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  Abstract 

   

Abstract 

 

The interaction of water droplets with hydrophobic or rough, superhydrophobic solid 

surfaces has been studied. Such surfaces may be found in the natural world and their 

potential applications range from waterproof and self-cleaning surfaces to droplet 

microfluidics. A measure of hydrophobicity is obtained from the angle between the liquid 

and solid surface measured from the solid through the liquid, known as the contact angle. 

Variations in this angle can indicate not only a level of ‘wetting’ of the surface but also 

small amounts of droplet movement and may be achieved by electrowetting, the 

application of a voltage between a liquid droplet and a substrate, and/or by varying the 

local topography of the surface. Photolithography and thin-film deposition fabrication 

techniques have been used to create hydrophobic and superhydrophobic surfaces for use in 

electrowetting experiments. Both AC and DC electrowetting behaviour has been 

investigated and the results have been shown to be in agreement with past work and well 

established theory. Liquid marbles have been investigated as water drops displaying 

extreme non-wetting behaviour, with conformal coatings forming textures similar to those 

formed by the topography of a super-hydrophobic surface. It has been demonstrated that 

for such marbles both AC and DC reversible electrowetting may be achieved and shape 

oscillations may be observed having nodal patterns of these oscillations which are due to 

stationary capillary surface waves which are accurately described by theory. Electrostatic 

actuation of controllable, bi-directional motion of liquid marbles has also been 

demonstrated on a patterned electrode structure with and without an insulating layer. 

Electrodeposited rough copper surfaces were created with a surface topography gradient to 

control the directional movement of water drops and collect them with a view to 

applications in large scale water harvesting. The effects of surface roughness on the sensor 



  Abstract 

   

response to liquid loading of a Quartz Crystal Microbalance (QCM) has also been 

investigated using three different surface coating materials. Liquid penetration between 

surface features differed between the materials and those upon which the liquid penetrated 

exhibited a characteristic low slip length or trapped mass type effect whereas those upon 

which it did not exhibited a slip length introduced by the air layer between the liquid and 

the crystal. 
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Figure 1.1  Forces acting on liquid molecules near a liquid-gas interface. 

 

Figure 1.2 A droplet in thermodynamic equilibrium on a smooth surface has an 

equilibrium contact angle θe, dependent on the balance of the interfacial 

tensions at the three phase contact line. 

 

Figure 1.3  Contact line of a liquid drop on a solid surface advancing by a small 

distance, ∆A. A gain in the solid-liquid and liquid-vapour interfaces and a 

loss in the solid-vapour interface results. 

 

Figure 1.4  As a droplet deposited on a solid surface spreads a) contact line advances 

and a dynamic contact angle, θ, ensues and b) the total surface free energy, 

EF, at the three phase interface changes. θ = θe when ∆EF = 0. 

 

Figure 1.5  A liquid drop spreads on a solid surface with a contact line edge speed, vE, 

proportional to the viscous dissipation. A thin precursor film advances ahead 

of the contact line, introducing a lubrication effect and contributing to the 

viscous dissipation. 

 

Figure 1.6  A droplet sitting on a rough surface in a) the non-composite case where the 

liquid penetrates the gaps in the surface features and makes contact with the 

whole of the solid surface area and b) the composite case where the liquid 

sits on a combination of the tops of the surface features and the air in the 

gaps between them. 

 

Figure 1.7  Two dimensional view of a topographically structured surface indicating the 

relative surface area components. 

 

Figure 1.8  Contact line of a liquid drop on a non-composite rough solid surface 

advancing by a small distance, ∆Ap. A gain in the solid-liquid and liquid-

vapour interfaces and a loss in the solid-vapour interface results. The liquid 

completely penetrates the surface features and maintains intimate contact 

with the whole of the solid surface area. 

 

Figure 1.9  Contact line of a liquid drop on a composite rough solid surface advancing 

by a small distance, ∆Ap shown as a) φ1 and φ2 as the two substrate phase 

fractions in contact with the liquid and b) the fraction of the surface in 

contact with the liquid as fs and the air gap under the drop as (1 - fs) . The 

liquid effectively sits upon a composite surface of the peaks of the 

topography and the air separating the surface features. 

 

Figure 1.10  The effects of surface roughness on contact angle for the Wenzel (blue line) 

and Cassie-Baxter (red line) regimes compared to a smooth surface of the 

same material. 
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Figure 1.11  Two metastable energy states where the minima of one state are higher than 

that of the other. Transition from one state to the other requires additional 

energy to overcome the energy barrier that exists between the two. 

 

Figure 2.1 Vacuum chamber schematic of an Emitech K575 sputter coater. 

 

Figure 2.2 Spin speed/layer thickness calibration graph for S1813 photo-resist on an 

EMS 4000 spin coater. 

 

Figure 2.3 Chemical structure diagrams of a) S1813 photoresist (Shipley Co.), b) 

Teflon
®

 AF1600 (DuPont Polymers) 6% solution in Fluorinert FC75 (3M), 

c) Flutec
®

 LE15 (F2 Chemicals Ltd.), d) IC1-200 spin-on-glass (Futurrex 

Inc.) and e) methyltriethoxysilane (MTEOS) sol-gel foam. Structures a), c) 

and d) are of the main active components of the materials. 

 

Figure 2.4  An electrowetting substrate consisting of a metallized glass microscope slide 

with dielectric layer of thickness, d, and hydrophobic capping layer (not to 

scale). 

 

Figure 2.5  Electron micrograph of a metallized glass slide coated with MTEOS sol-gel 

foam: a) at 2kV and x500 magnification, b) at 10kV and x5000 

magnification and c) vertically, in profile, at 5kV and x1000 magnification. 

 

Figure 2.6  An overhead view of the electrowetting experimental arrangement depicting 

the relative positions and orientation of the main components (not to scale) 

mounted on an optical breadboard,  connection to the voltage source (in this 

case AC from a signal generator fed through an amplifier) and connection to 

the video capture PC. 

 

Figure 2.7  Electrowetting voltage for a contact angle decrease from 110
o
 to 75

o
 (solid 

line) and dielectric breakdown voltage (dashed line) as a function of S1813 

layer thickness. The dotted line indicates the minimum S1813 layer 

thickness required to achieve this change in contact angle. 

 

Figure 2.8  Sample screen shot of an electrowetting drop undergoing profile fitting in 

the Krüss DSA-1 drop shape analysis software. Fit lines are shown in green 

and the automated measurements appear in the ‘Result Window’. 

 

Figure 2.9  Sol-gel ‘basin’ coated in lycopodium powder. 

 

Figure 2.10  A 2µL liquid marble in silhouette illumination. 

 

Figure 2.11 The Krüss DSA-10 contact angle meter. 

 

Figure 2.12  Electrowetting configuration for a liquid marble. The hydrophobic grains 

provide a separation between the liquid of the marble and the substrate. 

 

Figure 2.13  Liquid marble images undergoing measurement of contact angle using 

ImageJ angle measuring tool showing the manually fitted baseline and 

tangents in a) a non-wetting state and b) a partially wetted state. 
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Figure 2.14  Electrode pattern lithography mask with twenty electrode fingers of 0.3mm 

width and spacing and 1mm diameter connection pads. 

 

Figure 2.15  Flow diagram of the photolithography process for production of a patterned 

electrode device. 

 

Figure 2.16  Photograph of finger electrode pattern on glass slide with 0.3mm electrode 

width and 0.3mm spacing. 

 

Figure 2.17  Kulicke & Soffa 4522 wire bonder showing a) the whole instrument and b) a 

close-up of the bond head showing the capillary and N.E.F.O wand. 

 

Figure 2.18  Photograph of ball-bonded 25µm gold wire links from electrode pads to 

veroboard mount. 

 

Figure 2.19  Experimental arrangement for droplet actuation showing a) principle of 

successive application of voltage (+V, -V) sequentially across electrode 

fingers with respect to an upper electrode (0V) and b) schematic showing 

arrangement of equipment together with a top-view photograph of the 

substrate with electrodes and with a deposited liquid marble. 

 

Figure 2.20  Photographs showing a) switch box with twenty rotary switches, each one 

having positions for V
+
, V

-
 and 0V applied to a single electrode and b) 

connections to individual finger electrodes on the device mounted in 

position for experiments. 

 

Figure 2.21  Configuration for inducing shape oscillations in liquid marbles by applied 

AC voltage. The nodal pattern around the marble surface is shown. 

 

Figure 2.22  Images of a section of a 150µL oscillating liquid marble in ImageJ with a 

selected area, in yellow outline, close to the apex where an anti-node is at a) 

peak positive and b) peak negative amplitude, the white dotted line across 

both images shows the peak-to-peak anti-node displacement within the 

selected area and c) a screen capture of a raw data z-axis profile, plotted 

using ImageJ, from the same 150µL liquid marble data. 

 

Figure 2.23  a) Anti-node displacement (mean greyscale value) as a function of driving 

frequency for the first 100Hz of the sweep for a 150µL liquid marble, the 

peak mean greyscale variances indicate marble resonances and b) the same 

data but zoomed in on the 20 – 50Hz region. 

 

Figure 2.24  A z-axis projection through an image stack produced from a sequence of 

consecutive images for one complete oscillation of a 100µL liquid drop 

showing the nodal pattern. The grey areas around the perimeter of the drop 

are the overlaid positions of anti-nodes. 

 

Figure 2.25  An image of a 100µL drop on a hydrophobic surface showing the fitted 

straight lines and ellipse (outlined in white) used to measure the drop 

perimeter. 
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Figure 2.26  a) Electrochemical deposition arrangement for copper deposition from 

acidified copper sulphate solution. Three stage roughness gradient surfaces 

on b) a gold coated substrate and c) an aluminium substrate with three 

distinct areas of varying roughness. 

 

Figure 2.27  Mechanical cantilever for copper electrodeposition on circular substrates 

with fine control motors for substrate rotation and elevation and (inset) 

rubber ‘sucker’ substrate mount accommodating electrical connection to the 

substrate surface. 

 

Figure 2.28  Photographs of circular roughness gradient surfaces from electrodeposited 

copper on a) gold coated slide, b) masked off copper PCB, c) rings of 

different roughness defined by lathe-cut grooves and d) circular cut copper 

PCB. The roughness levels are identifiable by a change in colour. 

 

Figure 2.29  Height profiles of electrodeposited copper on copper PCB, scans from two 

different areas are shown as black and grey traces. 

 

Figure 2.30  Electron micrographs at 5kV and 100x magnification of varying roughness 

levels, a) to g), at seven sites on the surface of a circular electrodeposited 

copper roughness gradient sample measured on a straight line from the near 

centre to the perimeter at intervals of ~3mm, h) 1000x magnification of the 

copper features showing a fractal type growth structure and i) 5000x 

magnification of the same feature showing particle composition. 

 

Figure 2.31  Apparatus for observing condensation of water vapour on a copper 

roughness gradient sample. Steam is directed on to the cooled sample 

surface where it condenses and the behaviour of the resulting droplets is 

captured to digital video. 

 

Figure 2.32  Overhead view of a roughness gradient sample, with a deposited water drop 

on the surface, positioned as for contact angle measurement using the Krüss 

DSA-10. The contact lines, normal to the direction of the roughness 

gradient, at which contact angles were measured, are shown as dashed lines. 

The camera aspect is parallel the gradient direction. 

 

Figure 3.1  Examples of water drops in different wetting states on a) a smooth planar 

untreated surface, b) a chemically hydrophobized smooth planar surface and 

c) a superhydrophobic rough surface. 

 

Figure 3.2  Leaves of the lotus plant showing a) drops rolling off the surface carrying 

dust with them and b) scanning electron micrograph of the 

superhydrophobic textured surface. 

 

Figure 3.3  Scanning electron micrographs at different magnifications of a) an MTEOS 

sol-gel and b) a patterned surface of 20µm SU-8 pillars. 

 

Figure 3.4  Schematic of the electrowetting configuration. 
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Figure 3.5  Reversible electrowetting on a planar hydrophobic surface showing a 5µL 

drop with contact wire inserted and a) 0V applied bias voltage, (b) 150V 

DC applied bias and c) returned to 0V. 

 

Figure 3.6  Dynamic change in contact angle (θ) with voltage for a complete DC 

electrowetting cycle on a planar hydrophobic surface with data for the 

increasing voltage half of the cycle shown as (���) and data for the 

decreasing half as (∆∆∆). 

 

Figure 3.7  Cosine of the contact angle (θ) as a function of the square of the applied 

voltage for a complete DC electrowetting cycle on a planar hydrophobic 

surface with data for the increasing voltage half of the cycle shown as 

(���) and data for the decreasing half as (∆∆∆). Contact angle saturation 

is apparent at the highest voltages. 

 

Figure 3.8  Dynamic change in contact angle (θ) with RMS voltage for a complete 

1kHz AC electrowetting cycle on a planar hydrophobic surface with data 

for the increasing voltage half of the cycle shown as (���) and data for the 

decreasing half as (∆∆∆). 

 

Figure 3.9  Dynamic change in contact angle (θ) with RMS voltage for a complete 

10kHz AC electrowetting cycle on a planar hydrophobic surface with data 

for the increasing voltage half of the cycle shown as (���) and data for the 

decreasing half as (∆∆∆). 

 

Figure 3.10  Cosine of the contact angle (θ) as a function of the square of the applied 

RMS voltage for a complete 1kHz AC electrowetting cycle on a planar 

hydrophobic surface with data for the increasing voltage half of the cycle 

shown as (���) and data for the decreasing half as (∆∆∆). A degree of 

contact angle saturation is apparent at the highest voltages. 

 

Figure 3.11  Cosine of the contact angle (θ) as a function of the square of the applied 

RMS voltage for a complete 10kHz AC electrowetting cycle on a planar 

hydrophobic surface with data for the increasing voltage half of the cycle 

shown as (���) and data for the decreasing half as (∆∆∆). Contact angle 

saturation is again apparent at the highest voltages. 

 

Figure 3.12  The cosine of the contact angle (θ) as a function of the square of the applied 

RMS voltage for AC (◊◊◊) and DC (���) electrowetting on a planar 

hydrophobic surface. Least squares fit lines are shown as solid for DC and 

dotted for AC data. 

 

Figure 3.13  Dynamic change in contact angle (θ) with RMS voltage for a complete set 

of 10kHz AC electrowetting cycles in 10V 5s steps on a sol-gel surface with 

data for the increasing voltage half of the cycle shown as (���) and data 

for the decreasing half as (∆∆∆). The dashed vertical lines indicate each 

electrowetting sub-cycle start point. 
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Figure 3.14  Cosine of the contact angle (θ) as a function of the square of the applied 

RMS voltage for a complete set of 10kHz AC electrowetting cycles in 10V 

5s steps on a sol-gel surface with data for the increasing voltage half of the 

cycle shown as (���) and data for the decreasing half as (∆∆∆).The 

dashed vertical lines indicate each electrowetting sub-cycle start point. 

 

Figure 3.15  Dynamic change in contact angle (θ) with voltage for a complete set of DC 

electrowetting experiments in 10V 5s steps on a sol-gel surface. The dashed 

vertical lines indicate each electrowetting sub-cycle start point. 

 

Figure 3.16  Cosine of the contact angle (θ) as a function of the square of the applied 

voltage for a complete set of DC electrowetting experiments in 10V 5s steps 

on a sol-gel surface. The dashed vertical lines indicate each electrowetting 

sub-cycle start point. 

 

Figure 3.17  Dynamic change in contact angle (θ) with RMS voltage for a 0-800-0Vpp 

1kHz AC electrowetting cycle in 50V 5s steps on a sol-gel surface with data 

for the increasing voltage half of the cycle shown as (���) and data for the 

decreasing half as (∆∆∆). 

 

Figure 3.18  Cosine of the contact angle (θ) as a function of the square of the applied 

RMS voltage for a 0-800-0Vpp 1kHz AC electrowetting cycle on a sol-gel 

surface with data for the increasing voltage half of the cycle shown as 

(���) and data for the decreasing half as (∆∆∆). 

 

Figure 3.19  Dynamic change in contact angle (θ) with RMS voltage for a 0-800-0Vpp 

10kHz AC electrowetting cycle in 50V 5s steps on a sol-gel surface with 

data for the increasing voltage half of the cycle shown as (���) and data 

for the decreasing half as (∆∆∆). 

 

Figure 3.20  Cosine of the contact angle (θ) as a function of the square of the applied 

RMS voltage for a 0-800-0Vpp 10kHz AC electrowetting cycle on a sol-gel 

surface with data for the increasing voltage half of the cycle shown as 

(���) and data for the decreasing half as (∆∆∆). 

 

Figure 3.21  Dynamic change in base diameter (±0.005mm) with RMS voltage for a 0-

800-0Vpp 1kHz AC electrowetting cycle in 50V 5s steps on a sol-gel 

surface with data for the increasing voltage half of the cycle shown as 

(���) and data for the decreasing half as (∆∆∆). 

 

Figure 3.22  Cosine of the contact angle (θ) as a function of the square of the applied 

voltage on a sol-gel surface for DC electrowetting (◊◊◊) and 10kHz AC 

electrowetting (���) in the voltage range 350-430V RMS. Solid line and 

dotted line are least squares fits for the DC and AC data, respectively. 

 

Figure 4.1  A liquid marble formed by rolling a water droplet in hydrophobized 

lycopodium powder. 

 

Figure 4.2  Hydrophobic powder grains adhered to the liquid surface of a liquid marble. 
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Figure 4.3  a) a droplet on super-hydrophobic micro-post surface, b) lithographic 

micro-posts, c) a liquid marble on a flat surface, and d) concept of a 

conformal ‘skin’ of grains. 

 

Figure 4.4  Liquid marble puddle case with maximal radius r(z), considered as a 

cylinder with contact radius, r(0) and height, h. 

 

Figure 4.5  Liquid marble spherical cap case with height, h, base contact radius, r(0) 

and spherical cap radius, r(z). 

 

Figure 4.6  a) a spherical-cap-shaped 1µL liquid marble (R ≈ 0.7mm) and b) a 285µL 

marble (R ≈ 5.6mm) typical of the puddle regime. 

 

Figure 4.7  Height as a function of radius for freshly deposited water drops converted 

into marbles; the transition from marble to puddle with increasing volume is 

shown. The limiting value of puddle height gives twice the capillary length. 

For comparison a number of drops of 0.01M KCl solution are shown as 

(���). 

 

Figure 4.8  Reversible electrowetting showing a) image of liquid marble with contact 

wire inserted, but no applied bias voltage; (b) image of the same marble 

with 100 V DC applied bias and c) image of same marble returned to 0V. 

 

Figure 4.9  Contact angle as a function of voltage for a DC electrowetting cycle with a 

2µL liquid marble in 20V, 10s steps with 0-100V shown as (���) and 

100-0V shown as (∆∆∆). 

 

Figure 4.10  Contact angle as a function of voltage for a DC electrowetting cycle with a 

2µL liquid drop on a lithographically patterned surface with 0-140V shown 

as (���) and 140-0V shown as (∆∆∆). 

 

Figure 4.11  Contact angle as a function of voltage for a DC electrowetting cycle with a 

2µL liquid marble in 10V, 1s steps with 0-100V shown as (���) and 100-

0V shown as (∆∆∆). 

 

Figure 4.12  Cosine of contact angle as a function of square of applied voltage for a DC 

electrowetting cycle with a 2µL liquid marble with 0-100V shown as 

(���) and 100-0V shown as (∆∆∆).Solid line is a fit to Equation (4.20) 

with κRo = 0.1 and θe = 174
o
. 

 

Figure 4.13 Contact angle as a function of voltage for an AC electrowetting cycle with a 

2µL liquid marble with 0-200V pp shown as (���) and 200-0V pp shown 

as (∆∆∆). 

 

Figure 4.14  Cosine of contact angle as a function of square of applied voltage for an AC 

electrowetting cycle with a 2µL liquid marble with 0-200Vpp shown as 

(���) and 200-0Vpp shown as (∆∆∆).Solid curve is a fit to Equation 

(4.20) with κRo = 0.1 and θe = 174
o
. 
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Figure 4.15  Cosine of contact angle as a function of square of applied voltage for AC 

and DC electrowetting cycles with a 2µL liquid marble. For DC data 0-

100V is shown as (���) and 100-0V is shown as (∆∆∆). For AC data 0-

200Vpp is shown as (���) and 200-0Vpp is shown as (▲▲▲). 

 

Figure 5.1  Schematic illustrations of shape modes for freely oscillating spherical 

droplets in side-view profile. 

 

Figure 5.2  Schematic illustrations of pure oscillation modes for sessile droplets 

translated from images of a 100µL drop at resonance with a) immobile 

contact line (Noblin type I), and b) mobile contact line (Noblin type II). For 

type I modes the three-phase contact line corresponds to a node of the 

vibration, whereas for type II it is an anti-node. 

 

Figure 5.3  Configurations for inducing shape oscillations on a hydrophobic planar 

surface using a) a liquid marble and b) a sessile droplet. 

 

Figure 5.4  Image stack z-axis projection showing a) the first resonance of a 5µL 

volume liquid marble on a flat hydrophobic surface and b) a similar volume 

droplet in resonance. In each case two nodes are apparent on the profile 

above the substrate and the stacked anti-node positions appear in shades of 

grey. 

 

Figure 5.5  An example of anti-node displacement (mean greyscale value) as a function 

of driving frequency for the first 100Hz of the frequency sweep for a 100µL 

liquid marble. The displacement amplitude is directly proportional to the 

mean greyscale value within a rectangular box selection at an anti-node 

close to the electrode wire as a function of driving frequency. The resonant 

frequencies are identified by the peak variances in mean greyscale value. 

 

Figure 5.6 Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 50µL sessile droplet during a narrow-band sweep 

experiment with selection area positioned a) immediately to the right of the 

electrode wire, b) 50
o
 to the right of the wire and c) at the contact point. 

 

Figure 5.7  Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 100µL sessile droplet during a wide-band sweep 

experiment. Dashed lines are single parameter fits to the capillary wave 

model using γLV = 72.8 mN m
-1

 and dotted lines are the equivalent fits with 

an adjusted value of γLV = 64.16mN m
-1

. 

