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Abstract 

 

Neuromuscular performance capabilities, including those measured by evoked responses, 

may be adversely affected by fatigue; however, the capability of the neuromuscular 

system to initiate muscle force rapidly under these circumstances is yet to be established.  

Sex-differences in the acute responses of neuromuscular performance to exercise stress 

may be linked to evidence that females are much more vulnerable to ACL injury than 

males.  Optimal functioning of the knee flexors is paramount to the dynamic stabilisation 

of the knee joint, therefore the aim of this investigation was to examine the effects of 

acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked 

electromechanical delay in the knee flexors of males and females.  Knee flexor volitional 

and magnetically-evoked neuromuscular performance was assessed in seven male and 

nine females prior to and immediately after: (i) an intervention condition comprising a 

fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control 

condition consisting of no exercise.  The results showed that the fatigue intervention was 

associated with a substantive reduction in volitional peak force (PFV) that was greater in 

males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to 

volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05).  

Similar improvements in magnetically-evoked electromechanical delay in males and 

females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory 

mechanism to overcome the effects of impaired voluntary capabilities, and a faster 

neuromuscular response that can be deployed during critical times to protect the joint 

system.   

Keywords:  Fatigue, neuromuscular performance, electromechanical delay, magnetic 

stimulation 
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Introduction 

 

During strenuous activities, mechanical loading of the knee joint can often exceed the 

tensile capacities of the passive structures (Johansson et al. 1991).  As a consequence, 

greater reliance may be placed on the protective capabilities of the surrounding 

musculature in order to maintain joint integrity (Gleeson et al. 1998a).  Evidence of 

anterior cruciate ligament (ACL) injury by means of non-contact mechanisms in team 

sports athletes (Ireland et al. 1997; Mandelbaum et al. 2005; Rees 2004) underscores the 

potentially important contribution of neuromuscular mechanisms to the maintenance of 

dynamic joint stability and the avoidance of injury.  As evidence shows that females are 

five to eight times more likely to injure their ACL compared to male counterparts given 

equivalent exposure to sport (Arendt and Dick, 1995; Ireland et al. 1997; Gray et al. 

1985), study of factors that might affect the stability of the knee joint in females is 

important. 

 

Optimal functioning of the knee flexors in particular is considered fundamental to 

the prevention of ACL injury (Gleeson and Mercer 1996; Johansson et al. 1991; Rees 

1994), however, a limited time frame exists whereby potentially harmful dynamic forces 

must be overcome by the most rapid response of the neuromuscular system in order to 

protect ligamentous tissue against injury (Gleeson et al. 1998a; Huston and Wojtys 1996; 

Mercer et al. 1998; Shultz et al. 2001).  For the ACL, the time frame from the initial 

application of such forces to the complete rupture of the ligament has been estimated at 

300 ms (Rees, 1994).  One aspect of the overall neuromuscular reaction time has been 

defined as electromechanical delay (EMD).  It depicts the time between the onset of 

electrical activity and the onset of tension in skeletal muscle (Zhou et al. 1996) and is 
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associated with the propagation of the action potential through the muscle and the 

stretching of the series elastic component (Norman & Komi, 1979).  It represents an 

important aspect of neuromuscular reaction time, during which there could be 

unrestrained development of forces of sufficient magnitude to damage ligamentous tissue 

in synovial joints (Gleeson et al. 2000; Huston and Wojtys 1996; Mercer et al. 1998; 

Shultz et al. 2001).  The importance of this index of performance can be exemplified 

further by recognising that factors such as muscle fatigue can cause increases in EMD 

latency of up to 70% (Zhou et al. 1996).  The extent of this change in EMD performance 

may also be influenced by the loading of viscoelastic structures, which can cause creep 

within the affected tissue and a modulation of the neuromuscular performance 

characteristics of the associated musculature (Chu et al. 2003; Sbriccoli et al, 2005; 

Solomonow, 2004; Solomonow et al. 2003).  Clearly, any fatigue-related increases in 

muscle response time within the knee flexors to initiate force, coupled with the effects of 

increased ligamentous laxity and compliance within muscle-related connective tissue 

associated with cyclical loading during activity, may result in a hyper-lax system that is 

more likely to be incapable of restraining high joint loads rapidly enough to prevent 

ligamentous injury. 

