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Abstract 

Although psychological theory acknowledges the existence of complex systems and the 

importance of nonlinear effects, linear statistical models have been traditionally used to 

examine relationships between environmental stimuli and outcomes. The way that we analyze 

these relationships does not seem to reflect the way that we conceptualize them. The present 

study investigated the application of connectionism (artificial neural networks) to modeling 

the relationships between work characteristics and employee health by comparing it with a 

more conventional statistical linear approach (multiple linear regression) on a sample of 1003 

individuals in employment. Comparisons of performance metrics indicated differences in 

model fit, with neural networks to some extent outperforming the linear regression models, 

such thati? for worn-out and job satisfaction were significantly higher in the neural networks. 

Most importantly, comparisons revealed that the predictors in the two approaches differed in 

their relative importance for predicting outcomes. The improvement is attributed to the ability 

of the neural networks to model complex nonlinear relationships. Being unconstrained by 

assumptions of linearity, they can provide a better approximation of such psychosocial 

phenomena. Nonlinear approaches are often better fitted for purpose, as they conform to the 

need for correspondence between theory, method and data. 
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The Use of Artificial Neural Networks and Multiple Linear Regression in Modeling Work-

Health Relationships: Translating Theory into Analytical Practice 

Modeling the impact of work and organizational characteristics on employee health is 

important in terms of decision-making for job design, re-design and organizational 

development. Effective management of work-related health relies on accurately prioritizing 

potential risks and explaining the highest variability in outcomes from a combination of work 

and organizational characteristics (Clarke & Cooper, 2004; Cox et al, 2000; Glendon, Clarke, 

& McKenna, 2006). In turn, this traditionally relies on correlational and linear approaches. 

Although such an approach has historically proven useful, it produces two sources of 

uncertainty for the assessment of risk to work-related health. First, it implies a linear 

relationship between work and organizational characteristics and health outcomes, which often 

conflicts with available empirical evidence (Karanika, 2006). Second, organizations 

themselves provide a demonstration of complexity (Cox et al, 2007; Schneider & Somers, 

2006). It also renders examination of the impact of combinations of risks (as opposed to 

bivariate relationships) more pertinent to decision-making in relation to risk management for 

work-related health (Karanika-Murray, Antoniou, Michaelides, & Cox, in press). The present 

study tested a nonlinear connectionist model vis-a-vis a traditional linear regression model of 

the impact of work characteristics on work-related outcomes. The remainder of this section 

discussing two key sources of uncertainty in modeling work-health relationships which set the 

main arguments for artificial neural networks, before it briefly outlines their principles. 

Uncertainty 1: Nonlinear Work-Health Relationships 

The first source of uncertainty in examining work-health relationships relates to 

underlying assumptions. A focus on potential nonlinear relationships is theoretically justified 

and empirically supported. Optimal levels of work-related health and performance away from 

extreme levels of work characteristics have often been proposed (e.g., Jamal, 1985; McGrath, 
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1976; Muse, Harris, & Feild, 2003). Expectations of nonlinear relationships between work and 

health, well-being, and performance can be traced in established theoretical models such as the 

General Adaptation Syndrome (Selye, 1975), the Person-Environment Fit model (Edwards, 

Caplan, & Harrison, 1998), and the Vitamin Model (Warr, 1987). Elements of curvilinearity, 

nonlinearity, complexity, homeostasis and a systems approach to understanding occupational 

health have been implicitly and explicitly incorporated in this theoretical repository. Empirical 

evidence has also accumulated that describes the effects of work and organizational 

characteristics on employee health as nonlinear (e.g., Borg, Kristensen, & Burr, 2000; de 

Jonge & Schaufeli, 1998; Rydstedt, Ferrie, & Head, 2006; Zivnuska et al, 2002). 

Furthermore, a state-of-the-art review of research on the relationships between work-related 

stressors and their effects concluded that the nature of these relationships is dynamic, 

nonlinear and discontinuous, but also stressed that only a very small percentage of the 

reviewed literature examined nonlinear relationships explicitly (Rick, Thomson, Briner, 

O'Regan, & Daniels, 2002). Additionally, explicit comparisons of linear and nonlinear 

analytical approaches have shown that the fit of the latter is better than that of the former; 

nonlinear models can explain more variance in outcomes compared to their linear equivalents 

(e.g., Lowe et al, 2003). 

The practice of occupational health psychology and, specifically, the area of risk 

management, draw heavily on this theoretical and methodological position. Most of the 

analytical techniques predominantly used in social science research are inferential statistical 

approaches based on the general linear model (Trochim, 2000) that assume continuous linear 

relationships between variables, invariably allowing for some error. This is underlined by an 

implicit assumption of stable linear relationships which, as many have noted, lies at the heart 

of social science research. Typically used are linear methods such as odds ratio, linear 

regression, correlation, and so on. 
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However, some dissatisfaction with the 'permeating' linearity assumption and the use 

of convention linear models approaches has been overtly expressed in sociological research 

(e.g., Abbott, 1988), human resource management (e.g., Mendenhall, Macomber, Gregersen, 

& Cutright, 1998), and occupational health research (e.g., Ferris et al, 2006). Most 

characteristically, Guion (1989) opposes the 'procrustean approach' to research, where the 

development of theory is often confined to available methods of mainstream paradigms. 

Linear static relationships often exist and can be studied using linear methods. When nonlinear 

relationships are probable, however, linear tools will constitute weak approaches (Karanika, 

2006). Indeed, empirical support for nonlinear relationships has been inconsistent (Ferris et 

al, 2006; Muse et al., 2003), leading researchers to suggest that this might be due to studying 

potentially nonlinear relationships with linear methods (e.g., Guion, 1992; Somers, 2001). 

Uncertainty 2: Organizational Complexity 

A second source of uncertainty in examining work-health relationships resides in the 

complexity and changing nature of organizational reality (Cox et al., 2007; Ovretveit, 1998). 

