
1

Distributed Resource Distribution and Offloading for
Resource-Agnostic Microservices in Industrial IoT
Amit Samanta, Tri Gia Nguyen, Senior Member, IEEE, Thao Ha, and Shahid Mumtaz, Senior Member, IEEE

Abstract—Due to increase in real-time mobile applications and
Industrial Internet-of-Things (IIoT) devices, the edge computing
paradigm provides a systematic and eccentric platform for
real-time Internet-of-Things applications. Though the paradigm
provides an effective infrastructure, however the resource re-
quirements of IIoT devices change radically with time, which is
described as a resource-agnostic property. Therefore, the estima-
tion of resource requirements of IIoT devices is a critical and
resilient assignment. In addition, it requires an extensive amount
of resources to process the data traffic flows and microservice
offloading. Hence, we present RAISE, a novel resource-agnostic
microservice offloading scheme for mobile IIoT devices. RAISE
efficiently estimates the resource-agnostic nature of IIoT devices
to maximize their resource utilization in the network. Based
on the estimated resource requirement, we propose a resource-
agnostic microservice offloading scheme to maximize the success
rate. Extensive experiments show that RAISE provides better
performance in terms of network throughput and Quality-of-
Service (QoS) than the other existing methods, SDTO and DTOS,
in terms of cost and reliability.

Index Terms—Mobile edge computing, Internet of Things,
Industrial IoT, resource-agnostic, microservice offloading.

I. INTRODUCTION

THE rapid growth of the industrial revolution has directed
us to amalgamate different advanced fabrication methods

with IoT to develop an acute and efficient network manufac-
turing system. The main motive of such advanced system is
to enable an elevated automation system by merging hetero-
geneous technologies like IIoT [1]–[3] and edge computing to
authorize the formation of interdependent, reactive, and smart
inventing system. Therefore, Mobile Edge Computing (MEC)
[4]–[7] plays important to role to envision such IIoT networks.
MEC has emerged as a principal and essential paradigm
for real-time IIoT applications. This kind of paradigm shifts
the offloading mechanism to the network edge instead of
offloading to a centralized infrastructure, i.e. a cloud platform.
The advancement of MEC unites the cloud resource potential
of the IIoT devices. Thus, such combination systematically
takes out the core centralized compute capabilities to edge
[8]–[12]. Such a kind of platform provides a productive
and distinct unification of the network functionalities of the

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Amit Samanta is with the School of Computing, University of Utah, USA.
(Email: amit.samanta049@gmail.com)

Tri Gia Nguyen and Thao T. Ha are with FPT University, Da Nang 50509,
Vietnam. (Email: tri@ieee.org, thaoht32@fpt.edu.vn)

Shahid Mumtaz is with Nottingham University, Nottingham, UK. (Email:
Dr.shahid.mumtaz@ieee.org)

Corresponding author: Tri Gia Nguyen (tri@ieee.org).

cloud platform and the access network. The edge platform
provides a plethora of composite value-added microservices
to distributed mobile applications [13]–[16], while providing
a set of new functionalities for mission-critical applications.
Expansion of MEC is mainly concentrated on performance
improvement in terms of flexibility, microservice latency, and
power consumption over the typical cloud computing platform.

The IIoT devices are typically resource-constrained in
nature. Therefore, in an emergency situation, they do not
get a fair amount of resources to process and offload their
computational microservices [17]–[19] with heterogeneous
applications to edge servers in real-time. Apart from this, the
high network load, shared radio access network, and growing
demand for network bandwidth affect the data transmission
process in edge computing, which eventually makes the IIoT
devices more resource-constrained. Furthermore, the resource
requirement of IIoT devices changes dynamically with time,
such kind of behavior for IIoT devices is generally described as
the resource-agnostic property. Therefore, it is very important
to capture such behaviour in order to provide fair resources for
all the contending IIoT devices. Hence, we develop a resource-
agnostic microservice offloading method for IIoT devices. Our
scheme accurately fulfils the resource requirements of IIoT
devices for different mobile applications.

A. Motivation

We discuss the underlying challenges and implications of
designing a novel resource-agnostic optimal computational
microservice offloader for the MEC platform. To accomplish
efficient computation offloading for the MEC platform, we
need to address two fundamental questions:

• How should a scheme efficiently estimate the resource
requirements of IIoT devices accurately and provide a
higher priority to edge microservices over others?

• How efficiently the computational microservices is to
be offloaded on the edge platform, while providing the
scalability to the platform with higher accuracy?

These two fundamental questions are comprised of several
sub-questions, which we need to address. Hence, a resource-
agnostic resource distribution and offloading scheme must
address these four primary challenges:

• Optimal microservice identification: In general, incom-
ing microservices (i.e., microservice pools) are a mash-up
of various mobile applications; thus, identifying different
mobile microservices is a critical task. In real-life, the
applications of several mobile IIoT devices are generally
mixed into different heterogeneous microservices. Some

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

2

of the examples of different microservices are: critical
(augmented reality (AR)), normal (general sensor data),
and background (updates). Due to the lack of proper iden-
tification, the microservice delay of the network increases
and also the system overhead increases invariably.

• Estimation of resource requirements of IIoT devices:
Estimation of resource requirements of edge microser-
vices for a wide range of microservices generated from
different applications is very challenging and important
work for the MEC platform. As each of the microser-
vices has a resource-agnostic property, it is tough to
estimate the requirements accurately and offload them
efficiently to edge servers. Therefore, improper estimation
of resource requirements of IIoT devices leads to an
increase in microservice delays and also decreases in
system utilization.

• Design of optimal microservice offloader: After the
estimation of the resource requirements of IIoT devices,
the computational microservices need to be offloaded
efficiently to increase the network throughput. In order
to do that, we need to design an optimal microservice
offloading mechanism, which can efficiently offload the
microservices to nearby servers.

• Microservice prioritization: To offload the microservices
efficiently, it is very important to prioritize the mi-
croservices based on their resource requirements and
their microservice types. To prioritize the microservices,
we implement the First-In-First-Out (FIFO) queue for
simplified microservice prioritization. The starvation is
a problem for FIFO because of the heavy hitters. Hence,
we use the preemption for long running microservices,
which helps in case of starvation. Also, FIFO is easy
to apply and each microservice with the right amount
resources in the beginning of the queue can be executed
fairly without any manipulation.

B. Contributions

We observe that some existing solutions provide some
resource allocation schemes for IIoT devices. However, they
frequently assume that the resource requirements of IIoT
devices are known to the system, which is not always the case
due to the devices’ resource-agnostic nature. They apparently
ignore this fact. Therefore, it is necessary to consider this
resource-agnostic fact for efficient computational microservice
offloading of IIoT devices first, while minimizing the microser-
vice delay. Hence, the important contributions can be outline
as follows:

• We design a resource-agnostic resource distribution
scheme for edge computing to distribute legitimate re-
sources to IIoT devices.

• We also design an optimal microservice offloading
method for efficient computational microservice offload-
ing of IIoT devices to edge servers based on their different
application requirements and computational powers.

• We justify the RAISE’s efficiency through a series of ex-
tensive experiments and evaluate the impact on resource
utilization, system overhead and microservice delay.

The paper is organized as described. Section II describes
the related work. In Section III, we study a simple problem
scenario and system model for MEC platform. A resource-
agnostic microservice offloading scheme is investigated in
Section IV. Then, an optimization framework is designed for
microservice offloading in Section V. Section VI depicts the
simulation experiments to validate the performance. Section
VII concludes the paper with the future research problems.

II. RELATED WORK

We provide a synopsis of existing work concerning the
aspects of offloading mechanisms in MEC and IIoT networks.