 

 Traditionally, neuromuscular performance capabilities have been estimated 

routinely in the laboratory by means of assessment protocols involving volitional 

activation of muscle.  Recent technological advances, however, have enabled the non-

invasive and painless magnetic stimulation of a peripheral motor nerve; the efficacy of 

this technique has been considered in clinical populations where maximal volitional 

testing is not appropriate (Polkey et al. 1996; Vivodtzev et al. 2005).  Peripheral magnetic 

stimulation of a nerve root offers the potential to activate the fastest motor units (King 
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and Chippa 1989; Maertens de Noordhout 1991) and overcome factors associated with 

the volitional activation of muscle that might otherwise intrude on the proper estimation 

of an individual’s true maximal performance capacity.  For example, factors such as 

autogenic neuromuscular inhibition associated with injury and conditioning status might 

tend to elicit an underestimation of performance capability even in the most highly 

motivated of individuals (Gleeson 2001; Hopkins and Ingersoll 2000).  A corollary of this 

interpretation is that assessments of neuromuscular performance by means of magnetic 

stimulation may offer greater insights into the performance capability that might be 

available to the sports performer in emergency situations where there is a critical level of 

threat to the stability of the joint system.   

 

Acute muscle fatigue induced by means of maximal voluntary muscle activation 

(MVMA) has the potential to cause dramatic increases in EMD; of between 42% to 70% 

longer compared with pre-fatigue values (Horita and Ishiko 1987;, Zhou et al. 1996) and 

concomitant decreases in the capacity for generating peak force.  Temporal impairments 

of this type to the dynamic muscle stabilisers of the knee joint, may affect the ability to 

stabilise the knee during competitive match-play and place the sports performer at 

increased risk of injury.   Studies of fatigue-related changes to EMD measured using 

electrically-evoked activation of muscle, however, have yielded conflicting findings of 

impaired (Zhou 1996), unchanged (Strojnik and Komi 1998) and even improved 

performance (Sahlin and Seger 1995).  Given the potential inhibitory effects on 

performance that pain may elicit under conditions of electrical stimulation, an evoked 

assessment of the neuromuscular system by means of magnetic stimulation, a technique 

that minimises intrusion of noxious stimuli, may offer a truer insight into the maximal 
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physiological capacity for rapid muscle activation.   No studies have yet investigated the 

effects of acute muscle fatigue on the magnetically-evoked EMD of the knee flexors. 

 

 The aim of this investigation was to examine the effects of an acute bout of 

maximal intensity static fatiguing exercise on the voluntary and magnetically-evoked 

electromechanical delay in the knee flexors of males and females. 
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Methods 

Subjects 

Seven men (age: 29.6 (± 10.4) yrs; height 1.78 (± 0.04) m; body mass 77.0 (± 7.7) kg 

(mean [± SD]) and nine women (age 25.2 (± 4.2) yrs; height 1.69 (± 0.08) m; body mass 

62.8 (± 8.1) kg) gave their informed consent to participate in this study.  All participants 

were regularly involved in exercise (at least 3 times per week) and were asymptomatic at 

the time of assessment.  Participants were instructed to refrain from strenuous physical 

activity for the 24 hours prior to the test.  Assessment protocols were approved by the 

Ethics Committee for Human Testing of the University of Wales, Bangor.  

 

Experimental procedures 

Following habituation procedures, participants completed a standardised warm-up of five 

minutes cycle ergometry (90 watts for males, 60 watts for females) and a further five 

minutes of static stretching of the involved musculature.  This warm-up was equivalent to 

that used in other recent studies within this laboratory examining the effects of various 

interventions on indices of volitional neuromuscular performance (Gleeson 2001; 

Gleeson et al. 2000; Gleeson et al. 1998a; Gleeson et al. 1998b; Mercer et al. 1998).  

Participants were then secured in a prone position on a custom-built dynamometer 

(Gleeson et al. 1995).  

 

The experimental design comprised two treatment conditions:  (i) an intervention 

condition that required participants to perform a fatigue trial of 30 seconds maximal static 

fatiguing exercise of the knee flexors of the preferred leg; (ii) a control condition of 

equivalent duration to the intervention consisting of no exercise.  Treatment conditions 

were separated by twenty minutes.  The control condition was performed first in order to 
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avoid any potential carry-over effects.  Participants were verbally encouraged during 

periods of maximal muscle activation.  Estimates of knee flexor volitional and 

magnetically-evoked neuromuscular performance were obtained prior to and immediately 

after each treatment condition.  The protocol is illustrated schematically in figure 1. 