 

Figure 5.8  Square of frequency as a function of mode number cubed for the first five 

major resonances of a 10µL sessile droplet (���) and the first eight major 

resonances of a 100µL sessile droplet (▲▲▲) with trendlines indicating 

linearity. 
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Figure 5.9  Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 100µL sessile droplet during a wide-band sweep 

experiment. The upper and lower curves correspond to observations from 

the right and left hand sides of the electrode wire respectively. Dashed lines 

are single parameter fits to the capillary wave model using γLV = 72.8 mN m
-

1
 and dotted lines are the equivalent fits with an adjusted value of γLV = 

74.66mN m
-1

. 

 

Figure 5.10  Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 10µL liquid marble during a wide-band sweep experiment. 

Dashed lines are single parameter fits to Equation (5.7) using γLV = 53mN 

m
-1

 and ρ = 4550kg m
-3

. Solid lines are fits to the free fluid sphere model in 

Equation (5.1) using the same parameters. Dotted lines are the equivalent 

fits with an adjusted value for effective density of ρ = 1250kg m
-3

 and 

taking into account a low frequency n = 1 mode. 

 

Figure 5.11  Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 30µL liquid marble during a wide-band sweep experiment. 

Dashed lines are single parameter fits to Equation (5.7) using γLV = 53mN 

m
-1

 and ρ = 2250kg m
-3

. Solid lines are fits to the free fluid sphere model in 

Equation (5.1) using the same parameters. 

 

Figure 5.12  Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 50µL liquid marble during a wide-band sweep experiment. 

Dashed lines are single parameter fits to Equation (5.7) using γLV = 53mN 

m
-1

 and ρ = 1750kg m
-3

. Solid lines are fits to the free fluid sphere model in 

Equation (5.1) using the same parameters. 

 

Figure 5.13  Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 100µL liquid marble during a wide-band sweep experiment. 

Dashed lines are single parameter fits to Equation (5.7) using γLV = 53mN 

m
-1

 and ρ = 1750kg m
-3

. Solid lines are fits to the free fluid sphere model in 

Equation (5.1) using the same parameters. 

 

Figure 5.14  Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 125µL liquid marble during a wide-band sweep experiment. 

Dashed lines are single parameter fits to Equation (5.7) using γLV = 53mN 

m
-1

 and ρ = 1750kg m
-3

. Solid lines are fits to the free fluid sphere model in 

Equation (5.1) using the same parameters. 

 

Figure 5.15  Anti-node displacement (mean greyscale value) as a function of driving 

frequency for a 150µL liquid marble during a wide-band sweep experiment. 

Dashed lines are single parameter fits to Equation (5.7) using γLV = 53mN 

m
-1

 and ρ = 1750kg m
-3

. Solid lines are fits to the free fluid sphere model in 

Equation (5.1) using the same parameters. 

 

Figure 5.16  Square of frequency as a function of mode number cubed for liquid marbles 

of volumes 10µL (♦), 30µL(▲), 50µL (x), 100µL(■), 125µL (+) and 150µL 

(●) with data trendlines included. 
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Figure 5.17  Frequency as a function of mode number (log-log representation) for liquid 

marbles of volumes 10µL (♦), 30µL (▲), 50µL (x), 100µL (■), 125µL (+) 

and 150µL (●).For the 50µL -150µL volumes the solid lines are predictions 

using Equation (5.7) using the same fitting parameter value of ρ = 1750kg 

m
-3

. For the 30µL and 10µL data values of ρ = 2250kg m
-3

 and ρ = 4550kg 

m
-3

 have been used. 

 

Figure 5.18  Change in resonant frequency for lowest mode (n = 2) as a function of 

volume for liquid marbles in the range 10µL to 275µL. 

 

Figure 5.19  Change in the liquid marble resonant frequency for mode n = 2 as a function 

of volume (10µL to 50µL). The solid line is a prediction using Equation 

(5.6). 

 

Figure 6.1  A water drop on a tilted surface showing the difference between the contact 

angles at the leading and trailing contact lines. 

 

Figure 6.2  Liquid marbles of volume a) 1µL and b) 2µL rolling on a planar 

hydrophobic surface containing a finger electrode pattern upon application 

of a DC bias voltage sequentially to electrode pairs. 

 

Figure 6.3  Two liquid marbles of equal size (3µL) rolling together and merging upon 

application of a DC bias voltage sequentially to electrode pairs. 

 

Figure 6.4  Water droplets released from a vertical syringe at the edge of a 

superhydrophobic gradient surface roll to the least hydrophobic area at the 

centre and remain there. 

 

Figure 6.5  Steam condensing onto a copper superhydrophobic circular gradient 

surface. 

 

Figure 6.6  Evaporation of water from a copper superhydrophobic circular 

gradient surface. 

 

Figure 6.7  Contact angles of immobile water droplets on a copper 

superhydrophobic circular gradient surface at 3mm radial intervals 

from the centre. The four symbols represent four different radial lines 

at the four quadrants. 

 

Figure 6.8  Contact angle hysteresis of water droplets on a copper superhydrophobic 

circular gradient surface at 3mm radial intervals from the centre. The four 

symbols represent four different radial lines at the four quadrants.
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Table 2.1 Relevant bulk properties (where available) of S1813 photoresist (Shipley 

Co.) Teflon
®

 AF1600 (DuPont Polymers) 6% solution in Fluorinert FC75 

(3M), Flutec
®

 LE15 (F2 Chemicals Ltd.), IC1-200 spin-on-glass (Futurrex 

Inc.) and methyltriethoxysilane (MTEOS) sol-gel foam. 

 

Table 2.2 Liquid volumes used for an investigation of the gravitational effects on 

liquid marble shape with increasing size. Corresponding free spherical drop 

radii are also shown. 

 

Table 2.3 Table 2.3 Frame rates for a given frame size and exposure of the SVSi 

MemView high speed CCD camera. 

 

Table 2.4  Liquid volumes used for an investigation of the fundamental resonant 

frequencies of different sized liquid marbles. Corresponding free spherical 

drop radii are also shown. Data in bold highlight volumes used for wide 

band, higher resonant mode experiments. 
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1.1 Project Overview 

 

The ability to manipulate water has been developed by many species in the natural world 

and is vital for their survival, whether for water collection or repellence. Some plants 

achieve water repellence on the surface of their leaves and use this to direct the flow of 

rainwater, to conserve water and as a mechanism to cleanse themselves of contaminants [1, 

2]. Elsewhere, in the animal kingdom, some insects use the surface of their bodies to collect 

and channel water [3] or to protect fragile wing parts. Some soils are found to be naturally 

water repellent and this presents an ecological problem; enhanced run-off and rain splash 

can lead to erosion and poor water infiltration, which can create baron areas unable to 

sustain vegetation. It is perhaps no surprise, then, that a mechanism with such great 

importance in nature has many potential applications in the physical sciences. 

 

The aim of this project is to investigate control of the interaction between a liquid and a 

solid surface by varying the surface topography and/or the local electrostatic potential. 

This interaction is manifested in the form of a change in shape or movement of a liquid 

drop on a surface. 

In the ever growing world of micro electro-mechanical systems (MEMS), miniaturization 

is a key factor in the production of effective, efficient devices in terms of working speed, 

material costs and power consumption. In the case of microfluidic devices scaling down of 

liquid handling in fluid channels naturally leads to the manipulation of discrete liquid 

droplets where, for millimetre sized droplets, the hydrodynamics of the system are 

dominated by the effects of surface tension. A well established method for influencing the 

surface tension and, hence, wettability of liquids on solids at this scale is electrowetting 

whereby an electric potential is applied to the [conducting] liquid drop with respect to the 
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underlying substrate [4-6]. This ‘digital microfluidic’ technique requires minimal physical 

contact with the liquid drop and this makes it particularly useful in lab-on-chip type 

applications where discrete liquid volumes are used as micro-scale chemical or biological 

reactors [7]. A desirable feature of systems handling discrete drops is for the liquid to be 

easily transported with minimal surface adhesion and, therefore, minimal residue. Also, if 

the contact area is small then a greater number of smaller sites may be selected for wetting 

on the device. This implies that the use of superhydrophobic surfaces in conjunction with 

water drops would offer tuneable wetting with controllable high drop mobility and 

extended drop re-usability. It may also be desirable for the combination of two different 

liquids to occur and in this case internal mixing of the newly formed drop could be an 

important feature. In such applications there may be a requirement for chemical or 

biological processing involving solids and liquids simultaneously. In such cases it is 

conceivable that the mixing of the solid and liquid is undesirable or even that the liquid is 

used to transport the solid. It is possible that an alternative system could be used to 

combine these features, such as the use of liquid marbles as liquid drops with a 

conformable hydrophobic powder skin. 

It is clear that the control of liquid flow by appropriate design of the underlying surface has 

implications in terms of material savings and efficiency of liquid flow systems. One 

important ecological application of such surface designs is in the harvesting of clean water 

in areas where such a commodity is scarce. A relatively untapped source of water in desert 

areas is in the early morning mist and an appropriately designed surface could be used to 

capture small droplets and direct them across the surface to a collection area without any 

additional energy input. It is conceivable that a surface wettability gradient may be 

achieved by varying the surface feature height, hence the surface roughness, sampled 

locally by the contact line of a deposited drop. This varying roughness can produce varying 
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local apparent contact angles from one side of the drop to another creating a driving force 

to initiate and direct motion of the drop, depending on the drop size and contact angle 

hysteresis [8-11].  

Investigations of both the electrostatic and topographic drop manipulation have relied on 

the design of appropriate experiments and, primarily, the manufacture of suitable surfaces. 

In the case of electrostatic control this has involved the use of thin-film deposition and 

lithographic techniques to produce capacitive surfaces for experiments with or without 

direct electrical contact. For topographical control the manufacture of rough surfaces with 

a locally varying aspect ratio or graded height again required the use of reliable 

photolithography methods but also of a custom electrodeposition technique. An alternative 

approach to liquid drops on superhydrophobic rough surfaces is to wrap the drop in a 

conformal rough coating to form a liquid marble and electrostatic control of liquid marbles 

on planar surfaces has been investigated alongside liquid drops on superhydrophobic rough 

surfaces. The experimental techniques used in the project are comprehensively described in 

Chapter 2. 

One of the main problems found in electrowetting on dielectric (EWOD) with droplets on 

rough surfaces is that as the voltage is applied, the liquid penetrates between the surface 

features and does not recover upon removal of the voltage. This is a real issue in 

microfluidic applications as a droplet is likely to be manipulated to wet at multiple sites. In 

Chapter 3, well established EWOD results are re-affirmed to give a basis for comparison 

between hydrophobic and superhydrophobic surfaces with regard to reversibility and with 

reference to previous work done using lithographically patterned surfaces [12].   

A new approach to electrowetting on low hysteresis surfaces is investigated in Chapter 4 

with the introduction of liquid marbles as drops with a conformal superhydrophobic 

coating. Here the superhydrophobic surface is effectively removed from the substrate and 
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wrapped around the droplets creating completely non-wetting drops which are highly 

mobile on any smooth solid surface. The effects of gravitational flattening of liquid 

marbles are shown and electrowetting characteristics are viewed with an energy 

minimization approach. 

Work with liquid marbles is extended to include an analysis of shape oscillations compared 

with liquid drops on a solid substrate in Chapter 5. In microfluidics droplet actuation is 

made easier if the liquid-solid contact area is reduced and this requires a degree of droplet 

levitation to achieve a spherical cap shape comparable to that of a suspended sessile drop. 

This may be achieved with liquid marbles where the conformal coating separates the liquid 

from the solid surface. Electric field driven oscillations in droplets have been shown to be 

controllable and have a number of applications including the ability to create self-

propelling droplets [13]. This highlights the importance of understanding oscillations in 

sessile drops possessing small contact areas. Resonant modes of liquid marbles and droplets 

are identified and described by combining the capillary-gravity wave equation with the 

model for oscillations in free levitated drops [14]. 

Reversible electrowetting in lab-on-chip applications would allow selective liquid 

deposition but only if the liquid drops can be moved with very little actuating force, a 

feature that is characteristic of liquid marbles. A method of actuating controlled motion of 

liquid marbles electrostatically is demonstrated in Chapter 6. The ability to manipulate 

droplet shape and mobility solely by locally varying the surface topography can be useful 

in controlling the flow rate and direction of a liquid but also in the collection of drops to 

form bulk liquids, as seen in nature [15]. Hence, in Chapter 6, graded height granular 

surfaces are created by controlled copper electrodeposition and used as devices for the 

control of droplet mobility by dynamically altering the contact angle. The level of mobility 

across these surfaces is investigated relative to surface roughness and hysteresis level. 
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1.2 Physical Principles 

 

The work in this project is based on well established theoretical principles of drops on 

surfaces, electrowetting and the influence of surface chemistry and/or topography. In this 

section the underlying basic theories that form the foundation for the work are established. 

 

 

1.2.1 Surface Tension and Wetting Dynamics 

 

Evidence of surface tension phenomena can be seen all around us in ways that we often 

take for granted. Water can be observed balling up and rolling off the surfaces of some 

plant leaves like mercury droplets would on a lab bench. Some insects can walk on the 

surface of water, without sinking, as if it were solid. Water drops will suspend from a 

spiders web in beads and a metal pin can be made to float on a water surface as if on an 

invisible skin. These are all due to the effects of surface tension but why does it occur? 

If we think of the water molecules in the bulk of the liquid rather than at the surface, each 

molecule is subjected to intermolecular forces with its neighbours, in all directions, as 

shown in Figure 1.1. The average distance between molecules is such that the attractive and 

repulsive forces are balanced so there is no net force pulling any given molecule in any one 

direction. Molecules at the surface, however, experience an unbalanced force due to the 

relative lack of neighbouring molecules on the gas [vapour] phase side of the interface and 

so there is a tendency for every molecule at the surface to be pulled toward the bulk. As 

these molecules are equally repelled on the liquid side of the interface they remain at the 

surface forming the effective ‘skin’. For a volume of water in air a free spherical droplet 

shape is created as surface tension minimizes the surface area. 
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Figure 1.1 Forces acting on liquid molecules near a liquid-gas 

interface. 

 

 

If a droplet is of a size where its spherical radius, R0, is less than the capillary length, κ-1
, 

given by, 

g

LV

ρ

γ
κ =−1  (1.1) 

 (typically 2.7mm for water), where ρ is the density of the liquid and g=9.81 m s
-2

 is 

acceleration due to gravity then the effects of gravity on the drop shape are negligible. If 

such a drop is at thermodynamic equilibrium on a homogeneously smooth solid surface 

then it will adopt a spherical cap shape, as depicted in Figure 1.2. The surface tension, γ, at 

the liquid-gas [or vapour] interface is no longer solely responsible for the drop shape but 

also becomes a component at a three phase interface. From a lateral force view, at the solid-

liquid contact line there is a force contribution per unit length from the liquid-vapour 

Gas 

Liquid 
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interface, γLV, the solid-liquid interface, γSL and the solid-vapour interface, γSV. A tangent to 

the resulting liquid surface profile forms a contact angle, θ, with the solid surface at the 

contact line. If the drop is at thermodynamic equilibrium then the sum of the force 

contributions is equal to zero and an equilibrium contact angle, θe, is formed (Figure 1.2). 

We then have, 

0cos =−+ SVSLLVe γγγθ  (1.2) 

Re-arranging yields the Young equation, established by Thomas Young in 1805 [16],  

LV

SLSV

e
γ

γγ
θ

−
=cos  (1.3) 

 

The Young equation is generally accepted as the interfacial force balance at equilibrium 

although it does have limitations. It assumes that the solid surface is ideal in that it is 

perfectly smooth and homogeneous such that a drop deposited on the surface is 

immediately in an equilibrium state and one unique equilibrium contact angle exists for the 

system. It also does not take into account any effect on the equilibrium contact angle from 

the droplet size and the method of deposition. It should also be noted that direct 

measurement of γSL and γSV is not possible so the Young equation has never been 

experimentally verified. 
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Figure 1.2 A droplet in thermodynamic equilibrium 

on a smooth surface has an equilibrium contact 

angle θe, dependent on the balance of the interfacial 

tensions at the three phase contact line. 

 

 

Another approach is to consider the surface tension components as surface energies per unit 

area at each interface. The interfacial free energy, EF, at the contact line is then given by, 

LVLVSLSLSVSVF AAAE γγγ ++=  (1.4) 

If we then consider surface free energy changes if the contact line advances by a small 

distance, ∆A, as shown in Figure 1.3, then part of the solid-vapour interface is replaced by a 

solid-liquid one causing a change in the surface free energy of (γSL - γSV)∆A. There is also a 

gain in the liquid-vapour interface of γLVcosθ (assuming any change in contact angle is a 

second order effect) and the total change in surface free energy, ∆EF, corresponding to this 

contact line advance, is therefore, 

( ) AAE LVSVSLF ∆+∆−=∆ θγγγ cos  (1.5) 

Advances in the contact line occur if the droplet spreads on the surface (Figure 1.4a) and so 

a dynamic contact angle, θ, ensues where many different instantaneous values may be 

valid. The sketch of a free energy diagram in Figure 1.4b shows an example surface free 

energy profile for the wetting regime in Figure 1.4a. The minimum of surface free energy, 

θe 
SVγ  

γ  

LVγ  

SLγ  

Liquid drop 

Ideal solid surface 
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with zero gradient, exists at local equilibrium and so this point corresponds to the 

equilibrium contact angle, θe. At equilibrium ∆EF = 0, we then have, 

  ( ) 0cos =+− eLVSVSL θγγγ    (1.6) 

taking us back to the original Young equation (1.3). 

 

 

 
 

 

Figure 1.3 Contact line of a liquid drop on a solid surface 

advancing by a small distance, ∆A. A gain in the solid-liquid 

and liquid-vapour interfaces and a loss in the solid-vapour 

interface results. 
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Figure 1.4 As a droplet deposited on a solid surface spreads 

a) contact line advances and a dynamic contact angle, θ, 

ensues and b) the total surface free energy, EF, at the three 

phase interface changes. θ = θe when ∆EF = 0. 

 

 

On real surfaces the preferred [equilibrium] minimum energy state of a deposited drop may 

not be achieved at the instant the drop makes contact with the surface. Depending on the 

nature of the surface the drop may spread and the contact line advances as the drop 

attempts to achieve the equilibrium state. Spreading may also occur if there is an increase 

in the Laplace pressure [17] due to an increase in energy from, for example, heating or 

applied voltage. The Laplace pressure, ∆P, is the pressure difference between the liquid 

and vapour phases due to curvature of the interface and is given by [17], 

R
P LVγ2

=∆  (1.7) 

b) 

a) 

θe θ2 θ1 

Liquid drop 

Ideal solid surface 
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where R is the spherical radius of the drop. The drop will spread until it conforms to one of 

two wetting regimes, depending on the solid surface; complete wetting or partial wetting 

and these may be distinguished by the spreading parameter, S, where, 

( )LVSLSVS γγγ +−=  (1.8) 

If S > 0 then the drop wets completely and θe = 0. If S < 0 then the drop adopts the 

spherical cap shape where it is said to be mostly wetting if θe ≤ 90
o
 and mostly non-wetting 

if θe > 90
o
. In this case and by combining Equation (1.8) with Equation (1.3), we obtain the 

Young-Dupré equation, 

( )1cos −= θγ LVS  (1.9) 

At a molecular level, as the drop spreads it forms a film with a thickness, h, that will 

experience a transition from a thick liquid to an adsorbed microscopic thin layer due to 

surface forces in the region of the three phase contact line [18]. Disjoining pressure, Π, 

results from these forces and is equal to the negative derivative of the surface free energy 

with respect to the film thickness [19], 

( )
dh

dE
h F−=Π  (1.10) 

Following Derjaguin and Churaev [20], the disjoining pressure comprises a molecular (van 

der Waals) component, Πm, an electrostatic component, Πe, and a structural component, Πs, 

and may be written as, 

( ) ( ) ( ) ( )hhhh sem Π+Π+Π=Π  (1.11) 
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The van der Waals and electrostatic components may be calculated using the well 

developed DLVO theory (Derjaguin-Landau-Verwey-Overbeek after the scientists who 

developed the theory) [21, 22]. If the molecules in the film and the solid substrate are more 

attracted than the molecules in the liquid bulk, then Π(h) > 0. A liquid film with a thickness 

such that dΠ(h)/dh > 0 can lower its surface free energy by becoming thicker in some areas 

while thinning in others. This is characteristic of de-wetting and, conversely, wetting 

(spreading) occurs if dΠ(h)/dh < 0. 

For very small contact angles and complete wetting, as the drop spreads Poiseuille flow 

(that is, flow parallel to the solid surface produced by a pressure gradient) occurs. A 

viscous dissipation equal to FdvE is created where vE is the edge speed (or rate of change of 

contact radius) of the drop and Fd is the driving force, proportional to the unbalanced 

component of γLV,   

( )θθαγ coscos −eLVdF  (1.12) 

approximated, for small angles to, 

( )22

eLVdF θθαγ −  (1.13) 

The dissipation is then proportional to inverse θ and vE is given by, 

( )22

eLVEv θθθαγ −  (1.14) 

This is the Hoffman-Tanner-deGennes law [23-25] and in the limit of a complete wetting 

surface, where θe = 0, the edge speed becomes proportional to the cube of the dynamic 

contact angle, vE α θ
3
. 

This expression for the dissipation does not include any effects from the thin precursor 

wetting film that is known to precede the advancing contact line of a spreading drop. The 
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precursor film results from intermolecular long-range forces acting between molecules of 

the liquid and the solid substrate [19] and was first observed by Hardy in 1919 [26]. The 

dynamics of precursor wetting films have since been studied theoretically by, among 

others, Huh et al., Hervet et al., Voinov and deGennes [25, 27-29] and experimentally by 

Léger et al., Bascom et al. and Ghiradella et al. [30-32]. In the present work the existence 

of a precursor film and its contribution to droplet spreading is acknowledged but the effects 

are not included in any of the experimental analyses. 