A. Offloading Mechanisms in Edge Computing

First, we focus on investigating the offloading mechanisms
in edge computing. In [20], Gao et al. focus on the offloading
scheme among multiple user-equipments and servers in MEC.
First, each user-equipment determines the amount of workload
that needs to be offloaded to the server to optimize the
overall task execution delay. The authors then proposed an
aggressive game that takes into account instant load billing
to improve the server’s processing efficiency. In [21], Hou et
al. integrates MEC nodes and fixed edge computing nodes to
support both compute-intensive and delay-stringent services
in Internet of vehicles (IoV). The objective of the approach
is to provide better and more successful execution probability
of services. In [22], Wong et al. proposed a cooperative edge
computing scheme with AI techniques for IoT networks. The
fused heterogeneous edge public data for training a basic AI
model of cloud-scale are implemented by the cloud. The basic
model and the migration model based on edge-private data are
decompressed and reconstructed by the edge while extending
learning with newly generated data. With this approach, the
authors implemented a predictable task offloading architecture
and caching algorithm at the network edge. In [23], Li et al.
focused on securing and distributed outsourcing problems of
modular exponentiation with fixed base and variable exponent
in IoT networks based on edge computing. First, the authors
proposed an algorithm for load balancing by the edge nodes’
precomputation and solving the modular exponentiation. Then,
the authors adopted another logical division approach and load
balance among edge nodes using a segmentation approach. In
[24], Li et al. designed an algorithm to optimize offloading
scheme with multiple servers in MEC. First, the authors
formulated three problems of multi-variable optimization, i.e.,
minimizing response time, power consumption, and cost-
performance ratio. The authors then developed numerical
algorithms to solve the three problems mentioned above. An
online anticipatory proactive network association scheme for
mobile devices in IoT networks with MEC is presented by Cui
et al. [25]. The aim of their work is to optimize the stringent
task latency with optimal energy consumption constraint. First,
the authors design a delay model for a mobility-aware edge
platform. The authors then propose an algorithm for online
decisions with two-stage Markov decision processes (MDP)
and the Lyapunov optimization technique.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

3

Table I: A brief comparison between relevant exiting related works

Literature Resource-agnostic Mobility Latency Completion time Ordering
Gao et al. [20], Hou et al. [21] ✗ ✗ ✓ ✗ ✗

Gong et al. [22], Li et al. [23] ✗ ✓ ✓ ✗ ✗

Cui et al. [25], Fantacci et al. [26], ✗ ✗ ✓ ✓ ✓
Xu et al. [27], Qi et al. [28]
Chekired et al. [29], Coutinho et al. [30] ✗ ✗ ✗ ✗ ✗

Lucas et al. [31], Li et al. [24] ✗ ✓ ✓ ✗ ✗

Proposed scheme (RAISE) ✓ ✓ ✓ ✓ ✓

B. Resource Allocation and Offloading in IIoT

Here, we focus on investigating the offloading mechanisms
in IIoT networks. In [26], Fantacci and Picano focus on IIoT
networks with a combined edge-cloud computing architecture.
The authors propose an approach to pursuing a preferable
deployment of virtual-machine replica-copies of the edge ser-
vices residing on the edge servers, combined with acceptable
IIoT devices assigned to the edge servers. In [27], Xu et al.
design the uplink joint power allocation and the scheduling
problem of IoT devices providing optimal fairness for IIoT
over cognitive heterogeneous NOMA networks. They have
used dual decomposition and convex approximation methods
to solve the above problems. A compressed and private data
sharing (Cpds) network to enable efficient and private data
sharing for IIoT by using blockchain is presented by Qi et
al. [28]. This framework considers an off-chain method to
compress and encrypt product data before being submitted to
the blockchain system. In [29], Chekired et al. designed a fog
platform for IIoT applications considering multi-tier servers.
To solve the problem of scheduling IIoT devices, the authors
formulated a workload assignment algorithm as an integer
programming system. Further, the solution is accumulated in
different layers by applying the simulated annealing method.
In [30], an optimal method of a shared 5G small cell caching
system for content delivery in smart industry and connected
cars applications is presented by Coutinho and Boukerche. The
authors consider the content request characteristics and the
distinct content catalogs of the different applications of IIoT
and vehicle networks to develop the mathematical framework.
Lucas-Estan and Gozalvez [31] presented a load balancing
method which dynamically control the amount of data to be
transmitted by each node. The authors design the scheme
to predict the spatio-temporal variations of data in IIoT and
reduce the number of reconfigurations of wireless links. The
scheme also supports the deployment of self-organizing and
reliable industrial wireless networks.

Synthesis : Most of the existing literature focuses on com-
putational offloading techniques and the minimization of mi-
croservice delay in the MEC. None of the existing literature
considers the resource-agnostic property of the IIoT devices
and, moreover, they have not proposed any optimal and flexible
resource distribution scheme for IIoT devices to provide better
microservices. Although there are many resource distribution
techniques in the literature, they are mostly limited to general
wireless and cellular networks. However, these techniques
are not deemed suitable for microservices at the edge, as

microservices differ from traditional monolithic services in
several ways. Such as monolithic services are very hard to
scale based on the demand, whereas microservices are easy
to scale. Similarly, it is very hard to deploy the monolithical
services compared to microservices. Also, easier to provide
better isolation for microservices based on the application
requirements. Therefore, we design a microservice offloading
scheme for the edge platform while considering the optimal
delay constraint.

III. RAISE DESIGN AND DESCRIPTION

Figure 1: RAISE Architecture

This section discusses the overall architectural view of
RAISE, as shown in Figure 1. The left part of the figure 1
shows the overall architecture of MEC, in which the IIoT
devices offload their computational microservices to servers
through an edge gateway using the radio-access network. We
deploy our design system RAISE at the edge gateway in order
to provide an optimal microservice offloading scheme between
IIoT devices and servers. The right part of the figure shows the
detailed design specifications of RAISE, which are basically
comprised of four modules. In the first module (1), the IIoT
devices estimate their resource requirements/demands, while
considering the resource-agnostic property. In the second mod-
ule (2), we identify the different microservice classes based
on the estimated resources. Here, we considered three types
of microservice classes - critical edge microservices, normal

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

4

microservices and background microservices. Thereafter, in
the third module (3), we design several priority queues to
offload the microservices efficiently. Thus, we assign different
priorities to the microservices based on their classes. After the
assignment of different priorities, the computational microser-
vices are offloaded to edge servers in order to minimize the
microservice latency using the optimal microservice offloader.
Hence, in the last module (4), the estimated resource require-
ments are sent to the optimal resource distributor. The optimal
resource distributor assigns the required resources to IIoT
devices according to their requirements. Then, the IIoT devices
offload their computational microservices to edge servers.

A. Resource-Agnostic Microservices
As previously discussed, it is essential to allocate an equi-

table amount of resources to resource-hungry applications run-
ning on mobile IIoT devices. In order to assign the resources
fairly, we need to estimate the resource requirements of
IIoT devices efficiently to fulfill their quality-of-microservice
(QoS). However, the estimation of the resource requirements
of IIoT devices is very challenging, as the IIoT devices
are resource-agnostic in nature. To identify the requirements
accurately, we consider flow, community, and application level
properties. After the identification of accurate resource require-
ments, we offload the microservices of different IIoT devices
optimally to optimize the microservice delay. To achieve these
goals, RAISE relies on the following four important steps:

1) Identification of Resource-agnostic Property: First, we
identify the resource-agnostic property of IIoT devices
accurately. The microservice flow from IIoT devices can
be characterized by a set of different attributes. Thus,
the selection of useful attributes is an important step for
the identification of resource-agnostic property of IIoT
devices. Here, RAISE explores explicit and implicit at-
tributes and heuristics on multiple levels for identification
instead of considering a black-box approach.