 

 

Participant and dynamometer orientation 

Participants were secured in a prone position on the dynamometer. The bi-lateral lever-

arms of the dynamometer were attached to the legs of the participant by means of padded 

ankle-cuffs and adjustable strapping just proximal to the lateral malleolus.  The 

dynamometer’s and knee joint’s axes of rotation were aligned as closely as possible.   

 

 

 

 

 

 
Figure 1.  A schematic of the protocol to assess the effects of an acute fatiguing task on the volitional and 
magnetically-evoked neuromuscular performance of the knee flexors. 
 

Adjustable strapping across the mid-thoracic spine, pelvis and posterior thigh proximal to 

the knee localised the action of the involved musculature.  A functionally relevant knee 

flexion angle of 25 degrees (0.44 rad) associated with the greatest mechanical strain on key 

ligaments (Beynnon and Johnson 1996), was maintained throughout testing.  This angle 

was identified for each participant during activation of the involved musculature using a 

goniometer system.  Once secured into position and prior to testing, participants were 

required to perform a series of warm-up muscle activations, comprising of 2 x 25%, 50%, 
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75% and 100% of subjectively-judged maximal voluntary peak force.  Each of the 

activations was sustained for three seconds and was separated from the next by 10 seconds.  

The orientation of the participant and dynamometer is illustrated schematically in figure 1. 

 

Assessment of neuromuscular performance 

Maximal volitional muscle activation (MVMA) 

On receipt of an auditory signal, given randomly within 1-4 seconds, the participants 

attempted to activate their musculature as rapidly and forcefully as possible by attempting 

to flex the knee joint against the immovable restraint offered by the apparatus.  Another 

auditory signal was given to the participant after 2 - 3 seconds of MVMA to cue 

neuromuscular relaxation.  Intra-trial MVMA replicates were each separated by at least 10 

seconds to enable neuromuscular recovery (Moore and Kukulka 1991). 

 

Magnetically-evoked muscle activation 

Supra-maximal magnetic stimulation of the sciatic nerve (L4-L5) and associated activation 

of the knee flexors was achieved by means of double wound coil (120 mm) that was 

powered by a Magstim 200 stimulator (Magstim Co. Ltd., Whitland, Dyfed, Wales).  The 

optimum site for stimulation of the nerve was defined as the site that offered the largest 

amplitude of the compound muscle action potential (CMAP).  This was identified by a 

procedure in which the centre of the magnetic coil was placed in a position 20 mm to 40 

mm lateral to the fifth lumbar vertebra on the involved side and then small iterative 

positional changes of the coil were made that were commensurate with increasing CMAP 

responses during a series of discrete stimulations.  This optimised coil position was 

maintained manually throughout the remainder of the test.   
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  There appears to be no standardised way described in the literature that 

systematically verifies the attainment of supra-maximal magnetic stimulation of a 

peripheral motor nerve.  Protocols to elicit supra-maximal stimulation of the femoral nerve 

have been described briefly in the literature (Polkey et al. 1996; Vivodtzev et al. 2005).  

However, these protocols have been limited to the verification of a supra-maximal 

response by changes in peak twitch force data only due to the intrusion of stimulation 

artefact compromising the quality of muscle EMG recordings.  As such, CMAP amplitude 

responses have not previously been used in a verification process.  A protocol was 

developed for the current study in which supra-maximal stimulation was defined as the 

intensity of stimulation at which there was subsequently no more than a 5% increase in 

CMAP peak amplitude despite a 10% or greater increase in the intensity of stimulation, 

and verified using a procedure that would mimic the approach to the physiological 

verification of the attainment of maximal oxygen uptake.  Thus supra-maximal stimulation 

was verified by contemporaneous visual inspection of the data during a sequence of seven 

discrete stimulations of increasing intensity that commenced at 40% of the Magstim 200’s 

maximal capacity output with subsequent increments of 10% to 100% of capacity.  