 

 

 

 

 

Figure 1.5 A liquid drop spreads on a solid surface with a 

contact line edge speed, vE, proportional to the viscous 

dissipation. A thin precursor film advances ahead of the 

contact line, introducing a lubrication effect and contributing 

to the viscous dissipation. 
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1.2.2 Rough Surfaces and Contact Angle Hysteresis 

 

For drops on real surfaces the notion of a single equilibrium contact angle, θe, predicted by 

the Young equation (1.3) does not apply. Instead, as the drop spreads, a series of metastable 

energy states exist, with associated contact angles, due to the contact angle hysteresis of the 

surface. As a drop spreads on a homogeneously smooth surface the advancing contact line 

motion is continuous and smooth whereas if the surface has chemical or topographical 

inhomogeneities a ratcheting motion ensues. The advancing contact line becomes ‘pinned’ 

by surface asperities which present an energy barrier. The dynamic contact angle will 

increase if, for example, the drop volume is increased until the energy barrier is overcome 

and the contact line de-pins. The maximum angle that is achieved before de-pinning occurs 

is called the advancing angle, θA. If the drop is de-wetting then contact line recedes and the 

same pinning and de-pinning occurs. In this case the contact angle decreases, when the 

contact line pins, to a minimum known as the receding angle θR. The range of possible 

dynamic contact angles is, therefore, prescribed by the limits θR to θA, where the energy 

barriers go to zero. Contact angle hysteresis is then defined as the difference between the 

advancing and receding angles, ∆θ = θA - θR. 

Hysteresis has, therefore, been used as an indicator of surface hydrophobicity as it has been 

attributed to the surface roughness beneath the contact area and surface roughness 

contributes to the hydrophobicity. Depending on the surface topography the lowest free 

energy configuration is given by two generally accepted models, those of Wenzel [33] and 

Cassie-Baxter [34]. 

For the Wenzel and Cassie-Baxter regimes the underlying surface may be considered as 

either composite or non-composite. With a composite surface the surface area presented to 

the liquid drop comprises a solid fraction and an air fraction between the surface roughness 
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features such that the liquid sits on a combination of the tops of the solid peaks and a 

cushion of air. A non-composite surface, however, consists solely of the solid surface area 

with no air fraction such that the liquid maintains intimate contact with the entire solid 

surface (Figure 1.6). Both models assume that the size of the liquid drop is very much 

larger than the roughness scale. 

 

 

 

 

 

Figure 1.6 A droplet sitting on a rough surface in a) the non-

composite case where the liquid penetrates the gaps in the surface 

features and makes contact with the whole of the solid surface area 

and b) the composite case where the liquid sits on a combination of 

the tops of the surface features and the air in the gaps between 

them. 

 

In the non-composite case the introduction of a surface roughness modifies the solid 

surface area presented to the penetrating liquid such that the ratio of actual surface area, 

including the non-horizontal fraction, to the geometric (horizontally projected) surface area 

may be termed as a dimensionless roughness factor, r≥1. Consider a topographically 

structured surface, shown two dimensionally in Figure 1.7, with surface features of height, 

h. The width and spacing of the features is given by l1 and l2, respectively. Changes in the 

actual surface area, ∆Aa, and the horizontally projected surface area, ∆Ap are then given by, 

Liquid     
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Liquid 
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21 lhlhAa +++=∆  and 21 llAp +=∆  

and then, 

 
p

a

A

A
r

∆

∆
=  (1.15) 

 

 

Figure 1.7 Two dimensional view of a topographically structured surface 

indicating the relative surface area components. 

 

Using an energy minimization approach, if we then consider an advance of the contact line 

by ∆Ap, as shown in Figure 1.8 then part of the solid-vapour interface is replaced by a 

solid-liquid one causing a change in the surface free energy of (γSL - γSV)∆Aa. There is also a 

gain in the liquid-vapour interface of γLVcosθ and the total change in surface free energy, 

∆EF, corresponding to this contact line advance, is therefore, 

( ) pLVaSVSLF AAE ∆+∆−=∆ θγγγ cos  (1.16) 

Incorporating the roughness factor, r, this becomes, 

( ) pLVpSVSLF AArE ∆+∆−=∆ θγγγ cos  (1.17) 

l2 
∆Ap 

∆Aa 
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l1 
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At equilibrium ∆EF = 0, we then have, 

 ( ) 0cos =+− w

eLVSVSL r θγγγ    

( )

LV

SLSVw

e

r

γ

γγ
θ

−
=⇒ cos  (1.18) 

This can then be substituted with the Young equation (1.3) to give,  

e

w

e r θθ coscos =  (1.19)  

where 
w

eθ  and θe are the equilibrium contact angles on the rough surface and the smooth 

surface, respectively. This is the well known Wenzel equation established by Wenzel in 

1936 [33]. 

 

 

 

Figure 1.8 Contact line of a liquid drop on a non-composite rough solid 

surface advancing by a small distance, ∆Ap. A gain in the solid-liquid and 

liquid-vapour interfaces and a loss in the solid-vapour interface results. 

The liquid completely penetrates the surface features and maintains 

intimate contact with the whole of the solid surface area. 
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This works for non-composite surfaces while intimate contact between the solid and liquid 

is maintained and the liquid penetrates between the structures to give a high hysteresis 

surface. In practice, intimate contact is not usually maintained on high roughness surfaces 

unless hydrostatic pressure is applied. It is energetically favourable for the liquid to bridge 

the gaps between the surface features so that the drop effectively sits upon a composite 

surface of the peaks of the topography and the air separating the surface features. A low 

hysteresis state ensues and Cassie-Baxter derived a two phase equation which compensated 

for the differing surface chemistry [34]. If we consider the advance of the contact line by a 

small amount, ∆Ap, on a composite surface, as shown in Figure 1.9a there is a change in 

the surface free energy due to the replacement of some solid-vapour interface by solid-

liquid interface and in increase in the liquid-vapour interface. This time, however, there are 

two components for the solid-vapour/solid-liquid change, one for the solid fraction of the 

composite surface and one for the trapped air fraction. In this case, 

( ) ( ) pLVpSVSLpSVSLF AAAE ∆+∆−+∆−=∆ θγϕγγϕγγ cos2

22

1

11
 (1.20) 

where φ1 and φ2 are the two substrate phase fractions in contact with the liquid, 

having real contact angle θ1 and θ2 respectively. At equilibrium ∆EF = 0, we then 

have, 

( ) ( ) 0cos2

22

1

11 =+−+− θγϕγγϕγγ LVSVSLSVSL  
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Then substituting with the Young equation (1.3) gives, 
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2211 coscoscos ee

c

e θϕθϕθ +=  (1.22)  

where
c

eθ is the observed equilibrium contact angle. 

For the case where the drop bridges the surface features the fraction of the surface in 

contact with the liquid can be termed fs and so the air gap under the drop is (1 - fs) (Figure 

1.9b) and we obtain, 

( ) ( ) pLVpsSVSLpLVsF AAfAfE ∆+∆−+∆−=∆ θγγγγ cos1  (1.23) 

At equilibrium ∆EF = 0, we then have, 

( ) ( ) 0cos1 =+−+− θγγγγ LVsSVSLLVs ff  

( ) ( )

LV

LVssSLSVc

e

ff

γ

γγγ
θ

−−−
=⇒

1
cos  (1.24) 

This yields the Cassie-Baxter formula [34] when combined with the Young Equation (1.3), 

vses

c

e ff θθθ cos)1(coscos −+=  (1.25)  

where 
c

eθ is the contact angle on the pattered surface, eθ is the contact angle on the flat 

surface and vθ is the contact angle of the drop on air. 

If we assume vθ to be 180° for a suspended droplet in air then Equation (1.25) becomes, 

1)1(coscos −+= es

c

e f θθ  (1.26) 
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Figure 1.9 Contact line of a liquid drop on a composite rough solid 

surface advancing by a small distance, ∆Ap shown as a) φ1 and φ2 as 

the two substrate phase fractions in contact with the liquid and b) the 

fraction of the surface in contact with the liquid as fs and the air gap 

under the drop as (1 - fs) . The liquid effectively sits upon a composite 

surface of the peaks of the topography and the air separating the 

surface features. 

 

 

Although the roughness factor, r, does not enter into the Cassie-Baxter formula, it is the 

balance between roughness and solid surface fraction that determines the threshold θe at 

which the Cassie-Baxter state becomes more energetically favourable than the Wenzel 

state [35]. The addition of surface roughness serves to enhance the wetting state of a 

surface in the Wenzel regime, if the contact angle on a smooth surface is less than a 

threshold value of 90
o
 then roughness will further reduce it (saturating at 0

o
) and if it is 

greater than 90
o
 then it is increased (saturating at 180

o
). For the Cassie-Baxter regime, 
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where the drop sits on top of the pattern, there is little effect on the contact angle on a 

smooth surface. This implies that the effects of any change in surface chemistry are 

amplified in the Wenzel state and attenuated in the Cassie-Baxter state. This is illustrated 

in Figure 1.10 where the expected contact angles on a rough surface of a given material 

(with r = 5 and fs = 0.16) are plotted against those on a smooth surface of the same 

material. The Wenzel state is indicated by the blue line and the Cassie-Baxter state is 

indicated by the red line. 

 

 

Figure 1.10 The effects of surface roughness on contact angle for the 

Wenzel (blue line) and Cassie-Baxter (red line) regimes compared to a 

smooth surface of the same material.* 
 

 

For both these regimes the contact angle is determined by the spacing and feature shape of 

the surface beneath the contact line. It is the shape and spacing of the surface features 

beneath the whole of the contact area, however, that determines whether penetration into  

 
*Acknowledgement G. McHale 
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the surface structure occurs and, hence, which regime is adopted. It is often the case that 

the surface structure is not simple, flat-topped and geometrically regular and the 

measurement of r and fs becomes extremely difficult. In such cases it is possible that 

neither a pure Wenzel nor pure Cassie-Baxter state occurs but, rather, a combination of 

both as composite and non-composite patches are presented to the liquid. These may 

include a secondary, smaller roughness scale existing on the primary roughness scale such 

that a Wenzel or Cassie-Baxter state may occur locally on the secondary roughness while 

the alternative state occurs on the primary roughness. This dual scale roughness requires 

modification of the Cassie-Baxter formula to take into account any Wenzel states and 

numerous studies have investigated its effects [8, 36-39]. 

It is also possible that, depending on the surface structure height and spacing, the Cassie-

Baxter state is metastable in that a transition to the Wenzel state may occur upon increase 

of the hydrostatic pressure in the drop. This may arise from an increase in the Laplace 

pressure (Equation (1.7)), related to the drop curvature, as the drop reduces in size through 

evaporation. It could also be caused by compressing the drop [40], releasing it from a 

height so that it impacts the surface or by introducing a vibration. The meniscus formed by 

the drop surface between each of the surface features will penetrate further down between 

the structures until it makes contact with the lower solid fraction. This should not occur if 

the structure is sufficiently tall and/or closely packed. Jung and Bhushan stated a criterion 

for the meniscus to make contact with the lower solid surface based on the maximum 

‘droop’ of the meniscus and the depth of the cavity [41].  

From a surface free energy point of view, the lowest energy state may be a Cassie-Baxter 

or Wenzel state depending on whether the surface is composite or non-composite. An 

energy barrier exists preventing the transition from one metastable state to another unless 

additional energy is introduced into the system, for example, vibrationally or 
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electrostatically. The free energy diagram in Figure 1.11 shows the energy barrier 

separating two possible metastable energy states. Note that the shape of the free energy 

curves is purely a representation of a heterogeneous surface loosely based on the findings 

of Li and Neumann [42]. Johnson and Dettre [43] showed that surface roughness leads to a 

number of metastable states separated by energy barriers and that the energy barriers for 

composite surfaces are very much lower than for non-composite surfaces. More recently 

Patankar [38] gave an estimate of the barrier energy, GB1, for the transition of a Cassie-

Baxter to Wenzel state on a periodic pillared surface (similar to Figure 1.9) as, 

 ( )
CLVeCB ArGG γθcos11 −−=  (1.27) 

 where GC is the energy of the drop and AC is the contact area projected on the horizontal 

plane. 

 

 

  

 

    

 

   

 

 

 

Figure 1.11 Two metastable energy states where the minima of one 

state are higher than that of the other. Transition from one state to 

the other requires additional energy to overcome the energy barrier 

that exists between the two. 
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The effects of these regimes on the mobility of drops defines whether a drop on the surface 

rolls off with little actuating force or remains adhered to the surface as it is tilted towards 

the vertical and beyond. In terms of surface classification, the two regimes have been 

classified by Quéré et al. as either ‘slippy’ (Cassie-Baxter) or ‘sticky’ (Wenzel) [36]. A 

measure of surface ‘stickiness’ is given by the contact angle hysteresis resulting from the 

above metastable states and droplet roll is exhibited on low hysteresis surfaces. Studies have 

demonstrated that surface modifications, such as the introduction of dual roughness scales, 

can eliminate hysteresis, maintaining a Cassie-Baxter state [35, 39]. Johnson and Dettre 

provided the first thermodynamic analysis of contact angle hysteresis [43] and in a recent 

work by Li and Amirfazli [44] free energy formulae for the composite and non-composite 

systems have been derived. 

The traditional approach where contact angle hysteresis results from interactions at the 

whole of the solid liquid contact area has been adopted and quoted by much of the 

scientific literature. There are, however, notable exceptions to this viewpoint and some 

alternative approaches to hysteresis effects have emerged that focus on the importance of 

interactions at the contact line rather than the contact area. DeSimone et al. [45] produced 

a model based on the balance between released capillary energy and dissipation associated 

with contact line motion rather than the minimization of interfacial energies. Their model 

is stated as sharing some features with models associated with dry friction, fracture 

mechanics and elasto-plasticity, namely the requirement for a critical loading to achieve 

dissipation and loading rate independence. Predictions by their model are qualitatively 

compared to the experimental data of Dettre and Johnson [46]. In a study by Rafael 

Tadmor [47] interactions at the contact line on a Young type surface [16] were 

accommodated by including an additional term in the surface free energy of a moving 

contact line (Equation 1.5) such that, 
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( ) LkAAE LVSVSLF ∆−∆+∆−=∆ θγγγ cos  (1.28) 

where L is the length of the contact line and k is the energy per unit length associated with 

an increase, ∆L, of the contact line. 

It has been noted by many studies that the Cassie-Baxter formula predicts a single value of 

apparent contact angle and is, therefore, unable to predict advancing and receding angles, 

as demonstrated experimentally by Gao and McCarthy [48]. This group has proposed that 

it is the movement of water molecules at any point on the contact line that contribute to 

hysteresis and no events occur over the contact area away from the contact line, bringing 

into question the relevance of the Wenzel and Cassie-Baxter theories [49]. The importance 

of events at the contact line has been considered by various groups through the years [43, 

48, 50-52] and these have sought to modify the Cassie-Baxter theory accordingly. Several 

other studies have suggested that the Cassie-Baxter formula is valid if the areal fractions of 

the solid-liquid and liquid-vapour interfaces local to the contact line are considered. They 

have suggested that the local areal fractions can be quite different to the global fraction for 

spatially varying surface topographies and they have demonstrated that, as such, the 

apparent contact angle can vary significantly depending on the contact line position. Gao 

and McCarthy have also proposed that advancing and receding events may not be 

synchronous but, in fact, may be quite different processes with different activation energies 

[49]. In this case there may be multiple events occurring around the drop perimeter that 

could be microscopic advance-recede oscillations, distorting the contact line. Deviation 

from the Cassie-Baxter model due to contact line distortion has been considered by Drelich 

et al. [53] and Li et al. [54] as well as the McCarthy group [55, 56].In a recent study, 

Edward Bormashenko has suggested that the presence of a precursor film when wetting on 
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heterogeneous surfaces may be assumed and that this may affirm the validity of the Cassie-

Baxter approximation [57]. 

 

 

1.2.3 Electrowetting on Dielectric (EWOD) 

 

In contrast to the enhanced wetting behaviour obtained through increased surface 

roughness, wetting of a smooth solid surface can be dynamically controlled by 

electrowetting, the application of an bias voltage, V, between a conducting drop and a 

counter-electrode. Electrowetting is based on the principles of electrocapillarity as first 

detailed by Gabriel Lippmann in 1875 [58] who formulated the Lippmann equation,  

dVd SL

eff

SL σγ −=  (1.29) 

where eff

SLγ is the effective interfacial tension, SLσ  is the surface charge density and 

∫= CdVSLσ  where C is the differential capacitance of the interface. In the so-called 

electrowetting-on-dielectric (EWOD), the solid surface upon which the liquid drop rests is 

a thin electrical insulator layer of thickness d coating an underlying conducting surface. 

Thus, a conductive droplet on the insulator creates a capacitance defined by the contact 

area of the droplet and the substrate. When a voltage, V, is applied between the substrate 

and droplet an electric charge is created and this alters the surface free energy balance. The 

additional energy per unit area due to the capacitance is given by ½CV
2
 where for a simple 

planar surface the capacitance per unit area is C=εrεo/d, where εo is the permittivity of free 

space and εr is the dielectric constant of the insulator, and so by taking the integral of 

Equation (3.9) and incorporating the additional energy component we obtain, 
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20

2
)( V

d
V r

SL

eff

SL

εε
γγ −=  (1.30) 

To express in terms of a contact angle dependence on electrowetting voltage Equation 

(1.30) is inserted into the Young equation (1.3) and it is found that for a droplet on a flat 

surface the equilibrium contact angle for a given voltage is given by the basic equation for 

EWOD, 

 ( ) 20

2
0cos)(cos V

d
V

LV

r

ee
γ

εε
θθ +=  (1.31) 

Energetically the surface free energy from Equation (1.4) is valid at V = 0 (assuming a 

homogeneously smooth surface) when only surface energy exists. When a voltage is 

applied an electrical energy contribution, EE = ½CV
2
ASL, must be included and the total 

energy in the system becomes [6], 

2

2

1
CVAAAAE SLLVLVSLSLSVSVT +++= γγγ  (1.32) 

 For rough surfaces, Bahadur and Garimella developed expressions for the contact angle of 

a drop on a microstructured surface under the influence of an electrowetting voltage in the 

Wenzel and Cassie-Baxter states, respectively, as [59], 
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and, hence, that the transition from a Cassie-Baxter to a Wenzel state requires, 

( )
( )


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

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

−

−
−−>

fr

f
V

d
e

LV

r 1
cos

2

20 θ
γ

εε
 (1.35) 

If an AC applied voltage is used in electrowetting then the drop shape and contact angle 

may follow the momentary equilibrium values at low frequencies. If the frequency exceeds 

the hydrodynamic response time of the drop then the response of the liquid depends only 

on the time average of the applied voltage and the RMS value VRMS must be used in 

Equation (1.31) [60]. The threshold frequency for millimetre sized drops is, typically, of 

the order 10
2
Hz. Upon increasing frequency, however, screening of the electric field from 

the interior of the drop ceases and, beyond a critical frequency, fc, a conducting drop may 

begin to behave as a dielectric. The critical frequency is given by [61], 

 
0

2

εε

πσ

l

l

cf =  (1.36) 

where σl and εl are the conductivity and dielectric constant of the liquid, respectively. 

The properties of the liquid, however, are of low importance compared to the properties of 

the insulating layers. Significant effort has been put into optimizing dielectric layers to 

give maximum wetting tunability while keeping the activation voltage to a minimum. To 

give a large tuning range the contact angle at V = 0 should be as large as possible, 

indicating that the dielectric material should possess hydrophobizing chemistry such as an 

amorphous fluoropolymer. These materials often have characteristically high dielectric 

strength allowing thinner layers to be used and, hence, reducing the voltage required for 

the onset of contact angle reduction.  
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Although surface properties can dictate whether a deposited drop resides in a partial 

wetting, non-wetting or complete wetting state, the transition from partial to complete 

wetting in an electrowetting system has not been observed. This is due to the onset of 

contact angle saturation at higher applied voltages, found to occur at contact angles 

between 30
o
 and 80

o
, depending on the system. The reasons for the contact angle saturation 

phenomenon are not fully understood but a number of possible causes from experimental 

observations have been proposed. Seyrat and Hayes have suggested that material 

deficiencies are responsible such that a perfectly insulating layer cannot be assumed [62]. 

Peykov et al. reported that saturation occurred when the surface energy of the solid-liquid 

interface becomes zero although it is not clear whether this applies to the effective solid-

liquid interface in electrowetting [63]. Trapped charges at the insulator partially screening 

the applied electric field was proposed by Verheijen and Prins [64] as a possible cause and 

Vallet et al. observed two other phenomena coinciding with the onset of saturation [65]. 

Firstly they noticed pulsed light emission at the contact line corresponding to current 

spikes in the system from discharge events that were attributed to the diverging electric 

field strength at the contact line. Second they observed the ejection of small satellite drops 

from the edge of the main drop at high voltages due to mutual repulsion of like charges at 

the contact line. This was, however, found to depend on the salt concentration in the liquid 

drop. 
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1.3 Summary 

 

The work in this project demonstrates, experimentally, the influence of superhydrophobic 

rough coatings on the behaviour of liquid drops in electric fields with particular focus on 

liquid marbles as liquid drops with a conformal superhydrophobic rough coating. A 

number of the behavioural properties of liquid drops are investigated including dynamic 

change in contact angle, shape oscillations and drop mobility. This extends to include an 

investigation of a wettability gradient to direct droplets to a collection area. A detailed 

description of the experimental techniques used in these studies is given in the following 

chapter.
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2.1 Introduction 

 

In this chapter the methods used for experimentation in the project are detailed and include 

the preparation of hydrophobic and superhydrophobic surfaces and substrates. The 

production and deposition of liquid marbles and droplets on these surfaces is described. 

Techniques for analysis of their behaviour during wetting, movement and oscillation under 

gravitational and applied electric field are then also detailed.   

