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Permutation Testing Made Practical for Functional
Magnetic Resonance Image Analysis

Matthew Belmonte® and Deborsh Yurgelun-Todd

Abstraci—We describe an efficient algorithm for the step-down permu-
tution est, applied 1o the analysis of functionul mugnetic resanance images.
The ulgorithm’s time bound is nearty linear, making it feasible s an Inter-
active tool. Results of the permutation test algorithm applied to daia froma
cognitive activation parudigm are compared with those of  standurd para-

by the
than ndding isolated voxcls, (Our implementation of the permutution test is
freety avadlable as part of 3 widsly distribaied saffware package for anal
yuis af functional brain images.
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£
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1. INTRODUCTION

The application of neuroimuging technigues has become increas-
ingly prevalent as a method for characterizing the ncural substrate of
cognitive and emotional processing. Punctional magnetic resonance
imaging (MRI) using blood oxygenation level-dependent (BOLD)
contrast produces large spatial arays of BOLD tme scrics. The
anatomical localization of brain activatbons is derived from sutistdcal
procedurcs that assess each of these series Individually &nd construct
a spatial map of the results, Although sensitive siafistical methods
for handling this multiple-comparison problem have been proposed,
their implementation has not kepl pace with advances in imaging

hnology and computational power thet allow such large volumes
of data o be generated and processed. This paper prosenis o practical
impiemeniation of the permuiation test, a compulationally intensive
method that improves on more raditiong], parametric estimates of
significance in the context of multiple comparisons [2].

In general, statistical methods applied to regional brain activation
abm 1o answer iwo fundsmentsl guestions. The first of these is the om-
nibus question; does the experimental manipulation have wiy signifi-
cant effect us measured by the tesi statistic? The sccond question is the
more relevant one for Imaging research: given that the omnibus tast s
satisfied, what specific reglons or coordinates give rise to the effect?
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One of the most straightforward methods of addressing this question
of localization Is 1o troat each voxe] 4s an experimant in its own Tight,
ing a single pa ic lest in @ voxel-by-voxel manner. Although
this method contrals Type | crror within any pasticular vaxel considered
by itself, it fails 1o conural Type | ermor ever the image as a whols. Far
example, with a typical & level of 0,04, one of every tweaty voxels will
be identified as activated. These spurious signals impair localization of
real brain activation by clunering the imags.

The convenlion in many MRI studies has been o address the
problem of false positives by using a stringent o, ofien compuied as
a Bonferroni comection for the number of companisons. While this
swategy does ceduce the number of false positives W an accepable
lewel, it alio eliminates gonuinely wetivited voxels whose signals
happen o he weak.

The shoncoming of Bonferroni correction and like methods betomes
mare apparent when one considers the spatial surucwre of MR data
The sirategy of indepandent testing with o adjustment assumes that the
TMRT time series ar are uncomelated. This assumption ie aot
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met, for several L —

1) MRI lechnigues measure nol peural sctivity per s, but BOLD
contrast. Thus, the observed signil represents some convolution
of newral activity with local vascular structure, which may cxtend
imo neighboring voxels,

2) Activited brain regions mey cncompass muliiple neighboring
visxals.

3) Anatomical connections between distant regions may produce
correlated activities in those regions.

4) Physical limitations of MR methods give the ourput of the
seinner an appreciable point spread function, blucring neigh-
boring vouels into each other

Tn addition to the issue of spatial dépendéncies amang observations.

there is the assumption, implisit in most pasameeric tasts, that the cbyer-
vatlong are drawn from a normal distibution. The neurophysiological
and vasculur processes that lead 1o BOLD conmrast are not well un-
derstood, and depastures from the normal distribution may exist. Soch
violaions of the parametric assumption exert their greatest effect in
the distdbution’s talls=—exactly the régions most important for signifi-
cance testing.

