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We analyze the diffusion-controlled evaporation of multiple droplets placed near each other on a
planar substrate. Specifically, we calculate the change in the volume of sessile droplets with various
initial contact angles that are arranged in different configurations. The calculations are supplemented
by experimental measurements using a technique that interprets the variable magnification of a pat-
tern placed beneath the droplet array, which is applied to the case of initially hemispherical droplets
deposited in four distinct arrangements. We find excellent agreement between the predictions based
on the theory of Masoud et al. [Evaporation of multiple droplets, J. Fluid Mech. 927, R4 (2021)]
and the data gathered experimentally. Perhaps unexpectedly, we also find that, when comparing
different arrays, the droplets with the same order of disappearance within their respective array,
i.e., fastest evaporating, second-fastest evaporating, etc., follow similar drying dynamics. Our study
provides not only experimental validation of the theoretical framework introduced by Masoud et
al., but also offers additional insights into the evolution of the volume of individual droplets when
evaporating within closely-spaced arrays.

I. INTRODUCTION

Diffusion-controlled evaporation of sessile droplets is a common occurrence in everyday life, as well as in a myriad
of technologically advanced applications [1–3]. The ubiquity and significance of this phenomenon have motivated
researchers from different fields to examine it in detail. In particular, the last two decades have witnessed a surge
in the number of studies centered on the evaporation of sessile droplets and the phenomena taking place as a result
or concurrent with it. A comprehensive list of books and review articles that highlight major contributions to this
subject can be found in Ref. [3]. Among recent investigations, the theoretical development of Masoud et al. [4] (see
also [5]) extended the predictive power of the diffusion-limited model for the evaporation of a single droplet to a broad
range of conditions involving multiple drops. The framework is based on Green’s second identity and the method of
reflections, so the extended model is not restricted to thin droplets, i.e., those with small contact angles, which is the
limitation of Fabrikant’s model [6] utilized in the work of Wray et al. [7]. The approach of Masoud et al. [4], in fact,
allows for arbitrary configurations of multiple droplets of different sizes and different, but arbitrary, contact angles. In
the framework of this approach, the determination of the mass flux from each drop in the array only requires solving
a linear system of equations, with the prediction errors shown to be small (within a few percent) for a wide range of
multiple-droplet configurations.

Here we use the theory of Masoud et al. [4] to examine the collective drying of multiple sessile droplets in arrays
of various configurations. In particular, we track the variations of the volume of individual droplets over time while
evaporating under constant radius (CR) or constant contact angle (CA) conditions. We consider droplets of different
initial contact angles, ranging from π/3 to 2π/3. Our theoretical calculations are accompanied by a set of experiments,
where the change in the volume of evaporating droplets was measured from the magnification of a pattern of dots
placed underneath them. The initial contact angles of the drops in the experiments were about π/2 and their contact
radii (about 1mm) remained pinned during most of their lifetimes. Furthermore, in the experiments, the droplets
were placed in four different configurations, namely triangle (vertices), cross, pentagon (vertices and middle), and a
3 × 3 grid, where in each configuration the center-to-center distance between the nearest droplets was roughly three
times their contact radius.

The outcome of our combined theoretical and experimental investigation is twofold. First, we show very close
agreement between the theoretical predictions and experimental measurements, which further validates the fidelity
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FIG. 1: Schematic of an array of evaporating sessile droplets.

of the theoretical model. Second, we present data indicating that the drying dynamics of droplets within an array
is heavily dependent on their order of disappearance, i.e., the fastest evaporating or second-fastest evaporating, etc.,
rather than the specific arrangement of the droplets. This behavior, we believe, has not been reported elsewhere.
Overall, our findings shed additional light on the collective effects at play during the drying of sessile-droplet arrays,
and, by doing so, complement the existing body of literature on the topic. Below, we first explain our methodology,
beginning with the description of the theoretical approach followed by the details of the experimental procedure (§ II).
The results are presented and discussed in § III and concluding remarks are given in § IV.