 

 

2.2 EWOD 

 

Electrowetting experiments performed with droplets or liquid marbles required a stable 

platform arranged in alignment with a video camera whose position could be adjusted. This 

would allow static millimetre sized drops on a fixed sample stage to be magnified and 

encompassed by the video image frame. Dynamic contact angle changes, as a result of the 

applied electric field, could then be monitored with silhouette illumination so as to give 

good image contrast for drop shape edge detection. Suitable substrates and an accurate 

method for droplet deposition were also required.  

 

 

2.2.1 Substrate Production 

 

Substrates for electrowetting experiments act as the level platform for deposition, carry the 

grounding electrode and dielectric layer but also have a hydrophobic or superhydrophobic 

surface property. The substrates were fabricated using thin-film deposition techniques and 
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consisted of a dielectric layer of known thickness deposited on the metallized surface of a 

glass slide. This would then be coated in either a hydrophobic or a superhydrophobic layer. 

Substrates were all produced on standard sized microscope slides (size 76.2 x 25.4 x 1mm) 

as these provided an adequate working area for multiple experimental sites using 

millimetre sized drops. With standard sized slides, there was enough of the metallized slide 

beyond the working area for connectivity and fixing to an experimental stage while not 

being too large so as to keep the experimental stage area within micrometer scale 

adjustment ranges. 

 

 

2.2.1.1 Substrate metallization 

 

Substrate metallization was required to create a conducting substrate surface and clean 

glass slides were metallized with first titanium and then gold sputtered thin films. These 

were deposited in an Emitech K575 sputter coater using an Argon plasma under high 

vacuum with a Quartz Crystal Microbalance (QCM) measuring dynamic film thickness. A 

schematic of the sputtering chamber is shown in Figure 2.1. The titanium target first 

underwent a plasma cleaning stage before sputtering for 2mins, to a thickness of ~40nm, 

adequate enough to provide adhesion for the gold layer as gold will not sputter directly on 

to glass. No break in vacuum was required between sputtering of the titanium and gold 

layers and the gold layer was sputtered for 40s, to a thickness of ~100nm, on top of the 

titanium layer to provide a flat surface of high conductivity.  
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2.2.1.2 Spin-coating dielectric 

 

Metallized slides were masked off at one end with adhesive tape, to leave a bare metal 

section of ~15mm for electrical connection, then washed with ethyl lactate and nitrogen 

blow-dried to remove any contamination. The dielectric coating used was Shipley S1813 

polymer based positive photoresist spun-on using an Electronic Micro Systems 4000 spin 

coater. The sample was mounted on a vacuum chuck and the liquid S1813 was deposited 

over the whole surface from a syringe with a 0.2µm filter. The chuck was then accelerated 

to 500rpm for 5s and then on to the final speed for 30s to give a uniform layer. The final 

spin speed controls the layer thickness and Figure 2.2 shows the spin speed calibration 

graph for S1813 thickness (measured using a Dektak 6M stylus profilometer) on this 

model coating unit
§
. This was done inside a fume cupboard within a clean room 

environment to reduce the risk of further contamination as any dust particles on the surface 

can cause inconsistent coverage by the dielectric layer. This can lead to potentially 

unusable areas due to likely short circuit. To further reduce this risk S1813 layers were 

built up by spinning on two or three thinner layers so that any ‘pinholes’ were less likely to 

penetrate through to the underlying metal. For each layer, substrates were then positioned 

upside down (suspended at the edges on microscope slide spacers) over an Electronic 

Micro Systems 1000-1 precision hotplate and baked at 130
o
C for 30mins to drive off the 

solvent and harden. Substrates were not positioned face-up on the hotplate as prior to 

baking the S1813 layer is very sticky and so is rather susceptible to airborne dust sticking 

to it. Layers of 2µm each were built up to give a total dielectric thickness, d, of 6µm for 

EWOD experiments using water droplets whereas for liquid marble work the dielectric 

layer could be thinner and 2.5µm total was used. A chemical structure diagram of the main 

 
§ Acknowledgement C. Evans 
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components of S1813 photoresist and relevant bulk properties (where available) are shown 

in Figure 2.3 and Table 2.1, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Vacuum chamber schematic of an Emitech K575 sputter 

coater. 
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Figure 2.2 Spin speed/layer thickness calibration graph for S1813 photo-

resist on an EMS 4000 spin coater. 

 

Sample 

Rotating stage 

Titanium target 

Vacuum chamber 

QCM film 

thickness 

monitor 

Gold target 



  Chapter 2 Experimental Techniques 

   

2.2.1.3 Hydrophobization 

 

Substrates were hydrophobized by spin-coating a thin capping layer of fluoropolymer on 

top of the S1813 using the same EMS 4000 coater in the same environment. The masking 

tape was kept in place for this stage and substrates were again washed with ethyl lactate 

and nitrogen blow-dried prior to coating. The hydrophobizing agent used was either a 

solution of 30% Teflon
®

 AF1600 (DuPont Polymers) in hexaflourobenzene or undiluted 

Flutec
®

 LE15 (F2 Chemicals Ltd.). Chemical structure diagrams and relevant bulk 

properties (where available) for these two agents are shown in Figure 2.3 and Table 2.1, 

respectively. These were deposited on to the substrate while already spinning at a speed of 

4000rpm (to give thickness ~0.5µm) as their volatile solvents evaporated very quickly and 

this also meant that no baking was required. Figure 2.4 shows the substrate with the spun-

on coatings.  

 

 

2.2.1.4 Superhydrophobic Substrate 

 

Glass slides were metallized with sputtered titanium and gold using the Emitech K575. 

Under the same conditions as described in (2.2.1.2), and following the same substrate 

cleaning procedure, a layer of IC1-200 spin-on-glass (Futurrex Inc.) was spun-on at 

3000rpm for 40s using the EMS 4000 spin coater to a thickness of 0.2µm. This was then 

baked at 100
o
C for 60s then at 200

o
C for 60s on the EMS 1000-1 hotplate. In this case a 

thinner insulating layer was used to keep the required electrowetting voltage down as the 

superhydrophobic rough coating was much thicker than the Flutec
®

 or Teflon
®

 layer on the 

hydrophobic substrates. One end of the substrate was again masked off with adhesive tape 
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to maintain a bare metal area for electrical connection. The superhydrophobic surface 

consisted of a layer of phase separated methyltriethoxysilane (MTEOS) sol-gel foam 

prepared, as described by Shirtcliffe et al. [66], by adding methyltriethoxysilane (MTEOS) 

to 0.12M HCl and 2-propanol under rapid stirring using a magnetic stirrer. This mixture 

was sealed and allowed to react for 60min at 22°C then 1.1M ammonia solution was 

added. The reagents were stirred for 1min before being deposited on to the substrates and 

encased by microscope slides to maintain thickness. They were then left in a sealed 

container for 20h to ensure that they gelled fully before the seal was broken and the 

samples were allowed to dry at room temperature. Compared to most sol-gels, these 

materials could be dried rapidly, drying over the course of a further 3 days and shrinking 

by 20-30%. Once dry, the samples were heated to 300
o
C in a Carbolite AAF 11/3 furnace 

to cross-link the materials. To avoid overheating, cracking, and inconsistencies, the 

samples were heated at a rate of 2.5°C min
-1

 and held at the maximum temperature for 1h 

before cooling at around 5°C min
-1

. Chemical structure diagrams and relevant bulk 

properties (where available) for the spin-on-glass and the sol-gel are also shown in Figure 

2.3 and Table 2.1, respectively. Electron micrographs of the coating were taken using a 

JEOL JSM-840A Scanning Electron Microscope and are shown in Figure 2.4. The material 

can be seen to be roughly consisting of aggregated particles of 2-3µm diameter (Figure 

2.5a) forming structures ranging in size from around 5µm to chains up to 100µm long 

interspersed with gaps of similar size (Figure 2.5b). The coating thickness was found to be 

of the order 50µm as shown in Figure 2.5c and this justifies the much thinner insulating 

layer to be used simply as a precaution in case the liquid should penetrate through the gaps 

to the solid surface. The sol-gel is not a hardened material and was not firmly adhered to 

the surface so care had to be taken when handling so as not to damage it. 
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Figure 2.3 Chemical structure diagrams of a) S1813 photoresist (Shipley Co.), b) 

Teflon
®

 AF1600 (DuPont Polymers) 6% solution in Fluorinert FC75 (3M), c) 

Flutec
®

 LE15 (F2 Chemicals Ltd.), d) IC1-200 spin-on-glass (Futurrex Inc.) and 

e) methyltriethoxysilane (MTEOS) sol-gel foam. Structures a), c) and d) are of the 

main active components of the materials. 

 

 

 

 

Material S1813 Teflon
®

 

AF1600 (6%) 

Flutec
®

 LE15 IC1-200 

spin-on-glass  

MTEOS 

sol-gel  

Density/ kg m
-3

 1020 1800 1700 -- ~600 

Boiling point/ 
o
C 140 103(solvent) 57 

(solvent) 

117 -- 

Melting point or 

glass transition 

temp. (g)/ 
o
C  

50-66g 240-275 

335g 

52g -89 >600g 

Refractive index 1.71 1.31 1.25 1.41 -- 

Dielectric 

constant 

-- 1.93@1-

10GHz 

-- 3.8@1MHz 

0.05@10kHz 

-- 

Breakdown field 

strength/ MV 

cm
-1

 

0.3 0.21 -- 3 -- 

Water static  

contact angle/ 
o
 

(measured on a flat 

deposited layer) 

50-54 109-114 99-102 65-68 128-131 

 

 

Table 2.1 Relevant bulk properties (where available) of S1813 photoresist (Shipley Co.) 

Teflon
®

 AF1600 (DuPont Polymers) 6% solution in Fluorinert FC75 (3M), Flutec
®

 LE15 

(F2 Chemicals Ltd.), IC1-200 spin-on-glass (Futurrex Inc.) and methyltriethoxysilane 

(MTEOS) sol-gel foam. 

a) 
b) 

c) 
d) e) 
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Figure 2.4 An electrowetting substrate consisting of a metallized glass 

microscope slide with dielectric layer of thickness, d, and hydrophobic 

capping layer (not to scale). 

 

 

 

 

 

 

 

 

 

 

   
 

 

Figure 2.5 Electron micrograph of a metallized glass slide coated with MTEOS 

sol-gel foam: a) at 2kV and x500 magnification, b) at 10kV and x5000 

magnification and c) vertically, in profile, at 5kV and x1000 magnification. 

 

 

 

 

 

d 

Metallized glass slide 

Hydrophobic layer 

S1813 dielectric layer 

a) b) c) 

50µm 10µm 100µm 
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2.2.2 Electrowetting Experiments 

 

For electrowetting experiments the substrates were mounted horizontally on a height 

adjustable stage and held in place with crocodile clips at each end, one of which formed 

the electrical contact with the metal layer of the substrate. The stage was mounted in line 

with a CCD video camera and silhouette illumination on an optical breadboard. The 

breadboard was isolated from bench top vibration by rubber supports and levelled to 

prevent accidental roll-off of non-wetting drops. Illumination was provided by a 40W 

incandescent lamp behind an opaque acrylic diffuser and a glass block of thickness ~15mm 

to reduce heat transfer. The orientation of the stage was normal to the axis of camera view 

and illumination as shown in Figure 2.6. 

 

 

2.2.2.1 Droplet deposition 

 

For the electrowetting experiments, a 0.01M KCl solution was used to aid conductivity. 

Droplet size was chosen to be within a range below the capillary length for water of 2.7mm 

where gravitational effects are less significant. These were deposited on to the substrate 

from a 25µL glass syringe whose scale accuracy is estimated to give drop volumes ±0.2µL. 

The syringe was mounted vertically in a micrometer stand giving control of needle position 

in x, y and z axes. The syringe needle was of 0.5mm diameter with a square-cut tip that had 

been hydrophobized in Flutec
®

 LE15 to aid droplet release. The needle was brought to 

within 20mm of the substrate surface and then the syringe plunger was depressed to give a 

spherical pendant drop of the required volume at the needle tip. The needle was then 

carefully lowered until the drop made contact with the substrate and then raised until the 
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drop was released; as the drop had a much larger contact area with the hydrophobic 

substrate than with the needle, it preferentially remained on the substrate. 

 

 

2.2.2.2 Electrical connection 

 

A copper contact wire of thickness ~0.1mm was brought into contact with the drop from 

above and a bias voltage applied as shown schematically in Figure 2.6. The contact wire 

was also hydrophobized in Flutec
®

 LE15 to prevent the liquid ‘pinning’ to the wire. The 

wire was soldered to the tip of a probe to enable electrical connection to the voltage source, 

the other pole of which was connected to one of the crocodile clips holding the substrate in 

place at the bare metal end. The probe was vertically mounted on a swinging arm and this, 

in turn, was mounted on an x, y, z translation stage allowing full control of the electrode 

wire position. 

The use of any form of enclosure, either around just the sample stage or the whole 

breadboard, to allow minimization of evaporation effects by controlling humidity levels 

was thought, at the time, to introduce practical difficulties. The type of experimental 

arrangement used here required no obstruction of the electrode and droplet positioning 

mechanisms or the camera view. Easy access was also required to these mechanisms as 

well as to the sample surface, especially during liquid marble experiments as described in 

the following sections. Local atmospheric conditions were, as such, kept the same for all 

droplet types. Some effort was made, however, to increase local humidity at the sample 

surface by positioning two uncovered Petri dishes filled with water close to the sample 

stage. 
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For DC voltages a Keithley 2410 source/meter was used and for AC voltages the output of 

an Agilent 33220A waveform generator was fed through a Trek PZD700 amplifier. In both 

AC and DC experiments the applied voltage was ramped up and then back down in steps to 

demonstrate the electrowetting reversibility of each surface. This required automated step 

sequences to be programmed into the voltage sources with specified step amplitude, 

spacing and duration. Optimum voltage ranges and sweep parameters were established in 

preliminary experiments to give the greatest contact angle change while maintaining drop 

stability; if the voltage was too low then contact angle changes were difficult to detect and 

if the voltage was too high, surface defects caused movement or boiling of the drop This 

meant that applied voltages were kept to a minimum to avoid short circuit via pinholes in 

the dielectric substrate coating and to keep below the breakdown voltage of the dielectric. 

The voltage, V, required to give a desired change in contact angle, ∆cosθ, for a given 

thickness, d, of dielectric layer can be obtained from the electrowetting equation and is 

given by, 

0

cos2
)cos(

εε

θγ
θ

r

LVd
V

∆
=∆  (1.31) 

where γLV = 72.8 mN m
-1

 is the surface tension of  water at 20
o
C in air, εr is the relative 

permittivity (or dielectric constant) of the dielectric layer and ε0 = 8.85 F m
-1

 is the 

permittivity of free space. In practice the actual value for γLV would be different to the 

accepted value for water as the ambient temperature of the lab was measured to be 23
o
C 

(the value for water reduces to 72.0 mN m
-1

 at 25
o
C) and the 0.01M KCl solution has 

values of 73.13 mN m
-1 

and 72.39 mN m
-1

 at  20
o
C and 25

o
C respectively. The 

electrowetting relationship is shown graphically for a contact angle decrease from 110
o
 to 

75
o
 on S1813 as the solid line in Figure 2.7

§ 
[60] where the critical voltage for dielectric 
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breakdown, in this case 30V µm
-1

, is also shown by the dashed line. The point of 

intersection between these two lines indicates the minimum thickness required, at this 

dielectric strength on S1813, to achieve this ∆cosθ. 

Despite great care being taken during substrate production a number of pinholes did exist 

on the hydrophobic substrates causing punchthrough quite often, each time rendering a site 

useless on the substrate surface and reducing its useable area. 
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Figure 2.6 An overhead view of the electrowetting experimental arrangement depicting 

the relative positions and orientation of the main components (not to scale) mounted on 

an optical breadboard,  connection to the voltage source (in this case AC from a signal 

generator fed through an amplifier) and connection to the video capture PC. 
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Figure 2.7 Electrowetting voltage for a contact angle decrease from 110
o
 to 75

o
 

(solid line) and dielectric breakdown voltage (dashed line) as a function of S1813 

layer thickness. The dotted line indicates the minimum S1813 layer thickness 

required to achieve this change in contact angle. 
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2.2.2.3 Image capture and analysis 

 

The profile of the drop was captured in silhouette illumination using a Genie DN8706 CCD 

video camera, with a 2x magnification microscope objective lens of focal length 50mm 

attached, connected to a PC via an IDS Falcon video capture board. The camera was 

mounted on an x, y, z micrometer stage to allow full positional control. The images were 

captured and analysed using Krüss DSA-1 drop shape analysis software. For electrowetting 

experiments a video sequence was captured to encompass the ramped voltage cycle. The 

DSA software uses one of five methods to evaluate the properties of the drop and the user 

may select the fitting method that best suits the contact points for a given drop shape and 

surface type. Particularly suited to dynamic contact angle measurements, Tangent 1 and 

Tangent 2 methods determine the contact angle from the slope of a function at the contact 

point, to which the drop profile is fitted only in the region of the baseline, but require good 

image quality with no protrusions. For static, symmetrical drops the Height/width method 

calculates contact angles from height-width relationship of a rectangle enclosing the drop 

profile, considered as being a segment of a circle. This method is more suited to smaller 

drops, as is the similar Circle fitting method except this method copes more easily with 

protrusions. Sessile drop fitting can only be used for static, symmetrical drops with no 

protrusions but is claimed to be, theoretically, the most accurate. This method incorporates 

a profile correction, to allow for the effects of the liquid weight.  

Each shape-fitting algorithm relies on identification of the drop edge in contrast with the 

background, hence the requirement for silhouette illumination. To determine the drop shape 

the software calculates the root of the second derivative of the brightness levels so as to 

identify the points of greatest change in brightness. This gives a tangential intersection with 

a baseline, corresponding to the substrate surface, that is user defined and positioned or 
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automatically generated. Once a best-fit method is established the software measures 

specified parameters frame-by-frame for an entire captured video sequence and tabulates 

the results. This automated routine was particularly useful for sequences captured in 

electrowetting experiments where the applied voltage was ramped up and down as the 

whole sequence may last for in excess of 120s and, with a frame rate of 25-30fps, manual 

measurement would be very time consuming. A sample screen shot of a drop undergoing 

profile fitting is shown in Figure 2.8 where the fit lines are shown in green on the drop 

image. The consistency of the fits was checked visually during the automated process and 

any anomalies could be easily identified within the ‘Result Window’ whereupon those data 

were disregarded. Once certain parameters are entered into the software, such as ambient 

temperature and the syringe needle diameter as a reference measurement, the software 

calculates a magnification factor to accurately scale the image. Then parameters such as 

drop base diameter, drop max. diameter,  drop height and contact angles (left, right, mean) 

could be measured and recorded. Tangent 1 and Tangent 2 methods were found to be the 

only ones that would fit to drops on superhydrophobic sol-gel substrates and so these two 

methods were used for the flat, hydrophobic surfaces too for consistency. 
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Figure 2.8 Sample screen shot of an electrowetting drop undergoing profile 

fitting in the Krüss DSA-1 drop shape analysis software. Profile fit lines are 

shown in green and the automated measurements appear in the ‘Result 

Window’. 
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2.3 Liquid Marbles 

 

As an alternative to drops on superhydrophobic surfaces, drops encased in a conformal 

superhydrophobic surface were investigated. The conformal coating in this case took the 

form of silane treated yellow spores of the moss Lycopodium. Such drops are termed liquid 

marbles [67-72] and exhibit certain properties more akin to solid spheres than liquid drops 

such as very high mobility and robust shape. The effect of gravity on their shape was 

investigated as well as their mobility and wetting behaviour upon application of a bias 

voltage. This required development of techniques for consistently creating and handling 

liquid marbles of varying sizes, while keeping as close to a monolayer coating of powder 

grains as possible. 

 

 

2.3.1 Marble Production 

 

The main problem to overcome when creating liquid marbles is the liquid drop becoming 

pinned to the surface before it has chance to be completely coated in hydrophobic powder 

grains. If this happens then it is difficult to get the drop moving again and even then there 

is a likelihood of some liquid separating from the main drop to remain pinned to the 

surface. If the underlying surface is a superhydrophobic one then it becomes easier to keep 

the drop moving until it is completely powder coated and a liquid marble is fully formed. If 

the surface is dished then it also becomes easier to contain the marble as its mobility 

increases, so a superhydrophobic MTEOS sol-gel foam [66] was cast in the shape of a 

watch glass to act as a suitable marble carrier. This was achieved by first forming the sol-

gel in a circular, straight-sided mould of diameter 70mm and depth ~10mm giving a flat 
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top surface but a concave underside due to shrinkage during the synthesis. A similar, but of 

slightly smaller diameter mould was then pressed into the sol-gel like a pastry cutter to 

remove a circular portion. This portion was then turned over so that the concave surface 

became the new top surface giving a shallow, basin shape. 

Lycopodium powder, with grains of size dg = (17±3)µm, were hydrophobized by 

immersing in cyclohexane with added hexamethyldisilizane for 48h and then dried in a 

vacuum oven at 40
o
C. The powder was then dispersed thinly but evenly over the surface of 

the sol-gel ‘basin’ (Figure 2.9) by sprinkling it with the powder then agitating it while 

tilting in all directions. This ensured that the powder grains evenly dusted as much of the 

basin surface as possible, becoming trapped by the porous nature of the sol-gel. Agitation 

helped to minimize the build-up of grains in any one area and the excess was then allowed 

to be shaken off. Droplets of 0.01M KCl solution were deposited from a 25µL syringe (or 

a 200µL micro-pipette for larger marbles) onto the powder and as the droplets were made 

to roll around the powder coated them transforming them into highly mobile liquid marbles 

(Figure 2.10). Although the amount of powder available to the rolling droplet was reduced 

by removing as much excess as possible, this provided one of only two control measures 

for the amount of powder adsorption on the surface. The other was to closely observe the 

developing marble so that as soon as complete mobility and total powder coverage were 

achieved the marble was removed from the powder (usually after 1-3 circular orbits, 

depending on drop size). These methods are crude but for the most part marbles appeared 

to have a coating consisting of individual grains with water visible between them in places, 

particularly for the larger sizes. Surface concentration of powder grains is difficult to 

quantify but from visual assessment of silhouette images the surface coverage is estimated 

to be in the region 80-90%. Achieving a powder monolayer was most difficult with the 

smallest marble volumes (<10µL) as the orbital rolling action exposed all sizes to the same 
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amount of powder. In these cases a measurement of the roughness scale on the silhouetted 

marble profiles indicated a build up of no more than two powder grains (based on dg = 

(17±3) µm). These grains provide the conformal coating and ensure the water within the 

marble does not come into direct contact with any substrate upon which the marble rests. 