1. THE RESAMPLING METHOD

The overly cunservative nature of the Bonfermonl comeetion was
noted by Blair and Kamiski [2]. As an alternative, they proposed the
permutation 1est. The permutation test is onc of a family of methods
known callectively as resampling procedures [6). Taking sdvantage of
the speed of modem computing sysiems, these methods construct 2n
explicil, nonparametric model of the acusal distnbution from which 2
st of observations has been drawn,

The ressoning behind the permutation test can be developed from an
examinition of more traditional tests. A common parametric method
of IMRI data analysis involves comelating the observed ime series ai
each voxel with 4n ideal lime seriss. This ideal series can be viewed as
an indicator variable that describes the experimental condition ar the
time of each observation, Tho simplest form of such a series is a squara
wave whose value is one during the experimzntal condition and zero
during the contral condition.
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Suppose that the null hypothesis is true, that Is, the experimental
conditon has no effect on the value af the fMRI time senes. In that
case [and assuming that the clfect of autocorrelation is nagligible), the
pairing between time points in the obsérved séries and time points in
the ideal series is of no consequence; any ordering of the ohservations
will produce a similarly low correlation value,

The parmutation test uscs such re-orderings (or “resamplings”) of
the observations to constiuct &n empinical estimate of the dismibution
fram which the test statistic has béén drawn, On each of 4 large number
(rypically 10000) of iterations, the soquéncs of the observations is ran-
domized, and the test statisiic is caleulaed with respect to the data in
this randomized sequence. Each itéralion produces one paint in the em-
pirical distribution. The probsbility thet the 125t statistic will be less
than or equal 1o & centain value k under the null hypothesis can then be
computed as the rank of k within the empirical distribution, divided by
the number of points in the distribution [2].

1. PRACTICAL GOALS

Permutation testing has been applicd in the conlext of positron emis-
sion wmagraphy (PET) [1]. (9], [7] and TMRI [3], [10]: in general.
thaagh, it has aot been a widely used iechnigue in functional neu-
roimaging. A major reason for permatation testing's Jimited applica-
tion thus far, it secms, is that this lechnigue has not bean lntegrated
into 1 self-contained, widely disinbuted software package tailored for
fMRI analysis, The present paper, along with the software (hat il de-
scribes, wims 10 fill this need.

Our ahjectives are limited wo the study of permulslion lesting. and
limitad to within-voxel analysis. We do nol auemp (0 implement pre-
processing filters (.., for the removal of autocorrelation [10]), nor do
we apply supra-voxel techniguas such as cluster analysis. (As Locascio
i al. [10] obsarve, clustar anatyeis 18 less importamt in the context ofa
method such as parmutation testing that already takes inta account the
spatial carrelational structure of the data.) The software that we detail is
coded in a modular manner, so that such adj can be impl d
as pre- and posi-processing stops.

Our focus is on algorithmic optimizations and data struciures that
speed up the permutation test, making it feasible as an interactive pro-
cedure. We include sufficient desall to allow others (o re-implement
our optimizations as pan of their own software systems, should they so
choose.

Pinally, we &im 1o compare quantitatively the resulls of the perma-
tation test in this implementation with those of a Bonferroni-correctad
parametric tast, applied to data from a cognilive aétivation paradigm.
We choose a higher order cognitive task in order 1o supply an appro-
priste challenpe. Although iniellectual processes are often ihe focus
of neurobemsviarsl studies, the activation in a cognitive paradigm is
less robust than simple sensory or motor activations. It is for these re-
search applications thar sensitive methods such s the permudtation test
are truly neaded.

"

IV, THE ALGORITHM

The computation is described formally in Fig. 1. It proceeds in throe
phases, In Phase 1, tlempora) mend is removed from each voxcl's time
series, Then regression factors and correlatlon coafficicnts with respect
to the ideal time series are compuicd for each voxel.

