωΩ is the weight parameter corresponding to totally
Y transformed position vectors of user ui. The dynamic
relevance between user ui and user uz is measured as:

F4 (ui, uz) = σ1

[
α

(dy)
i,z ·WG5 ·

∥∥∥X(dy)
i −X(dy)

z

∥∥∥+ bG5

]
(23)

where WG5 is weight parameter, bG5 is bias parameter, and
α

(dy)
i,z is the relevance weight between them which is defined

as:

a
(dy)
i,z =


ψp(i∩z)
ψp(z)∑|u|

f=1;f 6=i,z

[
ψp(i∩f)
ψp(f)

] , i 6= z

0, i = z

(24)

where ψp (z) counts position records of user uz , ψp (f)
counts position records of user uf , ψp (i ∩ z) counts common
positions between ui and uz , and ψs (i ∩ f) counts common
positions between ui and uf . Thus, the dynamic relevance
vector between user ui and user uz is represented as:

R
(dy)
i,z = σ1 [WG6 · F4 (ui, uz) + bG6] (25)

where WG6 is weight parameter, and bG6 is bias parameter.
3) Integration: The integration of two representative vec-

tors is to learn a total relevance matrix between user ui and all
the other users. And the integration process actually undergoes
an iterative updating process. The index number of iterations
is assumed as k and ranges from 1 to K.

Firstly, concatenation of two representative vectors leads to
the initial state of iterations, which is denoted as:

R
(0)
i,z = R

(st)
i,z ⊕R

(dy)
i,z (26)

In the k-th iterative round, forward hidden state G
(k)
i,z is

updated through the following operation:

G
(k)
i,z = WG7 ·R(k)

i,z + Ti,z ·G(k−1)
i,z + bG7 (27)

where WG7 is weight parameter, bG7 is bias parameter, and
Ti,z is the transition matrix between ui and uz . As two
users are the same type of entities, transition between them

Algorithm 2 Encoding of Global Features

INPUT: ui, uz , Pi,β , λ1, λ2 and k
OUTPUT: Gi
1 : for i = 1→ |u| do
2 : for z = 1→ |u| and z 6= i do
3 : Measure the static relevance between ui and uz as
Eq. (18)
4 : Compute relevance weight of them as Eq. (19)
5 : Represent relevance factor as Eq. (20)
6 : for β = 1→ Y do
7 : Encode location sequence Pi,β as Eq. (21)
8 : Map Φ

(dy)
i,β as Eq. (22)

9 : Measure dynamic relevance between ui and uz as
Eq. (23)
10 : Compute relevance weight of them as Eq. (24)
11 : Represent relevance factor as Eq. (25)
12 : end for
13 : Compute Initial status of relevance as Eq. (26)
14 : for k = 1→ K do
15 : Update forward hidden state as Eq. (27)
16 : Compute transition matrix as Eq. (28)
17 : Update R(k)

i,z as Eq. (29)
18 : end for
19 : Specialize G(k)

i,z as Eq. (30)
20 : end for
21 : end for

is assumed as bi-directional. Thus the Ti,z can be further
expressed as the following formula:

Ti,z = λ2 ·
|u|∑

z=1;z 6=i

Ti→z + (1− λ2) ·
|u|∑

i=1;i 6=z

Tz→i (28)

where λ2 is the trade-off parameter. And R
(k)
i,z is updated as

follows:
R

(k)
i,z = WG8 ·R(k−1)

i,z + bG8 (29)

where WG8 is weight parameter, and bG8 is bias parameter.
After K rounds of iterations, the obtained G(k)

i,z denotes final
relevance vector between ui and uz . Enumerating z of G(k)

i,z

from 1 to |u| leads to a static relevance matrix for user ui,
which is expressed as the following format:

Gi =

{[
G

(K)
i,1

]T
, · · · ,

[
G

(K)
i,i−1

]T
,
[
G

(K)
i,i+1

]T
, · · · ,

[
G

(K)
i,|u|

]T}
(30)