Organizations are often described as complex adaptive systems within which occupational 

health issues are embedded (Dooley, 1997; Schneider & Somers, 2006). This complexity is 

illustrated by the difficulty in conducting organisational interventions. It also often renders 

attempts to describe the exact relationships between a specific predictor and an outcome 

impractical for risk assessment in organizational settings. Rather, the overall pattern, impact 

and relative importance of multivariate work-related risks is of higher relevance for discerning 

the underlying organizational pathology and for risk management. Improved decision-making 

for occupational health management can only rely on accurate assessment of the impact of 

work on health. The premise that relationships between work characteristics and employee 

health are not necessarily linear and the concern that traditional approaches may be inadequate 

for risk management provide an impetus for exploring alternatives. This is especially useful in 
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situations where the form of the relationships between a specific work characteristics and an 

outcome is of lesser importance for risk management than the ability to explain as much of the 

variance in the outcomes as possible from a range of work characteristics. 

The implications of resolving these uncertainties for the management of work-related 

health are evident. Explicitly incorporating multivariate curvilinear effects of work on health 

in risk estimation has been shown to provide more accurate models which can be used for the 

risk management (Karanika-Murray et al., under review). Different techniques are appropriate 

for different purposes and researchers should be explicit in their choices. Given that nonlinear 

relationships exist and that our knowledge has outgrown the linearity assumption, it would be 

useful to explicitly compare the performance of one technique which is the common choice for 

prediction with another which is also suited for complex nonlinear phenomena. 

An Alternative Approach 

A multitude of methods for the study of nonlinear systems are available and have been 

applied to psychological research (Barton, 1994; Eidelson, 1997). For example, polynomial 

regression is commonly used for examining curvilinear effects (e.g. de Jonge & Schaufeli, 

1998; Rydstedt et al, 2006; Zivnuska et al, 2002), whereas computer simulations have also 

been used for exploring nonlinearity (Somers, 2001). An alternative that is proving well-suited 

for capturing nonlinearity is connectionism, or artificial neural networks. It has been surmised 

that neural networks are better at examining nonlinearity than conventional statistical 

approaches (Collins & Clark, 1993; Hanges et al., 2001). Connectionism has been used in 

applied areas such as workplace behavior (Collins & Clark, 1993), employee turnover 

(Somers, 1999), motivation theory (Lord et al, 2003), health behavior (Lowe et al, 2003), and 

cancer prognosis (Sargent, 2001). Although their uptake in disciplines such as engineering, 

physics, economics, neurobiology, cognitive psychology, and medicine has been rapid, they 

have been sparingly used elsewhere (Somers, 1999). Organizational research has sought to 
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establish their predictive efficacy over conventional statistical methods, making them a 

popular decision-making tool in applied settings (DeTienne, DeTienne, & Joshi, 2003; 

Scarborough & Somers, 2006; Somers, 2008). Although not yet examined in this direction, 

artificial neural networks may also prove to be of use in the assessment and management of 

risks to work-related health. 

Artificial Neural Networks - A Brief Introduction 

The seeds of connectionism were planted by James (1890s), McCulloch and Pitts 

(1940s) and Hebb (1940s) and their work on the biological neuronal structure of the brain, 

correlational learning and associative memory (Posner & Rothbart, 2004). Its computational 

properties (the neural network structure) were first delineated by Rosenblatt in 1958 (Eberhart 

& Dobbins, 1990). Interconnected neurons or nodes receive input that determines the output 

that they dispatch to other nodes, and the network learns by strengthening the connections 

between nodes (Smith, 1996). This section provides a brief account of neural networks. The 

reader can refer to available excellent insights into their technical elements and applications 

(e.g., McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986). 

A neural network consists of: (1) an input layer of simple nodes or processing units 

that receive external stimuli, (2) a hidden layer of units (similar to adaptors) that store 

relationships between the input and output layers and (3) an output layer of outcome units (see 

Figure 1). These are arranged so that each unit in one layer receives signal from each unit in 

the preceding layer through their synapses, which store their activation. Activation is a 

function of the unit's summed inputs and depends on the strength of the output, the weights 

linked to each unit, as well as a transformation function (Anderson & McNeill, 1992; Curry, 

Morgan, & Silver, 2002). Each node multiplies the incoming signals by the weight of their 

connection, sums these, rescales the total (a value from 1 to 0) and transfers the signal to the 

next layer. 
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(Figure 1 about here) 

Learning (and weight adjustment) takes place in an iterative manner, as node 

activation occurs. The network weights contain the memory of the system. Each network starts 

with a set of random weights which, via the synapses, are fed forward through the system. The 

observed or actual values of the output or outcome variable are compared with those predicted 

on the basis of these weights. The weights are then adjusted to minimize the error between 

actual or observed and predicted values or the discrepancy between the input signal and a goal 

or comparison value. This dissonance minimization function bears similarity to the feedback 

mechanism of self-regulatory behavior (see Carver & Scheier, 1998). A number of learning 

algorithms have been developed, the most popular being the backpropagation method 

(Eberhart & Dobbins, 1990). Activation that feeds forward through the network from input to 

output units and where nodes in one layer are not allowed to be linked with each other, 

describes a feedforward network. Nodes that are more densely interconnected so that both 

feedforward and feedback of activation is possible are called recurrent networks. More 

complex architectures can be constructed by incorporating feedforward and recurrent modules. 

Neural network learning can be supervised, where target outputs are known and the network is 

required to develop a model that best fits the data or target model, or unsupervised, where 

output values are unknown and the network is required to detect patterns of similarity within a 

given set of inputs. Supervised learning is analogous to statistical multiple linear regression 

and discriminant analyses (Sarle, 1994; Smith, 1996), where input variables are used to predict 

values or categories of a target output variable (a network with no hidden layers and a linear 

activation function). Unsupervised learning, on the other hand, can be compared to statistical 

data reduction techniques (e.g., factor analysis). 