2) Efficient Resource Distribution: Following the identifica-
tion of resource-agnostic property, we estimate the opti-
mal resource requirements of IIoT devices to offload their
computational microservices efficiently. Hence, given all
the attributes, RAISE calculates optimal microservice
utility for IIoT devices to capture the microservice flow
relationships. Here, the different flows belonging to the
same microservice class will have a small difference in
the resource response rate. The key challenge here is
to design a proper metric which reflects the importance
of resource-agnostic property. RAISE employs previous
resource demand to estimate the current demand response
of the IIoT devices.

3) Optimal Microservice Offloading: RAISE employs an
optimal microservice offloading mechanism to offload
the microservices to servers. The offloading decision is
dependent on the total load on servers, capacity and flow
constraints. Following the optimization problem, we also
design an optimal microservice offloading algorithm.

4) Microservice Prioritization: After the estimation of re-
source requirements, we design a microservice priori-
tization queue to avoid the starvation problem in the

network. Critical microservices should be given higher
priority, while normal microservices should be given
lower priority.In the presence of all normal microservices,
we follow a first-in-first-out (FIFO) queue.

B. Identification of Resource-Agnostic Property

We consider a set of microservice-level features that might
be useful for the identification of resource-agnostic property
of IIoT devices. First and foremost, to identify the resource-
agnostic property of a microservice class, we apply different
microservice-level features. These features are very important
for knowing the microservice types and their fundamental
attributes. They will help us to know the data packet size and
arrival time of different microservices. Hence, we rely on a
largely-used microservice-level features [32]–[34], such as:

• St: start time of a microservice
• Fsi: mean data packet size in a microservice flow
• Vsiz: variance of data packet sizes in a microservice flow
• Mint: average data packet inter-arrival time

Here, we have excluded microservice flow size and duration as
they cannot be obtained until a microservice flow completes.
They eventually will not affect the performance as we have
some fundamental features of the microservices. In order to
formalize our approach, we define the problem of estimating
the resource usage for a given computational microservice
to be provisioned. We assume that the provisioning IIoT
device has the following information about the computational
microservices, which is discussed as:

• The type of microservices to be provisioned S.
• A vector B of input data for task S

Furthermore, given all the information about the microser-
vices, a list of resources for each IIoT device is to be estimated.

For our system architecture, we assume that a microservice
flow is comprised of k sub-microservice flows as S =
{S1, S2, · · · , Sk}. The microservice flows S of IIoT devices
should proceed through the platform in an optimal order
while entering in S1 and leaving in Sk. The order of mi-
croservice flows should be decided depending on the criti-
cality factor of microservices, in the beginning we consider
that microservice flows S should be ordered partially. An
IIoT device consists of heterogeneous microservices and it’s
configurations. We consider that such set of microservices
as microservice configuration. Further, we consider the set
of feasible configurations C of the ith microservice can
be represented as Ci = {Ci1,Ci2, · · · ,Ci|Ci|}. Following
this, the microservice-level system configurations should be
represented as Cij = {Xj1,Xj2, · · · ,Xj|θ|}, where Xj|θ| is
the count of microservice instances θ and θ illustrates the
set of available microservice instances θ = {θ1, θ2, · · · , θ|θ|}.
Each microservice instance θi is connected to a tuple of h
dimensions considering the allotted heterogeneous resources
(e.g. storage, network, CPU cores, · · ·). As an example, sup-
pose a microservice (instance) requires multiple resources in a
order of CPU, I/O, memory and network. So, in this case, the
microservice would first need CPU then I/O and then memory
and network. Basically, it would be connected to resource
types in a staged fashion (top-down). We denote the resources

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

5

for the lth microservice instance as θl = ⟨θ1l , θ2l , · · · , θhl ⟩.
The configuration setups Ci should be ordered in top-down
fashion with it’s resource necessity. Hence, we design a set
for all microservice configurations as S as C = {Ci|i ≤ k}. It
should be noted that we can choose any kind of configuration
for microservice instance without any fundamental limitation.
The configuration refers to a process by which microservices
should be deciding which resource types it wants and which
order. On such system configuration in the load balancer can
handle multiple microservices with same kind, on the other
hand, microservice of different kinds needs different configu-
rations. As per as the resource requirements is concerned, we
define the minimum aggregated resource requirements of type
r for a system configuration Cij as Rmin

i (r) =
∑|θ|

l=1 Xjlθ
h
l .

The required resources have upper bound of ur, it considers
the maximum resources of type r available for microservice
S. Further, with respect to the microservice, we define the
microservice utilization of Cij as Wij the function of the
microservice being executed and the average capacity of a
microservice.

IV. RESOURCE DISTRIBUTION FRAMEWORK

Let us consider, the edge network has n IIoT devices
N = {1, 2, · · · , n} and they are connected to m edge
severs M = {1, 2, · · · ,m}. To deal with the time-critical
microservices, we divide time into T time slots, defined as
T = {1, 2, · · · , T }. In the edge platform, we have a set of
predefined resource capacity, denoted as R with size |R|. Their
offloading capacities are denoted as E = {E1, E2, · · · , En} in
terms of the number of microservices it can offload in one
time unit. Here, to handle the resource-agnostic nature of IIoT
devices in MEC, there is an agnostic factor for each IIoT
device γ = {γ1, γ2, · · · , γn}, which is defined as:

γi =

(
Ri

Ht
i∑

i∈n

∑
t∈T Ht

i

)
(1)

where Rt
i denotes the resource requirement, T denotes the

total time period and Ht
i denotes the changing resource

response rate of IIoT devices. For the resource requirement,
first we calculate the resource requirements of microservices
over each timestep in a time period, then we created a profile
based on it. We start with the maximum CPU allocation and
do a binary search on the CPU values to estimate resource
requirement. If the profiled point resulted in a better resource
utilization that is less than a fixed threshold (say 50%), then
we continue binary search on the lower half of CPU values,
else we profile more points on the upper half. The idea here
is to empirically profile CPU regions that show significant
difference in resource utilization, while skip those regions with
little to no improvement in resource utilization.

Based on the resource-agnostic factor, we design a resource
demand matrix for each IIoT device Git, where i ∈ n, t ∈ T .
We specify an offloading strategy by solving a offloading rate
St
ij , i ∈ n, j ∈ m. For resource-agnostic scheme, we consider

three tuple Rt
i,Di,Pi to provide fair and optimal resource

distribution among IIoT devices. Here, Di denotes the delay
requirement and Pi denotes the priority level of of each edge

microservice, respectively. The RAISE, basically, distributed
the resources to each of the devices. Based on few important
metrics, we design a utility for IIoT devices and the utility
of i IIoT device at time t is expressed by Ui(Ri,Di,Pi, t).
We get a fixed set to interpret a feasible utility set of IIoT
devices, which is denoted by U. The set U is represented
as the joint utility set, such as, U = {U1,U2, · · · ,Un} ∈
Rn. Each IIoT device has a minimum resource requirement
to process their computational microservices. The minimum
requirement of resources for IIoT device i is represented
as, Rmin = {Rmin

1 ,Rmin
2 , · · · ,Rmin

n }. The utility function
Ui(Ri,Di,Pi, t) for the IIoT device i at time instant t is
calculated as:

Ui(Ri,Di,Pi, t) =

[
γiΘ

t
iPi

CRt
i

Cmax
Rt

i

ln(Rt
i −Rmin,t

i)

]
(2)

where Θt
i denotes the profit level of IIoT devices, CRt

i
and

Cmax
Rt

i
denote the delay-sensitive actual resource and maximum

cost for IIoT devices, Rt
i denotes the actual resource require-

ment of IIoT devices. The profit level Θt
i for the IIoT devices

is mathematically described as:

Θt
i =

(
σnet
i

Ii(t)
Li(t)

)
(3)

where Ii(t) and Li(t) denote the corresponding microservice
rate and size of the microservice at time t, respectively.
σnet
i denotes the unit profit factor. The actual delay-sensitive

resource cost CRt
i

is described as the total cost incurred by
the mobile IIoT devices for delay-sensitive microservices.
Mathematically,