They also contribute to the separation, d, between the conducting metal surface and the 

liquid and so a factor of 2 increase in this contribution will affect the capacitance of the 

system c= sεrεo/d, where εo and εr are the permittivity of free space and relative 

permittivity, respectively. Although the value of εr for lycopodium powder is unavailable 

the effect of a build up of grains on the dielectric properties of the marble thus tends 

toward the assumption of a solid powder surface rather than a composite powder-air 

surface.  
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Figure 2.9 Sol-gel ‘basin’ coated in lycopodium powder. 

 

 

 

   

 

Figure 2.10 A 2µL liquid marble in silhouette illumination. 
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2.3.2 Marble handling 

 

Once a liquid marble had been produced it was transferred to the sample stage and 

positioned for experimentation while remaining intact, free from contamination and within 

a short enough time to avoid evaporation effects. Depending on the size of the marble, 

liquid evaporates from between the powder grains after a period of time until the drop 

shape is diminished. The powder coating remains as a husk which collapses in on itself, 

starting at the top of the marble. Water containers positioned close to the sample stage 

were also employed here to increase the local humidity and help minimize evaporation (see 

2.2.2.2). Actual evaporation rates were not measured as the use of images could only offer 

changes in radius or height as indicators and these could not be measured reliably due to 

masking by the powder coating. Rates could, however, have been established from change 

in mass and compared to those for liquid drops. Nonetheless, for a marble of typical size 

for electrowetting experiments containing 2µL of liquid, evaporation effects meant that the 

experiment duration could not exceed three minutes so a reliable method for fast transfer 

was vital. This was less of an issue with larger marbles as the volume of liquid becomes 

larger compared to the surface area exposed to air so liquid loss by evaporation takes much 

longer to affect the drop shape. However, although liquid marbles are robust compared to 

liquid drops, the larger the marble the more likely it is that the powder coating will split, 

due to the mass of the liquid, allowing liquid to leak out and the marble to collapse. It was, 

therefore, important that the marbles were not made to roll too fast or over obstacles or 

allowed to fall and impact on a surface. 

The method used involved allowing the marble to roll into the dished end of a metal 

laboratory spatula which was then used to carry it to the sample stage. The edge of the 

spatula was kept close up to the edge of the sol-gel basin so there was no gap or step for 
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the marble to overcome. This was then tilted to allow the marble to roll out on to the 

substrate surface and a small section of plastic was used as a barrier to prevent the marble 

rolling off; this could also then be used to manoeuvre the marble into position on the 

surface. The edge on one side of the spatula was filed to a sharp taper so that it would meet 

the surface without imposing a step for the marble to roll off, allowing a smooth transition 

on to the surface. After each experiment, used marbles which remained mobile were 

removed using a light current of air and any that had collapsed or burst were removed by 

blotting with paper towel. Any powder debris was removed using a small artists paint 

brush. 

  

 

2.3.3 Gravitational effects 

 

To investigate the shape changes of liquid marbles due to gravity as their size increases, 

measurements of height and diameter were taken for marbles ranging from 0.5µL to 

300µL. The actual volume sequence used is given in Table 2.2. Distilled water was used 

for the liquid drop as there was no requirement for improved conductivity but a 

representative selection of the volume range were repeated using 0.01M KCl solution to 

confirm that the data was valid for the salt solution as well. The profile of the marble was 

captured in silhouette illumination using the DSA-1 drop shape analysis software on a 

Krüss DSA-10 contact angle meter (Figure 2.11). The camera on this system has manual 

focus adjustment and zoom adjustment up to 4.5x which meant that it could accommodate 

the largest marble size in its image frame while still creating a large enough image of the 

smallest sized marble for measurements to be taken. The zoom level was kept constant for 

as many consecutive sizes as possible, however, so as to reduce the amount of image re-
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calibration required; each time the zoom level changes a new magnification factor in 

pixels/mm has to be calculated to correctly scale the image and the system does this using 

an image of a syringe needle of known diameter. The DSA-10 camera is a fixed part of the 

system with only tilt adjustment as it relies on the stage being movable. It is mounted at 

one end of a linear optical bench with the light source for silhouette illumination mounted 

at the opposite end. Between the two is the sample stage which is adjustable in all three 

axes. An automatic dosing syringe holder is mounted over the sample stage and this allows 

variable speed liquid dispensing controlled from within the DSA-1 software. The syringe 

mount may be tilted upwards to allow refilling or, in this case, to be out of the way of 

marble transfer onto the sample stage. 

Each liquid marble was created and transferred to a glass slide on the sample stage, using 

the techniques described in the previous two sections, whereupon an image was captured 

and the magnification factor noted. Images for all marble sizes were captured before any 

measurements were taken. Then, the manual ‘Line Draw’ tool in the image processing 

software ImageJ v1.41 (NIH) [73] was used to determine the marble maximum diameter 

and height measured from the slide surface. The DSA-1 software is capable of determining 

drop height and diameter but in practice, for the liquid marbles, it was found that the level 

of granular roughness made it very difficult for the DSA-1 software to fit to the drop and 

hence perform accurate measurements. 
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V/µL R/mm V/µL R/mm V/µL R/mm V/µL R/mm 

0.5 0.49 50 2.29 105 2.93 210 3.69 

1 0.62 52 2.32 110 2.97 215 3.72 

2 0.78 55 2.36 115 3.02 220 3.74 

5 1.06 57 2.39 120 3.06 225 3.77 

7 1.19 60 2.43 125 3.10 230 3.80 

10 1.34 62 2.46 130 3.14 235 3.83 

12 1.42 65 2.49 135 3.18 240 3.86 

15 1.53 67 2.52 140 3.22 245 3.88 

17 1.60 70 2.56 145 3.26 250 3.91 

20 1.68 72 2.58 150 3.30 255 3.93 

22 1.74 75 2.62 155 3.33 260 3.96 

25 1.81 77 2.64 160 3.37 265 3.98 

27 1.86 80 2.67 165 3.40 270 4.01 

30 1.93 82 2.70 170 3.44 275 4.03 

32 1.97 85 2.73 175 3.47 280 4.06 

35 2.03 87 2.75 180 3.50 285 4.08 

37 2.07 90 2.78 185 3.53 290 4.11 

40 2.12 92 2.80 190 3.57 295 4.13 

42 2.16 95 2.83 195 3.60 300 4.15 

45 2.21 97 2.85 200 3.63   

47 2.24 100 2.88 205 3.66   

 

Table 2.2 Liquid volumes used for an investigation of the gravitational effects on 

liquid marble shape with increasing size. Corresponding free spherical drop radii 

are also shown. 
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2.3.4 Electrowetting Experiments 

 

The experimental arrangement described in (2.2.2) was used again here along with the 

hydrophobic substrate described in (2.2.1.1-3) except this time the drop was in the form of 

a liquid marble. The micrometer mount syringe was also removed from the breadboard as 

drops were not being deposited directly from the syringe on to the substrate. A lower 

volume drop of 2µL was used to ensure as close to perfect spherical shape as possible and 

hence the highest Young angle, θe. This provided the closest analogy to a superhydrophobic 

surface while being large enough for an experiment to be conducted before the liquid 

evaporated. The electrowetting schematic is shown in Figure 2.12 where a representation of 

the powder grains separating the drop from the surface is also shown. As the marble can be 

thought of as a drop with a superhydrophobic surface wrapped around it the arrangement of 

powder grains, which does not follow any geometric pattern, is comparable to the sol-gel 

superhydrophobic surface described in (2.2.1.4). Although the powder forms an insulating 

layer it was necessary to use the hydrophobized and insulated substrate to prevent short 

circuit should the liquid penetrate between the grains. The marble surface, during 

production, can gather more than a monolayer of grains and the excess grains are left as a 

trail when the marble first rolls on a flat surface. During positioning of the marble on the 

electrowetting substrate a degree of roll is unavoidable and the resulting trail has the effect 

of debris on the surface when taking measurements. This effect was minimized by 

encouraging the marble to roll further, hence losing most of the excess grains and ensuring 

the captured image was as free from obstruction as possible. This exercise also confirmed 

that the marble had not burst upon deposition and was mobile prior to electrowetting. 

Wetting behaviour was again characterized by measurement of the dynamic contact angle. 
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2.3.5 Contact angle measurement  

 

With the liquid marbles the DSA-1 software could not identify the contact points due to the 

roughness of the surface coupled with the fact that the marble was effectively a completely 

non-wetting drop with contact angle approaching 180
o
. This made it impossible for the 

software to fit the marble profile and perform dynamic contact angle measurements. In this 

case the measurements were made on single frames using the angle measurement tool in the 

ImageJ [73] image processing software following enhancement of the image brightness and 

contrast. This method requires a baseline to be drawn manually (by cursor drag) at the solid 

surface and a second line to be drawn tangentially to the marble surface at the solid-marble 

interface. The software then measures the angle between these two lines. Examples of 

manually fitted baseline and tangent are shown in Figure 2.13 with a) non-wetting and b) 

partially wetting liquid marbles. The manual placement of a baseline and tangents is, in 

itself, a source of error but each angle was measured six times and a mean value taken to 

minimize measurement errors. For images taken from video sequences an image was 

chosen from the centre of a sample window. This window would encompass all frames 

captured between changes in applied voltage and hence a modal average image was used. 

For manual measurements a scaling factor was calculated from the image of a known size 

simulated drop in the form of a steel ball-bearing where the measured diameter in pixels 

was related to the measured diameter in millimetres. 
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Figure 2.11 The Krüss DSA-10 contact angle meter. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Electrowetting configuration for a liquid 

marble. The hydrophobic grains provide a separation 

between the liquid of the marble and the substrate. 
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Figure 2.13 Liquid marble images undergoing measurement of 

contact angle using ImageJ angle measuring tool showing the 

manually fitted baseline and tangents in a) a non-wetting state and 

b) a partially wetted state. 
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2.4 Liquid Marble Motion Control 

 

In a separate sequence of experiments focusing on actuating controlled droplet motion a 

new substrate type was designed and fabricated. This contained an electrode pattern to 

which a bias voltage could be sequentially applied to each electrode beneath a liquid 

marble. A system for sequentially switching the applied voltage between electrodes was 

established along with a method of connectivity with the small scale electrode pattern. 

 

 

2.4.1 Device Production 

 

The basic electrowetting substrate described in (2.2.1.1-3) was essentially being produced 

again here but with the metallized surface electrode taking the form of a parallel ‘finger’ 

configuration using photolithographic techniques. The second or ground electrode was 

then either an opposite polarity neighbouring electrode or a separate flat plate electrode 

suspended closely above the marble. This differed from the penetrating wire electrode used 

in electrowetting as such a method would not allow the marble to move. 

 

 

2.4.1.1 Mask Design 

 

A parallel finger electrode arrangement was designed using Altium DXP PCB design 

software and laser printed on to transparent acetate to create a photolithography mask 

(Figure 2.14). The mask was printed as the monochromic negative of the design so that the 

electrodes appeared as gaps in an otherwise totally black area large enough to cover a 
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standard microscope slide. The pattern was designed to give twenty electrode fingers of 

width 0.3mm with 0.3mm spacing, a ratio giving at least one electrode and space beneath a 

1µL (diameter ~1.2mm) or 2µL marble (diameter ~1.6mm) while still being large enough 

to be fabricated with this crude type of mask. To allow connectivity one end of each 

electrode finger was extended at 90
o
 and terminated with a circular pad of diameter 1mm. 

 

 

2.4.1.2 Photolithography 

 

The photolithography process for the production of a patterned electrode device is shown 

by the flow diagram, Figure 2.15. A glass slide was spin-coated with a 1.5µm layer of 

S1813 photoresist using an EMS 4000 spin coater (as described in (2.2.1.2)) and then pre-

exposure baked face down on an EMS 1000-1 hotplate at 100
o
C for 75s to drive off the 

solvent. This stage is essential for the photo-sensitivity of the resist layer although over-

baking will degrade the layer by either reducing the solubility or destroying the sensitizer. 

The slide was then placed resist-side-down on to a UV light box (RS Components), with 

the electrode pattern mask sandwiched between the two, and exposed to UV light for 75s. 

This was found to be the optimum exposure time to give good feature definition without 

removing electrodes by over-exposure. The slide was then immediately immersed in a 50% 

solution of Shipley Microposit developer in 18MΩ cm
-1

 de-ionized water and agitated for 

<10s until fully developed; developing removes the portion of photo-resist that has been 

exposed to UV light. Following nitrogen blow-dry the slide was metallized with sputtered 

titanium to a thickness of ~40nm followed by gold to a thickness of ~100nm using an 

Emitech K575 sputter coater (as described in (2.2.1.1)) and then placed face up in an 

acetone bath for a ‘lift-off’ stage for >40mins. This stage removes all the remaining photo-



  Chapter 2 Experimental Techniques 

   

resist and the metal film that coats the resist, leaving the metal coating on glass in the 

desired electrode pattern as shown in Figure 2.16. The device was not coated with an 

insulating layer so as to allow a lower applied voltage, reduce charge accumulation and 

because only 50% of the substrate beneath the marble would be conducting anyway. 

However, it was found that the ejection of some powder grains from the charged marble 

surface could lead to gaps in the coating. The liquid could then penetrate between the 

grains to contact the substrate surface where a short circuit between electrodes would 

occur. As such, in later experiments devices coated with an insulating S1813 layer of 

thickness 1.3µm, and a thin coating of Flutec
®

 LE15, were used.   

 

 

 

 

 

 

Figure 2.14 Electrode pattern lithography mask with 

twenty electrode fingers of 0.3mm width and spacing 

and 1mm diameter connection pads. 
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Figure 2.15 Flow diagram of the photolithography process 

for production of a patterned electrode device. 

 

 

 

 

 

Figure 2.16 Photograph of finger electrode pattern on glass 

slide with 0.3mm electrode width and 0.3mm spacing. 

acetate mask Expose through 

Glass slide 

Spin coat photoresist 

metal electrode pattern Lift off to give final 

in photoresist Develop pattern 

Sputter coat with Ti/Au 
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2.4.1.3 Electrical Connection 

 

Electrical connections to the electrodes were by flying leads terminated with 4mm plugs 

but it was not possible to solder leads directly to the small contact pads as the heat from a 

soldering iron caused the metal pad to be removed from the slide. Instead the device was 

adhered to a copper-clad Veroboard to which the leads could be soldered. To connect the 

electrode pads to the Veroboard a Kulicke & Soffa 4522 ball bonder (Figure 2.17 a)) was 

used to create gold wire links. The ball bonder comprises a bonding head that feeds thin 

gold wire (in this case 25µm) vertically through a ceramic capillary (Figure 2.17 b)) 

positioned above a heated work holder. The work holder was kept at the factory optimised 

temperature of 85
o
C. Close to the capillary tip is a metal wand connected to a negative 

voltage generator forming the Negative Electronic Flame Off (N.E.F.O) system used to 

create the bonding ball; a spark is generated between the wire and the wand and this 

terminates the wire with a gold ball whose size may be controlled. The bond head descends 

to a preset ‘search’ height to allow final positioning of the work piece and then the ball is 

bonded to the substrate by a combination of physical down-force by the head and 

ultrasonic vibration through the capillary for a specified time. The bond head then returns 

to the search height creating a wire loop bonded to the substrate at one end. The other end 

of this loop is then moved to the second bond site and the bond process is repeated. The 

bond time, force and ultrasonic power may be adjusted by the user to suit the wire 

thickness and substrate material in use. These parameters may differ between first and 

second bonds. An electronically controlled wire clamp on the bonding head allows the loop 

to be formed and performs the ‘tear and tail’ operation. This breaks the wire feed from the 

second bond and leaves enough wire protruding from the capillary tip for the next ball. A 
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stereo microscope provides a magnified view of the local work area which facilitates final 

positioning and optimization of the search height and bond parameters. Figure 2.18 shows 

the finger electrode substrate bonded to underlying Veroboard with gold wire links ball-

bonded to the electrode pads. 

 

  

 

Figure 2.17 Kulicke & Soffa 4522 wire bonder showing a) the 

whole instrument and b) a close-up of the bond head showing the 

capillary and N.E.F.O wand. 

 

 

 

 

Figure 2.18 Photograph of ball-bonded 25µm gold 

wire links from electrode pads to veroboard mount. 

Bond head 

b) a) 

Microscope 

Heated stage 

N.E.F.O 

wand Capillary 
a) 
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2.4.2 Motion Control Experiments 

 

Experiments were conducted using virtually the same breadboard set-up that was used in 

the marble electrowetting experiments (as described in 2.3.4), with the camera, stage and 

illumination similarly aligned, but with some modifications. The positioning of the 

veroboard-mounted device on the sample stage left no space to accommodate the glass 

block used for heat shielding so the incandescent light source was replaced with a 

fluorescent one to reduce heating. The probe-mounted electrode wire positioned above the 

sample stage was replaced with a section of copper plate of thickness ~0.5mm, width 

~3mm and length ~20mm. The plate was soldered to the probe tip but then bent through 

90
o
 to give a flat, horizontal electrode. This was positioned above the marble acting as the 

reference electrode and fixed at 0V. Figure 2.19 shows a) the principle of operation of 

sequentially applying a voltage (V
+
, V

-
) to a series of electrodes beneath a liquid marble 

with respect to an upper electrode at 0V and b) schematically, the experimental 

arrangement with an inset photograph of the finger electrode device with the upper 

electrode offset to reveal a deposited liquid marble. There was no longer a requirement for 

electrical connection to the substrate via the crocodile clip which clamped it to the sample 

stage as each electrode was individually connected to one of twenty rotary switches housed 

in a purpose built switch box. Each switch was interconnected to be multi-position such 

that each electrode could be switched to and from any combination of V
+
, V

-
 or 0V. The 

photographs in Figure 2.20 show a) the switch box with twenty rotary switches, each one 

having positions for V
+
, V

-
 and 0V applied to a single electrode and b) connections to 

individual finger electrodes on the device mounted in position for experiments. A DC bias 

of 150V was connected to the switch box across two series resistors of 10 MΩ with a 

centre tap-off providing the reference voltage. 
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Liquid marbles were created and transferred to the device as described in (2.3.1) and 

(2.3.2) one or two at a time and then the upper electrode was swung into position above the 

marble but not in contact with it. The +75V and -75V relative to the upper electrode were 

applied sequentially to adjacent electrodes under the marble and the Krüss DSA-1 software 

was used to capture a video sequence of the resulting change in marble position. In later 

experiments patterned electrode devices of the same configuration were spin-coated with 

an S1813 insulating layer which meant higher DC voltages of 200V – 400V could be used. 

In these experiments the voltage was applied with reference to neighbouring electrodes 

removing the need for a separate plate above the marble. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter 2 Experimental Techniques 

   

 

 

 

 

 

 

 

 

Figure 2.19 Experimental arrangement for droplet actuation showing a) 

principle of successive application of voltage (+V, -V) sequentially 

across electrode fingers with respect to an upper electrode (0V) and b) 

schematic showing arrangement of equipment together with a top-view 

photograph of the substrate with electrodes and with a deposited liquid 

marble. 

 

 

 
 

  

 

Figure 2.20 Photographs showing a) switch box with twenty rotary switches, each 

one having positions for V
+
, V

-
 and 0V applied to a single electrode and b) 

connections to individual finger electrodes on the device mounted in position for 

experiments. 

 

 

b) a) 

a) b) 
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2.5 Liquid Marble Resonant Oscillations 

 

Building on the work done with liquid marbles in electric fields, an investigation of the 

resonant oscillation modes of liquid marbles compared to sessile liquid drops on a surface 

was carried out. The investigation was extended to include resonant modes of larger liquid 

marbles and utilized the same basic experimental set-up as was used in all previous 

electrowetting experiments. within this case, though, the CCD camera was replaced with a 

high speed CCD camera so as to allow video capture of shape oscillations at frequencies in 

the 10
2 

Hz range. A method for identifying the resonances within a frequency sweep was 

then developed. 

 

 

2.5.1 Substrates 

 

Initially substrates were produced to emulate those used in work done by Miraghaie et al. 

[74] who used a ‘grounding from below’ technique with gold coated slides and Indium Tin 

Oxide (ITO) coated glass slides. On these substrates the ITO coating provided one 

electrode and a grounding line electrode was lithographically patterned on to a deposited 

dielectric layer. It was found, however, that although these devices worked well for 

generating oscillations in liquid drops, the mobility of liquid marbles made them 

susceptible to lateral movement under an applied voltage. This effect was exploited in 

motion control experiments with liquid marbles but was undesirable in oscillation 

experiments as it could lead to the marble collapsing, or changing proximity to the 

electrode or the focal plane. Also the image frame would often be localised to a portion of 
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the marble surface rather than the whole, requiring that the marble maintain its position on 

the substrate. 

As a result it was felt that the use of the inserted-from-above wire electrode from the 

electrowetting experiments would help to keep the marble in position while allowing shape 

oscillations; during low frequency preliminary electrowetting experiments with liquid 

marbles, oscillations were observed. A brief series of tests using water drops on both the 

electrowetting planar substrate and the ‘grounding from below’ Miraghaie type substrate 

confirmed that the shape oscillations were not overly affected by liquid pinning to the wire 

providing the wire was hydrophobized. As marble sizes 10µL and over were to be used in 

the oscillation experiments, the fraction of the marble surface affected by the wire would 

be minimized.  