II. METHODS

A. Theoretical Approach

Consider a collection of droplets (numbered n = 1, 2, · · · , N) evaporating purely under the influence of diffusion
due to the difference in the vapor concentration on their free surface (denoted cs) and in the far-field (denoted c∞)
(see Fig. 1). In this situation, the distribution of the vapor concentration field (denoted c) is governed by the Laplace
equation and, hence, the evaporation rate of each droplet determines, and is determined by, how fast the neighboring
droplets evaporate. It is convenient to denote Ĵn and ĉ, respectively, as the total rate of evaporation and dimensional
concentration field for an isolated drop on the plane, and to denote Jn as the instantaneous total rate of mass loss
from the n-th droplet in an array of drops. Masoud et al. [4] derived an approximate system of equations for Jn in
the form of

Ĵn ≈ Jn +

N∑
m=1,
m6=n

φ̂
∣∣∣
r=rm

Jm. (1)

The function φ̂ = (ĉ− cs) / (cs − c∞) in the above equation, evaluated at the position r = rm, represents the dimen-
sionless concentration field corresponding to the evaporation of the n-th droplet in the absence of other drops. This
field is known and can be calculated exactly [8, 9] or approximately [4] for spherical-cap droplets. Also, the evaluation
point rm is set to be the geometric center of the free surface of the m-th droplet (see Fig. 1). The approximation error
of Eq. (1) was shown to be generally small for a broad range of droplet arrangements, with more accurate predictions
expected for configurations with larger inter-particle distances and thinner droplets. Also, within an array, the lowest
and highest errors typically correspond to the least and most confined droplets, respectively. For instance, when com-
pared with the results of direct numerical simulations, the prediction errors for initially hemispherical droplets placed
in triangle, cross, pentagon, and square patterns (see Fig. 2) did not exceed 1%, 3%, 8%, and 12%, respectively, for
` = 3R, where ` represents the minimum center-to-center distance between droplet pairs and R is the droplets’ base
radius (see Fig. 1).



3

θ0 ≈ π/2

V0 ≈ 2µL

2mm

Square
Pentagon

C
ross

Triangle

t(s)

N

0 600 1200 1800

4

5

6

9

FIG. 2: Experimental images of droplet arrays magnifying a pattern of dots (ordered vertically by the number of
droplets N) as a function of time for the triangle, cross, pentagon, and square configurations, corresponding to
subfigures g, j, l, and m of Fig. 7 (in appendix), respectively. The legend indicates the droplets’ scale, initial (t = 0)
contact angle θ0, and volume V0. The minimum center-to-center distance between the nearest droplets in each
configuration is about three times their contact radius.

The instantaneous evaporation rates calculated from Eq. (1) determine the time rate of change in the volume of
the droplets via

Jn = ρ dVn/dt, (2)

where ρ and Vn denote the density and volume of the droplets, respectively. We integrated Eq. (2) in time using
the Euler scheme. Consistent with the diffusion-dominated limit in which Eq. (1) was derived, at each time step,
the coefficients of the linear system for Jn, i.e., Ĵn and φ̂|r=rm , were determined by the shape of the drops at that
time instant. Also, we assumed that all drops have the same constant density and that they maintained spherical-cap
shapes, with their volume shrinking as a result of either a decrease in their contact angle (CR mode) or contact radius
(CA mode). This feature allowed us to specify the geometry of the droplets at every time instant, given their volume.

