Overview of recent trends in microchannels for heat transfer and thermal management applications

Harris, M., Wu, H., Zhang, W. ORCID: 0000-0002-3053-2388 and Angelopoulou, A., 2022. Overview of recent trends in microchannels for heat transfer and thermal management applications. Chemical Engineering and Processing - Process Intensification, 181: 109155. ISSN 0255-2701

Full text not available from this repository.

Abstract

Distinctive recent research and experimental trends in microchannels for heat transfer and thermal management applications are investigated via a novel framework. The qualitative literature analysis was performed from four perspectives: materials, enhanced flow control, design, and sustainability (MEDS). The findings revealed that enhanced microchannel (MC) heat transfer performance (HTP) could be achieved by adding asymmetrical barriers, pin-fins, non-conventional geometries, mixed-wettability/biphilic surfaces, hybrid/silver nanofluids, and adopting innovative experimental and analysis methods. Additionally, researchers urged to focus on new microchannel designs and flow boiling/phase change-based experiments to understand the physics and different effects caused by various parameters. Furthermore, the qualitative analyses were transformed into quantitative results from the evaluated described methods and datasets, followed by a critical discussion of the findings. Finally, this article points out a set of promising future investigations and draws conclusions about current state-of-the-art. It is observed that, despite the decent progress made so far, microchannel-based applications still rely on traditional rectangular shapes, water-based working fluids, and numerical methods. Therefore, the role and focus on Industry 4.0 technologies to drive further innovations and sustainability in microchannel technologies are still in the early stages of adoption; this arguably acts as a barrier that prevents meeting current thermal and heat transfer needs.

Item Type: Journal article
Publication Title: Chemical Engineering and Processing - Process Intensification
Creators: Harris, M., Wu, H., Zhang, W. and Angelopoulou, A.
Publisher: Elsevier BV
Date: November 2022
Volume: 181
ISSN: 0255-2701
Identifiers:
NumberType
10.1016/j.cep.2022.109155DOI
1615709Other
Divisions: Schools > School of Science and Technology
Record created by: Jeremy Silvester
Date Added: 10 Nov 2022 10:14
Last Modified: 10 Nov 2022 10:14
URI: https://irep.ntu.ac.uk/id/eprint/47363

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year