CRt
i
=

(
η(WRi

(t)ΥRi
(t)− VRi

(t))

)
(4)

where η denotes the pricing factor, WRi
(t) signifies the

cost of actual resources allotted to devices for delay-stringent
microservices, VRi(t) denotes the basic cost require to get
minimum resources. The basic cost VRi

(t) is mathematically
expressed as:

VRi
(t) =

(
F(t)

Di

Dmax

)
(5)

where F(t) denotes the unit delay-sensitive cost for IIoT
devices, Di and Dmax denote the actual and maximum delay
faced by microservices, respectively. It should be considered
that the demand rate of resource requirements for IIoT devices
changes with time, therefore the demand response rate ΥRi

(t)
is dynamic in nature. This is modeled as an ordinary differ-
ential equation. The demand response at time t depends on
the demand before t. Thus, demand rate ΥRi

(t) of resource
requirements for IIoT devices is expressed as:

ΥRi
(t) =

(
dnΥRi

(t− 1)

dtn
+ΥRi

(t− 1)

)
(6)

The accurate prediction of demand rate is crucial for microser-
vices to get fair amount of resources.

The resource distribution among IIoT devices tries to find
an optimal solution with fair resources for IIoT devices to
optimize the throughput and resource utilization. To find the

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

6

optimal resource utilization, the distributed resource-agnostic
scheme need to be maximized. The utility function for re-
source maximization problem is expressed as:

Max Ui(Ri,Di, t) =

[
γiΘ

t
iPi

CRt
i

Cmax
Rt

i

ln(Rt
i −Rmin,t

i)

]
(7)

subject to
n∑

i=1

Di < Dmax, i ∈ N (8)

n∑
i=1

Rt
i ≥ Rmin,t

i , i ∈ N , t ∈ T (9)

n∑
i=1

Θt
i ≥ Θth, i ∈ N , t ∈ T (10)

We illustrate the optimization problem in detail. (7) demon-
strates the primary optimization problem and (8) signifies
that the delay-requirement of microservices Di should be less
than the maximum delay requirement Dmax. The resource
requirement Rt

i should be greater than the minimum resource
requirement Rmin,t

i as defined in (9). (10) demonstrates that
the profit factor Θt

i should be greater than the threshold profit
level Θth. We take into consideration of Lagrangian multiplier
to get the solution of the objective function. By applying the
method, we get the following equation,

ΘU =

n∑
i=1

1

Uth
Ui(Ri,Di, t)− ξ1

(n∑
i=1

Di −Dmax

)
−ξ2

(n∑
i=1

Rt
i −Rmin,t

i

)
− ξ3

(n∑
i=1

Qi −Qth

)
where ξ1, ξ2 and ξ3 are the balancing factors for Lagrangian
method. Our primary intention is to get the optimal value of
Ui by following the Lagrangian method. After getting the
Lagrangian equation, we solve it using the gradient descent
method. The Lagrangian mathematical expressed as:

LΘU =

n∑
i=1

1

Uth
LΘU

(
Ui(Ri,Di, t)

)
− ξ1

(n∑
i=1

Di −Dmax

)
−ξ2

(n∑
i=1

Rt
i −Rmin,t

i

)
− ξ3

(n∑
i=1

Qi −Qth

)
We consider the gradient decent method to optimize LU . Thus,
we get the subsequent equations.

δLΘU

δDi
=

n∑
i=1

1

Uth

δLΘU

(
Ui(Ri,Di, t)

)
δDi

(11)

δLΘU

δRt
i

=

n∑
i=1

1

Uth

δLΘU

(
Ui(Ri,Di, t)

)
δRt

i

(12)

Following the upper mentioned equations, we acquire the
optimal value of LΘU for IIoT devices.

We elaborate the algorithm for microservice utility max-
imization for IIoT devices. As illustrated in Algorithm 1,
in the beginning, we requisite to supply four inputs – IIoT
devices N , edge servers M, microservice flows S and total

Algorithm 1: Microservice Utility Maximization
Input: Set of IIoT devices (N), set of edge servers (M), set of

sub-microservice flows S and time period T .
Output: Accurate resource demand ¯ΥRi

(t) and τwait.
1 Specify τwait = 0;
2 Specify N = n, M = m, S = k;
3 for consider IIoT device i in edge platform do
4 Consider the microserice flow for each IIoT device;
5 if T ≥ 0 & τwait ≤ τmax

wait then
6 Determine the average microservice delay Di;
7 Determine start time of a microservice St;
8 Approximate mean data packet size in a microservice flow Fsi;
9 Calculate variance of data packet sizes in a microservice flow Vsiz ;

10 Approximate average data packet inter-arrival time Mint;
11 Determine resource agnostic factor for each IIoT device γi;
12 Approximate resource requirement Ri;
13 Changing resource response rate of IIoT devices Ht

i ;
14 Design utility function Ui;
15 if Ui ≥ Uth then
16 Upgraded set of IIoT devices N̄ = N ∩ i;
17 Optimal resource demand ¯ΥRi

(t);
18 Upgrade waiting time τwait = τwait. else
19 Upgraded set of IIoT devices N̄ = N ;
20 Non-optimal price cost (Υ̂Ri

(t));
21 Upgrade waiting time τwait = τwait + 1;

22 Return ¯ΥRi
(t) and τwait;

time T . To feed the resource demand to IIoT devices, we
present microservice utility maximization scheme to optimize
the microservice latency and resource demand. To begin with,
we specify the waiting time τwait to 0. Afterward, we continue
the algorithm for several rounds (i.e., 200 runs) for each IIoT
device i. If the cumulative time is greater than or equal to
0, i.e., T ≥ 0, in such situation we approximate the total
microservice latency Di and determine the start time of a
microservice St. Thereafter, we approximate the mean data
packet size in a microservice flow Fsi and determine the
variance of data packet sizes in a microservice flow Vsiz . Also,
approximate the average data packet inter-arrival time Mint

and determine the resource agnostic factor for each IIoT device
γi. Following, we approximate the resource requirement Ri

and variation in resource response rate of IIoT devices Ht
i .

Following the determined parameters, we formulate a utility
function Ui for resource-agnostic microservice offloading.
While the utility value Ui is higher than the average threshold
value Uth, followed by a degradation in the IIoT devices
N̄ = N ∩ i. Further, we upgrade the time τwait. Applying
the solution for the optimization problem, we attain optimal
resource demand ¯ΥRi

(t). The algorithm is discontinued, if
the waiting time meets a set maximum waiting time τmax

wait .
We get the optimal utility value from Equation (7) using the
Lagrangian method.