Retrospective analyses of CMAP amplitude and peak twitch force demonstrated 

proportionate and linear increases when plotted against one another.  In the four 

participants from the present study whose CMAP amplitude did not by definition reach 

supra-maximal proportions, supplementary criteria that were based on minimal 

simultaneous increases in the performance of peak twitch force (PTFE) and 

electromechanical delay (< 5% increase in performance elicited by stimulations of 

increasing intensity between 80% and 100% of the Magstim 200’s maximal capacity 

output) were used to verify that ‘peak’ amplitudes of CMAP had occurred (Minshull et al. 

2002a; Minshull et al. 2002b).  The latter instances were associated with limitations of the 
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technological capability of the stimulation system.  Sequential stimulations throughout the 

experimental period were separated by at least 10 seconds to ensure neuromuscular 

recovery (Moore and Kukulka 1991). 

 

  
Indices of neuromuscular performance 

Peak force 

Volitional static peak force (PFV) was recorded as the mean response of three intra-trial 

replicates in which the highest force was recorded in each trial.  Compensation procedures 

for gravitational errors in forces recorded in the vertical plane were undertaken 

immediately prior to testing. 

 

Electromechanical delay 

Electromyographic activity (EMG) was recorded from the m. biceps femoris during the 

estimation of PFV and subsequent to supra-maximal stimulation.  The EMG was recorded 

using bipolar surface electrodes (self-adhesive, silver-silver chloride, 10 mm diameter) that 

were applied longitudinally over the belly of m. biceps femoris, on the line between the 

ischial tuberosity and the lateral epicondyle of the femur.  The m. biceps femoris was 

selected as an important contributor to restraint of anterior tibio-femoral displacement and 

lateral rotation of the femur relative to the tibia since both processes have been implicated 

in ACL injury (Fu et al. 1993).   

 

 The raw unfiltered EMG signals was passed through a differential amplifier, input 

impedance 10,000 MOhms , CMMR 100 dB, and a gain of 1000 (Cambridge Electronic 

Design,UK).  The signal, which incorporated minimal intrusion from induced currents 

associated with external electrical and electromagnetic sources and noise inherent in the 
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remainder of the recording instrumentation, was analogue-to-digitally converted at 2.5 kHz 

sample rate, ensuring a significant margin of reserve between the highest frequency 

expected in the EMG signal and the Nyquist frequency and minimal intrusion from 

aliasing errors (Gleeson, 2001). The EMG signals remained unfiltered during subsequent 

analyses.  The inter-electrode distance was 30 mm and a reference electrode was placed 30 

mm lateral and equidistant from the recording electrodes.  Standardised skin preparation 

techniques yielded inter-electrode impedance of less than 5 kΩ.  

 

 Volitional and magnetically-evoked EMD (EMDV and EMDE, respectively) were 

computed as the mean response of three intra-trial muscle activations in which the time 

delay between the onset of electrical activity and the onset of force was recorded.  Post-

fatigue EMDE was estimated on the basis of performance in a single trial to minimise the 

potential intrusion of neuromuscular recovery on recorded scores.  The superior 

reproducibility (coefficient of variation expressed as a percentage of the mean group score) 

and single measurement reliability (intra-class correlation coefficient) characteristics 

associated with EMDE compared to the equivalent volitional estimates of performance 

have been described previously (8.1%; 0.84 vs. 10.1%; 0.80 for EMDE and EMDV, 

respectively) (Minshull et al. 2002b).  The onset of electrical activity was defined as the 

first point in time at which the electrical signal exceeded consistently the 95% confidence 

limits of the isoelectric line associated with the background electrical noise amplitude and 

quiescent muscle, and which was the first deviation of the recorded electrical signal that 

was congruent with physiological activation of the muscle. Onset of muscle force was 

defined as the first point in time at which the force record exceeded consistently the 95% 

confidence limits associated with the electrical noise amplitude of the load cells (see 

figures 2 and 3).  Onset of muscle force was defined as the first point in time at which the 
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force record exceeded consistently the 95% confidence limits associated with the electrical 

noise amplitude of the load cells (see figures 2 and 3).   

