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Abstract. Haptoglobin (Hp) levels were investigated in relation to host genotype in a malaria-endemic area in 
Gabon. A cross-sectional study of 1–12-year-old children was conducted in the rainy season, a period of high malaria 
transmission, to examine this relationship. Variables that influenced Hp levels were Hp genotype, location, and age 
interacting with parasite density. At low parasite densities, there was a negative correlation between Hp levels and age. 
At higher densities, there was a positive correlation with age. This suggests that in the presence of greater parasite-
induced hemolysis, older children are capable of increased production of Hp. Sickle cell trait and ABO blood group was 
not associated with Hp levels in this population. 

INTRODUCTION 

Haptoglobin (Hp) is an acute-phase protein that binds ir
reversibly to hemoglobin (Hb), enabling its safe and rapid 
clearance. Therefore, Hp has an important protective role in 
hemolytic disease because it greatly reduces the oxidative and 
peroxidative potential of free Hb.1 Haptoglobin exists in 
three phenotypic forms: Hp 1-1, 2-1, and 2-2, which are en
coded by two co-dominant alleles, Hp1 and Hp2. The Hpl 
allele can be further sub-typed into HplF and HplS.2 The 
ability to bind Hb is phenotype dependent and has been 
found in the order of 1-1 > 2-1 > 2-2, with the binding capacity 
reflecting the plasma levels of the various phenotypes.3 Func
tional differences between HplF and HplS are unknown. 
The Hp levels can be influenced by age, hemolysis, and par
ticularly the acute-phase response.4 

Hp is directly toxic to Plasmodium falciparum in vitro at 
concentrations that may occur during an acute-phase re
sponse.3 The exact mechanism of action is not known. Hp 
does not enter the infected erythrocyte but may act indirectly, 
disrupting normal parasite protein trafficking within the host 
cell.s An in vivo model of malaria infection has demonstrated 
that parasite burdens and peak parasite densities were higher 
in Hp knockout mice.6 In addition, Hp is also antimicrobial; it 
makes iron unavailable to bacteria using Hb, (e.g., Escheri
chia coli) and causes agglutination of Streptococcus pyogenes?'8 

Levels of Hp are reduced by both chronic, low level parasitemia 
and possibly malaria-associated immune complex destruction of 
infected erythrocytes, as well as clinical malaria.9'10 

We recently demonstrated, in a malaria-endemic area of 
Papua New Guinea that individuals homozygous for a+-
thalassemia had increased levels of Hp compared with het-
erozygotes when harboring chronic parasitemia (Imrie H. and 
others, unpublished data). We therefore decided to investi
gate whether the sickle cell trait influenced Hp levels in the 
face of malaria infection. Sickle cell Hb (HbS) is the most 
frequent abnormal Hb trait found in populations of African 
origin and is the result of an amino acid substitution on the (3 
chain of Hb.11 Individuals who are homozygous (HbSS) for 
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the HbS variant of Hb have severe consequences of sickle cell 
disease, whereas HbAS carriers have been shown to enjoy 
substantial protection against severe P. falciparum malaria 
compared with HbAA individuals.12 The mechanism by 
which HbAS affords protection is yet to be elucidated. Stud-
ies on differences in hematologic parameters between normal 
Hb genotypes (HbAA) and sickle cell trait (HbAS) have 
been inconsistent.13 

To date, Hp levels have not been directly measured in re-
lation to sickle cell genotype in a malaria-endemic area. One 
previous study investigated the association between preva-
lence of ahaptoglobinemia and HbS and found no correla-
tion.14 We conducted a cross-sectional study in children living 
in southeast Gabon to examine the relationship of host ge-
notype and Hp levels in a malaria-endemic area. The preva-
lence rates of three genetic polymorphisms, Hp genotype, 
sickle cell trait, and ABO blood group, as well as parasitologic 
criteria, were determined. The relationships between these 
variables and median Hp levels are presented in this report. 