The main advantage s of neural networks are their (1) adaptability, (2) ability to learn 

using trial and error, (3) nonlinear approach and (4) ability to model highly dimensional data 
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(Karanika, 2006). Inclusion of multiple hidden layers and nodes allows for more complexity in the 

network's architecture (Sarle, 1994). Connectionism is also referred to as parallel distributed 

processing (PDP): parallel because it happens simultaneously and distributed because each 

element or node can participate in more than one pattern of representations at the same time. PDP 

is one of the most important attributes of connectionist models. It allows neural networks to exhibit 

contextual sensitivity at 'a fine-grained level' (Lord, Hanges, & Godfrey, 2003). There is no direct 

discernible relationship between local nodes (lower level processing) and the global pattern or 

representation (higher level meaning) between inputs and output. Rather, the final models emerge 

from the pattern of activation. Thus, knowledge on the complexity of the system is contained in the 

network architecture and the pattern of interconnections, rather than in the exact relationships 

between predictors and outcomes. 

It has often been suggested that neural networks are better at examining nonlinear 

phenomena than conventional statistical approaches (e.g., Collins & Clark, 1993; Hanges et al., 

2001; Lowe et al., 2003; Somers, 1999). Statistics and neural networks differ in three fundamental 

respects which provide the impetus for using neural networks in the present study. First, 

conventional statistics are based on the general linear model and its underlying assumptions on 

normally distributed data, aggregativity, temporal effects, independence of variables, and so on 

(underlying assumptions). Second, in neural network modeling concepts of complexity, nonlinearity 

and systems are evoked at the network architecture level by virtue of its PDP capacity (systems, 

complexity and nonlinearity). Finally, where error or noise is a problem in statistical analyses, 

neural networks are able to adapt to it (contextual sensitivity). Curry et al. (2002) note that 

although neural networks can be "forced to have a linear component, the linear case is effectively 

nested within a larger and more flexible specification" (p. 964). Thus, complexity and nonlinearity 

are embedded in the network's architecture rather than the exact relationships between variables, 

thus allowing for a supple conceptualization of complex phenomena. On the negative side, many 

have described neural networks as a 'black box' approach (Paruelo &Tomasel, 1997; Price et al., 

2000): it is not possible to discern the relationships between a specific predictor and the outcome in 

a neural network, in the same way that statistical formulae allow. However, as mentioned, this is 

often neither necessary in occupational health risk assessment nor feasible in organizational 
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settings. Neural networks' utility for the assessment and management of work-related health 

lies in the fact that they can be used as a decision-making tool. 

The Present Study 

The present study explored the application of artificial neural networks in modeling 

the relationships between work and organizational characteristics and employee health 

outcomes. It is grounded on the observation that the way that we use to analyze work-health 

relationships does not reflect the way that we conceptualize such relationships. 

Any new approach introduced in a well-defined area should be compared to existing 

methods (Chatfield, 1993). Multiple linear regression was used to estimate the linear models and 

as a baseline for comparing neural network performance. Polynomial linear regression analysis as 

used for examining curvilinear relationships was rejected because (a) it looks at curvilinearity but 

not nonlinearity, (b) it introduces curvilinearity by the quadratic term of the predictor within a linear 

combination of predictors ( EMBED Equation.3 • ), which is essentially an intrinsically linear 

approach (DeTienne et al., 2003). True nonlinear models express nonlinearity in the parameters of 

the variables. Additional shortcomings of linear regression (Bansal et al., 1993; Lind & Sulek, 2001; 

Lowe et al., 2003) render it inappropriate for addressing nonlinear phenomena. 

The present study compared an inherently linear (multiple linear regression) and an 

inherently nonlinear method (artificial neural networks). It focused on two neural networks 

with one output, whose aim was to predict an outcome by learning the associations between 

that variable and a set of inputs. It was expected that (a) there would be differences in variance 

explained between the linear and the nonlinear approaches, and (b) the relative positioning of 

the variables or the architecture of the models would differ in the linear and nonlinear models. 

Job satisfaction and worn-out (or symptoms of fatigue and exhaustion) are commonly used in 

risk assessment for work-related health and were used here as outcomes in separate models. 

Different aspects of work-related health are differentially associated with work characteristics 

and should thus be examined separately (Warr, 1990). 

Method 
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Participants and Procedure 

This study used data obtained from risk assessment studies carried out for the U K 

Health and Safety Executive and the European Commission over the last two decades (see 

Cox et al, 2000). The data came from 5 organizations covering a number of sectors and 

focusing on a multitude of work characteristics across a variety of job roles (e.g., retail staff, 

customer services staff, and warehouse staff). In the original studies, all staff across all 

departments in the organizations were asked to participate. Mean response rate was 54%, with 

a range of 48% to 62%. For the present study, the data were combined into a larger dataset of 

N= 1003, which provided a satisfactory sample size for the models. Outliers were identified 

and removed prior to the analyses. The predictors included in the models were: employee 

characteristics (gender, age, tenure, social support) and work characteristics (see below). 

Outcomes were job satisfaction and worn-out. Table 1 presents the descriptive statistics before 

substitution of missing values (see below). The final sample consisted of 53.4% (n = 531) 

males and 46.6% (n = 463) females. Participants' age ranged from 17 to 65 years (M= 37.42, 

SD = 10.76). Tenure in the organization ranged from <1 to 41 years (M= 9.95, SD = 8.53). 

(Table 1 about here) 

Measures 

Age, gender and tenure have been related to employee health and work attitudes (e.g., 

Clark, Oswald, & Warr, 1996; Siu, Spector, Cooper, & Donald, 2001). As a binary variable, 

gender can be used in multiple linear regression (see Tabachnick & Fidell, 2001) and was thus 

included in the models. 