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Example raw data showing: upper trace: example data of force and EMG associated with one 
MVMA; lower trace: magnification of muscle activation to show representative calculation of volitional 
electromechanical delay (EMDV). 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Example data showing; upper trace: example data of force and EMG associated with a single 
magnetic stimulus; lower trace: magnification of muscle activation to show representative calculation of 
magnetically-evoked electromechanical delay (EMDE). 
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Statistical analysis 

The effect of the fatiguing exercise intervention was assessed for each index of 

performance (PFV; EMDV; EMDE) using separate two (condition: control; fatigue) by two 

(time: pre; post) by two (group: male; female) mixed-model ANOVAs with repeated 

measures on the first two factors.  The assumptions underpinning the use of repeated 

measures ANOVA were checked and violations corrected by the Greenhouse-Geisser 

adjustment of the critical F-value, as indicated by GG.  Statistical significance was 

accepted at p < 0.05.  

 

 The experimental design offered an approximate .80 power of avoiding a Type-II 

error when employing a least detectable difference of 16 N, 8 ms and 3.5 ms for PFV, 

EMDV and EMDE, respectively. 
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Results 

Volitional muscle activation 

Volitional peak force (PFV) 

A significant three-factor interaction showed that while absolute strength performance 

was preserved during the control task, the fatiguing exercise task elicited a reduction in 

absolute strength performance in both males and females (F[1,14] = 14.0, p < 0.05).  

However, the absolute strength performance (group mean score (± SD)) was impaired to 

a greater extent in males than in females compared to baseline scores (265.1 (± 52.0) N 

vs. 311.8 (± 52.8) N [15% impairment] and 171.4 (± 33.9) N vs. 190.8 (± 48.6) N [10.2% 

impairment], respectively). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The effects of the fatigue task on the volitional peak force (PFV) of the knee flexors (group mean 
± SD). 
 

Electromechanical delay (EMDV) 

A significant three-factor interaction (F[1,14] = 5.9, p < 0.05) suggested that EMDV 

performance was maintained during the control task for both groups and in the 
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experimental condition for males.  However, the fatiguing exercise task elicited a 19.5% 

impairment in EMDV performance compared to baseline levels in females (61.2 (± 19.0) 

ms vs. 51.2 (± 13.1) ms, respectively) (see figure 5).  A-priori Helmert contrasts between 

group mean scores for males and females at baseline revealed no significant differences 

in EMDV performance. 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.  The effects of the fatigue task on the volitional electromechanical delay (EMDV) of the knee 
flexors (group mean ± SD). 
 

Magnetically-evoked muscle activation  

Evoked electromechanical delay (EMDE) 

A significant two-factor interaction of condition (control; fatigue) by time (pre; post) on 

EMDE showed that while absolute EMDE performance was preserved during the control 

task, the fatiguing exercise task elicited a potentiation (21% decrease) in EMDE latencies 

in both males and females (F[1,14] = 27.3, p < 0.001) (see figure 6).  A-priori Helmert 

contrasts between males and females at baseline revealed significantly shorter absolute 

EMDE values in females compared to males (F[1,14] = 7.3, p < 0.05)  
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Figure 6.  The effects of the fatigue task on the magnetically-evoked electromechanical delay (EMDE) of 

the knee flexors (group mean ± SD). 
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Discussion 

 

The absence of change over the control condition for each index of performance indicates 

that there were no systematic or learning effects and that performance variation can be 

attributed to the exercise intervention.   

 

Volitional neuromuscular performance 

The exercise intervention induced fatigue in the knee flexors, characterised by a 

significant decrease in PFV from pre- to post-fatiguing exercise levels.  The magnitude of 

PFV performance decrement observed in the current study (15% for males and 10% for 

females) is congruent with the extent of performance loss associated with match play in 

team games such as soccer (Gleeson et al. 1998b).  These findings, together with 

corroborating findings from other studies (e.g. Gleeson et al. 2000; Gleeson et al. 1998b; 

Zhou et al. 1996) may suggest a reduced capability of the dynamic stabilisers to provide 

forceful corrective responses to mechanical loading of the knee.  Such fatigue-related 

changes in neuromuscular performance may be interpreted to represent an increased risk 

of injury (Chan et al. 2001; Gleeson et al. 1998b; Mercer et al. 1998), which may be 

amplified particularly at knee angles where key ligamentous structures are already under 

greatest mechanical strain (Beynnon and Johnson 1996). 