MATERIALS AND METHODS 

Study area. The study was conducted in two villages (Di-
enga and Bakoumba) in southeast Gabon near the Congo 
border. Malaria is highly endemic with peaks of transmission 
at the end of the rainy seasons (September–December and 
March–June).15 A cross-sectional survey was conducted in 
May–June in 2000 in a cohort of 641 asymptomatic children 
1–12 years of age. This study was initially designed to inves-
tigate antibody properties in relation to erythrocyte polymor-
phisms. Details on the study population and data collection 
procedures have been published elsewhere.16 Briefly, after 
obtaining informed consent from all individuals and/or their 
parents, venous blood was collected in tubes containing 
EDTA for parasitologic assessment, genotyping of the sickle 
cell trait, and determination of ABO blood group. Unsuccess-
ful Hb phenotyping was due to an insufficient volume of 
sample rather than technical problems. The study was re-
viewed and approved by the ethics committee of the Interna-
tional Center for Medical Research of Franceville. 

Parasitologic measurements. Parasite densities were 
counted per 500 leukocytes on Giemsa-stained thick blood 
smears, and were recorded as the number of parasites per 
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microliter of blood, assuming an average leukocyte count of 
8,000/(xL.17 Duplicate readings were made for a random 15% 
of smears to ensure quality control. 

Plasma Hp levels. Plasma Hp levels were determined by an 
enzyme-linked immunosorbent assay (ELISA) using 96-well 
plates coated with rabbit anti-human Hp (H-8636; Sigma, St. 
Louis, MO) as capture antibody and monoclonal anti-human 
Hp (H-6395; Sigma) as detection antibody. Immunoplates 
(F96 maxisorp; Nunc, Roskilde, Denmark) were coated over
night at 4°C with rabbit anti-human Hp (H-8636; Sigma) cap
ture antibody diluted in phosphate-buffered saline (PBS) to a 
final concentration of 30 (xg/mL (100 (xL/well). Blank wells 
were coated with PBS alone. Wells were washed three times 
with 200 (xL/well of PBS. Bovine serum albumin (BSA) (3%) 
in PBS was used to block the wells (200 (xL/well for 1 hour at 
room temperature). Samples were diluted 1:10,000 in 3% 
BSA/PBS and Hp standards (100 ng/mL, 80 ng/mL, 60 ng/mL, 
40 ng/mL, 20 ng/mL, and 0 ng/mL) prepared using pooled Hp 
(Sigma) in 3% BSA/PBS. Aliquots of 100 (xL were added to 
wells in duplicate, incubated for 1 hour at room temperature, 
and washed three times in PBS-Tween 20 (subsequent incu
bations and washes were similar). Detection was made with 
monoclonal anti-Hp (H-6395; Sigma) diluted in 3% BSA/PBS 
(final concentration = 11.7 (xg/mL), followed by sheep anti-
mouse IgG alkaline phosphatase conjugate (A3563; Sigma) 
diluted 1:30,000 in 3% BSA/PBS. The substrate used was 
p-nitrophenyl phosphate (Sigma) 1 mg/mL in 10% diethanol-
amine, pH 9.8, containing 0.5 mM MgCl2, 100 (xL/well. 
Samples were incubated in the dark at room temperature and 
read at 405 nm. A standard curve was made from which 
sample levels were read and multiplied by the dilution factor, 
giving sample Hp concentrations of 0 mg/mL or within the 
range 0.01-1 mg/mL. Samples with > 1 mg/mL were diluted 
appropriately before repeating the ELISA. 