V. OPTIMAL MICROSERVICE OFFLOADING

After distributing the resources among IIoT devices, the mi-
croservices should be offloaded to the edge servers for further
processing. Hence, in this section, we design an optimal mi-
croservice offloading mechanism. The microservice offloading
mechanism collects the information from the resource-agnostic
model to make the decision about offloading with RAISE. The
offloading decision mechanism would design an optimization
problem if the microservice flow completion remarks and exe-
cution time could be precisely estimated immediately after the

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

7

mobile IIoT devices start their applications. The optimization
depends on the total load of edge server and the microservice
flow rate between the IIoT devices and the edge servers. The
offloading decision metric Ot

ij is defined as:

Ot
ij =

(
Yt
j −

AijSt
ijfij(t)

EjJ cap
j

)
(13)

where Yt
i denotes the total load of server i at time t, Aij

denotes the microservice flow constraint, St
ij denotes the

microservice flow rate at time t, J cap
j denotes the capacity

of server j and fij(t) signifies the dedicated flows. Hence,
the optimization problem is defined as:

Maximize Ot
ij =

[
Yt
i −

AijSt
ijfij(t)

EjJ cap
j

]
(14)

subject to
n∑

i=1

Yt
i ≥ Yt

th, i ∈ N , t ∈ T (15)

n∑
i=1

St
ij ≥ St

th, i ∈ N , t ∈ T (16)

m∑
j=1

J cap
j ≥ J cap

th , j ∈ M (17)

n∑
i=1

Aij ≥ Ath, j ∈ M (18)

We illustrate the optimization problem in detail. (14) demon-
strates the primary optimization problem. (15) signifies that
the present load of the server Yt

i should be greater than the
threshold load Yt

th. The microservice flow rate St
ij should

be greater than the threshold microservice flow rate St
th as

depicted in (16). (17) demonstrates that the capacity of server
J cap
j should be greater than the threshold capacity of server

J cap
th . (18) demonstrates that the microservice flow rate Aij

should be greater than the threshold flow rate Ath. We take
into consideration of Lagrangian multiplier to get the solution
of the objective function. By applying the method, we get the
following equation,

∇O =

n∑
i=1

m∑
j=1

Ψi

Oth
Ot

ij

(
Yt
i ,Aij ,St

ij , fij(t), Ej ,J
cap
j

)

−ξ
′′

1

(n∑
i=1

Yt
i − Yth

)
− ξ

′′

2

(n∑
i=1

m∑
j=1

St
ij − St

th

)

−ξ
′′

3

(m∑
j=1

J cap
j − J cap

th

)
− ξ

′′

4

(n∑
i=1

m∑
j=1

Aij −Ath

)
.

here ξ
′′

1 , ξ
′′

2 , ξ
′′

3 and ξ
′′

4 illustrate the balancing elements for
Lagrangian method. Ψi signifies the priority values of mi-
croservices in IIoT devices. The crucial motive is to optimize
Ot

ij . After getting the Lagrangian equation, we solve it using
the gradient descent method. The Lagrangian mathematical

expressed as:

L∇O =

n∑
i=1

m∑
j=1

Ψi

Oth
LO

(
Yt
i ,Aij ,St

ij , fij(t), Ej ,J
cap
j

)

−ξ
′′

1

(n∑
i=1

Yt
i − Yth

)
− ξ

′′

2

(n∑
i=1

m∑
j=1

St
ij − St

th

)

−ξ
′′

3

(m∑
j=1

J cap
j − J cap

th

)
− ξ

′′

4

(n∑
i=1

m∑
j=1

Aij −Ath

)
.

We focus on to get the optimal value of LO using Lagrange
method. Thus, we get the subsequent equations.

δL∇O

δYt
i

=
∑
i∈n

−
ΨiLO

(
Yt
i ,Aij ,St

ij , fij(t), Ej ,J
cap
j

)
Yt
i
2

δL∇O

δJ cap
j

=
∑
j∈m

Ψi

Oth

δLO
(
Yt
i ,Aij ,St

ij , fij(t), Ej ,J
cap
j

)
δJ cap

j

δL∇O

δSt
ij

=
∑

i∈n,j∈m

Ψi

Oth

δLO
(
Yt
i ,Aij ,St

ij , fij(t), Ej ,J
cap
j

)
δSt

ij

δL∇O

δAij
=

∑
i∈n,j∈m

Ψi

Oth

δLO
(
Yt
i ,Aij ,St

ij , fij(t), Ej ,J
cap
j

)
δAij

Following the equations, we attain the optimal value of L∇O

to obtain the offloading decision metric for IIoT devices. We
now propose a microservice offloading algorithm – RAISE for
IIoT devices.

We elaborate the optimal microservice offloading algorithm
for MEC as depicted in Algorithm 2. In the beginning, each
IIoT device approximated their resource requirements and also
their delay requirements. Following, each IIoT device deter-
mines their utility function. If the determined utility function
Ui(Ri,Di,Pi, t) is greater than the threshold utility function
Uth(Ri,Di,Pi, t). Then, the load of edge server is computed
and also offloading decision metric Ot

ij is determined. If
the offloading decision metric Ot

ij is less then the threshold
offloading decision metric Ot

th. Then, the microservice of-
floading time is computed, else we solve the objective problem
to obtain the optimal offloading matrix O∗.

Algorithm 2: Optimal Microservice Offloading
Input: Number of IIoT devices (i ∈ N), Number of edge servers (j ∈ M),

Offloading time Tlow .
Output: Optimal offloading matrix (O∗).

1 IIoT device estimate their resource requirement Ri;
2 Approximate the resource-constrained factor γi of ith device;
3 Determine the delay requirement Di of ith device;
4 Determine the utility function Ui(Ri,Di,Pi, t) for device i;
5 for i = 1 to N do
6 if Ui(Ri,Di,Pi, t) ≥ Uth(Ri,Di,Pi, t) then
7 Determine the load of the each edge server Yt

i ;
8 Determine the offloading decision metric Ot

ij ;
9 if Ot

ij ≤ Ot
th then

10 Upgrade offloading time, T ∗
wait = (Tlow + 1);

11 else
12 Solving the optimization problem, we obtain the optimal

offloading matrix (O∗ = {Ot
ij}

∗) ;

13 Return when T ∗
wait = Ttot;

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

8

1) Microservice Prioritization: After the estimation of re-
source requirements, we design a microservice priority queue
to provide different priorities Ψi to IIoT devices in order
to offload their computational microservices. The priorities
are defined based on their microservice classes to minimize
the effect of the starvation problem. Here, we have designed
three simple priority queues. Critical microservices (i.e., real-
time edge microservices) are given the highest priority, normal
microservices are given a moderate priority, and background
microservices are given the lowest priority. The queue in the
higher phase gets to execute their microservices first, whereas
the queue in the lower phase gets to execute their microser-
vices after completion of the higher queues. The continuous
priorities derived from these priority matrices can provide
fair resource sharing and also provide optimal microservice
offloading to microservices. On the other hand, contentious
priority extraction increases the microservice overhead, which
provides extra challenges to system designers. Therefore, we
need to minimize the microservice overhead without requiring
excessive extraction of priorities. Moreover, we elaborate on a
microservice prioritization framework to eventually design an
optimal microservice offloader.

Theorem 1. The complexity of RAISE is O(Zn), n signifies
the count of IIoT devices.

Proof. In RAISE, the IIoT devices attempt to offload the
microservices to edge servers to optimize the offloading la-
tency. In the beginning, the IIoT devices approximate the
resource and delay requirements. Moreover, these steps do
not require any computational power. Thereafter, the IIoT
devices check the conditions of the utility functions to of-
fload the microservices. This step is performed for n times.
Hence, the worst-case computation complexity to offload the
computational microservices is O(Ξ1n log n). In addition,
the complexity of utility maximization algorithm is O(Ξ2n).
Therefore, combining the complexity of optimal microservice
offloading scheme, we have, T (n) = Ξ1Zn log n + Ξ2n. We
calculate the total complexity of RAISE, i.e., O(Zn) and n
signifies the IIoT devices.

Table II: Simulation Parameters

Parameter Value
Bandwidth of base stations 1.4 MHz
CPU cycles of microservice tasks [35] 1,500 Megacycles
Compute latency threshold 2.5 ms
Microservice completion time [400, 600] ms
Resource requirement of microservices [25, 30] units
Tran-energy of IIoT device [36] 90 mWatts
IIoT device compute competence [37] 0.85 GHz
MEC server compute competence 150 GHz
Incoming rate of microservices [36] [0, 10] unit/sec
Microservice size [36] 150 Mbits
Execution rate of microservices [50, 80] ms
Spin-up time of microservices 180 ms
Energy coefficient factor [38] 5−24

VI. EXPERIMENTAL RESULTS

We have implemented RAISE as a middleware at the
network edge and here we describe each of the components
in detail.