Phase 2 itcratively constructs the empirical distribution that will be
used to gencrate probability values. AL each siep of this phase of the
algorithm, the lemporal teg of the scguired images |5 random-
iwed, Using this randomized saquance, correlations with the ideal time
aeries are computed as in Phase 1. The carrelation whose magnitude is
the greatast in the antire volume is saved, along with the coordinates
of the vaxol that produced it. This process is repealed IUG%M

times
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time reshuffling the temparul sequence, computing corelations aver
the entire image, and saving the largest correlation. The resulting st of
saved correlations is an emplrically derived distribution for the max-
imum correlation value nver the entire image thal could be éxpectad 1o
urlse under the null hypothesis.

In Phase 3, we repeatadly extract the maximal corelation from the
set of actual correlations computed in Phase |, The coordinates of the
voxe] that produced this correlation are also reirieved. The correlation
is ranked within the ampirical distribution computed in Phase 2, and
this rank projecied onto the interval [0.1] is the adjusted probability
level for the voxel in question—namely, the probability that the max-
imum correlation produced within an Image of unactivated tissue will
be Jess than or equal to this voxel's comelation, 11 this adjusted proba-
bility places the correlation within one of the tails of the distribution,
then the voxel is defined es activated.

This activation introduces & problem. though, since we’ve been tac-
itly assuming that the empirical distribution contains correlations gen-
eraied from effectively vandom data, and the dats from an activaied
voxel are not random. We could continue to use this contaminated dis-
tribution, but it would make our statistics less sensilive in the cases of
vonels whose correlations are |ess than that of the current voxel.

To overcoms this limitatian, we modify Phase 2 of the algorithm 1o
save ol only the voxel with the larges correlation, but the next largest,
and perhaps the next largest, and 50 on, building up a shor list of voxels
that can be Insareed inio the distribution as subssitutes for voxels that
have becn dofined s sctivaled. In Phase 3, then, we delele [rom the
empirical distribution any and all corrclations produced by the acti-
vated voxel, and replace each of these deleted comrelations with substi-
tute correlations whose voxels of origin have not yet beea deletad, if
any such subsiiluies remain available. The total number of substitutes
10 be held in reserve at each element of the distribution is denolad as
“NUMSLIBSTS” in the algorithm belows in our experience, two asu-
ally suffices as a value for NUMSUBSTS.

This entire process is repeated, sxtracting the greatest correlation,
ranking it within the empirical distribution to dertva an adjusied prob-
ability, und inserting substitute correlations into the empirical distribe-
tian, uniil the adjusted probability of the most recently extracted cor-
relntion is no longer cignificant

Because wemporal randomization eceurs 4l the Tevel of whole images
rather than at that of individual voxels, the re-orderings at each voxel
are the same (although the particular values that are being re-ordered
differ). Thus, if the randomized necies of same voxel happens o yield
a lirge correlation with respect to the ideal time series, the voxéls with
which this particular voxel Is comrelaied will also yield large correla-
tions with respect to the ideal ime series. Since only one value is saved
fior esch randomization, unly the langest of thase corclations will be
ineluded in the empirical distribution. In this way, the algorithm auto-
matically sccounts for spatial correlatlons that would otherwise inflate
the wils of the empirical digtribution and so decrease the computed sig-
nificance levels [10].

Hochberg and Tamhane [8] define two forms in which & multiple-
comparisons test can control Type | ermor. In weak comrsl, only the
ommihus test need be valld, fe., the probability of declaring that some
voxel somewhere is sctive when in facr none sre active must not ex-
ceed ov. Strong conirel tequires validity not only of the omnibus con-
clusion but glso of the voxelwise tests, again with the specified & Be-
ciuse strang contro! applies to each vonel considered individually, only
strong control pormits localization of significant activations. Thus, it s
strang control in which we are interested.

“fio sec that the permutation test s deseribad above has strong con-
trol, consider any region 7 C W where 7 is the entire imape' (L

Mhe proof here follows that prasented (n (9]
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PHASE 1: Compute the experimental correlations.