D. Recommendation

Given above two factors Lij and Gi, it is expected to
generate interaction result between user ui and POI pj . Due
to the fact that Lij is the form of vector while Gi is the
form of matrix, they need to be mapped into unified forms.
Hence, two basic multi-layer perception (MLP) networks are
introduced for this purpose:

ZL (ui, pj) = σ1 [MLP1 (Lij)] (31)

Zg (ui) = σ3 [MLP2 (Gi)] (32)
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TABLE I: Statistics of experimental datasets

Attribute Foursquare Gowalla Brightkite
# of users 3728 2516 2739
# of POIs 28979 43727 13068

# of check-ins 923742 764973 593481
# of social links 46581 31584 19642

Avg. sentence length 47 36 33

where their parameters can be learned during training, and
σ3 denotes the leaky ReLU activation function. The obtained
ZL (ui, pj) and Zg (ui) are two vectors with the same dimen-
sions. The predicted interaction result between user ui and
POI pj is calculated as:

Õij = σ2

{
W1 · ZL (ui, pj) · [Zg (ui)]

T
+ b1

}
(33)

Note that the range of Õij is (0, 1). The prediction of interac-
tion results can be viewed as a binary classification problem.
0 refers to that no interaction result exists between them and
1 refers to the existence of interaction. Given this, learning
goal of the Deep-PR can be summarized as searching for the
minimum of the following formula:

B =

|u|∑
i=1

|p|∑
j=1

{
λ3 ·

∥∥∥Õij −Oij∥∥∥2

F
+ (1− λ3) · ‖Θ‖2F

}
(34)

where Oij is the real interaction result between user ui and
POI pj , ‖·‖2F denotes the Frobenius norm, Θ denotes the set
of parameters, and λ3 is the trade-off parameter. Finally, the
Adam optimizer [35] is set as the learning method to solve
the above optimization problem. As for training of Deep-PR,
all of the parameters inside the whole model are randomly
assigned a value firstly. The Deep-PR can be regarded as a
model that integrates HAE and CAE modules. And back-
ward propagation-based training method is introduced here to
update gradient factors inside forward process of Deep-PR.
Through such process, the parameters inside HAE an CAE
can be also learned.

IV. EXPERIMENTS AND ANALYSIS

This section presents the detailed process for evaluating
performance of the proposed Deep-PR on three real-world
datasets of mobile social networks.

A. Datasets

The construction of experimental scenarios derives from
three publicly available datasets that are commonly used for
such purpose: Gowalla [36], Foursquare [37] and Brightkite
[36]. Initial datasets as well as some preprocessing operations
are described as follows:

Foursquare: Foursquare is a famous location-based mobile
social application, and encourages mobile users to share their
instantaneous locations with others via check-ins. The dataset
contains data from January, 2011 to July, 2011, and was firstly
collected by Gao et al. from another popular social website
Twitter.

Gowalla: Gowalla was a location-centered social website
which enables users to share their locations via publishing
check-ins. The dataset was collected by Cho et al. with the
assistance of Gowalla API. Its records last from February, 2009
to October, 2010.

Brightkite: Brightkite was once another location-based so-
cial service provider to make users publish check-ins every-
where. The dataset was also collected by Cho et al. utilizing
official API. It contains records over the period from April,
2008 to October, 2010.

Data records of all the datasets contain users, positions,
check-ins, and social relations among users. To reduce sparsity
of initial datasets, users or positions possessing less than ten
interaction records have been filtered out. To ensure relatively
rich social information, users having less than six social links
are removed from the datasets. For each dataset, each POI
is a square block with 0.05 (longitude) × 0.05 (latitude). As
for textual contents of POI, we crawl review and description
information mainly from two sources: Yelp website 1 and
Baidu Map 2. All the texts associated with a POI are viewed
as a sentence that can be semantically modeled. As all these
datasets lack profiles of users, user profiles from another social
platforms need to be leveraged for analog. To ensure fairness,
user profiles are uniformly crawled from a Chinese social
media named Sina Weibo and randomly populated into users
of datasets. After preprocessing procedures, statistics of the
final experimental datasets are listed in TABLE I.