Standard glass slides were metallized with sputtered titanium and gold and then spin-

coated with S1813 photoresist to a thickness of 2.5µm (with one end taped over to leave a 

bare metal area for connection) before baking on a hotplate for 30mins at 130
o
C as 

described in (2.2.1). A hydrophobic capping layer of neat Teflon
®

 AF1600 was then spun 

on to a thickness of ~1.3µm and then baked on a hotplate for 5mins at 60
o
C to drive off the 

solvent (3M Company FC-75). Teflon
®

 AF1600 has a low relative dielectric constant of 

~1.93 and a thick layer of it was used in this case to allow the S1813 layer to be kept at 

2.5µm. This reduced the need for high applied voltages, while ensuring that complete 

coverage with a minimum of pinholes was achieved. Although high amplitude oscillations 

make identification of resonances at higher frequencies easier, the voltage required to 

achieve them was kept to a minimum so as to reduce charging effects and lateral 

movement of the marble and to minimize the risk of dielectric breakdown. Consistent 

coatings with the least possible defects were particularly important with these substrates as 

some of the experiments used very large marbles whose contact area could be a factor of 
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50 greater than that of the smallest marble used. This greatly increased the likelihood of 

any defects being encompassed by the contact area. 

 

 

2.5.2 Image Capture 

 

Resonant oscillation experiments were conducted over a range of frequencies which made 

the use of a standard CCD camera, with a fixed frame rate of 25 frames per second (fps), 

totally impractical. The MemView high speed CCD camera and capture software (version 

1.6.1) from Southern Vision Systems Inc. (SVSi) replaced the standard camera and was 

capable of a maximum frame rate of 15625 fps. In practice the frame rate is determined by 

the user-defined exposure time, Texp, and a frame size selected from a drop-down list of x,y 

combinations ranging from 160 x 128 to 1280 x 1024 pixels. Table 2.3 lists the frame rates 

for a given frame size and exposure. The MemView camera records video sequences 

directly onto its own internal memory which may be reviewed in a playback pane prior to 

saving so as to identify the region of interest and hence, the relevant ‘start’ and ‘stop’ 

frames. If these marker frames are specified in the file-saving pane then frames outside of 

this range are discarded while those within the range are saved to a user-defined location 

on the PC in either .AVI, .RAW format or as a sequence of images. It is only then that the 

captured images are transferred to PC via a USB connection, no separate video capture and 

interfacing is required. The camera may have up to 16GB of internal memory installed and 

this capacity limits the recording time for a given frame rate, frame size and exposure time; 

in this case the memory was limited to 1GB. The frame rate of recorded video was 

required to be at least double the frequency of oscillation to avoid inaccurate resonant 

frequency identification from image aliasing but the oscillation frequency was twice the 



  Chapter 2 Experimental Techniques 

   

driving frequency [74] so the actual capture frame rate needed to be 4 x the driving 

frequency. 

Triggering of the camera may be internal, from controls within the MemView software, or 

external from a TTL triggering signal. External triggering did not operate with the signal 

from the triggering output of the Agilent 33220A waveform generator used in these 

experiments and so capturing was activated manually, from within the software, at the 

same time as the output from the waveform generator. This introduced a possible source of 

error as simultaneous manual operation of the two devices could, in practice, have a slight 

temporal offset between devices. This would only be of the order of 100ms max. and 

would give an error in the frequency sweep of ±0.5Hz in the worst case.  

With higher frame rate capturing it was found that at certain frame rates the AC frequency 

of the light source used for the silhouette illumination was picked up on the images. This 

effect was observed as a fluctuating brightness level of the background light which 

affected the contrast with the marble. Subsequently the light source was replaced with a 

12V 24W incandescent lamp connected to a DC power supply. 
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Frame Size (pixels) Exposure Frame Rate 

1280 x 1024 2µs-2.05ms 

>2ms 

488fps 

1/T exp 

1280 x 960 2µs-1.92ms 

>2ms 

520fps 

1/T exp 

1280 x 512 2µs-1.02ms 

>1ms 

976fps 

1/T exp 

640 x 512 2µs-1.02ms 

>1ms 

976fps 

1/T exp 

640 x 480 2µse-963µs 

>1ms 

1038fps 

1/T exp 

1280 x 256 2µs-512µs 

>500µs 

1953fps 

1/T exp 

320 x 256 2µs-512µs 

>500µs 

1953fps 

1/T exp 

160 x 128 2µs-256µs 

>250µs 

3,906fps 

1/T exp 

1280 x 128 2µs-256µs 

>250µs 

3,906fps 

1/T exp 

720 x 480 2µs-0.96ms 

>250µsec 

1,038fps 

1/T exp 

1280 x 32 2µs-64µs 

>250µs 

15,625fps 

1/T exp 

 

Table 2.3 Frame rates for a given frame size and 

exposure of the SVSi MemView high speed CCD 

camera. 
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2.5.3 Resonant Oscillation Experiments 

 

Liquid marbles were produced and transferred to electrowetting substrates using the 

techniques described in 2.3.1 and 2.3.2 whereupon a thin hydrophobized electrode wire 

was inserted centrally into the marble from above. An AC voltage was applied across the 

marble between the electrode wire and the underlying metal substrate surface. A sweep of 

the AC frequency in a given range for a given time was initialized at the same time as high 

speed video capture of the marble image in silhouette illumination. 

Preliminary experiments on a sample group of marble sizes, given in Table 2.4, were 

performed with a frequency sweep of 0-50Hz over 50s captured at 200fps so as to identify 

an approximate value for the fundamental resonant frequency for each size. Once the first 

resonance was visually identified from each captured video the experiments were repeated 

over a narrower frequency band to obtain a more accurate frequency value. As such the 

sweep was set to span 10Hz over 40s (giving a sweep rate of 0.25Hz s
-1

), where the 

approximate fundamental frequency value would lie roughly in the middle of the sweep. 

This made best use of the camera capabilities by ensuring the sweep duration was as close 

as possible to the capture duration limit for the specified frame size and frame rate without 

exceeding it. The sweep rate was kept as low as possible to avoid the lag effects 

encountered when electrowetting with liquid marbles and also to make identification of the 

resonance peak easier. The frame size was chosen to optimize the frame rate and capture 

duration parameters while providing an image which captured at least half the marble 

perimeter from contact point to electrode wire. 

In a separate set of experiments using a representative selection of the marble size sample 

group, experiments were conducted with wider band frequency sweeps to establish higher 

order resonant modes of liquid marbles. The frequency bandwidth was chosen to be 250Hz 
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because preliminary experiments showed that beyond 250Hz the amplitude of oscillations 

became so small that resonances were difficult to identify. This would have required an 

increase in the driving frequency amplitude and this was undesirable for the reasons 

discussed in 2.5.1. Also, to comply with the limitations imposed by the internal memory of 

the camera, this allowed a suitable balance to be found between sweep rate, frame rate and 

frame size. A 250Hz driving frequency required a frame rate of 1000fps minimum and this 

limited the frame size to 160 x 128 pixels in order to maximize the capture duration to 52s, 

allowing a sweep time of 50s to give a sweep rate of 5Hz s
-1

. Although this sweep rate was 

more than a factor of ten greater than that used for the fundamental frequency experiments, 

to match it would have greatly shortened the driving frequency range and this would have 

significantly reduced the number of resonant modes. As it was, the frame size had to be 

confined to 160 x 128 pixels meaning that only small sections of the marble perimeter 

could be imaged. In practice the actual frequency sweep was in the range 1 – 251Hz 

because the waveform generator would not allow a starting frequency of 0Hz. 

As resonant frequencies increase as marble size decreases, the number of resonant modes 

was found to be too few with marbles under 10µL. Also, marbles over 150µL proved 

equally problematic as they are difficult to keep intact during handling. Taking these two 

factors into account, an appropriate representative selection of sizes to be used for these 

experiments was chosen and is indicated in bold highlight in Table 2.4. 
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V/µL R/mm V/µL R/mm V/µL R/mm V/µL R/mm 

5 1.06 30 1.93 75 2.62 200 3.63 

10 1.19 35 1.97 100 2.64 225 3.66 

15 1.34 40 2.03 125 2.67 250 3.69 

20 1.42 45 2.07 150 2.70 275 3.72 

25 1.53 50 2.12 175 2.73   

 

Table 2.4 Liquid volumes used for an investigation of the fundamental resonant 

frequencies of different sized liquid marbles. Corresponding free spherical drop 

radii are also shown. Data in bold highlight volumes used for wide band, higher 

resonant mode experiments. 

 

 

 

 

2.5.4 Image Processing 

 

Qualitative interpretation of image sequences captured at high speed, visually, is very 

difficult and can require the use of image processing techniques offered by software tools. 

Such techniques are invaluable for quantitative data extraction and can also provide 

solutions for data representation. 

 

 

2.5.4.1 Identification of Resonant Modes 

 

When a liquid marble or liquid drop is forced to undergo shape oscillations by an applied 

AC voltage, a series of wave nodes and anti-nodes become apparent around the shape 
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profile in numbers that depend upon the frequency of oscillation and the size of drop or 

marble used. A schematic of a liquid marble oscillation experiment showing the nodal 

pattern around the marble is shown in Figure 2.21. As peak resonances occur the amplitude 

of oscillation, or anti-nodal displacement, reaches a maximum and this may be used to 

establish values for the resonant frequencies. There may be a number of resonant modes, 

depending on the drop/marble size, at different frequencies and the amplitude of oscillation 

falls as the frequency increases so identification of peak amplitude visually during 

playback of the captured video proved difficult. Coupled with the fact that the maximum 

playback rate in the MemView software is 40fps irrespective of the capture rate, this made 

the process very time consuming. 

An image processing method was devised to automate the analysis, making it quicker, and 

improve the accuracy of resonant peak identification. This method also provided visual and 

graphical evidence of the process. Firstly the ‘Export Frames’ option within the MemView 

software was used to convert each relevant video file into sequentially numbered still 

images of its component frames. Then all of the images for a given experiment, which 

could be as many as 50,000 for a harmonics experiment captured at 1000fps, were 

imported into NIH ImageJ software as an image sequence. By scrolling through the 

sequence it was possible to pinpoint the region on the drop or marble surface where an 

anti-node occurred throughout the frequency sweep. At this point a tall narrow rectangular 

area could be selected, at the same angle as the anti-node displacement relative to the 

substrate, to be half over the silhouetted drop/marble shape and half over the illuminated 

backdrop above it. As the surface oscillates the anti-node rises and falls within the selected 

area which effectively changes the relative number of dark and light pixels, the average 

greyscale value, within that area. Figure 2.22 shows two images of a section of a 150µL 

oscillating liquid marble in ImageJ with the selected area, in yellow outline, close to the 
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inserted electrode wire at the apex. Within the selected area an anti-node can be seen to be 

at a) peak positive and b) peak negative amplitude. The white dotted line across both 

images shows the peak-to-peak anti-nodal displacement within the selected area and this 

generates the change in average greyscale value. 

An image ‘stack’ was then composed from all of the images in the sequence and a z-axis 

profile could then be plotted within ImageJ. This plots the mean greyscale intensity from 0 

(black) to 255 (white) as a function of frame number. A screen capture of a z-axis profile is 

shown in Figure 2.22c and is plotted from the first 50Hz data for the 1 – 251Hz sweep; the 

images in Figure 2.22 were also taken from this data. From this, resonances may be 

identified when the greatest change in mean greyscale value in consecutive frames 

indicates amplitude maxima, producing a series of distinct peaks. 

By applying the simple formula, 

  ((frame number/frame rate) x sweep rate) + starting frequency 

to the data the frame numbers could be transposed to frequency values so that the anti-node 

displacement, as a mean greyscale value, could be plotted as a function of driving 

frequency. The resonant frequencies could then be identified with a measurement accuracy 

of ±0.5Hz. Figure 2.23a shows the anti-node displacement as a function of driving 

frequency for the first 100Hz of the sweep for the above 150µL liquid marble data. The 

largest marble size used in these experiments has been chosen to illustrate this technique 

because the largest marble has the greatest number of resonances that can be seen in a 

given frequency range. Figure 2.23b shows the same data but zoomed in on the 20 – 50Hz 

region to show more clearly the distribution of points. 
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2.5.4.2 Resonance Images 

 

In addition to identifying the resonant modes from the captured images it was necessary to 

be able to present the actual nodal pattern of a surface oscillation visually. This would 

better demonstrate a resonant mode and the technique used to identify it. Clearly the 

presentation of temporally varying images from captured video in a printable way would 

normally rely on displaying a sequence of still images with some form of comparison 

between them. In this case, however, the oscillation amplitudes were so small that this 

method could not be easily visualized. An alternative method was used which involved 

importing a sequence of consecutive images into ImageJ, to compose an image stack for 

one complete oscillation, and then performing a z-axis projection. This effectively overlays 

the images on each other and allows the anti-nodal positions, which vary in each frame, to 

be displayed simultaneously on one image as shown in Figure 2.24. 

 

 

2.5.4.3 Profile Measurements 

 

In the analysis of the results from the resonant oscillation experiments there is a 

requirement for the side-profile perimeter length of the drop/marble shape to be known. 

This was achieved, again using ImageJ, by fitting an ellipse to the shape as well as 

freehand line tracing. A baseline was drawn at the contact line and lines on each side were 

drawn normal to the baseline while touching the drop/marble surface, as shown in Figure 

2.25 for a 100µL drop. Then, once two further lines were drawn normal to the baseline but 

intersecting with the contact points, by using symmetry a new baseline was drawn where 

the contact angle would be 90
o
. This provided the centre line for an ellipse to be fitted to 



  Chapter 2 Experimental Techniques 

   

the cap shape and the ellipse half perimeter provided the perimeter length between the 90
o
 

contact angle points. The remaining short perimeter section from the 90
o
 contact angle 

points to the actual contact points on each side was then measured using a freehand tracing 

tool. To convert these measurements from pixels to millimetres they were divided by a 

magnification factor. This factor was obtained by imaging a steel ball bearing and dividing 

its diameter (in pixels), measured using ImageJ, by its actual diameter (in mm), measured 

using a digital micrometer. 
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Figure 2.21 Configuration for inducing shape 

oscillations in liquid marbles by applied AC 

voltage. The nodal pattern around the marble 

surface is shown. 

 

 

  

 
 

 

Figure 2.22 Images of a section of a 150µL oscillating liquid marble in 

ImageJ with a selected area, in yellow outline, close to the apex where 

an anti-node is at a) peak positive and b) peak negative amplitude, the 

white dotted line across both images shows the peak-to-peak anti-node 

displacement within the selected area and c) a screen capture of a raw 

data z-axis profile, plotted using ImageJ, from the same 150µL liquid 

marble data. 
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Figure 2.23 a) Anti-node displacement (mean greyscale value) as a function 

of driving frequency for the first 100Hz of the sweep for a 150µL liquid 

marble, the peak mean greyscale variances indicate marble resonances and b) 

the same data but zoomed in on the 20 – 50Hz region. 

 

 

a) 

b) 
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Figure 2.24 A z-axis projection through an image stack produced 

from a sequence of consecutive images for one complete 

oscillation of a 100µL liquid drop showing the nodal pattern. The 

grey areas around the perimeter of the drop are the overlaid 

positions of anti-nodes. 

 

 

 

 

 

 

 

Figure 2.25 An image of a 100µL drop on a hydrophobic surface 

showing the fitted straight lines and ellipse (outlined in white) 

used to measure the drop perimeter. 
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2.5.5 Sources of Error 

 

Possible sources of error in establishing the correct frequency value have been identified in 

2.5.2 and 2.5.4 but, in addition, there were other measurement errors associated with the 

volume and dimensions of the liquid marble. The first of these was the level of inaccuracy 

of the micro-pipette used for dispensing drops so a series of dispensed volumes of distilled 

water were weighed on an analytical balance and the volumes were calculated from the 

mass and the density (taken as 997kg m
-3

) of the water. These calculated volumes were 

then compared with the volume settings on the micro-pipette to give an error value. This 

was found to be ±1.5% for volumes ≥50µL but ±6% for volumes <50µL so for lower 

volume drops a micro-syringe was used whose scale accuracy is estimated to give drop 

volumes ±0.2µL . 

With larger marbles, whose shape is more flattened and does not conform to a spherical 

cap, shape deformations can occur as a result of physical contact such that from above they 

would also appear more oval than circular. This can lead to differing measurements of 

diameter and even height depending on the viewing plane. To obtain an estimate of the 

measurement errors due to shape deformations images were captured of deformed liquid 

marbles. For the range of volumes used in the resonant harmonics experiments, marbles 

that had been slightly compressed using hydrophobized tweezers in firstly the viewing 

plane and then normal to the viewing plane were imaged. Measurements of marble height 

and diameter for both cases were taken and were found to be subject to variation of up to 

±2.5%. Experiments to establish fundamental resonant frequency for one of the marble 

volumes (150µL) in both orientations also revealed that the observed frequency shifted by 

up to ±10%. 
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Finally the different sweep rates used in the fundamental and harmonics experiments were 

found to affect the apparent resonant frequencies and in a series of separate experiments, a 

factor of two change in sweep rate was found to shift the frequencies for a given volume 

by up to ±5% for the higher modes. 

 

 

2.6 Rough Copper Surfaces 

 

Earlier studies have shown that the diffusion-limited aggregation of copper by 

electrochemical deposition on to copper clad PCB produces a granular type surface whose 

feature height, due to copper build-up, increases with time [75, 76]. These surfaces have 

been shown to exhibit superhydrophobic characteristics following chemical treatment. This 

type of surface may also be created using other metal or metallized substrates. This method 

of electro-deposition, using no form of patterned mask, offers no control over the density 

but the height may be controlled by varying the duration of deposition and so a roughness 

gradient may be produced. 

 

 

2.6.1 Electrochemical Deposition 

 

A close-packed electrode rod collection anode was immersed in an electrolyte solution of 

1.25M copper sulphate in 0.25M sulphuric acid and a DC bias voltage was applied from a 

Farnell L30E bench power supply. The circuit was completed by a second electrode 

connected to the sample substrate, acting as the cathode. Two types of anode were used 

combined with two different methods of power supply; a graphite rod cluster with a 
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constant current supply giving a copper depletion type deposition and a copper rod cluster 

with a constant voltage supply (with current limited to 3A to prevent thermal damage to the 

sample). With the copper depletion method copper ions are depleted from the electrolyte 

and must be replenished so the electrolyte solution was replaced periodically and filtered 

regularly to remove loose deposits. 

 

 

2.6.2 Linear Roughness Gradient Surfaces 

 

Substrates were prepared from either standard microscope slides (size 76.2 x 25.4 x 1mm) 

which were sputter coated with ~100nm of gold on to ~40nm of titanium or from pieces of 

flat aluminium plate of similar size and thickness to the slides. Clear nail varnish was used 

to mask off half of the substrate but leaving an exposed 2cm x 1cm area close to the end of 

the masked off area. This was necessary because if all of the substrate metal was exposed 

then deposition tended to occur mainly at the edges in fractal growth type structures, as 

seen in work done by Brady and Ball [77]. Each substrate was suspended from a crocodile 

clip (which also formed the electrical connection) and immersed vertically in the solution, 

as shown in Figure 2.26a, at a constant current of 1A for the slides and 1.5A for the 

aluminium giving current densities of 500mA cm
-2

 and 750mA cm
-2

 respectively. By then 

withdrawing each sample from the solution in steps it was possible to create distinct areas 

of different roughness and, hence, different hydrophobicity (following chemical treatment). 

Examples of three stage gradient surfaces are shown in Figure 2.26b on a gold coated 

substrate and c) on an aluminium substrate with three distinct areas of varying roughness. 

Copper build-up can be seen to be greatest around the edges of the sample area even 

though the edges of the substrate were masked off. As copper was deposited on the surface 
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the surface resistance increased causing a voltage drop with the constant current power 

supply. In a three stage deposition the sample area was kept in solution for the same time 

period for each stage and so each stage underwent deposition for an incremental multiple of 

this period. To hydrophobize the rough copper surfaces it was felt that spin coating would 

not be effective on such a rough surface, especially with a roughness gradient. Instead, 

samples were soaked in a bath of a wash-in solution, designed for waterproofing breathable 

fabrics, (Grangers Extreme Wash-In) for ~20mins then heated on a hotplate at 100
o
C for a 

minimum of 30mins. These surfaces provided the preliminary test samples for establishing 

that a roughness gradient could be achieved by electrochemical copper deposition. 

 

 

2.6.3 Circular Roughness Gradient Surfaces 

 

Once a method for creating a roughness gradient had been established the surface design 

was expanded to become a circular sample area with diminishing roughness from the 

perimeter to the centre. This would create a hydrophobic arena that was more hydrophobic 

towards the perimeter than the centre and should encourage water drops to roll to the centre 

of the sample forming a pool. A technique for creating such a surface on a circular 

substrate was devised so as to half immerse the substrate in the electrolyte and then elevate 

it, while simultaneously rotating it, during electrodeposition. A mechanical cantilever 

device was designed and built that used two geared DC motors to rotate and elevate the 

sample (Figure 2.27). Both motors could be fine controlled down to <1rpm and the 

elevation motor incorporated a micrometer plunger so the elevation rate and position could 

be monitored. The sample was held by a rubber ‘sucker’ (Figure 2.27 inset) through which 

the electrical connection to the sample was made by, at the sample holder, forming a brush 



  Chapter 2 Experimental Techniques 

   

from the end of a multicore wire. This brush made contact with the motor spindle and then 

connection was made to a flying lead from the power supply by wrapping a coil of solid 

core wire around the spindle. The rotation motor could be tilted to allow enough of the 

substrate to be in the solution without the solution fill level needing to be close to the brim 

of the vessel, improving the safety of the process. A fan was positioned close to the rotating 

sample to blow-dry any solution remaining on the sample area as it emerged from the 

solution during rotation. This helped prevent electrodeposition continuing, on the part of 

the sample area not in solution, by conduction through the liquid.  