 

 Recent research has demonstrated that loading of viscoelastic structures in 

isolation can cause creep within the affected tissue and a modulation of the 

neuromuscular performance characteristics of the associated musculature (Chu et al. 

2003; Sbriccoli et al. 2005; Solomonow, 2004; Solomnow et al. 2003).  For example, 

cyclical loading (150-200N) of the anterior cruciate ligament has been associated with an 
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approximate 10% reduction in knee extensor peak force (Sbriccoli et al, 2005). 

Furthermore, outcomes of testing in animal models have reported increases in shear creep 

of up to 27% and 53% respectively, compared to baseline following ten minutes and 

thirty minutes of intermittent bouts of feline spinal flexion (Solomnow et al. 2003).  

Sporting pursuits involving cyclical loading of viscoelastic tissue may contribute to 

increased injury risk because compliance characteristics and reflexive muscular activity 

may be adversely affected (Solomonow, 2004).  However, the magnitude of the loading 

applied cyclically on viscoelastic tissue within the present study was probably low.  For 

example, the loading effect of gravity in the current study would have created a relatively 

small passive anterior shear force on the knee of approximately 10-15N.  This force is 

likely to have been moderated further by the frequent periods of muscle activation 

performed by participants, shielding relevant tissue from mechanical stress.  It is likely 

that the cyclical application of such forces will have contributed an effect to baseline 

performance by means of the duration of the standardised warm-up (5 minutes of cyclical 

loading) and a small effect to the experimental changes in EMD performance following 

the acute 30 second fatigue-task, plus time spent in static maximal voluntary muscle 

actions. 

 

While the decrements to PFV capabilities of males exceeded that experienced by 

females (PFV: 15% vs. 10%, respectively), a group mean increase in EMDV latencies from 

pre- to post-fatigue levels (19.3%) was observed exclusively in females.  Recent research 

that has indicated that the reaction time of the neuromuscular system to imposed dynamic 

forces may be fundamental to the protection of the joint system (Gleeson et al. 2000; 

Gleeson et al. 1998a; Gleeson et al. 1998b; Huston and Wojtys 1996; Mercer et al. 1998; 

Shultz et al. 2001) may suggest such concomitant increases in EMDV may affect the timely 
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correction of joint forces and be associated with exacerbation of injury risk.  Indeed, the 

current results may provide a new insight into the complex phenomenon that describes a 

five- to seven-fold increase risk of ACL injury in the female athlete compared to male 

counterparts (Gray et al. 1985; Ireland et al. 1997). 

 

 The processes involved in the conversion of excitation into muscle force can 

potentially contribute to the fatigue-related changes in the force-generating capability 

observed in the current study.  However, it has been proposed that the majority of the 

EMD is determined by the time taken to stretch the series elastic component (SEC) 

(Cavanagh and Komi 1979), most of which is situated at the connective tissue 

attachments at the end of the muscle fibres (McComas 1996).  The differential changes in 

EMDV performance between sexes in the current study could be partially explained by a 

generally greater compliance in biologic tissue in females (Wojtys et al. 1998), 

exacerbated by muscle temperature increases associated with the fatiguing exercise (Zhou 

et al. 1998).  Given the many injury risk factors experienced by females, habituated 

exposure to scenarios where knee joint stability may be under threat might condition the 

neuromuscular system of the healthy female athlete at functional joint angles.  The 

subsequent formation of pre-programmed responses that provide fast compensatory 

reactions to joint perturbations (Latash 1998) may quickly harness the SEC and account 

for the parity in EMDV performance observed between the sexes at baseline.  Under 

conditions of muscle fatigue and sustained loading, however, this capability may be 

diminished due to a reduction of the effectiveness of the fastest most powerful motor 

units, impairing the temporal capability of the muscle to ‘gather in’ a more compliant 

SEC.  
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Magnetically-evoked neuromuscular performance   

Despite the fatiguing exercise intervention causing fatigue and impairment to indices of 

volitional neuromuscular performance, the ultimate temporal physiological capacity of 

the neuromuscular system (EMDE), as measured by magnetic stimulation, was potentiated 

by similar amounts in both males and females.   

 

 Our understanding of aspects of the nature of fatigue may be challenged 

somewhat by the observed differences in fatigue-related changes to EMDV and EMDE.  