B. Experimental Settings

Data of each dataset is divided into two parts: training set
and testing set. The former is assumed as historical records
and thus used for training models. The latter is viewed as
real data happening in the future, and is adopted to testify
efficiency of recommendation results. The POIs suggested to
users are compared with POIs in testing set to measure effect
of recommendation results. Obviously, a larger number of
recommended POIs occurring in testing set indicate better rec-
ommendation effect. As for measurement, four typical metrics
that are commonly used for evaluating POIs recommendations
are selected here. They are Precision@C, Recall@C, and
NDCG@C, where x@C denotes the value of x when the
number of POIs recommended to each user is C. And detailed
descriptions are illustrated as follows:

Precision@C: It refers to ratio of correctly suggested POIs
in all the recommended POIs. The metric is called Pr@C for
short and computed as:

Pr@C =
1

|u|

|u|∑
i=1

ψ [Jrec (ui) ∩ Jtest (ui)]

ψ [Jrec (ui)]
(35)

where Jrec (ui) denotes the set of POIs recommended to user
ui, Jtest (ui) denotes the set of POIs of user ui occurring in
testing set, and ψ (·) is the counting operation.

1http://www.yelp.com
2http://map.baidu.com
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TABLE II: List of hyper-parameters that may influence algorithm running.

Parameters Description Setting
N The number of filter cores 5
Q The number of iterative rounds in HAE 5
K The number of iterative rounds in CAE 5
λ1 Tuning parameters to control weight of specific parts 0.5
λ2 Tuning parameters to control weight of specific parts 0.5
λ3 Tuning parameters to control weight of specific parts 0.6

batch size The number of samples that will be input into model each time 16
epoch size The number of samples that will be input into model each time 8

learning rate The length of one stride during optimization processes 0.001

TABLE III: Precision and recall results on Foursquare dataset

Method
Precision results Recall results

Pr@5 Pr@8 Pr@10 Re@5 Re@8 Re@10

GE-LR [40] 0.01791 0.01022 0.00873 0.0732 0.0803 0.0964
PSG-LSTM [41] 0.02847 0.02459 0.01668 0.0944 0.1078 0.1387
PSG-GRU [42] 0.02646 0.02312 0.01837 0.0905 0.0994 0.1215

PRBPL [38] 0.03145 0.02807 0.02439 0.1134 0.1256 0.1438
CPAM [39] 0.03312 0.03023 0.02506 0.1252 0.1394 0.1515

Deep-PR 0.04056 0.03361 0.02933 0.1476 0.1769 0.1986

TABLE IV: Precision and recall results on Gowalla dataset

Method
Precision results Recall results

Pr@5 Pr@8 Pr@10 Re@5 Re@8 Re@10

GE-LR [40] 0.01493 0.01009 0.00755 0.0378 0.0459 0.0571
PSG-LSTM [41] 0.02251 0.01736 0.01352 0.0517 0.0688 0.0822
PSG-GRU [42] 0.02347 0.01851 0.01517 0.0754 0.0932 0.1018

PRBPL [38] 0.02910 0.02429 0.02086 0.0853 0.0979 0.1165
CPAM [39] 0.02853 0.02457 0.02148 0.0914 0.1037 0.1082

Deep-PR 0.03324 0.02932 0.02566 0.1063 0.1209 0.1357

Recall@C: It refers to ratio of correctly suggested POIs in
all the POIs of testing set. The metric is called Re@C for
short and computed as:

Re@C =
1

|u|

|u|∑
i=1

ψ [Jrec (ui) ∩ Jtest (ui)]

ψ [Jtest (ui)]
(36)

F-score@C: It is an overall format of precision and recall.
The metric is called Fs@C for short and computed as:

Fs@C =
2 · Pr@C ·Re@C
Pr@C +Re@C

(37)

NDCG@C: It refers to normalized discounted cumulative
gain (NDCG), and implies ranking effectiveness of Top-C

results. The metric is computed as:

NDCG@C =
1

|u|

|u|∑
i=1

[
1

∆ (ui)

C∑
c=1

2δi(c) − 1

log (c+ 1)

]
(38)

where c is the index number of all the C recommended POI,
and δi (c) denotes the relation indicator between user ui and
the c-th POI suggested to him. In detail, δi (c) equals to 1 if
the c-th POI is correctly recommended and 0 otherwise.