A. Experimental Setup

We explain the experimental setup for performance evalu-
ation of RAISE in Table II. With align to existing literature
[39], [40], we consider Arduino and Intel i7 CPU as example
of IIoT device to acquire the practical values with regard to
compute proficiency. We evaluate RAISE while considering
50 IIoT devices dispersed over a region of 4 km x 4 km.
The edge devices communicate through different base stations
and MEC servers are mainly collocated near to base stations
(BSs) [41]. The compute competence of MEC server is 1012

CPU cycles/s and the compute competence of IIoT device is
0.85 GHz. The edge devices use several wireless channel to
offload the microservices to edge servers. Here, we consider a
distributed framework, where the edge platform are connected
to each other using a backhaul network. The backhaul network
rate is set to 0.0005 sec/KB [42]. The computing time of
microservices for edge IIoT devices is set within 20− 30 ms.
The compute fie size of a microservice is assign in the range of
500 KB to 1 MB. The latency factor of a IIoT device is defined
in the range 1 − 1.5 s. We get the real-time traffic of IIoT
devices [43] using a D-ITG traffic generator [44]. We generate
two types of topologies – 1) AttMpls and 2) Goodnet, while
collecting different information from the Internet Topology
Zoo [45].

The time-slot of offloading microservices are considered to
be 1 ms. The data flow rate of IIoT devices is considered
to be with the range of 400 − 1400 kbps. To provide the
latency guarantee to IIoT applications, the threshold latency
factor is assigned to 2.5 ms. The minimum offloading rate is
considered to be 1.5 MBps or more. The offloading data size of
a microservice task is set to in the range of 200−1200 KB. The
CPU cycles of microservice tasks is set to 1,500 Megacycles.
The transmission power of IIoT device is 90 mWatts. The
deadline of microservices is set to 0.2−0.7s and delay tolerant
capability is set to 0.4s for critical microservices.

B. Workload

We implement RAISE in 15 edge server machines and
each of them is enabled with Linux OS in an Intel core-i5
having CPU clock size of 2.8 GHz. In RAISE, we generate a
pair of traffic work patterns, 1) delay-stringent (i.e., basically
microservices) and 2) delay-lenient (i.e., normal applications)
workloads. The maximum preference should be set for latency-
stringent applications rather than for latency-lenient applica-
tions. Thus, for the RAISE framework, we operate critical
microservices with maximum preference compared to normal
microservices. To create the aforementioned workloads, we
investigated three types of probability distributions: uniform,
normal, and power, to see how they affected the RAISE’s per-
formance. To illustrate the effectiveness of RAISE, the power
distribution shows the highly screwed workload typically used
for online social networks considering power law [46].

C. Evaluation Metrics

We discuss the evaluation metrics used to observe the per-
formance of RAISE. First, we consider the resource utilization

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

9

 0

 2

 4

 10 20 30 40 50

T
hr

ou
gh

pu
t (

M
bp

s)

IIoT Devices

SDTO

RAISE

DTOS

(a) Throughput

 0

 20

 40

 60

 80

 100

10 20 30 40 50

Sy
st

em
 O

ve
rh

ea
d

(%
)

IIoT Devices

SDTO

DTOS

RAISE

(b) Overhead

 0

 10

 20

 30

 10 20 30 40 50

D
em

an
d

R
es

po
ns

e

IIoT Devices

RAISE

SDTO

DTOS

(c) Demand Response

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

Pa
ck

et
 L

os
s

R
at

e

IIoT Devices

RAISE

SDTO

DTOS

(d) Packet Loss Rate

Figure 2: Analysis of throughput, system overhead, resource demand and loss rate

metrics for microservice offloading. The resource utilization
metric can be designed as the ratio of resources assigned and
the average resource requirement of IIoT devices. Along with
that, we also design a success rate (SR) metric. It is dependent
on the average count of offloaded microservices and the total
count of microservices to be offloaded.

SR =
Average # of microservices offloaded

Total microservices to be offloaded
The metric with the higher quantitative values signifies the
superior performance of RAISE, but it does not provide fair
performance for microservices. We also compare RAISE to
other state-of-the-arts in terms of reliability at a particular time
t. Here, the QoS stands for goodput of the systems and the
system overhead stands of how much time it takes to run the
algorithms and its coverage time.

D. Benchmarks for RAISE

For performance evaluation of RAISE, we study two ex-
isting benchmarks - SDTO [47] and DTOS [48]. SDTO [47]
leveraged the concept of SDN, they considered a task offload-
ing method in ultra-dense network focusing on optimizing the
delay and power consumption. Offloading tasks is difficult
due to the compute resources on the edge platform and the
power consumption of the edge devices.They considered a
task offloading mechanism as NP-hard integer programming.
To solve it, they rearranged it by dividing it into a pair of
sub-categories, i.e., task assignment and resource allotment.
Considering both the sub-categories, they proposed an optimal
offloading scheme. DTOS [48] proposed a joint task offloading
scheme (mapping from tasks to applications) and scheduling
(execution order) scheme in order to deal the heterogeneity
of tasks (with distinct resources, delay, etc.) and limited MEC
capabilities. This scheme is regarded as a challenging combi-
natorial problem. They then decided on the resource allocation
problem for heterogeneous applications and formulated it as
a Dynamic Task Offloading and Scheduling problem. They
mathematically formulated the problem and, due to its com-
plexity, later devised a novel, thoughtful decomposition based
on the Logic-Based Benders Decomposition technique.

On the other hand, RAISE, we design a resource-agnostic
microservice offloading with delay constraint for IIoT devices
at the edge, while taking into account – delay, priority,
completion time and resource-agnostic property, according to

Algorithm 1 and 2. We try to find the optimal value while
considering different local values in several rounds.

E. Discussion on Simulation Results

1) Impact on Network Throughput: We analyze the im-
pact of network throughput in RAISE. Figure 2(a) signifies
the network throughput for RAISE. As far as the figure is
concerned, we note that network throughput is higher while
there is an increase in the density of IIoT devices. As the
number of IIoT devices has grown, the demand response of
the mobile IIoT devices also increases as shown in Figure 2(c).
Therefore, in such a situation, RAISE optimally distributes the
resources among IIoT devices and also provides an optimal
offloading scheme, which eventually increases the network
throughput. As it can distribute the resources fairly, hence
edge servers can execute more number of microsevices, which
eventually increase the throughput. Hence, RAISE achieves
better throughput the other methods DTOS and SDTO by
12%-15%. Figure 2(b) depicts the system overhead of RAISE.
Following the figure, we can consider that system overhead is
higher as more IIoT devices join the platform. The overhead
for RAISE is low as its works in a online fashion and converge
it relatively faster. By comparing with other methods, DTOS
and SDTO, we can conclude that RAISE has less system over-
head. The overhead of using RAISE is comparatively less than
other methods with performance gain 13%-19%. Figure 2(c)
illustrates that the demand response of IIoT devices is higher,
as IIoT applications are generating multiple microservices.
The microservice-level characteristics helps us to estimate the
resource requirements of IIoT devices accurately and helps to
keep a track of demand change. Hence, RAISE provides better
peerofmance while estimating resource demand. However,
RAISE outperforms the existing DTOS and SDTO methods.
Hence, the resource demand of IIoT devices for RAISE is
higher than other methods with performance gain 18%-28%.
Figure 2(d) shows the packet loss rate for the IIoT devices.
As the IIoT devices execute their microservices on optimal
servers through the radio access networks (generally long-
term-evolution). Hence, as the IIoT devices share the radio
access channel for computational offloading, the packet loss
is higher if more IIoT devices rejoin the network. However, it
provides a lower packet loss rate than the other approaches.
Hence, RAISE achieves less packet loss than the other meth-
ods, DTOS and SDTO with performance gain 8%-14 %.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