Social support was measured by asking respondents to indicate whether or not they 

would be happy to discuss personal work problems with any of a number of sources. The 

number of sources of social support used was summed into a single item, with a high score 

indicating use of more sources of social support for work problems. 
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Work characteristics. In the original studies a list of items describing aspects of work 

and working conditions was identified from the information collected during interviews, 

familiarization visits, and focus groups. Where necessary, this information was supplemented 

with available scientific evidence to provide complete coverage of work characteristics (see 

Cox, 1993, 2000). Employees were asked to judge the adequacy of their work using their 

knowledge of their work to complete a survey assessing experienced work and organizational 

issues (1 = unacceptable/very unsatisfactory, 4 = excellent/very satisfactory). In combining the 

data for the present study, the most prevalent work characteristics were selected. Items as 

opposed to factor-analyzed work characteristics were used. Because respondents were asked to 

rate only the items that applied to their work the number of missing data was high. It was 

necessary to retain a large sample size for the analyses in order to minimize the need for 

missing data estimation for both the regression models and the neural networks. Therefore, the 

items with no more than 10% missing data (in both cases and variables) which were common 

across all samples were chosen: communication with manager, relationships with colleagues, 

job security, teamwork, staffing, initial training, facilities (for taking breaks), decision latitude, 

time for training, number of breaks taken, others' knowledge (about one's job), equipment 

suitability, home-work support, manager demands. These work characteristics represent the 

range of work issues identified in the literature that can impact on individual health (see Cox, 

Griffiths, & Rial-Gonzalez, 2000; Cox, Karanika-Murray, Griffiths, Wong, & Hardy, 2009). 

The worn-out scale of the General Well-being Questionnaire (Cox, Thirlaway, Gotts, 

& Cox, 1983), a self-report symptom-based measure of sub-optimal health was also used. 

Worn-out is described by symptoms relating to fatigue, emotional lability and cognitive 

confusion and is measured by 12 items. Respondents are asked to indicate how often they have 

experienced a number of symptoms ('become easily annoyed or irritated', 'had difficulty in 
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falling or staying asleep') in the last 6 months (0 = never, 4 = all the time; higher scores 

indicating lower worn-out). Reliability was a = .88 (N = 977). 

Job satisfaction was assessed by asking respondents to indicate how satisfied they 

were with their job (0 = not at all satisfied, 4 = very satisfied) (M= 2.21, SD = 1.02). A one-

item global rating is a reliable measure of general job satisfaction (mean r = .67 between one 

and multiple item scales have been reported; Nagy, 2002; Wanous, Reichers, & Hudy, 1997). 

Some of the work characteristics were slightly skewed. Although neural networks do 

not require the data to be normally distributed, normality is one of the key assumptions for 

linear regression. With large datasets a non-normal distribution does not have an impact on the 

results, such that 'in a large sample, a variable with statistically significant skewness does not 

deviate enough from normality to make a substantive difference in the analyses' (Tabachnick 

& Fidell, 2001, p. 74). The job characteristics were therefore retained untransformed. Of the 

remainder variables, only age was transformed (see below). 

The Worn-out and Job Satisfaction Networks 

The neural network literature provides limited guidance on required sample size (Price 

et al, 2000) and optimal numbers of hidden layers and of hidden nodes (Anderson & McNeill, 

1992). Estimations are based on the basis of considerations such as data noisiness (errors or 

imperfections) and model complexity. Since we were unsure of the noisiness of the data and 

because more hidden layers and/or hidden nodes can help networks learn more complex 

relationships, it was decided to train one- and two-hidden layer supervised networks with 9 to 

18 hidden nodes each, proportionate to the number of predictors. 

A small level of data missing at random is acceptable for traditional multivariate 

statistics (Tabachnick & Fidell, 2001). However, neural networks do not tolerate any missing 

data. Missing values were estimated by the Expectation Maximization method (Hsiao, 1980). 

Missing values for gender were substituted on the basis of the distribution of males and 
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females. Steps were taken to help the network escape from partial solutions in response to the 

data (local minima) during learning or training. Training was more accurate with higher 

values, thus the term used for updating the weights during training was set to .9 {alpha; can 

range from 0 to 1). A moderate rate of change of weight adjustment {eta; can range from .10 

to .01) at each update was selected, in order to help detect variables that contributed 

significantly and were thus more influential for learning. The values used to initialize the 

network weights were set to random. Finally, overfitting a network to the data (or overtraining) 

should be avoided as it inhibits generalizability of the network to new data (DeTienne et al, 

2003; Makridakis, Wheelwright, & Hyndman, 1998). A convention is to divide the data 

randomly into training and cross-validation (80-20%) sets. This yielded a neural network 

training sample of 802 and a validation sample of 201. 

Results 

Correlations, means and standard deviations for all variables are presented in Table 1. 

The minimum correlation for a statistical power of .80 (iV= 1003,/? < .05) in the present 

sample was r = .09 (Cohen, 1988). 

Artificial Neural Network Modeling 

One-output supervised feedforward neural networks were trained for prediction, 

separately for worn-out and job satisfaction, using the backpropagation learning method. 

Networks with one and two hidden layers were trained and validated on known output data. 

SPSS Clementine was used, which provides a powerful graphical interface to implement the 

neural networks. Table 2 presents training accuracy for the best models, predictors included 

and their Relative Importance (RI), correlations between measured and predicted values and 

Mean Absolute Percentage Error (MAPE) for the worn-out and job satisfaction networks. 

Accuracy of 80-90% is considered good. RI is an effect size metric that incorporates a 

summary of the weights of the inputs (Lucek & Ott, 1997). It indicates the influence of a 
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predictor in relation to all predictors included in the model. M A P E is based on the error 

between actual and predicted values (such that M A P E = 2|pe|; p = percentage, e = difference 

between actual and predicted values of the outcome). It is used to assess accuracy or 

goodness-of-fit in forecasting (Anderson & McNeill, 1992; Makridakis et al, 1998). 

(Table 2 about here) 

The best neural network for worn-out was one with 2 hidden layers of 14 nodes each, 

with predicted training accuracy 86.39%). The single predictor with relative importance RI > 

.10 was age (RI = .11). Manager demands, tenure, number of breaks taken, gender, social 

support, home-work support, communication with manager, equipment suitability and job 

security were also salient for the worn-out model (.10 > RI > .05). The predicted values for 

worn-out corresponded well to the actual values (r = .51) and explained 26.01%> of variance in 

worn-out. The best network for job satisfaction was one with 2 hidden layers of 9 nodes each 

and predicted accuracy 85.14%>. The most salient (RI > .10) predictors of job satisfaction were: 

communication with manager (RI = .18), relationships with colleagues (RI = .15), teamwork 

(RI = . 13), age (RI = . 12), decision latitude (RI = . 12), job security (RI = . 12), time for training 

(RI = .11) and social support (RI = .11). Nine additional inputs were also included in the 

network (. 10 > RI > .05). The correlation between estimated and actual values was r = .61 and 

the network explained 37.21%> of variance in job satisfaction scores. 