B. Experimental approach

Tracking the volume of an evaporating sessile droplet in isolation or multiple droplets arranged in a line can be
accomplished with conventional side-view imaging techniques. However, this approach is not as effective for tight two-
dimensional arrangements because some droplets will be obstructed or out of focus. Indeed, top-view interferometric
imaging was successfully utilized by Edwards et al. [10] to simultaneously measure the change in heights of evaporating
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sessile-droplet arrays. Here, we employ a new simpler lensing technique to determine each droplet’s absolute volume.
To do this, a pattern of dots is placed beneath the droplet array and imaged from above, to monitor its distortion
during evaporation. Under CR mode, the radius of curvature of an evaporating droplet increases over time (provided
the initial contact angle is less than π/2), which results in a decrease in the magnification of the distorted dot pattern.
To relate this to the droplet height h, each droplet is treated as a plano-convex lens with an upper surface assumed
spherical due to the Bond number being small (see, for example, [11]), i.e., Bo = ∆ρgh2/σ � 1, where ∆ρ is the
density difference between the water and air, g is the gravitational acceleration, and σ is the water surface tension.
An optics transfer matrix method is used to trace a ray of light from the pattern through the substrate, droplet, and
air, and to derive an equation relating the magnification of the distorted dots to height. By solving this equation for
h and knowing the base radius, the drop volume is calculated. The derivation of this pattern distortion equation will
be detailed in a forthcoming article [12].

In our experiments, 2.00±0.25µL droplets of de-ionised water (PURELAB Chorus 1 – ELGA) with surface tension
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FIG. 3: Comparison between the results of experimental measurements (empty symbols) and theoretical calculations
(solid and dashed lines) for the normalized volume V/V0 versus normalized time t/t?. The plots represent the change
in the volume of droplets with an initial contact angle of π/2 evaporating under CR mode while placed in arrays of
four different configurations. The geometry of each array is depicted in the top right of each subfigure, where `
denotes the minimum center-to-center distance between droplet pairs.
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FIG. 4: Theoretically calculated plots of normalized volume V/V0 versus normalized time t/t? for droplets with an
initial contact angle of π/2 evaporating under CR (left subfigures) and CA (right subfigures) modes while placed in
arrays of different configurations. Subfigures in the first, second, and third rows show the plots for droplets of type I,
II, and III, respectively. Also, configurations listed in the legend correspond to those illustrated in Fig. 7, with the
exception of configuration a, which is representative of a single isolated droplet.

σ = 72.75mN/m were placed into an acrylic box (W = 722mm×H = 510mm×D = 473mm) to prevent air currents
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influencing the evaporation. Selectively hydrophobised soda-lime glass substrates with a thickness of 0.982mm were
prepared for each pattern (i.e., configurations g, j, l, and m in Fig. 7) to pin the contact line of each droplet with a
base radius of R = 0.97± 0.07mm for approximately 80% of the drying time. The initial contact angle of the droplets
was θ0 ≈ π/2, with Bo ≈ 0.13. The relative humidity and temperature were recorded at the beginning and end of each
experiment. A topdown CCD camera with a fixed ×0.3 lens was focused on the image plane using a linear translation
stage. The camera then recorded the evolution of the distorted pattern directly beneath the substrate as the droplets
evaporated. The raw images from the camera showing the decreasing magnification as time proceeds, for each of the
four droplet patterns, are presented in Fig. 2. An in-house MATLAB (MathWorks, USA) script for circle detection
was used to determine the median diameter of the imaged dots within a circular region of interest, centered on the
apex of each droplet, for every frame (time t). The magnification was then calculated from the ratio of this diameter
to the diameter measured when the liquid had completely evaporated. Finally, the magnification was converted to a
volume using the pattern distortion technique.

III. RESULTS AND DISCUSSION

We begin by assessing the agreement between the prediction of our theoretical model with the results of experimental
measurements for the change in the volume of initially hemispherical droplets arranged as depicted in Fig. 2. The data
obtained from both methods are presented in Fig. 3 in the form of normalized volume V/V0 versus normalized time
t/t?, where V0 represents the value of V at t = 0 and t? denotes the time taken for the fastest evaporating droplets of
each array to reach half of their initial volume. For these drops, it follows that V = V0/2 at t = t? (see also the dashed
lines in Fig. 3). While not unique, t? was found to be a convenient, yet meaningful, time scale for normalizing t. In
each configuration considered in Fig. 3 (and also in the following figures and table), droplets with interchangeable
positions are grouped together and labeled type I, II, and III according to their order of disappearance (see the inset
drawings). For experiments, the normalized volumes represent mean values over droplets of the same type, and t? was
calculated based on average V/V0 across type I droplets. It is important to note that droplets were excluded from
the averages after their contact radius was no longer pinned and the averaging was stopped after all droplets in each
category have depinned, which occurred late in the drying process. Lastly, for visual clarity, every tenth point of the
experimental data is plotted.