To verify the superiority of the proposed Deep-PR com-
pared to general POI recommendation methods, some classical
approaches for this purpose are selected as baselines. The
Deep-PR and baselines are all implemented on four datasets
to compare their performance with respect to above metrics.
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TABLE V: Precision and recall results on Brightkite dataset

Method
Precision results Recall results

Pr@5 Pr@8 Pr@10 Re@5 Re@8 Re@10

GE-LR [40] 0.01639 0.01266 0.01038 0.0385 0.0421 0.0564
PSG-LSTM [41] 0.02316 0.01856 0.01657 0.0474 0.0667 0.0683
PSG-GRU [42] 0.02209 0.01762 0.01529 0.0597 0.0703 0.0826

PRBPL [38] 0.02877 0.02394 0.02015 0.0782 0.0915 0.0997
CPAM [39] 0.02683 0.02326 0.01909 0.0928 0.1059 0.1141

Deep-PR 0.03185 0.02848 0.02653 0.1028 0.1148 0.1387

GE-LR: It models context-aware factors via bipartite graph
theory. Then, graph-level features are embedded to establish a
location recommendation method.

PSG-LSTM: It considers auxiliary factors from three as-
pects: user preferences, social influence and geographical com-
ments. And they are fused into the long short-term memory
model (LSTM) to realize POI recommendations.

PSG-GRU: Similar to PSG-LSTM, it integrates three as-
pects of factors into the gated recurrent unit model (GRU) for
POI recommendations.

PRBPL: It jointly considers geographical distance and POI
categorical distance so that pairwise user preferences can be
obtained from the initial data.

CPAM: It uses skip-gram to model POI features and logistic
matrix factorization to model user preferences.

Including the proposed Deep-PR, there are totally eight
methods involved in the whole experiments. The seven se-
lected baseline methods are mostly classical methods that
are usually used for evaluating POI recommendation effect.
The GE-LR contains GE and LR two parts, in which GE
part is implemented according to reference [40] and LR part
is specially implemented. For PSG-LSTM and PSG-GRU,
the LSTM part and GRU part are implemented according
to references [41] and [42], and the PSG part is specially
implemented. For PRBPL and CPAM, their descriptions can
be found in [38] and [39].

All the experiments are carried out in a deep learning
working station with 32-core CPU, 256-GB RAM and a GPU
(RTX-2080-Ti). The proposed Deep-PR is implemented with
the assistance of TensorFlow 3. TABLE II lists setting for
main hyper-parameters that may influence running efficiency.
In processing layer of CNN, the number of filter cores N in
Eq. (5) is set to 5, and the number of updating rounds in
HAE is set to 5. Tunning parameter λ1 in Eq. (21) and λ2

in Eq. (28) are set to 0.5, and λ3 in Eq. (34) is set to 0.6.
The number of iteration rounds in Eq. (30) is set to 5. For
model implementation, not all the data is input into the model
directly. Instead, it is input into the model via the batch-to-
batch mode. The batch-size is set to 16, and the epoch number
is set to 8. The learning rate in experiments is initially set to
0.001. As the Deep-PR is mainly tested in terms of different

3http://tensorflow.google.cn/

recommendation sizes, the whole experiments just have such
one ratio between training data and testing data. In each
experimental group, the experiment will not be implemented
only once. Instead, a group will be conducted five times to
obtain five results. The final result for a group equals to
average value of the five results.

C. Results and Analysis

The precision and recall results on three datasets are listed
in TABLE III, TABLE IV and TABLE V, respectively. When
the number of recommended POIs increases from 5 to 10,
values of precision results tend to get smaller, while values
of recall results tend to get larger. The obtained results on
Foursquare dataset fluctuate volatilely, and those on Brightkite
dataset fluctuate gently. Of all these approaches, the proposed
Deep-PR always performs better than those of baselines. Even
compared with two of proper baselines: PRBPL and CPAM,
the proposed Deep-PR can still have an improvement of at
least 10%. Two possible reasons can be deduced to explain
above observations. For one thing, the Deep-PR considers both
local and global feature factors, so that deep distributed learn-
ing realized to enhance feature expression. For another, the
Deep-PR respectively updates two feature subspaces via two
different multi-round iterations, so that deep representation of
feature spaces is reoptimized. The collaborative effect of above
reasons contributes to more precise recommendations.

