Overview of the optimal smart energy coordination for microgrid applications

Mbungu, N.T., Naidoo, R.M., Bansal, R.C. and Vahidinasab, V. ORCID: 0000-0002-0779-8727, 2019. Overview of the optimal smart energy coordination for microgrid applications. IEEE Access, 7, pp. 163063-163084. ISSN 2169-3536

[img]
Preview
Text
1639249_Vahidinasab.pdf - Published version

Download (1MB) | Preview

Abstract

This paper describes an overview of the optimal energy coordination/management approaches for microgrids. The article presents the smart grid environment in conjunction with their technologies into the applications of a microgrid when the energy coordination aims to create power flow stability between the generation and consumption of the electricity. This energy equilibrium is made regardless of a power grid complexity that can contain diverse load demands and distributed energy resources (DERs), including renewable energy system (RES), energy storage system (ESS), electric vehicle (EV), etc. A microgrid often contains an energy mix system that requires three control levels, namely primary, secondary and tertiary, to optimize the energy cost and behavior of the system operation and exploitation. Based on several DERs, a microgrid can operate in island mode or be connected to the main grid. The energy coordination for both features is to deal with the energy resources uncertainty, the climate impact, to reduce atmospheric pollution deriving from the conventional power grid, and the energy demand growth. Through the smart grid technology, the optimization approaches of this coordination have brought several improvements into the electrical system. Thus, an overview of an intelligent energy management system for microgrid applications is intensively detailed to structure the implementation strategies which aim to coordinate the energy flow of an electrical system optimally.

Item Type: Journal article
Publication Title: IEEE Access
Creators: Mbungu, N.T., Naidoo, R.M., Bansal, R.C. and Vahidinasab, V.
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Date: 2019
Volume: 7
ISSN: 2169-3536
Identifiers:
NumberType
10.1109/access.2019.2951459DOI
1639249Other
Rights: This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
Divisions: Schools > School of Science and Technology
Record created by: Laura Ward
Date Added: 27 Jan 2023 15:58
Last Modified: 27 Jan 2023 15:58
URI: https://irep.ntu.ac.uk/id/eprint/48100

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year