Samples were produced using different combinations of substrate material, anode material, 

power supply, rotation speed and elevation rate with varying degrees of success. Initially, 

circular areas of sputtered gold of thickness ~100nm on ~40nm of titanium on 72mm x 

51mm glass slides were produced by covering the slides, during sputtering, with an 

aluminium mask that had a 45mm diameter hole cut out of it. By ensuring that only the 

sample area was metallized there was no requirement for any masking off during 

deposition. Electrical connection with the sample area, once fixed to the sample holder, 

was made by soldering the wire directly onto the edge of the gold circle and then the 

substrate was half immersed in the acidified copper sulphate solution. Voltage was applied 

to graphite electrodes at a constant current of 3A giving a starting current density in the 

region of 350mA cm
-2

 (as no more than half the sample area was ever in the solution). With 

a rotation speed of ~0.7rpm and an elevation rate of ~2mm min
-1

 a roughness gradient was 

created and contact angles (following chemical treatment) ranging from 125-130
o
 at the 

centre to 140-145
o
 at the perimeter were observed. By then starting deposition with the 

sample immersed to approximately 5mm from the centre, a centre spot remained free from 

any copper deposition lowering the centre contact angle to 105-110
o
, typical of a flat 

hydrophobic surface. Conversely it was found that increasing the rotation speed to ~2rpm 
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gave a more even and closely packed feature distribution and therefore more uniform 

texture, increasing contact angle at the perimeter to 150-154
o
. An example of a gradient 

surface on a gold coated slide is shown in Figure 2.28a but it was found with these 

substrates that de-soldering of the electrode wire post-deposition tended to also remove the 

metal from the slide leaving a hole in the coating. As such these coatings were repeated on 

square aluminium plate and copper clad PCB substrates (Figure 2.28b) with similar 

resulting contact angles. These substrates had nail varnish masking to expose only the 

circular sample area and the electrode wire could be connected without impinging on the 

sample area. Introduction of copper rod electrodes required a change over to constant 

voltage power supply and with this method the rate of current flow upon application 

increased up to a maximum of around 100mA s
-1

. The deposition start point was taken to 

be when the current reached 3A and a progressive gradient was then achieved by applying 

continuous elevation at ~1mm/min. A stepped gradient could be created by repeatedly 

applying voltage for a known period at a fixed position then switching off while elevating 

by 5mm (effectively giving concentric rings of 5mm width). Deposition was repeated on all 

substrates with the copper electrode method and the resulting contact angle range was 

found to improve with 100
o
 – 105

o
 at the centre increasing progressively to up to 162

o
 at 

the perimeter. Attempts were made to create a stepped gradient without the need for sample 

rotation or elevation by simply creating concentric isolated rings on the substrate and 

depositing on each ring for a different time period to achieve the gradient. These proved 

unsuccessful, however, as the ring separation needed to prevent the copper deposits 

bridging the gaps was too large for surface continuity. Lithographically ring patterned gold-

coated slides and copper clad PCB with lathe-scored rings were used as substrates and an 

example is shown in Figure 2.28c. These attempts did, however, yield an improved method 

of electrical contact with the substrate using a metal pin soldered to the electrode wire. The 
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pin then made touch contact with the substrate centre under the spring tension of the wire, 

removing the need to solder directly to the substrate. This meant that the PCB substrates 

could be circular cut and so required no masking off. They proved to be the optimum 

substrate for producing surfaces with good contact angle range and even feature 

distribution when coated using copper electrodes (Figure 2.28d). 

 

 

 

 

   

       

 

Figure 2.26 a) Electrochemical deposition arrangement for copper 

deposition from acidified copper sulphate solution. Three stage roughness 

gradient surfaces on b) a gold coated substrate and c) an aluminium 

substrate with three distinct areas of varying roughness. 
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Figure 2.27 Mechanical cantilever for copper electrodeposition on 

circular substrates with fine control motors for substrate rotation and 

elevation and (inset) rubber ‘sucker’ substrate mount accommodating 

electrical connection to the substrate surface. 

 

 

 

  

  

 

Figure 2.28 Photographs of circular roughness gradient surfaces from 

electrodeposited copper on a) gold coated slide, b) masked off copper PCB, c) 

rings of different roughness defined by lathe-cut grooves and d) circular cut 

copper PCB. The roughness levels are identifiable by a change in colour. 
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2.6.4 Surface Characterization 

 

Roughness gradient was characterized by electron microscopy and stylus profilometry of 

the sample prepared on circular cut copper PCB. Taking a profile height scan in a straight 

line across the sample radius using a Dektak 6M stylus profilometer enabled a graphical 

representation of feature height as a function of radial distance from centre to be obtained. 

The profilometer takes measurements electromagnetically by moving the sample beneath a 

diamond-tipped stylus and as the high-precision stage moves the sample, the stylus rides 

over the sample surface.  Surface variations cause the stylus to be translated vertically. 

Electrical signals corresponding to stylus movement are produced and converted to a 

digital format for display, manipulation and measurement. The drawback with the stylus 

profilometer is that it gives a 2D interpretation of the surface created from a single straight 

line scan. This is clearly only a fraction of the total surface and may not be a true 

representation of the surface as a whole. Two scans from different areas on the sample are 

shown in Figure 2.29 as black and grey traces, where the height of copper deposits can be 

seen to increase with distance from <1µm at the centre of the sample to a maximum of 18-

20µm at the perimeter. The roughness gradient was confirmed visually with electron 

micrographs taken using a JEOL JSM-840A Scanning Electron Microscope at an 

accelerator voltage of 5kV. Figure 2.30a-g shows different roughness levels at seven sites 

on the surface measured on a straight line from near the centre to the perimeter at intervals 

of ~3mm. The surface topography can be seen to change dramatically as the build up of 

copper deposits has increased with electrodeposition time from an almost flat surface near 

the centre to many large, tall clumps at the perimeter. The copper features at any one radial 

position may be of the same height scale but they are clearly varying in both size and 

spacing from a few tens to a few hundred microns. This gives an irregular pattern when 
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combined with their varying shapes. In Figure 2.30h the zoom level has been increased to 

show the fractal type growth structure of the copper features and this, in turn, is shown in i) 

to be made up of particles whose diameter is of the order ≤1µm. 

 

 

 

  

 

 

 

Figure 2.29 Height profiles of electrodeposited copper on copper PCB, scans 

from two different areas are shown as black and grey traces.  
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Figure 2.30 Electron micrographs at 5kV and 100x magnification of varying 

roughness levels, a) to g), at seven sites on the surface of a circular electrodeposited 

copper roughness gradient sample measured on a straight line from the near centre to 

the perimeter at intervals of ~3mm, h) 1000x magnification of the copper features 

showing a fractal type growth structure and i) 5000x magnification of the same 

feature showing particle composition. 
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2.6.5 Drop Mobility and Wetting Behaviour 

 

The behaviour of water on the copper surfaces was investigated in terms of drop mobility 

and wetting states in different regions of the circular gradient sample. The motion of bulk 

liquid was observed as a result of evaporation and the motion of discrete drops was 

observed during condensation as well as when deposited from a syringe. The roughness 

gradient was then defined by measurement of the contact angle of immobile drops and 

contact angle hysteresis of drops on different regions of the surface. Video sequences of 

the water movement observations were recorded using a JVC DVL9600 digital camcorder 

and then captured to AVI file format with video capture software Asymmetrix DVP 

Capture. Video files were then edited and converted to MPEG format using Ulead 

Videostudio 10 software. 

 

 

2.6.5.1 Discrete Drop Mobility 

 

Drops of de-ionised water were deposited on the sample surface at the perimeter to 

establish the minimum drop volume required to spontaneously roll from the most 

hydrophobic to the least hydrophobic areas. The sample was placed on a flat, level surface 

and a 25µL syringe was mounted vertically in a micrometer syringe mount, on the same 

level surface, with the needle tip above the sample perimeter; this allowed precise control 

of the needle tip. Upon depressing the syringe plunger an emerging drop was allowed to 

make contact with the surface and remain in contact as its volume was increased until the 

required volume was reached. Then the syringe was elevated to release the hydrophobized 

needle from the drop. This meant that no lateral force was required to release the drop 
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from the needle and so the drop mobility should not be affected or induced. The level of 

hydrophobicity of the sample surface at the perimeter was so high, however, that a drop 

would tend to preferentially remain on the needle tip rather than the surface upon elevation 

of the syringe, even when the needle tip was hydrophobized. This was overcome by 

hydrophobizing a short section of syringe needle cleaning wire and partially inserting it in 

to the needle tip leaving ~5mm protruding. As a drop was produced it could be detached 

from the needle tip with slight lateral movement but would remain attached to the wire. 

Then, as the syringe was elevated, the drop would remain on the sample surface rather 

than the [now much smaller] wire tip. 

 

 

2.6.5.2 Wetting Behaviour During Evaporation 

 

It is conceivable that the application of this type of surface in rainwater harvesting could 

leave it subject to evaporation of the collected water. To investigate the wetting behaviour 

in this situation a digital video sequence of water evaporation from the surface was 

recorded and analysed. The sample was placed in a transparent plastic, flat-bottomed 

container of size 150mm x 80mm x 25mm on the bench top and de-ionised water was 

added until the depth was just enough for the sample to be fully submerged. Then the 

water was allowed to evaporate until the level was low enough to expose the sample 

surface. At room temperature this was found to take longer than the digital video tape 

length so the process was accelerated by heating the bottom of the container on a hotplate 

to ~60
o
C throughout the experiment. This was a low enough temperature to have no effect 

on either the Grangers coating or the plastic container. The digital camcorder was tripod 

mounted and positioned at a distance of ~300mm with an elevation of ~100mm relative to 
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the sample to give a view-plane tangential to the sample surface. When combined with 

overhead local illumination, this provided the optimum viewing angle to allow 

visualisation of the water surface covering the sample surface. 

 

 

2.6.5.3 Wetting Behaviour During Condensation 

 

Conversely to evaporation from a bulk liquid surface the behaviour of condensing water 

droplets on the surface was also investigated as an important application characteristic. 

Time lapsed experiments were again recorded as digital video and the experimental 

arrangement is shown in Figure 2.31. Here the sample was placed horizontally on an 

aluminium cuboid block, large enough to accommodate the sample flat on its minor face. 

The block was placed in a glass crystallizing dish filled with iced water to approximately 

halfway up the block height to act as a cooling stage. Nearby, a glass beaker containing 

boiling water was covered with a custom formed aluminium foil chute which directed 

steam to a partially confined air volume immediately above the sample. Vapour could then 

condense from the supersaturated atmosphere in this volume onto the cooled sample 

surface. The behaviour of the condensing droplets was captured using the digital 

camcorder with a similar relative camera and illumination position as used for the 

evaporation experiments described in the previous section. This localized method of steam 

transfer facilitated clearer video imaging than preliminary experiments using a steam 

chamber enveloping the sample and cooling stage, as there were no misted chamber walls 

obscuring the view. 

 

 



  Chapter 2 Experimental Techniques 

   

2.6.5.4 Roughness Gradient Wetting Properties 

 

To characterize a roughness gradient surface in terms of its wetting properties required 

measurement of the contact angles and the contact angle hysteresis of immobilised drops 

on each of the main roughness scale regions. Measurements were taken in each quadrant 

of the circular sample to provide average values for the sample area as a whole. Images 

were captured using the Krüss DSA-10 contact angle meter and drops were deposited from 

the integral dosing syringe on to the sample surface. Problems faced with contact angle 

measurement on images of granular surfaces have been previously discussed in (2.3.5) and 

here again the use of DSA software proved unsuitable. The angle measuring tool in the 

ImageJ software was utilized again and a mean value of five angle measurements from 

each side of the drop was taken. To further aid contact angle measurement additional 

illumination was introduced overhead, but in front of the deposited drop to help better 

define the contact region by reducing shadow. On the most hydrophobic areas toward the 

sample perimeter the drop rolled so easily that the sample had to be tilted slightly to 

immobilise the drop but on the least hydrophobic areas, where the spontaneity of drop 

rolling was less pronounced, a drop could be carefully deposited and would remain 

immobile for contact angle measurement. This could have been caused by the non-uniform 

nature of the surface roughness pinning the drop or presenting a barrier that would 

normally be overcome by the momentum of a drop rolling from the perimeter but not by 

one deposited at that point. As the surface coating was designed to give a roughness 

gradient radially from the centre to the perimeter, a comparatively constant roughness 

would exist at angular positions. Drop deformation angularly on the surface would, 

therefore, be minimal compared to that experienced radially on the surface and so all 

measurements were taken from images of the contact line on the angular path as shown in 
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Figure 2.32. Contact angle hysteresis was obtained from advancing and receding angles 

measured on images taken from video sequences captured with the Krüss system. Using 

the integral automatic dosing syringe the volume of a deposited drop was steadily 

increased until the contact line moved while the process was captured in real-time video. 

The video frame immediately prior to that in which the contact line moved was captured 

and the advancing angle measured. In reverse, with the drop volume being reduced by the 

syringe, the image from the equivalent frame provided the receding angle. During 

hysteresis measurements drops were held in stationary positions by the dosing syringe 

needle which remained in contact with the drop throughout both the advancing and 

receding phases. 
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Figure 2.31 Apparatus for observing condensation of water vapour on a copper 

roughness gradient sample. Steam is directed to the cooled sample surface 

where it condenses and the behaviour of the resulting droplets is captured to 

digital video. 

 

 

Figure 2.32 Overhead view of a roughness gradient sample, with a deposited 

water drop on the surface, positioned as for contact angle measurement using 

the Krüss DSA-10. The contact lines, normal to the direction of the roughness 

gradient, at which contact angles were measured are shown as dashed lines. 

The camera aspect is parallel the gradient direction. 
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2.7 Summary 

 

Methods for the production of surfaces with hydrophobic and superhydrophobic coatings 

as well as electrowetting experiments thereon have been detailed in this chapter. This has 

extended to the specific production of and experimentation with liquid marbles in electric 

fields. In particular, experimental methods for electrowetting, oscillation and motion of 

liquid marbles and the use of image processing techniques as analytical tools have been 

described. A method for creating surfaces with a hydrophobic gradient by copper 

electrodeposition has also been described together with associated techniques for 

characterizing and visualizing the surface interaction with water. 

The following chapters detail the findings of these experiments in the form of relevant 

theory, experimental results and associated discussions with respect to other studies.
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3.1 Introduction 

 

When a liquid wets a solid surface it forms a thin liquid film as it spreads, the mechanisms 

for which have been studied by deGennes, Cazabat et al. and Leger et al. among others 

[25, 78-80]. This concept of dynamic wetting is vital in processes which require the 

complete coating of a solid with a liquid such as in painting or in printing with inks. 

Conversely, in the case of water we are perhaps more accustomed to non-wetting being the 

most common requirement. Surfaces which repel water are termed hydrophobic but those 

which exhibit extreme water repellency are termed superhydrophobic or 

ultra[hydro]phobic [50, 55, 81]. There are many obvious commercial uses for chemical 

waterproofing of materials for clothing as well as the control of liquid flow by material 

properties alone whether in drainage or roofing technology or, perhaps more intriguingly, 

self-cleaning surfaces [82-88]. An overview of the functional applications of 

superhydrophobic surfaces is given by Zhang et al. [89]. Examples of water drops in 

different wetting states are shown in Figure 3.1 where in a) the drop wets the surface, b) 

the drop forms a spherical cap shape on a hydrophobic surface and c) the drop balls up 

with a greatly reduced contact area on a superhydrophobic surface. A smooth surface may 

become hydrophobic by changing its surface chemistry but to achieve superhydrophobicity 

also requires some level of surface roughness and this property is exploited by nature to 

great effect [1-3]. Probably the best known example is the leaf of the lotus plant (Nelumbo 

nucifera) whose surface structure and coating causes water drops to ‘ball-up’ and roll off 

an inclined surface (Figure 3.2). This phenomenon offers self-cleaning properties as the 

drops gather dust and debris as they roll, hence the term Lotus Effect
TM

 (although in certain 

cases, such as on rose petals, surface roughness has the opposite effect by adhering drops 

to the surface and recently Feng et al. have termed this the Petal Effect [90]). A drop 
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deposited on a surface will naturally either form a spherical cap shape or it will spread 

across the surface and form a film, depending on the surface chemistry. The resulting 

equilibrium is determined by the balance between the interfacial tensions leading to 

Equation (1.3).  

The resulting balance of these forces leads to definitions of wetting states where if θe ≤ 90
o
 

then the drop is said to be ‘wetting’ the surface whereas if θe > 90
o
 then the surface is 

termed hydrophobic and the level of hydrophobicity increases with θe. Hydrophobic or 

water-repellent properties are imparted to a material by the chemistry of the surface. 

Methyl or fluorine terminated groups provide the highest levels of water repellence with a 

droplet on a smooth polytetrafluoroethylene (PTFE) surface exhibiting repellence 

characterised by a contact angle of around 115-120
o 

[91]. The maximum contact angle may 

be increased towards the complete non-wetting state where θe=180
o
 by roughening or 

topographically structuring the surface [86]. This enhances its repellent properties to give a 

‘superhydrophobic’ surface when combined with the appropriate surface chemistry. 

Generally the more hydrophobic a surface is, the higher equilibrium contact angle and 

lower contact angle hysteresis it would exhibit – although the latter point is not always true 

as chemical defects can cause ‘pinning’ of the contact line [92]. The level of hysteresis is 

related to the scale of surface in-homogeneities and the accepted concept fundamentally 

conforms to one of the two regimes described by Wenzel [33] and Cassie-Baxter [34], both 

of which incorporate a roughness ‘factor’ but apply to very different hysteresis conditions. 

The effects of these regimes on the mobility of drops defines whether a drop on the surface 

rolls off with little actuating force or remains adhered to the surface as it is tilted towards 

the vertical and beyond and, in terms of surface classification, the two regimes have been 

classified by Quéré et al. as either ‘slippy’ (Cassie-Baxter) or ‘sticky’ (Wenzel) [36]. A 

measure of surface ‘stickiness’ is given by the contact angle hysteresis which is defined as 
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the difference between the maximum and minimum contact angles immediately preceding 

movement of the contact line of a drop with increasing or decreasing volume, respectively 

and the level of hysteresis is fundamentally dependent on the roughness of the surface. The 

terminology used in the scientific literature to describe contact angle enhanced wetting states 

as a level of hydrophobicity has varied and intermediate states that are a combination of 

Wenzel and Cassie-Baxter, or fall somewhere between, have recently been described [90, 

93]; it has been suggested that hydrophobicity should be quantified by the level of hysteresis 

rather than the equilibrium contact angle [55] but this may not be sufficient for these hybrid 

surface types. In the recent review by Roach et al. [81] it was suggested that an increase in 

contact angle by surface roughness up to 120
o
 should be described as positive contact angle 

enhancement whereas if the contact angle is increased to greater than 120° the term 

superhydrophobicity should be used and if it is greater than 150° with a contact angle 

hysteresis of less than ~10° the term ultrahydrophobicity should be used. Several different 

methods of easily distinguishing contact angle hysteresis levels on superhydrophobic 

surfaces without measuring advancing and receding angles have also been developed [94-

97]. The effects of surface heterogeneities are an important factor in both the non-wetting 

and wetting of surfaces and, as such, have evoked studies throughout the greater part of the 

last century [25, 33, 34, 79, 98-100].  Since the demonstration of a hydrophobic fractal-type 

surface by Onda et al. in 1996 [101] topographically varying surfaces have been produced 

in the laboratory using a variety of methods from rough surfaces of electrodeposited copper 

[102] and phase-separated sol-gel foams [66] to patterned structures in etched copper and 

lithographically produced with spatially varying aspect ratios in SU-8 photoresist [103] 

(Figure 3.3); a comprehensive list of synthesized superhydrophobic surfaces can be found 

in the recent review article by Roach et al. [81]. Studies of the wetting and hysteresis of 

textured surfaces have continued more recently [35, 50, 104-113] with the advent of such 
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geometrically patterned microstructures production which allows more accurate 

experimental verification of the models from earlier studies.  

Wetting behaviour controlled by surface properties alone can, however, present limitations 

in flexibility, especially in those laboratory or commercial applications which require the 

dynamic control of wettability and therefore a degree of switchability between wetting 

states. In contrast to the enhanced wetting behaviour obtained through increased surface 

roughness, wetting of a smooth solid surface can be dynamically controlled by the 

application of an AC or DC bias voltage between a conducting drop and a counter-

electrode. This method, known as electrowetting (EW), is based on the principles of 

electrocapillarity as first detailed by Lippmann in 1875 [58] and was modified by Bruno 

Berge [114] in 1993 to include a thin insulating layer on a conducting substrate, becoming 

the [now commonly used] method known as electrowetting on dielectric (EWOD). The 

applications of electrowetting have proven to be quite diverse and range from the 

manipulation of liquids in microfluidic lab-on-a-chip systems [4-7] to electrically tuneable 

optics [115-117] and display technology [118, 119]. The flexibility of EWOD devices has 

been further enhanced by the development of optoelectrowetting [120, 121] to overcome 

any restrictions imposed by static electrode configurations. 

It is, therefore, conceivable that the combination of electrowetting and surface topography 

could provide fully tuneable wetting states but studies have found that the application of an 

electrowetting voltage to a water droplet on a microstructured surface causes the liquid to 

penetrate between the surface features transforming the droplet irreversibly from a Cassie-

Baxter to a Wenzel state [12, 122-126]. This has recently been visually demonstrated by 

Bahadur et al. [127]. It should be noted that although a transformation back to the Cassie-

Baxter state is not observed with such surfaces upon removal of the electrowetting voltage, 

it may be achieved by, for example, thermally inducing a vapour cushion to push the liquid 
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out of the gaps between the surface features [128, 129] or by filling gaps or craters beneath 

the droplet with air [130]. A liquid with lower surface tension incorporated in solution with 

the water [131] could also be used, thereby creating a barrier to prevent droplet penetration. 