The F-score results on three datasets are listed in Fig. 5
which contains three subfigures. Among, each subfigure has
three clusters of values, corresponding to values of F-score@5,
F-score@8 and F-score@10. Overall, the F-score results show
descending tendency while the number of recommended POIs
changing from 5 to 10. It can be clearly observed that three
deep learning-based methods outperform others all the time,
and the proposed Deep-PR is superior to the other two.
The NDCG results on three datasets under different sizes
of training data are demonstrated in Fig. 6, separately. It
has three subfigures, in which X-axis denotes different sizes
of recommended POIs and Y-axis denotes values of metric
NDCG. Although baselines show diverse performance status
under different setting of scenarios, performance curves of
the proposed Deep-PR are always superior to other curves.
Especially when the proportion of training data switches from
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Fig. 5: F-score results on three datasets.

50% to 60%, Deep-PR has no obvious performance promotion,
because it has been trained to achieve a relatively stable
status. Main reasons for obtainment of the results can be
also attributed to two aspects. Firstly, deep representation
and distributed learning not only extract more latent feature
factors, but also improve robustness of model. Secondly,
the introduction of propagation procedures further optimizes
feature abstraction. The recursive effect of them makes the
feature spaces more fine-grained.
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Fig. 6: NDCG results on three dataset.

Having evaluated efficiency of the proposed Deep-PR, an-
other set of experiments are conducted to explore its stability
by testing sensitivity to parameter change. In this group of
experiments, just performance fluctuation of Deep-PR itself
under different parameter settings is visualized, without com-
paring with baselines. In detail, performance tendency in terms
of four metrics is analyzed with the changing of two groups
of parameters: size of recommended results and proportion
of training data. Concretely, proportion is set to four values:
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Fig. 7: Parameter sensitivity results of Deep-PR on three
datasets in terms of precision.

30%, 40%, 50% and 60%, and size is set to give values:
3, 5, 8, 10 and12. Parameter sensitivity is assessed on three
datasets with respect to above four evaluation metrics. And
the results are illustrated in Fig. 7, Fig. 8, Fig. 9, and Fig. 10,
corresponding to four metrics: precision, recall, F-score, and
NDCG, separately. Each figure contains three subfigures, in
which X-axis denotes different proportions of training data and
Y-axis denotes different sizes of recommendation results. The
smaller the chromaticity difference among blocks, the less the
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Fig. 8: Parameter sensitivity results of Deep-PR on three
datasets in terms of recall.

performance of the algorithm is affected by parameter change.
When the size of recommendation increases, precision and
F-score results show descending tendency, while recall and
NDCG results show ascending tendency. Although values of
metrics change with different scenario settings, the fluctuation
is quite gentle. We analyze all the results and summarize
three possible reasons for above phenomenon. Firstly, the
whole feature space is modeled with considering both local
and global factors, which is a comprehensive perspective
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Fig. 9: Parameter sensitivity results of Deep-PR on three
datasets in terms of F-score.

to improve wideness of the feature space. Secondly, deep
distributed learning is able to adaptively extract latent feature
components, improving depth of the feature space. Thirdly,
iterative computation operations are added to reconstruct fea-
ture space once more, so that fine-grained feature spaces can
be obtained finally. Due to the three reasons, the proposed
Deep-PR is not susceptible to parameter change.
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Fig. 10: Parameter sensitivity results of Deep-PR on three
datasets in terms of NDCG.

D. Running Efficiency

To comprehensively assess performance of baseline methods
and the proposed Deep-PR, the running speed is also dis-
cussed in this work. The experiments used 50% of data for
training and 50% of data for testing, and the running time for
training phase is tested. The average running speed results of
experimental methods are listed in TABLE VI. For GE-LR,
PSG-LSTM and PSG-GRU, they are involved in operations
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TABLE VI: Main time complexity results of experimental
methods.