Let V be an array of all the image samples, with spatial
coordinates as the three major indices and time as the

minor indec.
SipeaL =
L2 ]
— Sy
SSioear = (3 IDEAL]) - g
CORR:=9 =

for (z,y, z) € VOLUME
Vaga = EE;TREND{E.,)

Sl.'l = EVHUH
1

Saen
SS':,-: = Vaﬂnd) = -EI'L
desll

r 1= corr(IDEAL, Vyy.:) using Sinear, SSmearL, Sapsi SSape
CORR = CORR U {(r, (,y,3))}

PHASE 2: Compute the null distribution.
initinlise SEC} to the series [0, T- 1]
initialise NULLDIST to @
for m € [0, M-1]
SEQ = SHUFFLE(SEQ)
initialise all correlation+coordinate lists R to null
for (x,y,z) € VOLUME
for t € [0, T=1] PERMUTATION[t] := Viy580,
r = corr(IDEAL, PMUTAI‘ION) using SipeaL, SSipEAL: S:y:rssxw
if | It] 2 NUMSUBSTS —
let rmin be min({}r’| | 304, 5, &) (v, (i, 5. k)) € &})
ifr] > rmin —
delete from R the element that produced fuin
insart (r, (z,y, £)) in sorted pasition in R

UPSTLON.

.4
[|R| < NUMSUBSTS —s
insert (r, (z,¥, z}) in sorted position in R

fi
NULLDIST ;= NULLDISTU R

PHASE 3: Compute adjusted probabilities.
initialise p.,. to & for all z,p,2
repeat
Find (r, (z,¥,2)) € CORR such that ¥(r', (',y',2')) s CORR || < |r|}
CORR := CORR — {[r, ?ﬁ-ﬁm
Puys 1= HANK(r,
Ifﬂ:,:ﬁ!‘ or .ﬁtrl?l_f_"
for all lists & € NULLDIST such that 3r head(R) = (r, (z, ¥, 2))
do head({R) = (r, (i, . k}) such that pys # §} —
B = wail( R}
od
fi

untll § <pep.<1-%

Fig. 1. The optimized permutation test algorithm.

may be as small as a single voael,) Forall /, 0 < i < M, theith¢le-  be less than or equal in magnitude fo the ith element in Lhe distribution
ment in the distribution of maximal correlations over this region must  of maximal correlations over the entire image V: [By[i]] € [Rv[{]|.
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DELETE THE TWO COMMAS THAT SURROUND THUS

4

So the rank of any particular corelation r agalnst the distribution Ry
st always be al least as far into the tail as the rank of r against K.
Therefore, the significance levels calealated for voxals within V as a
whole can never exceed those for voxels within L7 by iself.

V. TivE COMPLEXTTY

Let T be the number of points in cach time series, N the number of
voxals in the volume analyzed, and A the size of the empirical distri-
bution. The regression procedures used in Phasc 1 aro lincar in T, and
insertion of gach of the resulting comelations into an ordered binary
tree s log{ V). Bach of these steps is performed once for cuch voxel
analyzed. Thus, Phase 1 is O(N T + N lag(N)).

In Phase 2, the step of randomization of the time seres is again linear
in T [5]. Computing comrelations for sach voxe] takes time proportional
o N % T, us above, Saving the maximal correlalion in an ordered
bimary treo takes log{ M) time. Each of these st2ps is performed once
Far esch of the M entries in the emgpirical disuribation. Thus, Phase 2
8 O(M N T & Milog(M)).

In Phase 3, exiracting the maximal correlation from the hinary tree
that was conspuctad in Phass | takes log( V) time. Finding the rank of
this eorrelation within the empirical distribution that was construcied
in Phase 2 1akes log( M ) time. Deleting from the empiricyl dismibudon
the corralations produced by the activated voxe] again wkes log{M)
time. { The tree structure thai stores the distribution is keyed both on cor-
relation valoes and on coordinstes, so that both the rank-ondering and
coordinute-delelion operations can he performed in Jogarithmic time. )
Each of these staps is performed once for each voxal whose sctivation
is significant. This number of significantly activated vouels generally
will be some fraction of N, the total number of voxels analyzéd. Thus,
Phase 3 is (N Iog( V) + N log{M)).