Multiple Linear Regression Analyses 

Two statistical (stepwise) multiple linear regression analyses were performed for 

worn-out and job satisfaction with the employee variables (gender, age, tenure and social 

support; Step 1) and the work characteristics (Step 2) as predictors, using SPSS Regression. 

This was chosen because (a) there was no theory to guide the models and (b) this strategy to 

variable selection is similar to the neural networks procedure where variables are allocated a 

random weight which is adjusted through iterations as training proceeds and represents a 
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combination of the forward and backward deletion procedures in statistical regression. 

Hierarchical regression was used within steps. The cases-to-IVs ratio for the analyses was 

generous, with N= 1003 fulfilling the minimum of N= 50 + %m (m = number of predictors). 

None of the bivariate correlations between predictors were > .90, indicating no 

multicollinearity. Evaluation of normality led to the logarithmic transformation of age to 

reduce skewness. Bivariate correlations between predictors and outcomes revealed weak to 

medium relationships. The ranges of r between .06 and .27 (r = . 15) for worn-out and 

between .09 and .37 (r = .19) for job satisfaction were within those reported in meta-analytic 

studies (e.g., r= .30, R = .09 for job satisfaction, Viswesvaran, Sanchez, & Fisher, 1999). 

Table 3 shows the predictors included in the regression models, variance explained (R ), F 

values, unstandardized regression coefficients (B) and intercept, standardized regression 

coefficients (P) and t values for the final models. Some missing data resulted in N= 962 which 

is adequate for an effect size,/ = 0.02 (equivalent to R2 = 0.02; p = .05, 18 predictors) and 

statistical power of .80 (Cohen, 1988). 

(Table 3 about here) 

R for regression on worn-out was significantly different from zero, F(8, 953) = 24.03, 

p<.0\. Gender (p = .19, t = 6.10, p < .01) and social support (p = -.12, t = -3.84,/? < .01) 

contributed 6.79% in shared variance of worn-out scores. The work characteristics that 

contributed significantly to worn-out were manager demands (P = -.11, t = -3.43,p < .01), 

number of breaks taken (fi = -.ll,t= -3.43, p< .01), equipment suitability (P = -.07, t = -2.35, 

p < .05), time for training (p = -.06, t= -1.96, p < .05), job security (p = -.08, f = -2.36,/? < 

.05) and others' knowledge about one's job (P = -.06, t = -2.00, p< .05) and contributed 

another 9.99% for a total of 16.78% (adj. R = . 16) in explained variance in worn-out scores. 

The model for job satisfaction was also significant, F(8, 953) = 44.24,/? < .01. The job 

characteristics decision latitude (P = .19, t= 5.72,p < .01), communication with manager (P = 
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.18, t = 5.54,p < .01), initial training (p = .12, t = 4.22,p < .01), equipment suitability (p = .10, 

t = 3.22,p < .01), manager demands (p = .08, t = 2.75,p < .01), job security (p = .09, t = 3.22, 

p< .01) and teamwork (P = .\\, t = 3.16, p < .01) contributed 24.55%) in shared variance in job 

satisfaction scores. Altogether, 27.08%> (adj. R = .26) of job satisfaction was explained. 

Comparing Performance 

It is often difficult to find metrics on which the performance of two different 

techniques can be compared, since different fit indices apply to different approaches. Here, 

performance comparisons were made on the basis of correlations between actual and predicted 

values (validation sets) and effect sizes for both approaches. To achieve this, the regression 

equations y = f30 + (3^ + f32x2 +... + f3nxn were solved. Missing values in the regression inputs 

created missing values in the predicted variables and therefore a small number of cases were 

deleted from subsequent analyses. Incurred data loss was between 1.69%> (job satisfaction) and 

2.59%o (worn-out). Table 4 presents the performance evaluation indices, including correlations 

(r) between actual and predicted values, Fisher z (a test of difference between two independent 

correlations, Bruning & Kintz, 1977), variance explained (R ) , means for observed (Mact) and 

predicted (Mpred) values with their standard deviations (SD), mean squared error (MSE), mean 

absolute percentage error (MAPE) and percentage change (%>A) in fit indices. 

These results indicate that the neural networks outperformed the linear regression 

models. The correlations between actual and predicted values were significantly higher for 

both the worn-out (Fisher z = -2.22, p < .05) and job satisfaction (Fisher z = -2.00, p < .05) 

networks vis-a-vis their linear regression equivalents. The neural networks explained 9.20% 

(R = .09) more variance in worn-out scores (with an improvement of 1:55 or 54.73% over the 

linear regression model) and 10.20%> (R = .10) more variance of job satisfaction scores (a 

ratio of 1:1.38 or 37.61%). MSE of the best linear regression models were higher than those of 
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the best neural network (9.73% and 12.00% for worn-out and job satisfaction, respectively). 

M A P E was lower for the neural networks by 11% for both worn-out and job satisfaction. 

(Table 4 about here) 

Model Architecture 

The relative positioning of the predictors in the models was also examined. The 

qualitative comparisons between the regression models and neural networks indicated some 

agreements and disagreements. Specifically, both the neural networks and regression models 

assigned highest priority to manager demands (the most salient predictor), number of breaks 

taken, equipment suitability, and job security as the most salient work characteristics and 

determinants of worn-out. However, the regression analysis also included time for training and 

others' knowledge of work, whereas the neural networks included home-work support, 

communication with manager, and job security in the models. 

Similarly, both neural network and regression model of job satisfaction included 

decision latitude, communication with manager, initial training, equipment suitability, 

manager demands, job security, and teamwork as salient predictors. However, the neural 

network included six additional work characteristics, which the linear approach did not deem 

important: relationships with colleagues, time for training, home-work support, facilities, 

others' knowledge, and number of breaks taken. 

Furthermore, positioning of the salient work and organizational characteristics was 

different in the two approaches. For example, both neural networks and linear regression 

placed communication with manager high on the list of salient work characteristics for job 

satisfaction. However, decision latitude, initial training, and equipment suitability were much 

lower in the relative rankings of the neural networks than in the regression models. Teamwork 

and job security, on the other hand, were both higher on the list. 