Human genetic factors. Blood group was determined by 
serologic analysis and the sickle cell trait was detected by Hb 
electrophoresis.18 The Hp genotype was determined by a 
polymerase chain reaction (PCR) using a method previously 
described with modifications.19 The DNA was extracted from 
blood spots on filter paper using the QIAamp DNA Mini kit 
(Qiagen, Valencia, CA). Three PCRs were performed on 
each sample to genotype the Hp1S, 1F, and 2 alleles using 
forward primers C51, 5'-GCA ATG ATG TCA CGG ATA 
TC-3' and F3, 5'-CAG GAG TAT ACA CCT TAA ATG-3' 
and reverse primers C42, 5'-TTA CAC TGG TAG CGA 
ACC GA-3', C72, 5'-AAT TTA AAA TTG GCA TTT CGC 
C-3' and S2, 5'-TTA TCC ACT GCT TCT CAT TG-3'. The 
combination of F3 and C42 identified the Hp2 allele, C51 and 
S2 the Hp1S allele, and F3 and C72 the Hp 1F allele. The 
PCR was performed using 0.025 units/jxL of HotStar Taq 
DNA polymerase (Qiagen) with supplied buffer, oligonucle
otide primers (400 nM each), and dNTPs (200 (xM each). The 
temperature cycles used were 94°C for 15 minutes, 35 cycles 
at 94°C for 40 seconds, 52°C for 1 minute for the C51-S2 and 
F3-C72 reactions and 58°C for 1 minute for the F3-C42 re
actions, and 72°C for 2 minutes. Products of 1,400, 1,200, and 
935 basepairs were obtained for the Hp1F, Hp1S, and Hp2 
alleles, respectively. 

Statistical analysis. Missing value analysis and frequency 
distribution analysis was assessed by chi-square tests. The as
sociation between categoric variables and parasite density 
was assessed using Kruskal-Wallis tests. A general linear 

model was used to examine the effect of variables of interest 
on Hp levels. Since Hp levels showed heteroscedasticity (non-
constancy of the variance), they were transformed before 
analysis using the transformation log (Hp + 0.0015). This was 
chosen by examining profile likelihoods.20 The model was 
developed using R 1.6.2 (R Foundation for Statistical Com
puting, Vienna, Austria) and stepwise fitting with Akaike in
formation criterion using a dataset that omitted all subjects 
for whom any data was missing.20 The full model examined 
the effect of age (continuous or three categories [1-4, 5-9, and 
10-12 years of age]), Plasmodium density (log(Plasmodium + 
1) and 4 categories: 0, 1-99, 100-1,000, and >1000 parasites/ 
(xL), P. malariae and P. falciparum positivity (two categories), 
location, Hp genotype (three categories and six categories), 
sex, ABO blood groups together with sickle cell phenotype, 
and interactions between variables. Four hundred eighty-
eight subjects from a cohort of 641 children 1-12 years of age 
were included in the final analysis. Exclusions included sub
jects who could not be phenotyped for sickle cell (n = 52), 
subjects whose Hp levels could not be determined (n = 78) 
missing values (n = 11), outliers (n = 8) and, due to small 
numbers, HbSS (n = 4). The final model was refitted to all 
data and variables with P values > 0.05 were removed. SPSS 
for Windows version 11.5 (SPSS, Inc., Chicago, IL) was used 
for initial examination of the data and for the final stage of 
the analysis. 

RESULTS 

This study investigated the association between host geno
type and Hp levels together with parasitologic factors in a 
malaria-endemic area. A total of 641 asymptomatic children 
1-12 years of age were recruited into the study. The Hp levels 
and sickle cell phenotype was successfully determined in 511 
subjects. There was no statistical difference between the 511 
children included in this analysis and those who were not 
included with respect to any of the other variables (P > 0.05). 
The genotypic, parasitologic, and other frequencies of vari
ables of these 511 children are shown in Table 1. 

The study population, which was composed of equal num
bers of males and females, had only four children (0.8%) with 
the HbSS genotype; whereas 79.6% had the HbAA genotype. 
Approximately half (52.6%) the subjects were blood group O. 
These genetic frequencies are consistent with other studies 
done in the same area.18 Two hundred thirty-four children 
(45.8%) were slide negative for any species of Plasmodium. 
Of those who were positive, approximately half had greater 
than 100 parasites/jxL of blood. The dominant species was P. 
falciparum, which was found in 51.7% of the cohort. The 
median parasite count (range) according to age group was as 
follows: 1-4 years of age, 0 (0-200,000) parasites/jxL; 5-9 
years of age, 107 (0-58,560) parasites/(xL; and 10-12 years of 
age, 160 (0-14,400) parasites/jxL. There was no significant 
association between age group and parasite prevalence (P = 
0.13) or parasite density (P = 0.99). The median Hp level 
(range) of the 511 samples was 0.125 (0.0-3.35) mg/mL. Four 
individuals were ahaptoglobinemic. There was no association 
between any of the malariometric indices and host genotype 
with respect to Hb phenotype (P > 0.1). 