Thecntire algorithm i (M
vt For any practical values of these parameters the first iorm
daominates, and so tha algorithm behaves lincarly in M. N and T, It i
thugdesicable 1o bold M, N, and T to the minimal values necessary
to produce adequate smilstics, T cannol be usefully reduced, else we
would lose u great deal of information in the correlations. M should not
be iaken much Jower than 10" ; otherwisa the empirical distriburion, and
the resulting adjusted probabilities, would be too grainy. N, though,
can be decreasad without losing any of the information thut we care
about, by computing the sat of voxels that represent brain lissus and ap-
plying the procedure only to those voxels. (We impleman this selection

of brain voxels wsing a ¢ombination of inteasity theesholding
gion-growing.) This restriction has the banaficial side effsct of
the computed discribation more representative of the tissue under con-

sidaration. AVarb HYPHENATENG A
HYPHENATEDL WORD
V1. COMPARISION TO OTHER METHODS

Our system of excluding activated voxels from the empirical distri-
bution is & variant of the “stap-down” procedure, in which the empir-
jcal distribution is recomputed et every step of Phase 3 50 as w0 excluds
vomels that have haen activated. Since compleis ion of the
distribution is computationally expensive, Holmes ef al. [9] proposed
a hybrid between this procedure and single-stép pérmutalion LEsHng:
rither than compising one adjusted probability and excleding one ac-
tivaled voxel on every ileration of Phase 3, their mathod itacates in
“jumps” in which all voxels with adjusted probabilities less than o ace
declared scrivated and excluded en masse. While this hybrid procedurs
is mare sensitive than the plain parmutation s, it still fails 10 idenify
as many voxels as the complete step-down version of the algorithm.
Although as cbserved by Holmes ¢r o/, It would be impraciical to ro-

Nk N 10g(N)+ M log( M)}
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nota that such de nove recomputation can be avolded using the sub-
stiution procedurc that we outling above, in which replucements for
deloted elements ane precomputed in Phase 2 and applied in Phase 3,

In a method developed for analysis of PET images, Heckel eral 7]
auggest ordering the sequence in which randomized permutations are
wsed, in such a way as to minimize the number of changes between
successive permulations, This method facilitates incremental compu-
tation of correlation values since the only time points that need o be
examined are the ones whose comesponding poinis in the idsal time
series differ from those of the previous permutation, The sums com-
puted [or he previous permulution can then he updated accordingly.
reducing the wial number of memary accesses. Although the problem
of finding such & minimum-change ordering for a given set of permuta-
tions is NP-hard in the general case (indeed., it reduces fairly directly to
the well-known Travelling Salcsman Problem), Heckel er al. note that
a good approximate solution can be compuied in M time. They nate
further that in typical impicmentations, constani fsclors are such that
the savings in the M N T' lerm may more than make up for this extra
M* term.

The savings produced by Hecke!'s optimization depend stongly
an the computing bardware on which the algarithm is implemented.
Modern developments such as high-speed cache memory, pipelined
Instruction processing, and vectorization make muluple memory
references much less of a perfarmance concem. On our lest platform,
4 500 MHz Alphe 21 164 p (Compag Computer Carporation,
Houston, TX) with 8K Level | cache and 96K level 2 cache, using
optimizad code generated hy the Digital UNIX C compiler, a test of
this optimization made no appreciable difference in excculion time.
Hecksl's method is a valuable option, bul only for certain types of
computing sysloms,