Discussion 
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The focus of the present study was to establish whether artificial neural networks 

would provide better fit than the traditional multiple linear regression analysis in modeling the 

relationship between work characteristics and work-related health. It was expected that there 

would be differences in (a) variance explained between the linear regression models and the 

neural networks, and (b) the relative positioning of the predictors in the architecture of the 

models. The results fulfilled these expectations: comparisons indicated improvements of the 

networks over the regression models and, most importantly, differing model architectures. By 

additionally demonstrating that underlying assumptions are an important consideration in 

choosing analytical techniques, the study can help to refine current practice. Neural networks 

provide a contender approach to examining the relationships between work and health and 

may prove helpful in improving decision-making concerning job design and risk management. 

Model fit was examined from two different perspectives: one that focuses on fit 

indices (error measures, variance explained) and one that examines model architecture 

(predictors included in the models and relative positioning). Al l performance indices favored 

the neural networks, with significant differences in the linear-to-nonlinear correlations. The 

nonlinear approach explained more variance in scores than the linear models (R = .26 for 

worn-out andi? = .37 for job satisfaction). The ratios of 1.53 and 1.37 for the linear-to-

nonlinear differences in variance explained are not large deviations from the average 2.10 

reported by Guastello (2002). It should be noted that perfect performance indices are often 

neither attainable nor necessarily desirable, as they may indicate overfitting of the model to the 

data. Unless the population is finite, perfect performance metrics do not necessarily imply 

'good' modeling and prediction (Makridakis et al., 1998). Although accurate prediction is 

difficult due to high levels of error in social issues (Frese & Zapf, 1988), nonlinear methods 

can potentially account for higher proportions of unobserved effect in complex nonlinear 

phenomena. 
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The present findings corroborate the empirical work on curvilinear effects of work 

characteristics on employee health outcomes. There is evidence for quadratic effects on job 

satisfaction of job demands (R2 = .45, Warr, 1990), skill discretion (R2 = .07, AR2 = .01, 

Fletcher & Jones, 1993), social support (R = .17, de Jonge & Schaufeli, 1998), job tension 

7 7 

(AR = .23, Zivnuska et al., 2002), decision latitude and social support (AR = .003 to .006, 

Rydstedt, Ferrie, & Head, 2006). This evidence has been inconsistent (e.g., Muse et al, 2003). 

For example, Jeurissen and Nyklicek (2001) did not find any significant relationships between 

job demands/job autonomy and job satisfaction. Similarly, Warr (1990) did not find support 

for nonlinear effects of decision latitude on job satisfaction. In terms of curvilinear effects of 

work characteristics on worn-out, there is some evidence for curvilinearity between emotional 

exhaustion and job autonomy (R = .28, de Jonge & Schaufeli, 1998), inequity (quadratic, van 

Dierendonck, Schaufeli, & Buunk, 2001), and time pressure (R = .55 to .73, Teuchmann, 

Totterdell, & Parker, 1999). Although the empirical evidence does not shed much light on the 

shape of the relationships, the evidence for the existence of nonlinear relationships is plentiful. 

Such inconsistent findings may be due to the predominance of linear regression techniques 

such as polynomial regression, an inherently linear approach (Karanika, 2006), and the fact 

that the majority of cited empirical work has focused mainly on bivariate relationships. As 

Schneider (1987) notes, examination of one particular element of the system provides little 

information about the whole network. 

Beyond performance metrics, differing model architectures were also revealed. The 

neural networks diverged from the linear regression models in both the number of salient 

predictors and the relative importance of these predictors for worn-out and job satisfaction. 

Allowing for complexity and nonlinearity produced a job satisfaction network with twice as 

many predictors and better predictive capacity than the linear model. Relationships between 

work characteristics and well-being and also among work characteristics as predictors of 
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health outcomes may be more complicated than traditional linear approaches can 

accommodate. 

Decisions on job design and management clearly depend on the accurate assessment of 

potential risks to employee health. Risk assessment typically relies on probabilistic risk 

analysis (Clarke & Cooper, 2004; Glendon, Clarke, & McKenna, 2006) which uses linear 

methods. Evidently, a risk assessment for work-related health that uses a linear approach 

might fail to acknowledge the impact of a range of important work characteristics, and 

examining bivariate relationships between hazards and outcomes is less informative for 

practice than a concurrent examination of a range of hazards (Karanika-Murray et al, under 

review). To the extent that psychosocial phenomena are complex and nonlinear, nonlinear 

approaches conform to best practice in decision-making for the management of health at work. 

By enabling a range of variables to participate in many different representations, 

neural networks do not impose a priori relationships on the data but allow to learn from those 

data. Despite being a 'black box' application (Paruelo & Tomasel, 1997), neural networks can 

minimize some types of measurement error. Further, multicollinearity and non-normal 

distribution of predictors do not affect the networks, complex nonlinear relationships can be 

accommodated, and otherwise misrepresented variables can be included in the models. 

Moreover, they have the potential to integrate internal processes (e.g., learning, emotions) with 

higher systemic external representations (e.g. social relationships, behavior) (see Lowe et al, 

2003). Ways to 'open the black box' include, for example, examination of weights and 

confidence intervals, use of graphical methods, estimation criteria, and diagnostics (e.g., Price 

et al, 2000; Sale, 1994). These are not readily applicable yet, but "methodology and statistics 

are computer-dependent enterprises [...] as computer technology advances, the ability of 

researchers to advance the field increases dramatically" (Shadish, 2002, p. 12). 
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As mentioned, perfect performance indices would indicate overfitting of the models to 

the data, which would have implications for the generalizability of the findings. In the present 

study, generalizability is tenable in two ways: (i) by not being overfitted, the models are 

flexible enough to accommodate small changes and generalize to new data (e.g., DeTienne et 

al, 2003; Makridakis et al, 1998), and (ii) the original studies were carried out in range of 

organizations which covered a variety of job roles. In total, they represent large organizations 

in the private sector (see Cox et al, 2000). Although it was not possible to compile a list of the 

range of jobs represented, these included knowledge employees, manual workers, customer 

services staff, managerial and administrative staff, etc. A homogeneous high risk occupational 

sample might have yielded higher performance indices, since "nonlinearity is expected to be 

more pronounced in studies among jobs that produce extreme scores on job characteristics" 

(de Jonge & Schaufeli, 1998, p. 391). Nevertheless, the sample's heterogeneity means that the 

results are generalizable across different groups. 