Methods Average running time (min)
GE-LR 17.7

PSG-LSTM 15.6
PSG-GRU 14.8

PRBPL 23.7
CPAM 20.6

Deep-PR 32.3

TABLE VII: PSBV values of experiments methods.

Methods τ = 0.7 τ = 0.65 τ = 0.6

GE-LR 0.3026 0.3424 0.3803
PSG-LSTM 0.4402 0.4769 0.5136
PSG-GRU 0.4625 0.5009 0.5393

PRBPL 0.3911 0.3983 0.4055
CPAM 0.4118 0.4301 0.4485

Deep-PR 0.2793 0.2593 0.2394

of deep neural networks and will cost more time than other
baseline methods. The time length for each training round is
about 17.7 minutes, 15.6 minutes and 14.8 minutes, separately.
For PRBPL and CPAM, they are a bit more complicated than
GE-LR, PSG-LSTM and PSG-GRU. Their time length values
of training processes are 23.6 minutes and 20.6 minutes. As
for the proposed Deep-PR, time length for a training round
is about 32.3 minutes. There is no doubt that the proposed
Deep-PR has no advantage in terms of running speed. In other
words, the Deep-PR takes time cost as price to obtain better
recommendation effect.

As the POI recommendation is a kind of time-sensitive
application, running speed is a significant metric to evaluate
the performance. To quantify the overall utility of the Deep-
PR compared with others, an additional metric named as
“Performance-Speed Balance Value (PSBV)” is further defined
here for this purpose. The PSBV is preliminarily defined as
follows:

PSBV = τ ·∆performance + (1− τ) ·∆speed (39)

where ∆performance denotes utility value of performance,
∆speed denotes utility value of running speed, and τ is
the weight parameter for two parts. To ensure fairness, the
∆performance and ∆speed are both controlled into the range
of (0, 1). For a method, the ∆performance equals to normalized
value of its average F-score value. Naturally, higher average
F-score values lead to higher ∆performance values. While
the ∆speed equals to: one minus normalized value of its
average running time. Naturally, higher average running time
values lead to lower ∆speed values. The τ denotes weight
corresponding to performance, and the (1− τ) denotes weight
corresponding to running speed. When τ is set to 0.6, 0.65 and
0.7, the PSBV is listed in TABLE VII. It can be observed from
the table that three methods with better performance cannot

have higher PSBV values. Compared with PSG-LSTM and
PSG-GRU, PSBV value of Deep-PR is about 30%-50% lower
compared with them.

Frankly speaking, the deep information fusion can bring
good performance to some extent, yet running speed still needs
to be optimized in future works.

V. CONCLUSIONS AND FUTURE WORKS

MEN has been widely regarded as an indispensable part
in future 5G communication networks. Correspondingly, pro-
viding recommendation service for MEN users is worth deep
investigation. As simple user-location data are usually sparse
and not informative, existing approaches attempted to extend
feature spaces from contextual patterns and semantic patterns.
Nevertheless, they mainly focused on internal features of users,
yet ignoring potential external features among them. The
combination of distributed learning and deep representative
learning is a proper solution. To remedy such gaps, this
paper proposes Deep-PR, a deep distributed learning-based
POI recommendation. It separates the whole feature spaces
into local part and global part. The modeling of the subspaces
is implemented through a combination of deep representative
learning and iterative computation. Their collaborative effect
contributes to a feature space with stronger ability of feature
expression. Finally, experiments on three real-world datasets
show that the proposed Deep-PR outperforms baselines in
terms of four metrics.

Certainly, this work assumes that social activities in different
platforms are independent. But real-world social activities are
always cross-platform, as many users register accounts in
different platforms to acquire more fruitful experience. Thus,
social activities that belong to different platforms are interac-
tively correlated [43]. This point is still ignored by almost all
of existing researches, regardless of ours and others. In fact,
the model training inside a single platform can be viewed as
a learning task. It is expected to train an integrated model
oriented to hybrid social platforms through the joint learning
of multiple tasks, so that generalization of recommendation
can be well promoted. This is an important working direction
of our research team in the future.
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