DELETE

VIL TisT CASES

For an eviduation of the permutation 21 on actual IMRI data, we
used images from eight normal, rAght-handed subjects collected during
of the Stwoop color-word interference task [12]. All sub-
Jects signed an Informed conscnt approved by the Mclean Hospital
Institutiona] Review Board, and had no history of head injury, psy-
chotropic medication, seizure disorder, substance abase, or other new-
rological of psychiatric disorder, Functional scans were acquired on a
Signa 1.5-T system (Genaral Electric, Milwaukee, WI) modificd b
Advenced NMR Sysiems (Wilmington, MA). The cons
1w 30-s blocks of the task, alternating with three 30-5 periods of rest.
During the task periods, subjects viewed color names projected onlo a
sereen in front of the scanner in an incongruent color. Subjects were
asked 1o say the pame of the display color; to succeed, they kad to
suppress the tendency 1o read the color name (¢.g.. the word “BLUE"
written in red). Stimuli were displayed in lines of six. During the 30-3
activation period, &ix of these lines were presented for 4.5 5 each. with
0.5-5 interstimulos intervals.
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Fifty T2"-weighted single-shot gradient-echo coronal images in THE by
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angle: 90 % 64 x 64 matrix; in-plane resolution: 3.1 mm;muf%
-

thickness: & mm: and slice gap: | mm). $lices were perpendicular
to the plane definad by the anterior and posterior commissures, and
covered the Tegion [rom the central sulcus 10 the tip of the froatal pole.
The images were molion-comected in k-space wsing the Decoupled
Automated Rotation and Transtation (DART) algorithm [ 1].

Brain tissue was distinguished from nonbrain areas of (he image
using an aulomated procedurs thal exsmined the median-filtered his-
ogram of voxel inensilies averaged over tha entire lime series, and

lected the minimum value of this histogram within the intarval be-

compute the empirical distribetion on every ieralion of Phase 3, we

l

tween the brain and skull-air peaks. The imensity associated with this
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histogram minimum was then used a¢ & threshold to identily putative
brain voxals. Finally, a région-growing algorithm identified the largest
set of connected putative brain voxels, and labeled all areas within or
enclosed by this region as hrain. Minor corrections to the output ol this
procedurs weare [mplemented by hand for each data sei.

The permutation test as described above was applied 1o sach data s,
resiricied 1o the set of brain voxels. In a parsllel procedure, the standard,
Banferrani-corrected test was also applied, with the correction factor
calculated as the reciprocal of the number of brain voxels, In sach case,
a simple square wave was used us the ideal time series against which to
compute commelations. The probability values output by the permutation
test and by the Bonferroni procedure were transformed o z-scores for
storage and further computation.

Tuble 1 gives descriptive statistics for each test applied to cach dats
set. as well as comparative siatistics between the iwo less. For each
af the two test procedures. the total number of voxels activaied with &
two-tailod o of 0.05 wus caleulaied. In all cases the permulation test
activated more voxels than the Bonferroni test, and in no case did the
permutation lesl omil any vonels that were activated by the Bonferroni
tesi. The inerease in activated volume ranged from 7% 1o 26%.

The total number of activaled voxels that wens par of clusters wag
also calouluted, where 4 ¢lusier was defined as any geoup of more than
one adjacent voxel, within a singla slice, in which the sign of the sctivi-
tion was uniformly positive or undformly negative. For the purposes of
this computation, diagonal adjacency was allowed. Although the per-
mutation &5t always increased the total number of activied voaels, as
‘Tabie 1 shows, it always decreased the proportion of unclusténed voxels,
In other words, the voxels sdded by the permutation Lest tendad 10 be
part of activated clusters rather than occurring over widespreud raglons
throughout the image (se= Fig. 2 for an example).