Naturally, the use of a particular technique depends on the aims of the analyses. The 

most essential pieces of information for risk management are the accuracy of the overall 

model and the relative impact of specific work characteristics (potential hazards) on health. In 

such cases, neural networks provide an ideal tool. Although they are not ideal for discerning 

specific predictor-outcome relationships, they can also overcome some problems of commonly 

used techniques. Statistical approaches can be better when the aim is to examine the exact 

impact of a particular work characteristic. Sarle (1994) remarks that "statistical methodology 

is directly applicable to neural networks in a variety of ways" and that "better communication 

between the fields of statistics and neural networks would benefit both" (p. 11). 

Neural networks and statistics can be used in harmony. For example, a stepwise 

approach to risk assessment can be adopted which will initially use neural networks to 

examine the impact of a range of work characteristics on health outcomes and to prioitize 
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actions to reduce the most harmful ones. Multiple regression analysis can then be used to 

supplement this information by discerning the relationship between specific work 

characteristics and health outcomes (e.g., the partial derivatives approach for risk estimation in 

a multivariate curvilinear context, Karanika-Murray et al, under review). A range of other 

approaches, such as principal components, discriminant, or cluster analysis, can also be used 

to examine neural network structure (Price et al, 2000). As Sargent (2001) remarks, "neither 

method achieves the desired performance [but] both methods should continue to be used and 

explored in a complementary manner" (p. 1636). Although nonlinear researchers are required 

to compete with a long-standing expertise in linear statistics (Gilbert & Troitzsch, 2005), 

fruitful investigations reinforce the position that persisting in the development of the approach 

is worthwhile. 

A range of methods for the study of nonlinear systems have been developed (Barton, 

1994; Eidelson, 1997; Somers, 2001). For example, cellular automata (e.g., Nowak & 

Vallacher, 1998) have been used to model interactions among elements of a system over time 

(e.g., members of a family, voting behavior), multilevel simulation has been used to model 

attitude formation (e.g. Gilbert & Troitzsch, 2005), differential equations have been used to 

examine the relationships between positivity and flourishing (e.g., Fredrickson & Losada, 

2005), and exponential (nonlinear) regression has been used to model motivational flow and 

leadership emergence (e.g. Guastello, 2002). Although specialized software is available (e.g., 

Gilbert & Troitzsch, 2005), choice of approach depends on the aims of the study, indicating 

that creativity in using available tools for new research agendas is important. 

Limitations and Future Directions 

Although steps were taken to maximize the ability of the networks to provide accurate 

models, points for caution ought to be raised, as with any new approach in an established area. 

Variance explained in outcome scores were no higher than 37%. As a general rule, low R can 
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indicate incomplete underlying theory or high measurement error in the data. Any type of 

analysis is as good as the data against which the conceptual models are examined (e.g., Price 

et al, 2000). Inclusion of additional predictors in future studies could further improve the 

models. Future research could also compare these approaches using simulation data, normally 

distributed and with no missing values. Additionally, it is possible that unaccounted variance 

in the models is attributable to non-static elements. It was not feasible in the present study to 

address the dynamic aspect in the relationships between work and health, but neural networks 

can flexibly accommodate time-series data and such a truly nonlinear approach is prescribed 

for future work. The data were self-reported and cross-sectional. Biases associated with such 

data include: the influence of unmeasured third variables and individual differences, common 

method variance and the fact that it is impossible to ascertain the direction of causality from 

such designs (Zapf, Dormann, & Frese, 1996) and potential inflation of explained variance in 

outcomes. Any error was systematic and thus of no impact for the aims of the present study. 

Finally, it is important for future work to delineate the conditions under which neural networks 

outperform conventional approaches. This could include varying the types of nonlinearity and 

the percentage error in a dataset (Bansal et al, 1993, found that linear regression were better 

overall in forecasting financial risk but neural networks were better with less accurate data). 

Conclusions 

This study demonstrated the viability of neural networks for modeling the impact of 

work characteristics on employee health outcomes. Neural networks produced better 

performance metrics and different relative importance of predictors for outcomes in the 

models. Although theoretical notions of nonlinearity in the relationships between work and 

health have long existed, a supposition of linear forms still dominates the field. As mentioned, 

a better model of reality is one that does not constrain complex and potentially nonlinear data 

into linear representations. We acknowledge that linear approaches have been instrumental in 
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the development of psychological theory, but we also believe that we should explore and use 

new developments where possible and appropriate. Ultimately, improved assessment and 

decision-making for job design and the management of work-related health can only rely on 

accurate models that reflect the nature of the data. 
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Table 1 

Means, Standard Deviations and Correlations for the Study Variables 

M(SD) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

Gender 

Age 

Tenure 

Social support 

Staffing 

Time for training 

Initial training 

Job security 

Teamwork 

Others' knowledge of job 

Manager demands 

Relationships with 

.45 (.50) 

37.06(10.56) 

9.92 (8.55) 

2.77(1.18) 

2.14 (.84) 

2.24 (.77) 

2.30 (.81) 

2.43 (.89) 

2.26 (.80) 

1.90 (.69) 

2.21 (.74) 

3.11 (.69) 

-.06 

-.28*" 

-.10*" 

-.12*" 

-.06 

-.08* 
32** 

-.16*" 
. 09*" 

.00 

.01 

.54** 

.13** 
_ 1i *=i 

-.04 
09** 

_ 1i *=i 

-.15*" 