10

 0

 20

 40

 60

 80

 100

10 20 30 40 50

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

IIoT Devices

DTOS

SDTO

RAISE

(a) Resource Utilization

 0

 2

 4

 10 20 30 40 50

D
el

ay
 (

s)

IIoT Devices

RAISE

SDTO

DTOS

(b) Delay

 0

 20

 40

 60

 80

 100 200 300 400 500

C
um

m
ul

at
iv

e
D

at
a

(M
B

)

Time (Sec)

RAISE

SDTO

DTOS

(c) Cumulative Data

 0

 20

 40

 60

 80

 100

10 20 30 40 50

O
ff

lo
ad

ed
 T

ra
ff

ic
 (

%
)

Data Size (MB)

SDTO

DTOS

RAISE

(d) Offloaded Traffic

Figure 3: Analysis of resource utilization, delay, cumulative data and offloaded traffic

 0

 20

 40

 60

 80

 100

100 200 300 400 500

R
el

ia
bi

lit
y

(%
)

Time (Sec)

SDTO

DTOS

RAISE

(a) Reliability

 0

 20

 40

 60

 80

 100

10 20 30 40 50

C
os

t (
$)

of IIoT Devices

SDTO

DTOS

RAISE

(b) Cost

 0

 20

 40

 60

 80

 100

10 20 30 40 50

S
u

c
c
e
ss

 R
a
te

 (
%

)
IIoT Devices

DTOS

RAISE

SDTO

(c) Success Rate

 0

 20

 40

 60

 80

 100

10 20 30 40 50

Q
oS

 (
%

)

IIoT Devices

SDTO

DTOS

RAISE

(d) QoS

Figure 4: Analysis of reliability, cost, success rate and QoS

Figure 3(a) represents the resource utilization for RAISE. We
see in the figure that the resource utilization is higher with
more number of IIoT devices. Here, RAISE efficiently estates
the resource requirements of IIoT devices. Therefore, it can
allocate resources to IIoT devices optimally according to their
requirements. Hence, resource utilization has increased for the
proposed scheme. The resource utilization of IIoT devices
for RAISE is optimal and better than other methods with
performance gain 13%-25%.

2) Effectiveness of Optimized Latency: Figure 3(b) repre-
sents the microservice delay in the platform. We observe that
the microservice delay of the network increases if more IIoT
devices try to execute their microservices. As the number of
microservices increase in the network, then the IIoT devices
contending for resources face the congestion, it automatically
increases the microservice delay. However, we evaluate RAISE
against other existing benchmarks and RAISE achieves less
delay the other methods with performance gain 13% and 17%.

3) Impact on Microservice Offloading: Figure 3(c) shows
the total cumulative data to be offloaded over a span of time for
the proposed scheme - RAISE. The figure shows that the cu-
mulative data on the network increases over time. As the total
time increases, then the total number of applications running at
mobile IIoT devices also increases during the peak hours. On
the other hand, RAISE manages to provide resources for IIoT
devices optimally. Thus, the total data being offloaded from
IIoT devices also increases. Therefore, in such a situation,
our proposed scheme - RAISE, provides higher cumulative
data from each IIoT device than the other approaches. The
existing approaches failed to offload the optimal microservices
to optimal servers efficiently, hence the offloaded traffic of the
proposed scheme - RAISE increases over other approaches.

Hence, the cumulative data of the proposed scheme - RAISE
is higher by 8%-10% than existing approaches - DTOS and
SDTO. RAISE’s advantage over the baseline does not increase
that much over time, as like RAISE, both the existing schemes
efficiently capture the data packets from IIoT devices. Figure
3(d) shows the total offloaded traffic for the varying data sizes
in the network. The figure shows that the offloaded traffic
increases as the data size of the network increases. RAISE
manages to provide a lower packet loss rate to IIoT devices,
hence the total offload traffic also increases. As the data size
increases, then the IIoT devices offload more microservices to
edge servers. Hence, RAISE outperforms the other approaches
by 8%-17%.

4) Impact on Reliability: Figure 4(a) shows the reliability
of the network for a particular duration of time. Here, the
reliability is defined as the percentage of successful com-
putational microservice offloading. From the figure, we see
that the reliability of the network increases over time. RAISE
offloads the computational microservices optimally, hence the
packet loss rate decreases in the network as shown in 2(d).
Therefore, the reliability of the network increases. The existing
approaches failed to provide optimal microservices to IIoT
devices in terms of packet loss rate, hence the reliability
of the network decreases. However, RAISE provides higher
reliability by 6%-8% than the other approaches.

5) Cost Analysis: Figure 4(b) shows the cost incurred
for the allocated resources among IIoT devices. The cost is
calculated using the Equation 4. From the figure, we see that
the cost incurred is much less than in the other approaches -
DTOS and SDTO. Because the proposed approach - RAISE
optimized the cost of resource allocation, the incurred cost
by the proposed approach - RAISE is significantly lower.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

11

However, the existing approaches - DTOS and SDTO are
mainly focused on computation microservice offloading. They
have failed to provide optimal resources and optimized costs
for IIoT devices. Hence, the RAISE provides better perfor-
mance than other existing methods with performance gain
DTOS and SDTO by 35% and 40%, respectively. Figure 4(c)
shows the success rate while reckoning more IIoT devices.
As RAISE efficiently allocates the resource to IIoT devices
and optimally offloads the microservices to edge servers.
Hence, the success rate of the proposed scheme - RAISE
increases over other approaches. The other approaches did
not consider any resource-agnostic property for IIoT devices,
hence the computational offloading mechanism may not be
optimal in such conditions. Hence, the RAISE increases the
success rate by 12%-20% than the other schemes - DTOS
and SDTO. Figure 4(d) shows the QoS of RAISE for the
varying number of IIoT devices. We can notice from the
figure that as the number of IIoT devices increases the QoS
of RAISE also increases. The proposed approach - RAISE
optimally quantifies the resource requirements of IIoT devices,
hence the computation microservice offloading becomes more
efficient. As it can effectively map the microservices to right
edge servers, hence it can effectively execute more number of
microservies. Therefore, the QoS of the network increases. The
other approaches - DTOS and SDTO have failed to provide
optimal resources to IIoT devices, hence it can execute the
microrservices effectively. Therefore, the QoS of the network
is lower than the proposed approach - RAISE. Hence, the QoS
of RAISE increases by 11%-13% than other approaches. For
our scheme RAISE, the variance of error is very low, it is
within the range of ±1.8%. Hence, it’s effect in QoS not much.

VII. CONCLUSION

In this paper, we present a novel scheme - RAISE for
microservices at the edge, to supply fair resources to IIoT
devices. RAISE proposes a resource-agnostic method for pre-
dicting the requirements of IIoT devices in order to max-
imize network throughput. Thereafter, we propose an op-
timal microservice offloading method to optimize the mi-
croservice delay of IIoT devices. The proposed scheme -
RAISE efficiently offloads the computational microservices
to edge servers to increase the system utilization. Rigorous
and extensive simulation results show that RAISE achieves
better network throughput than SDTO and DTOS. Though
RAISE can efficiently estimate the resource requirements of
microservices which assists the operator to derive a better
offloading policy, however it generates additional costs, such
as higher energy consumption cost. Also, RAISE can not
handle any kind of failures, be it server-side or device-side.
Hence, it important to design an fault-tolerant mechanism for
microservices in edge platform while improving the overall
performance. In the future, we would like to design a load
balancing scheme for MEC. We also propose to have an
optimal and salable microservice offloading scheme for MEC
with fault-tolerance. Consequently, we propose to have a
privacy-aware microservice offloading scheme for mobile IIoT
devices to provide secured communication.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[2] A. Samanta and Y. Li, “Cost-effective microservice scaling at edge:
poster,” in Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, 2019, pp. 326–328.