A general linear model was used to examine the effect of 
variables of interest on transformed Hp levels in samples 
from the cohort. The resulting fitted model predicts the me-
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TABLE 1 

Genetic, demographic, and parasitologic characteristics of 511 chil-
dren successfully genotyped for hemoglobin S* 

Variable 

Haptoglobin, median (range), mg/mL 
Sickle cell genotype 

A/A 
A/S 
S/S 

ABO blood group† 
A 
B 
AB 
O 

Haptoglobin genotype 
1-1 1F-1F 

1S-1F 
1S-1S 

2-1 1F-2 
1S-2 

2-2 
Sex 

Male 
Age groups, years† 

1–4.9 
5-9.9 
10-12 

Location 
Dienga 
Bakoumba 

Plasmodium density, [xL† 
0 
1–99 
100–999 
> 1,000 

P. falciparum positive 
P. malariae positive 

0.125 (0.0-3.35) 

407 (79.6) 
100 (19.6) 

4 (0.8) 

132 (25.8) 
87 (17.0) 
15 (2.9) 

269 (52.6) 

84 (16.4) 
83 (16.2) 
20 (3.9) 

168 (32.9) 
75 (14.7) 
81 (15.9) 

265 (51.9) 

147 (28.8) 
295 (57.7) 

58 (11.4) 

33 (6.5) 
478 (93.5) 

234 (45.8) 
27 (5.3) 

121 (23.7) 
126 (24.7) 
264 (51.7) 
24 (4.7) 

* Values are no. (%) unless otherwise indicated. 
† Some values are missing. 

dian Hp level for the population controlling for relevant vari
ables. After exclusions, 488 subjects were included in the final 
model. The final model chosen included location, Hp geno
type, and parasite density interacting with age. The Hp levels 
did not significantly vary with sickle cell phenotype (P > 0.05). 
Median levels (95% confidence interval [CI]) in children with 
the HbAA phenotype were 0.122 (0.105, 0.141) mg/mL com
pared with 0.128 (0.095, 0.172) mg/mL in HbAS children. 
There was no significant difference in median Hp levels be
tween ABO blood group, sex, or parasite positivity (P > 0.05). 

The Hp levels were higher in samples from Bakoumba 
compared with those from Dienga (P < 0.001). The model 
also predicts a difference in median Hp level between the 
different Hp genotypes with higher levels in 1-1 (0.115 [95% 
CI = 0.085, 0.157] mg/mL) compared with 2-1 (0.057 [0.042, 
0.077] mg/mL) and 2-2 (0.058 [0.039, 0.085] mg/mL) (overall P 
< 0.001). There was no significant difference between the 
different 1F and 1S subtypes of 1-1 and 2-1 (P > 0.3). The Hp 
level decreased with increasing parasite density (P < 0.001). 
There was no significant effect of age as a main effect in the 
model (P = 0.21). However, there was evidence of an inter
action between age and parasite density (P = 0.001). Figure 
1 shows that in low level infection (0 and 1-99 parasites/(xL), 
Hp levels decrease with age (r = -0.57 and r = -0.76, re
spectively). In high parasitemic infections (100-999 and > 
1,000 parasites/(xL), the Hp level increased with age (r = 0.61 
and r = 0.65, respectively). 

DISCUSSION 

In malaria-endemic areas, low levels of Hp reflect recent 
parasitemia and malaria-induced hemolysis, as well as trans
mission intensity.21 Levels of Hp in this study were low com
pared with Caucasians and Africans without malaria but com
parable to those of asymptomatic malaria-infected popula
tions in Africa.10,22–24 The prevalence of ahaptoglobinemia 
was low compared to other studies, where prevalences of 20-
50% were found.9,14,21,25–34 This discrepancy can be ex
plained by the different methodologies used to define ahapto
globinemia. In our study, the sensitivity of the ELISA was high 
and we were able to detect Hp levels as low as 0.01 mg/mL. 
Earlier studies used either protein electrophoresis to determine 
phenotype or an ELISA in which the lower limit of detection 
was 0.05 mg/mL. A total of 34.2% of our population had Hp 
levels < 0.05 mg/mL, which is consistent with the aforemen
tioned studies. 