Comparing the plots of Fig. 3, we see that, overall, the experimental data validates the results of the theoretical
model. The agreement level is the highest for the fastest evaporating (type I) droplets, followed by type II droplets, and,
finally, by the type III drop in the 3× 3 (square) array. This trend is consistent with the accuracy of the theoretical
calculations, which tend to be higher for less confined droplets within each array. The observed close agreement
between theory and experiment is particularly notable given the compactness of the droplet arrays. Remember that
the inter-droplet distance between closest neighbors was only three times the contact radius of the droplets, i.e.,
` = 3R where ` = 2R corresponds to touching drops. As noted earlier, the approximation error of Eq. (1) is generally
reduced with a decrease in the contact angle of the droplets and an increase in the spacing among them. Hence, it
is reasonable to expect more favorable agreements than what we have witnessed here for cases where the droplets’
contact angle is less than π/2 and/or when `/R > 3. The agreements are also expected to improve when the droplets
maintain their contact angle while evaporating (CA mode). In this situation, droplet-to-droplet separation widens
over time resulting in progressively more accurate theoretical predictions of the evaporation rates.

Upon a closer inspection of Fig. 3, we also detect certain patterns in the drying dynamics of the droplets. Specifically,
we see that, across all four arrangements, type I drops completely evaporate around t/t? = 2.2, and their V/V0 versus
t/t? graphs behave very similarly. An analogous trend (with larger variations) is observed for type II drops, where
the drying times are roughly t/t? = 2.6. Of course, a logical question that deserves attention is: how dependent are
these trends on our choices of droplet arrangements, initial contact angle, and mode of evaporation? To resolve this
question, we broadened our theoretical simulations in three ways by considering (i) eight more droplet configurations,
(ii) two more initial contact angles (π/3 and 2π/3), and (iii) evaporation under the CA mode. Figures 4, 5, and 6
show the outcomes of our additional calculations. To avoid the appearance of similar-looking figures and redundant
descriptions, Figs. 5 and 6 (for, respectively, the initial contact angles of π/3 and 2π/3) are presented in the appendix.
Included there are also Fig. 7 that illustrates all the droplet arrangements treated theoretically and Table 1 which
lists dimensionless values of t? corresponding to the plots in Figs. 4, 5, and 6.

Inspecting the results of the extended calculations, we learn that the patterns inferred from the plots of Fig. 3 are
rather general and not significantly sensitive to the arrangement of the droplets, their initial contact angle, and mode
of evaporation. For both CR and CA modes, we see that the graphs corresponding to type I droplets (including those
for an isolated droplet shown in black) nearly collapse into a single master curve (see subfigures a1 and b1 of Figs.
4, 5, and 6). The collapse of data is not perfect for type II droplets, while t/t? at V = 0 still falling within a narrow
range for all configurations (see subfigures a2 and b2 of Figs. 4, 5, and 6). Among the twelve arrangements considered,
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only three (see subfigures h, k, and m of Fig. 7) have type III drops. Subfigures a3 and b3 of Figs. 4, 5, and 6 show
that the curves for configurations h and k closely overlap. The plots for configuration m, however, tend to follow more
curved paths, deviating from the linear trends of the overlapping plots. Despite the deviations, the ending t/t? for
all three drops (under either evaporation mode) are again fairly close to (i.e., within 10% of) each other. A couple of
other noteworthy observations from Figs. 4, 5, and 6 are: (i) for the same droplet type and arrangement, t/t? at the
point of complete drying is slightly greater for evaporation under CA than CR mode and (ii) for the range of values
tested here, small initial contact angles seem to marginally favor better data collapse. Lastly, Table 1 indicates that,
for the same droplet arrangement and initial contact angle, t? values corresponding to CR and CA modes differ by
less than a few percentage points.