[3] T. G. Nguyen, T. V. Phan, D. T. Hoang, T. N. Nguyen, and C. So-In,
“Federated deep reinforcement learning for traffic monitoring in sdn-
based iot networks,” IEEE Transactions on Cognitive Communications
and Networking, vol. 7, no. 4, pp. 1048–1065, 2021.

[4] G. Castellano, F. Esposito, and F. Risso, “A distributed orchestration
algorithm for edge computing resources with guarantees,” in IEEE
INFOCOM, 2019.

[5] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in IEEE INFOCOM, 2019, pp. 1459–1467.

[6] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in IEEE
INFOCOM, 2019, pp. 514–522.

[7] A. Samanta, F. Esposito, and T. G. Nguyen, “Fault-tolerant mechanism
for edge-based iot networks with demand uncertainty,” IEEE Internet of
Things Journal, vol. 8, no. 23, pp. 16 963–16 971, 2021.

[8] L. Tong, Y. Li, and W. Gao, “A Hierarchical Edge Cloud Architecture
for Mobile Computing,” in IEEE INFOCOM, 2016, pp. 1–9.

[9] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in IEEE INFOCOM, 2019.

[10] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in edge
computing,” in IEEE INFOCOM, 2019, pp. 2287–2295.

[11] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware vnf chain
deployment with efficient resource reuse at network edge,” in IEEE
Conference on Computer Communications (INFOCOM), 2020, pp. 267–
276.

[12] T. G. Nguyen, T. V. Phan, D. T. Hoang, H. H. Nguyen, and D. T. Le,
“Deepplace: Deep reinforcement learning for adaptive flow rule place-
ment in software-defined iot networks,” Computer Communications, vol.
181, pp. 156–163, 2022.

[13] A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in
edge computing enabled iot,” IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 6164–6174, 2020.

[14] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Cost-effective scaling for
microservice applications in the cloud with an online learning approach,”
IEEE Transactions on Cloud Computing, pp. 1–1, 2020.

[15] X. Chen, Y. Bi, X. Chen, H. Zhao, N. Cheng, F. Li, and W. Cheng,
“Dynamic service migration and request routing for microservice in
multi-cell mobile edge computing,” IEEE Internet of Things Journal,
pp. 1–1, 2022.

[16] F. Liu, J. Chen, Q. Zhang, and B. Li, “Online mec offloading for v2v
networks,” IEEE Transactions on Mobile Computing, pp. 1–13, 2022.

[17] D. Alencar, C. Both, R. Antunes, H. Oliveira, E. Cerqueira, and
D. Rosário, “Dynamic microservice allocation for virtual reality dis-
tribution with qoe support,” IEEE Transactions on Network and Service
Management, pp. 1–1, 2021.

[18] M. Abdullah, W. Iqbal, J. L. Berral, J. Polo, and D. Carrera, “Burst-
aware predictive autoscaling for containerized microservices,” IEEE
Transactions on Services Computing, pp. 1–1, 2020.

[19] Y. Niu, F. Liu, and Z. Li, “Load balancing across microservices,” in
IEEE Conference on Computer Communications (INFOCOM), 2018,
pp. 198–206.

[20] M. Gao, R. Shen, J. Li, S. Yan, Y. Li, J. Shi, Z. Han, and L. Zhuo,
“Computation offloading with instantaneous load billing for mobile edge
computing,” IEEE Transactions on Services Computing, pp. 1–1, 2020.

[21] X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K. Chen, and H. Zhang,
“Reliable computation offloading for edge computing-enabled software-
defined iov,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[22] C. Gong, F. Lin, X. Gong, and Y. Lu, “Intelligent cooperative edge
computing in the internet of things,” IEEE Internet of Things Journal,
pp. 1–1, 2020.

[23] H. Li, J. Yu, H. Zhang, M. Yang, and H. Wang, “Privacy-preserving
and distributed algorithms for modular exponentiation in iot with edge
computing assistance,” IEEE Internet of Things Journal, pp. 1–1, 2020.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

12

[24] K. Li, “Computation offloading strategy optimization with multiple
heterogeneous servers in mobile edge computing,” IEEE Transactions
on Sustainable Computing, pp. 1–1, 2019.

[25] Q. Cui, J. Zhang, X. Zhang, K. Chen, X. Tao, and P. Zhang, “Online
anticipatory proactive network association to mobile edge computing for
iot,” IEEE Transactions on Wireless Communications, pp. 1–1, 2020.

[26] R. Fantacci and B. Picano, “A matching game with discard policy
for virtual machines placement in hybrid cloud-edge architecture for
industrial iot systems,” IEEE Transactions on Industrial Informatics,
pp. 1–1, 2020.

[27] L. Xu, W. Yin, X. Zhang, and Y. Yang, “Fairness-aware throughput
maximization over cognitive heterogeneous noma networks for industrial
cognitive iot,” IEEE Transactions on Communications, pp. 1–1, 2020.

[28] S. Qi, Y. Lu, Y. Zheng, Y. Li, and X. Chen, “Cpds: Enabling compressed
and private data sharing for industrial iot over blockchain,” IEEE
Transactions on Industrial Informatics, pp. 1–1, 2020.

[29] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial iot data
scheduling based on hierarchical fog computing: A key for enabling
smart factory,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 10, pp. 4590–4602, 2018.

[30] R. W. L. Coutinho and A. Boukerche, “Modeling and analysis of a
shared edge caching system for connected cars and industrial iot-based
applications,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 3, pp. 2003–2012, 2020.

[31] M. C. Lucas-Estañ and J. Gozalvez, “Load balancing for reliable self-
organizing industrial iot networks,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 9, pp. 5052–5063, 2019.

[32] T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet
Traffic Classification using Machine Learning,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[33] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“CODA: Toward Automatically Identifying and Scheduling Coflows in
the Dark,” in ACM SIGCOMM, 2016, pp. 160–173.

[34] A. Samanta and Y. Li, “Deserve: Delay-agnostic service offloading in
mobile edge clouds: Poster,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, 2017, pp. 1–2.

[35] A. Samanta, L. Jiao, M. Mühlhäuser, and L. Wang, “Incentivizing
microservices for online resource sharing in edge clouds,” in IEEE
ICDCS, 2019.

[36] A. Samanta and Z. Chang, “Adaptive service offloading for revenue
maximization in mobile edge computing with delay-constraint,” IEEE
Internet of Things Journal, 2019.

[37] A. Samanta, Z. Chang, and Z. Han, “Latency-Oblivious Distributed Task
Scheduling for Mobile Edge Computing,” in IEEE GLOBECOM, 2018,
pp. 1–7.

[38] N. Dao, T. Nguyen, M. Luong, T. Nguyen-Thanh, W. Na, and S. Cho,
“Self-calibrated edge computation for unmodeled time-sensitive iot
offloading traffic,” IEEE Access, pp. 1–1, 2020.

[39] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 998–1010, 2018.

[40] D. Xu, A. Samanta, Y. Li, M. Ahmed, J. Li, and P. Hui, “Network coding
for data delivery in caching at edge: Concept, model, and algorithms,”
IEEE Transactions on Vehicular Technology, 2019.

[41] A. Samanta, Y. Li, and F. Esposito, “Battle of microservices: Towards
Latency-Optimal heuristic scheduling for edge computing,” in IEEE
NetSoft, 2019.

[42] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-Efficient Offloading for Mobile
Edge Computing in 5G Heterogeneous Networks,” IEEE Access, 2016.

[43] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and clas-
sifying iot traffic in smart cities and campuses,” in IEEE INFOCOM
Workshops, 2017.

[44] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[45] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[46] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online Resource Allocation
for Arbitrary User Mobility in Distributed Edge Clouds,” in IEEE
ICDCS, 2017.

[47] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[48] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency iot services
in multi-access edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 668–682, 2019.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3206137

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on December 06,2022 at 11:21:08 UTC from IEEE Xplore. Restrictions apply.