However, the apparent paradoxical coexistence of fatigue of volitional performance and 

potentiation of evoked performance has been documented previously subsequent to 

exercise.  Improvements of electrically-evoked peak twitch force (Rassier and MacIntosh 

2000) and EMD (Sahlin and Seger 1995) have been described following acute and 

prolonged exercise protocols, respectively.  It is plausible that these changes facilitate a 

biological conservation of resources during energy-costly volitional exercise efforts, 

while simultaneously offering enhanced reflex and ‘emergency’ capabilities to resist 

mechanical threats to musculoskeletal integrity.   While metabolically mediated increases 

in sensitivity of muscle contractile proteins to Ca2+ may represent the processes 

underlying potentiated muscle force characteristics (Rassier and MacIntosh 2000), 

exercise-related changes to the compliance characteristics of the musculoskeletal system 

may represent the principal potentiating processes in the present study.  This may be 

particularly true considering that the major proportion of EMD is accounted for by 

lengthening of the SEC (Komi 1979; Zhou et al. 1995).   

 

 Connective tissue and muscle-tendon units subjected to a constant stress elongate 

over time (stress-relaxation), eliciting an increased length at a given load (Stone and 
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Karatzaferi 1992).  Recently, this creep effect has been shown to elicit a ‘disordering’ of 

the neuromuscular reflex response and, coupled with the concomitant increase in 

connective tissue compliance and ligamentous laxity, has been interpreted as representing 

a major knee injury risk factor (Chu et al. 2003; Solomonow, 2004).  In is interesting to 

note that results from the current investigation, show an improvement in magnetically-

evoked EMD following fatigue.  This shortening of evoked latency may suggest that the 

exercise-related stress and assessment characteristics elicited a decrease in compliance 

within the knee joint system.  It is conceivable that the strong static activation of muscle 

induced reactive hyperemia (McComas 1996) and a potential distension of the muscle. 

These latter processes may have contributed substantially to the facilitated post-fatigue 

EMDE when coupled with comparably reduced levels of muscle force that would be 

required to stretch stress-relaxed viscoelestic structures.   

 

The implications of the potentiation of EMDE performance may be commensurate 

with the potential to overcome the fatigue-related impairments of the volitional 

performance capabilities during critical times.  The net result following acute volitional 

muscle fatigue may be a ‘reserve capacity’ of unused motor units that can be deployed 

during perceived threat to the joint system.  The utility of this preserved emergency 

capacity to the individual athlete may be dependent entirely, however, on the down-

regulation of these potential protective central and peripheral neuromuscular inhibitory 

mechanisms (Hopkins and Ingersoll 2000) that appear to limit access to the full capacity 

of large high threshold motor units under voluntary conditions (Tsuji and Nakamura 

1988; Zhou et al. 1995).  This inhibition may be exemplified by the longer latencies 

associated with EMDV (e.g. 51.2 ms) compared to EMDE (e.g. 27.0 ms) in this study.  A 

further corollary of this interpretation suggests that methods of assessment of 
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performance capacity must be carefully considered, since utilisation of solely volitional 

means of assessment may predispose a gross underestimation of the true capacity of the 

neuromuscular system. 

 

 In summary, the substantive decrement to the force-generating capacity of the 

knee flexors in males and females following acute fatigue (10% and 15% decreases in 

PFV, respectively) may demonstrate a reduced capability to provide adequate dynamic 

restraint in response to mechanical loading of the knee joint at functional joint angles.  In 

addition, the significant increase of EMDV in females following acute muscle fatigue 

(19%) may be congruent with a reduced temporal capability to harness stabilising or 

resistive forces at the knee and place the female sports performer at increased risk of 

injury compared to male counterparts.  Potentiation of magnetically-evoked EMD 

following fatigue in both males and females may suggest a capability to overcome the 

effects of impaired voluntary neuromuscular performance.  Yet, the efficacy of a 

preserved temporal performance capacity to avoid synovial joint injury may be dependent 

entirely on whether the neuromuscular recruitment strategies observed subsequent to 

magnetic stimulation can be replicated under non-evoked conditions.  Ultimately, 

increased risk of injury is likely to reflect the complex interaction of several factors, some 

of which may include neuromuscular conditioning, susceptibility to fatigue and an ability 

to deploy the full motor unit capacity of the neuromuscular system at crucial times. 
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