IV. CONCLUSION

We conducted theoretical calculations and experiments investigating the drying dynamics of arrays of closely-spaced
droplets on a planar substrate. We found excellent agreement between the theory and experiment for four distinct
configurations. Our theoretical analysis revealed similarities in the drying dynamics of type I and II droplets in all
twelve arrangements illustrated in Fig. 7: for a contact angle of π/2, we found that the normalized evaporation time
varied between t/t? = 2.4 − 2.6 for type I droplets and between t/t? = 2.8 − 2.95 for type II droplets. In particular,
we found that V (t) for type I droplets in all the geometries considered approximates that of an isolated droplet, with
increasing deviation as the droplet nears its lifetime. We found similar trends for initial contact angles of θ0 = π/6
and θ0 = π/3 as well. These ideas should be applicable to other problems of diffusively dominated dynamics that
involve interacting discrete objects.
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APPENDIX

The following figures and table were excluded from the main text to avoid cluttering and to facilitate the flow of
information.
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FIG. 5: Theoretically calculated plots of normalized volume V/V0 versus normalized time t/t? for droplets with an
initial contact angle of π/3 evaporating under CR (left subfigures) and CA (right subfigures) modes while placed in
arrays of different configurations. Subfigures in the first, second, and third rows show the plots for droplets of type I,
II, and III, respectively. Also, configurations listed in the legend correspond to those illustrated in Fig. 7, with the
exception of configuration a, which is representative of a single isolated droplet.



9

(a1)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Conf.
a
b
c
d
e
f
g
h
i
j
k
l

m

t/t?

V
/
V
0

(b1)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

t/t?

V
/
V
0

(a2)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

t/t?

V
/
V
0

(b2)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

t/t?

V
/
V
0

(a3)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

t/t?

V
/
V
0

(b3)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

t/t?

V
/
V
0

FIG. 6: Theoretically calculated plots of normalized volume V/V0 versus normalized time t/t? for droplets with an
initial contact angle of 2π/3 evaporating under CR (left subfigures) and CA (right subfigures) modes while placed in
arrays of different configurations. Subfigures in the first, second, and third rows show the plots for droplets of type I,
II, and III, respectively. Also, configurations listed in the legend correspond to those illustrated in Fig. 7, with the
exception of configuration a, which is representative of a single isolated droplet.
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FIG. 7: Droplet arrangements considered in the theoretical calculations presented in Figs. 4, 5, and 6. In each
configuration, droplets with the same rate of evaporation are grouped together and labeled I, II, or III. Also, `
denotes the minimum center-to-center distance between droplet pairs.

TABLE 1: Dimensionless t? corresponding to the plots in Figs. 4, 5, and 6. The reported values are made
dimensionless by ρR2/D (cs − c∞), where R and D are the contact radius of the droplets and the diffusion coefficient
of water vapor, respectively.

Evaporation mode, Initial contact angle θ0

Configuration CR, π/3 CR, π/2 CR, 2π/3 CA, π/3 CA, π/2 CA, 2π/3

a 0.105 0.183 0.345 0.110 0.185 0.342

b 0.132 0.238 0.474 0.137 0.238 0.469

c 0.141 0.255 0.513 0.146 0.257 0.508

d 0.159 0.292 0.603 0.163 0.292 0.596

e 0.147 0.267 0.539 0.152 0.268 0.533

f 0.178 0.330 0.699 0.182 0.330 0.691

g 0.156 0.284 0.581 0.161 0.286 0.576

h 0.151 0.275 0.557 0.157 0.277 0.552

i 0.192 0.359 0.773 0.196 0.359 0.764

j 0.174 0.321 0.667 0.179 0.322 0.661

k 0.155 0.281 0.571 0.160 0.283 0.566

l 0.195 0.363 0.766 0.200 0.364 0.759

m 0.211 0.393 0.822 0.218 0.395 0.815
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