-.06 

.03 

-.07* 

09** 

.02 

.02 

.07* 

-.18** 

.05 

.04 

.03 

.02 

.04 
11 ** 

.13** 

.01 

.15** 
09** 

.16** 

.02 

24** 

.05 

.01 

.30** 

.26** 
29** 

.16** 

37** 

14** 

.35** 

.18** 

.26** 

.05 

.03 

.16** 
17** 

.15** 

.10** 

.00 

-.07* 
19** 

.08* 

.31** 

28** 15** 

17** 12** 09 
colleagues 

13. Communication with 2.54 (.88) 
-15*" -17*" 03 07* 31** 27** H * * 01 45** 24** 29** 22** 

manager 
14. Number of breaks taken 2.36 (.87) -.09** -.02 .02 .11** .23** .13** .04 .13** .19** .15** .23** .13** .20** 
15. Facilities 2.52 (.88) .13** -.09** -.16** .01 .12** .08* -.02 .18** .11** .09** .16** .13** .13** .42** 
16. Home-work support 2.79 (.78) .10** -.01 -.08* .05 .09** .07* .04 .03 .14** .08* .13** .20** .11** .11** .08* 
17. Decision latitude 2.24 (.83) -.04 -.07* .00 .10** .24** .32** .04 .19** .45** .19** .34** .20** .33** .17** .09** .13** 
18. Equipment suitability 2.49 (.79) .02 .07 .01 .06 .21** .22** .22** .17** .22** .17** .22** .11** .15** .17** .18** .09** .19** 
19. Worn-out 18.80(8.53) .19** -.10** -.05 -.20** -.19** -.18** -.12** -.08* -.19** -.17** -.27** -.08* -.17** -.22** -.07* -.10** -.17** -.16** 
20. Job satisfaction 2.22(0.01) -.04 -.03 .03 .17** .22** .26** .20** .15** .36** .19** .29** .15** .37** .20** .07* .11** .36** .25** -.31" 

Note. * p < .05; ** p < .01 (2-tailed); 7V=879 (listwise); Gender was coded as 0=male, l=female; Gender Mindicates proportional representation. 
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Table 2 

Neural Network Modeling Results 

Predictors 

Age 

Manager demands 

Tenure 

Number of breaks taken 

Gender 

Social support 

Home-work support 

Communication with manager 

Equipment suitability 

Job security 

Model 

Predicted accuracy 

r (observed vs. predicted) 

R2 

Note. ** p < .01 (2-tailed); N = 

Worn-out 

RI 

.11 

.09 

.08 

.07 

.07 

.07 

.07 

.06 

.06 

.05 

2 hidden layers 

(14 nodes each) 

86.39% 

.51' 

.26 
:1003; 

c* 

RI = relative 

Predictors 

Communication with manger 

Relationships with colleagues 

Teamwork 

Age 

Decision latitude 

Job security 

Time for training 

Social support 

Manager demands 

Tenure 

Home-work support 

Facilities 

Equipment suitability 

Initial training 

Others' knowledge 

Gender 

Number of breaks taken 

importance. 

Job satisfaction 

RI 

.18 

.15 

.13 

.12 

.12 

.12 

.11 

.11 

.10 

.09 

.09 

.09 

.08 

.07 

.06 

.06 

.06 

2 hidden layers 

(9 nodes each) 

85.14% 

.61** 

.37 
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Table 3 

Multiple Linear Regression Results 

Predictors 

(constant) 

Gender 

Social support 

Manager demands 

Number of breaks taken 

Equipment suitability 

Time for training 

Job security 

Others' knowledge 

R2 

AR2 

F 

dfl,d/2 

Predictors 

(constant) 

Social support 

Decision latitude 

Communication with mana 

Initial training 

Equipment suitability 

Manager demands 

Job security 

Teamwork 

R2 

AR2 

F 

dfl,d/2 
Note. *p<.05; ** p < .01 

B 

38.12 

3.35 

-.85 

.07 

34.95** 

2,959 

B 

-.66 

.06 

ger 

.03 

24.90** 

1,960 

(2-tailed);JV = 

Block 1 

P 

.19 

-.12 

Block 1 

P 

.07 

Worn-out 

t 

17.38** 

6.10** 

-3.84** 

B 

-2.01 

-1.08 

-.81 

-.70 

-.75 

-.77 

.17 

.10 

24.03** 

8,953 

Job satisfaction 

t 

-2.97** 

2.65** 

B 

.23 

.21 

.15 

.12 

.12 

.11 

.14 

.27 

.25 

44.24** 

8,953 

962; Only predictors retained in the 

Block 2 

P 

-.17 

-.11 

-.07 

-.06 

-.08 

-.06 

Block 2 

P 

.19 

.18 

.12 

.10 

.08 

.09 

.11 

t 

-5.37** 

-3.43** 

-2.35* 

-1.96* 

-2.36* 

-2.00* 

t 

5.72** 

5.54** 

4.22** 

3.22** 

2.75** 

3.22** 

3.16** 

analyses are 

reported. 
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Table 4 

Multiple Linear Regression and Neural Network Accuracy Comparisons 

r Fisher z R2 AR2 %AR2 M a c t (SD) M p r e d (SD) MSE %AMSE M A P E A M A P E % A M A P E 

(«ANN, «MLR) 

Worn-out 

A N N .51** -2.21* (1003,962) .26 .09 54.73 19.77(8.67) 19.04(4.15) 56.29 9.73 61.33 

M L R .41** .17 19.76(8.66) 19.73(3.55) 62.36 69.42 

Job satisfaction 

A N N .61** -2.00* (1003,962) .37 .10 37.61 3.21(1.02) 3.15 (.63) .66 12.00 26.14 

M L R .52** .27 3.22(1.02) 3.22 (.53) .75 29.49 

Note. * p < .05, ** p < .01 (2-tailed); A N N = artificial neural networks; M L R = multiple linear regression; r = correlation between the actual and 

predicted values of the outcome variable; M a c t , Mpred= means for actual and predicted values, respectively; MSE = mean squared error; M A P E = 

mean absolute percentage error; %AR , % A M A E , %AMSE and % A M A P E = percentage change relative to the best model. 

8.09 11.65 

3.35 11.36 
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Figure Caption 

Figure 1. Feedforward multilayer neural network with 12 inputs, one hidden layer of 6 nodes, 

and one output. 