In this population, Hp levels were associated with Hp ge
notype, location, and age interacting with parasite density. As 
expected, the Hp levels were higher in the 1-1 genotype com
pared with 2-1 and 2-2.2 Children from the Dienga region had 
lower Hp levels than children in Bakoumba, which reflected 
differences in transmission. During the rainy season, the en-
tomologic inoculation rates in Bakoumba and Dienga are 0.83 
and 0.91 infective bites/person/night, respectively.15,35 The 
Hp levels were significantly negatively correlated with para
site density. This finding is consistent with a study performed 
in Tanzania,10 although another study in The Gambia showed 
no association between parasite density and Hp levels.36 

The finding of most interest in our study was the interaction 
between parasite density and age. At negative or low para
sitemias (< 100 parasites/jxL), Hp levels decreased with age. 
In contrast, at higher parasitemias (> 100 parasites/jxL), Hp 
levels increased with age. All age groups experienced the full 
range of parasite densities, so it is unlikely that age distribu
tion within each parasite category biased the results. 

The inverse relationship between age and Hp in non-
infected subjects is similar to that seen in non-malarious 
populations of the same age, although the reason for this is 
unknown.37,38 In parasitized subjects, it is known that a posi
tive correlation exists between interleukin-6 (IL-6)-depen-
dent C-reactive protein (CRP) and parasite density.10,23,36,39 

An interaction between age and parasite density is yet to 
be investigated with respect to CRP or other acute-phase 
proteins. 

The interaction in our data indicate that Hp production is 
activated relative to the level of malaria-induced hemolysis. 
Older children may have an enhanced response to this hemo
lysis by increasing production of Hp induced by IL-6.40 It is 
possible that the improvement of the acquired immune re
sponse, together with the acute-phase response with age, en
ables Hp production to be enhanced during the mass hemolysis 
that occurs during high-density infections. The interaction be
tween acquired and innate immunity could provide an explana
tion for the interaction between parasite density and age. 

This study also examined the affect of the HbAS phenotype 
on median levels of Hp. It might be expected that this trait 
alters Hp levels due to its effects on levels of hemolysis. This 
may occur by increased erythrocyte turnover in the HbAS 
genotype because of altered Hb structure or decreased turn
over of erythrocytes because of reduced levels of para-
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FIGURE 1. General linear model showing evidence of interaction between age and parasite density (P = 0.001). Haptoglobin (Hp) levels are 
associated with parasite density and age. At low parasite densities (< 100 parasites/|xL), Hp (transformed data) is negatively correlated with age, 
but at high parasite densities (> 100 parasites/|xL), Hp is positively correlated with age. Lines represent predicted Hp values with 95% confidence 
interval from modeled data, i.e., controlling for relevant variables. Dots represent unmodeled data. 

sitemia in this protective genotype.41 This study did not dem-
onstrate a significant difference between median Hp levels 
and HbS phenotype. This result is also consistent with our 
finding of no evidence of increased parasitemia in either 
HbAA or HbAS phenotype and provides further evidence of 
indistinguishable hematologic parameters between these two 
phenotypes. 

Collection of samples took place during the wet season 
when parasite burdens are high. High parasitemias could 
mean that all subjects, regardless of Hb genotype, have very 
low levels of Hp due to high levels of hemolysis and clearance 
of the Hp-Hb complex. To fully investigate the effect of Hb 
genotype on Hp levels, and its potential role in malaria, repeat-
ing the survey would be required during a period of low trans-
mission or in another country where malaria transmission is 
strictly seasonal. The interaction of parasite density with age 
warrants further investigation into the role of Hp and other 
acute phase proteins in the protection against malaria. 
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