For the set of voxels that were activated by both (ests (which in ail
cases equaled the set of voxels activated by the Bonforromi west), we
campared the sctivation levels from each tesl, und produced u count of
the numbor of voxcls that were more setivated by one test than by the
other, Yoxels whose prohability levels diffeced befwasn the two tasts
by an emount lass than the resolution of the permutation test (107"
in the cage of our implementation) were considered squally activated
and husrgxcluded from fhese counts. As can be sesn in Tabie I,
the test almost always produced higher levels of activation
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Fig. 2. Comparison of serivations in the prelrontal cosex of Subject |
deuspiviged voxsls downwards.

betwasn the inferior and middle frontal gy, and links previcusly unconmscied
dezctivarioas in medial arblinfronial cortex. ss well a5 adding voxels close to
othr regions of activation.

than the Bonferroni west. Binomial esie comparing the counts were all
highly significant.

‘We also wished to get same idea of the relalive sirengths of activa-
tions of the voxals identified by the twao teis. In particular, we wished
1o determine whether the permutation test selectively identifies weakly
sctivaiad vexels. To answer this question, foreach dars setwe examined
the z-scores (transformed from probability levels) of the set of voxels
thaz were activated more strongly by one iest than by the other, (In half
of the cases, no voxels were activated more strongly by the Bonfer-
rani test than by the permutntion west; the tahle cells cormesponding o
thesa cases are, therefore, empty.) In each case lwo comparisons were
performed. one on the sst of z-scores derived from the Bonfermni est
and one on the set of 2-scores derived from the permutation test In

8,10



MAR-21-21 1B:1@ FROM: lEEE

L]

all cases analyzed, for both comparisons scparutely, the z-scores of ihe
voxels that were maore strongly activated by the permutation test wers
Tower than those of the voxels that were more strongly activated by the
Bonferroni test. Thus, the permutation test dsmonstrated an ability to
identify weaker activations.

VI CONCIUSIONS

The permutalion tast is a mare sansitive analytic stratagy than simple
corrections for multiple comparisons, because it takes into account de=
viations from the normal distribution and spatial correlation in the dats.
This advantage was evident [n the results from our test cases, in which
the permutation test always activated a superset of the regions activated
by the simpler method, tended to enlarge clusicrs rather than adding
isolated voxels, almost always produced il probubilities gresier than
or equal to those of the simpler test. and activated voxels whose sig-
nals were woaker than those picked up by the simpler 125t Although
the compleie step-down version of the pérmulation 141 may at first
seem computadonally infeasible [9], some finesse with data suuctures
can make the tme bound of this algorithm pearly linear, and complete
unalysis of 8 daia set takes only nine minutes of computer ilme using
current technology (& S00-MUz Alpha 21 164 processar). W have im=
plemented this aptimized permutation test as pan of AFNI [4], a freely
available. widaly used package of routines for wnalysis of functional
brain images.

In an siempt 10 deal with one problem at a time, and in keeping
with past work on resampling methads in functlonal imaging (91, (1],
[31, [7]. we have not anemprad 1o account for autocomelation in the
observed time series. Lo cases in which the ideal lime series represenis
8 blocked design, the presence of autocarrelution within the observed
time series tends to exaggerate estimates of sigrificance slightly, since
the empirical distnbution is based on data whase amtocorre lation has
been removed by shaffling. One way to reduce this slight biasing ef-
fect would be 1o shuffle the observed time sories in chunks, so thal
the arder of chunks with respect to each other is randomized but the
original arder of the samples within esch chunk is preserved. A bemer
method, of course, would be 10 model the autocorrelation and remove
it. Locascio ef al. [10] present an elegant model of autocorrelation in
fMRI time series, based on auforegressive and moving-average tech-
nigues originally developed for the analysis of economic data. As Lo-
casclo er al. observe, an implememmion of such @ mode] as parl of
f software package tailored specifically for the analyeis of {MRI deta
(&8, [4]) would be a useful ol

We view the permuiation test soffware presented here as ong amony
sevaral patential § ments and optimizations o comelslion-based
strategies for £MR] data snalysis. We invite the sddition of oiber opti-
mization stops, and regurd the system thinl we have deseribed as & first
step toward more sophisticared, freely available IMRT analysis
package that takes advactage of cumrently available levels of computa-
tional speed.
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