Although this is the general case, since the present study Nicolas Verplanck and co-authors 

have published the first examples of truly reversible electrowetting of water in air on a 

superhydrophobic surface [132]. This study and others investigating electrowetting on 

superhydrophobic surfaces were recently summarised by Heikenfeld and Dhindsa [133]. 

The wetting transition in DC electrowetting on geometrically patterned superhydrophobic 

substrates has been used in the study by Herbertson et al. [12] to estimate the roughness 

factor of the surface. In the present study AC electrowetting experiments are conducted on 

a high hysteresis superhydrophobic sol-gel surface with irregular topography and 

comparisons are made to similar experiments conducted on a planar hydrophobic surface 

and those from [12] conducted on a low hysteresis superhydrophobic surface. It should be 

noted, however, that the aim of this chapter is as an introduction to the concepts which 

form the basis for the project and the experiments herein were conducted during the early 

part of the project mainly to establish a reliable experimental arrangement by repeating 

standard electrowetting and to gain experience in substrate production. 

The underlying theoretical concepts that support this chapter are detailed in Chapter 1. 
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Figure 3.1 Examples of water drops in different wetting states on a) a 

smooth planar untreated surface, b) a chemically hydrophobized 

smooth planar surface and c) a superhydrophobic rough surface. 

 

 

 

 

 

 

 

    

 

 

Figure 3.2 Leaves of the lotus plant showing a) drops rolling off the 

surface carrying dust with them and b) scanning electron micrograph of 

the superhydrophobic textured surface.
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Figure 3.3 Scanning electron micrographs at different magnifications 

of a) an MTEOS sol-gel and b) a patterned surface of 20µm SU-8 

pillars.* 
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3.2 Experimental 

Experiments were conducted on both a superhydrophobic surface and a planar 

hydrophobic dielectric substrate for comparison and to affirm that basic electrowetting 

characteristics could be observed. Both types of device required fabrication using thin-film 

deposition techniques. The electrowetting devices consisted of a dielectric layer of a 

known thickness deposited on the metallized surface of glass slides. These would then be 

coated in either a hydrophobic or a superhydrophobic layer and drops of salt solution 

deposited on them in an electrowetting configuration as described in Chapter 2.2. 

 

 

3.2.1 Substrate Production 

 

Hydrophobic substrates consisted of a standard sized glass slide that contained a sputter 

coated Ti/Au electrode with a spin coated polymer overlayer of Shipley S1813 photoresist 

(thickness 6µm and baked at 100
o
C for 60 mins. to drive off the solvent and harden). From 

the dielectric strength model for S1813 photoresist shown in Figure 2.6, for a 110
o
 to 75

o
 

dynamic change in contact angle the minimum required S1813 thickness is 1.9µm 

implying a minimum required voltage of 57V. Finally a thin (∼0.5µm) hydrophobic 

capping layer of 30% amorphous Teflon
®

 AF1600 (DuPont Polymers) in 

hexaflourobenzene was spun on requiring no baking due to its volatility. For the 

superhydrophobic substrates glass slides were again metallized but then, in this case, a 

thinner insulating layer was used to keep the required electrowetting voltage down as the 

superhydrophobic rough coating was thicker than the dilute Teflon
®

 AF1600 hydrophobic 

layer. A layer of Futurrex spin-on-glass of thickness 0.2µm was spun-on and baked at 
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100
o
C for 60s then at 200

o
C for 60s. The superhydrophobic surface consisted of a layer of 

methyltriethoxysilane (MTEOS) sol-gel foam [66] deposited on the surface and was found 

to be of the order 50µm in thickness (see 2.2.1.4). 

 

 

3.2.2 Electrowetting Experiments 

 

For the electrowetting experiments, a 0.01M KCl solution was used to aid conductivity and 

droplets of 5µL volume of the salt solution were deposited on to the substrates from a flat-

ended syringe needle which had been hydrophobized in Flutec LE15 to aid droplet release. 

The droplet volume was chosen such that the diameter was smaller than the capillary 

length (2.7mm for water) and therefore the effect of gravity is not significant compared to 

the surface tension. The substrate was mounted horizontally on a stable, height adjustable 

platform and held in place with crocodile clips at each end, one of which formed the 

electrical contact with the metal layer of the substrate. A copper contact wire of thickness 

~0.1mm, which was also hydrophobized in Flutec LE15 to prevent the liquid ‘pinning’ to 

the wire, was brought into contact with the drops from above and a bias voltage applied. 

The electrowetting configuration is shown schematically in Figure 3.4 and described in 

detail in (2.2.2). For DC voltages a Keithley 2410 source/meter was used and for AC 

voltages the output of an Agilent 33220A waveform generator was fed through a Trek 

PZD700 amplifier. For AC experiments the frequency range was chosen to be high enough 

to avoid oscillations of the droplet, >10
2
Hz, (see 1.2.3) yet low enough for the conductivity 

of the liquid to be retained; beyond a critical frequency the liquid behaves as a dielectric 

rather than a conductor [60] and for 0.01M KCl this is estimated to be in the order of 

10
6
Hz. In both AC and DC experiments the applied voltage was ramped up and then back 
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down in steps to demonstrate the electrowetting reversibility of each surface. The profile of 

the drop was captured in silhouette illumination using a Genie DN8706 CCD video 

camera, with a 2x magnification microscope objective lens of focal length 50mm attached. 

This was mounted on an x, y, z micrometer stage to allow full positional control and was 

connected to a PC via an IDS Falcon video capture board. The images were captured and 

analysed using Krüss DSA-1 drop shape analysis software. For electrowetting experiments 

a video sequence was captured to accommodate the ramped voltage cycle and the wetting 

behaviour was characterized by measurement of the dynamic contact angle and contact 

radius. 

 

 

 

 

 

Figure 3.4 Schematic of the electrowetting configuration. 
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3.3 Results and Discussion  

 

When an AC or DC bias voltage was applied to droplets on a planar hydrophobic surface a 

reduction of contact angle, θ, was observed as the voltage was increased from 0V followed 

by an increase in θ as the voltage was reduced back to 0V. With a rough sol-gel surface the 

contact angle reduced as the voltage was increased but did not increase upon removal of 

the voltage. The electrowetting data in this section are averaged over three experimental 

runs with error bars included accordingly. 

 

 

3.3.1 Hydrophobic Surface 

 

The planar hydrophobic substrates showed typical equilibrium contact angles, θe, of 110-

120
o
 and contact angle hysteresis, θH, of 10-15

o
. For DC experiments the applied voltage 

was ramped up from 0V to 150V in 10V, 5s steps and then back down to 0V. A negative 

contact angle change, ∆θ, was observed from 0V to the peak voltage of 150V DC as 

illustrated in Figure 3.5 a) and b) respectively. The contact angle returned to within 7
o
 of 

the starting angle upon removal of the bias voltage, as illustrated in Figure 3.5 c) and 3.6, 

indicating a good level of reversibility. This is typical for a low hysteresis surface, such as 

this one, taking into account heterogeneities due to contamination and inconsistencies in 

the surface coatings. Figure 3.6 shows the change in contact angle, ∆θ, with voltage for a 

complete DC electrowetting cycle where ∆θ = -(34±3)
o
 with increasing voltage up to 130V 

where saturation begins. Although at the start of the cycle there appears to be no threshold 

voltage for electrowetting to begin, there does then appear to be some levelling off up to 

50V. It is possible that this is evidence of a threshold voltage and that the reduction in 
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contact angle at the start of the cycle is due to surface defects. In Figure 3.7 the data are 

represented as the cosine of the contact angle, θ, as a function of the square of the applied 

voltage, V, as described by the electrowetting equation (1.31). The expected linear 

relationship is observed, within error limits, except for a levelling off at the highest applied 

voltages. This contact angle saturation has been encountered in other electrowetting studies 

[63-65, 134-136] although a definitive explanation for the phenomenon has yet to be 

declared (see 1.2.3) and, indeed, may be dependent on experimental conditions [60]. 

 

 

 

 

 

 
 

 

Figure 3.5 Reversible electrowetting on a planar hydrophobic surface showing a 5µL 

drop with contact wire inserted and a) 0V applied bias voltage, (b) 150V DC applied bias 

and c) returned to 0V. 
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Figure 3.6 Dynamic change in contact angle (θ) with voltage for a complete DC 

electrowetting cycle on a planar hydrophobic surface with data for the 

increasing voltage half of the cycle shown as (���) and data for the decreasing 

half as (∆∆∆). 
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Figure 3.7 Cosine of the contact angle (θ) as a function of the square of the 

applied voltage for a complete DC electrowetting cycle on a planar hydrophobic 

surface with data for the increasing voltage half of the cycle shown as (���) 

and data for the decreasing half as (∆∆∆). Contact angle saturation is apparent at 

the highest voltages. 
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In electrowetting, AC voltages are often used in preference to DC voltages to minimise 

hysteresis effects arising from charging so both AC and DC experiments were conducted. 

Experiments were performed at two frequencies, 1kHz and 10kHz (as above 10kHz is 

beyond the calibrated operating range of the amplifier) and voltage steps were 10Vpp up to 

300Vpp at 1kHz and 10Vpp up to 400Vpp at 10kHz. The voltage maximum was higher for 

the 10kHz experiments than for the 1kHz because the dynamic contact angle has a 

frequency dependence, due to a greater potential drop within the droplet leading to lower 

voltage, and, hence, lower energy gain at the contact line [60]. A higher voltage range, 

therefore, was used for the higher frequency experiments to maintain a similar contact 

angle at both frequencies. These experimental voltages were peak-peak values but the RMS 

value is used for data analysis as the liquid response at these frequencies depends only on 

the time average of the applied voltage [60]. 

Resulting data, as expected, shows very similar electrowetting behaviour to the DC 

experiments for both the 1kHz (Figure 3.8) and 10kHz (Figure 3.9) cycles but with greater 

reduction in contact angles; contact angle changes of (38±3)
o
 and (43±3)

o
 were observed 

from 0V to the voltages of 300Vpp at 1kHz and 400Vpp at 10kHz respectively. This is 

possibly due to lower contact angle hysteresis, characteristic of electrowetting with AC 

voltages, and, for the 10kHz cycle at least, higher peak voltages. The expected level of 

electrowetting reversibility for a low hysteresis planar surface was again observed as the 

contact angle returned to within 6
o
 of the starting angle upon total removal of the applied 

bias. Contact angle saturation is again apparent for both frequencies as shown in Figures 

3.10 and 3.11 and this is more evident for the 10kHz data in Figure 3.11 probably due to 

the effects of a higher peak voltage. 
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Figure 3.8 Dynamic change in contact angle (θ) with RMS voltage for a complete 

1kHz AC electrowetting cycle on a planar hydrophobic surface with data for the 

increasing voltage half of the cycle shown as (���) and data for the decreasing 

half as (∆∆∆). 
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Figure 3.9 Dynamic change in contact angle (θ) with RMS voltage for a complete 

10kHz AC electrowetting cycle on a planar hydrophobic surface with data for the 

increasing voltage half of the cycle shown as (���) and data for the decreasing 

half as (∆∆∆). 
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Figure 3.10 Cosine of the contact angle (θ) as a function of the square of the 

applied RMS voltage for a complete 1kHz AC electrowetting cycle on a planar 

hydrophobic surface with data for the increasing voltage half of the cycle shown 

as (���) and data for the decreasing half as (∆∆∆). A degree of contact angle 

saturation is apparent at the highest voltages. 
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Figure 3.11 Cosine of the contact angle (θ) as a function of the square of the 

applied RMS voltage for a complete 10kHz AC electrowetting cycle on a planar 

hydrophobic surface with data for the increasing voltage half of the cycle shown 

as (���) and data for the decreasing half as (∆∆∆). Contact angle saturation is 

again apparent at the highest voltages. 
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The DC and 10kHz AC data for the increasing voltage part of the electrowetting cycle are 

shown in Figure 3.12 and both datasets can be seen to follow a similar linear trend. The 

relevant least squares fit lines are shown as a solid line for the DC data and a dotted line 

for the AC data with confidence levels of 0.964 and 0.942, respectively. From the 

electrowetting equation (1.31), the cosine of the contact angle forms a linear relationship 

with V
2
 having a gradient predicted by ε0εr/(2dγlv) where d = 6 x 10

-6
m, γlv = 72.81 mN m

-1
 

for 0.01M KCl solution and ε0 = 8.85 x 10
-12

 Fm
-1

. The dielectric constant εr is unknown 

for S1813 and the fits in Figure 3.12 yield values of εr = 2.88 for the DC data and εr = 3.63 

for the AC data. This compares well to an estimated theoretical value of εr = 2.92, taken as 

the square of the refractive index (quoted as 1.71* at the wavelength of standard 

fluorescent lighting) as this is true for transparent solids and S1813 is semi-transparent. 

The dielectric constant of Teflon
®

AF1600 is known to be the lowest of any solid organic 

polymer at room temperature [137] and, as such, has been ignored in this case due to the 

layer thickness and dilution used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

*Source: Shipley Company 
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Figure 3.12 The cosine of the contact angle (θ) as a function of the square of the 

applied RMS voltage for AC (◊◊◊) and DC (���) electrowetting on a planar 

hydrophobic surface. Least squares fit lines are shown as solid for DC and dotted 

for AC data. 

 

 

 

3.3.2 Superhydrophobic Surface 

 

Equilibrium contact angles, θe, of 150-155
o
 were measured on the superhydrophobic sol-gel 

foam together with contact angle hysteresis, θH, of 27-35
o
 which has been found previously 

on foams heated to 300
o
C [66]. In contrast to electrowetting on a planar hydrophobic 

substrate a considerably higher voltage could be reached before breakdown occurred due to 

the much thicker insulating sol-gel layer and, as such, a higher voltage was required to give 

an equivalent change in contact angle; the thickness of the sol-gel coupled with the spin-on-

glass was of the order 50µm. In preliminary experiments the AC voltage was increased to 

1200Vpp at 10kHz before breakdown was observed which with 10Vpp, 5s steps would 

have meant one complete electrowetting cycle would take 20mins during which time the 
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droplet would have evaporated. It was felt that the use of a humidity chamber around the 

sample stage or around the whole electrowetting arrangement offered practical difficulties 

due to the electrode swing-arm, illumination and camera mount although a number of Petri 

dishes containing water were sited close to the sample stage to increase the ambient 

humidity. Instead a split experiment approach was used and the electrowetting cycle was 

broken into sub-cycles of 0-400-0Vpp, 400-600-400Vpp, 600-800-600Vpp, 800-1000-

800Vpp and 1000-1200-1000Vpp, using a new droplet for each cycle. The data in Figures 

3.13 and 3.14 therefore only serves to illustrate the general behaviour during a cycle (the 

start and end points for each sub-cycle are given by dashed vertical lines), that each sub-

cycle is completely non-reversible as the contact angle continues to fall during the return 

half of the cycle and to provide a value of (23±1)
o
 for the total change in contact angle, ∆θ. 

A correction factor has been applied to some of the sub-cycle data to maintain the trend for 

the total cycle because the use of different drops can give inconsistent starting contact 

angles. The first [unexpected] observation from all of the sol-gel electrowetting results is 

that the starting contact angles are considerably lower than the measured equilibrium 

contact angles of 150-155
o
. This is possibly due to the fact that the level of hysteresis on 

this surface (θH = 27-35
o
) indicates that the droplet at rest on it sits partially in the lower 

energy Wenzel state. The drop thus requires much less additional energy to further 

penetrate the surface features which could arise simply from the insertion of the electrode 

wire. 

Due to the favourability of AC electrowetting the experiments using AC voltages were the 

main focus of the study on the sol-gel but the DC data for the advancing half of the 

electrowetting cycle is included in Figures 3.15 and 3.16 to illustrate the level of agreement 

with AC data for completeness. In this case electrowetting cycles were broken down into 

100V DC sub-cycles (indicated by dashed vertical lines) but the data are shown together as 
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for the AC sub-cycles. A correction factor has also been applied to this data. The total 

change in contact angle, ∆θ, can be seen to be of the order 16
o
 which is comparable to the 

AC data in the equivalent RMS voltage range. 
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Figure 3.13 Dynamic change in contact angle (θ) with RMS voltage for a complete set 

of 10kHz AC electrowetting cycles in 10V 5s steps on a sol-gel surface with data for 

the increasing voltage half of the cycle shown as (���) and data for the decreasing 

half as (∆∆∆). The dashed vertical lines indicate each electrowetting sub-cycle start 

point. 
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Figure 3.14 Cosine of the contact angle (θ) as a function of the square of the 

applied RMS voltage for a complete set of 10kHz AC electrowetting cycles in 

10V 5s steps on a sol-gel surface with data for the increasing voltage half of the 

cycle shown as (���) and data for the decreasing half as (∆∆∆).The dashed 

vertical lines indicate each electrowetting sub-cycle start point. 
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Figure 3.15 Dynamic change in contact angle (θ) with voltage for a complete set 

of DC electrowetting experiments in 10V 5s steps on a sol-gel surface. The 

dashed vertical lines indicate each electrowetting sub-cycle start point. 
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Figure 3.16 Cosine of the contact angle (θ) as a function of the square of the 

applied voltage for a complete set of DC electrowetting experiments in 10V 5s 

steps on a sol-gel surface. The dashed vertical lines indicate each electrowetting 

sub-cycle start point. 

 

 

 

 

To obtain data for a single electrowetting cycle the voltage steps were increased to 50Vpp 

with a 5s period, so that a 0-800-0Vpp cycle could be achieved in under 3mins, and 

experiments at 1kHz and 10kHz were conducted. Data for the 1kHz cycle are shown in 

Figures 3.17 and 3.18 and for the 10kHz cycle in Figures 3.19 and 3.20 and from 0 – 

800Vpp the contact angle change, ∆θ, can be seen to be (5±1)
o
 for the 1kHz experiment 

and only (2±1)
o
 for the 10kHz one but these values are consistent with the DC data in the 

equivalent voltage range to the AC RMS values which shows ∆θ = (4±1)
o
. Upon removal 

of the applied bias voltage the final contact angles are (7±1)
o
 lower than the starting angle 

at 1kHz and (3±1)
o
 lower at 10kHz. Although this appears to be closer to the starting angles 

than the final contact angles were on the planar hydrophobic substrates, it is an indication 
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of total irreversibility as the contact angle shows no increase as voltage is removed and, 

indeed, continues to fall. This is in agreement with the previous work [12] indicating total 

penetration of the liquid into the surface features and is confirmed by the data in Figure 

3.21 showing the change in base diameter, defined as the macroscopic contact line between 

liquid and solid, as a function of applied voltage for the 1kHz AC experiment. The base 

diameter can be seen to be virtually constant, changing by only 0.036mm from 0 – 800Vpp 

and returning to 0.011mm higher than the starting value indicating that the liquid has 

penetrated the surface features and remains pinned in the Wenzel state. This corresponds to 

a relatively shallow region of the full range cosθ v V
2
 graph and it has been suggested that 

upon initial voltage application the liquid is being drawn into the gaps between the surface 

features as the transition to Wenzel state ensues. 

If data is restricted to the range which is beyond the transitional stage and the drop is in the 

Wenzel state then, according to Bahadur et al. [59], Equation (1.33) should apply. Data for 

the 10kHz AC and the DC experiments in the same voltage range of 350 – 430V RMS are 

shown in Figure 3.22 as cosines of the contact angles as a function of the square of the 

applied voltage. Solid line and dotted line are least squares fits for the DC and AC data 

with confidence levels of 0.958 and 0.985, respectively. From Equation (1.33) using 102
o
 

as the equilibrium contact angle on a flat sol-gel surface [66], d = 5 x 10
-5

m is the thickness 

of the sol-gel layer, γlv = 72.81 mN m
-1

 for 0.01M KCl solution and ε0 = 8.85 x 10
-12

 Fm
-1

 

values of r ε0 = 2.22 and 0.86 are obtained from the AC and DC fit lines, respectively. Low 

dielectric constants of <1 are a feature of porous sol-gels and this would indicate values for 

r of ~(1.2 – 2) from the AC results. A value r<1 would be obtained from the DC data, 

however, which is impossible. This is an indication that the wetting transition on sol-gel 

surfaces is not purely Cassie-Baxter to Wenzel. 
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Figure 3.17 Dynamic change in contact angle (θ) with RMS voltage for a 0-800-

0Vpp 1kHz AC electrowetting cycle in 50V 5s steps on a sol-gel surface with data 

for the increasing voltage half of the cycle shown as (���) and data for the 

decreasing half as (∆∆∆). 
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Figure 3.18 Cosine of the contact angle (θ) as a function of the square of the 

applied RMS voltage for a 0-800-0Vpp 1kHz AC electrowetting cycle on a sol-

gel surface with data for the increasing voltage half of the cycle shown as (���) 

and data for the decreasing half as (∆∆∆). 
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Figure 3.19 Dynamic change in contact angle (θ) with RMS voltage for a 0-800-

0Vpp 10kHz AC electrowetting cycle in 50V 5s steps on a sol-gel surface with data 

for the increasing voltage half of the cycle shown as (���) and data for the 

decreasing half as (∆∆∆). 

 

-0.66

-0.65

-0.64

-0.63

-0.62

-0.61

0 20000 40000 60000 80000

(V /volts)
2

co
s(
θ

)

 
 

Figure 3.20 Cosine of the contact angle (θ) as a function of the square of the 

applied RMS voltage for a 0-800-0Vpp 10kHz AC electrowetting cycle on a 

sol-gel surface with data for the increasing voltage half of the cycle shown as 

(���) and data for the decreasing half as (∆∆∆). 
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Figure 3.21 Dynamic change in base diameter (±0.005mm) with RMS voltage for a 

0-800-0Vpp 1kHz AC electrowetting cycle in 50V 5s steps on a sol-gel surface 

with data for the increasing voltage half of the cycle shown as (���) and data for 

the decreasing half as (∆∆∆). 
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Figure 3.22 Cosine of the contact angle (θ) as a function of the square of the 

applied voltage on a sol-gel surface for DC electrowetting (◊◊◊) and 10kHz AC 

electrowetting (���) in the voltage range 350-430V RMS. Solid line and dotted 

line are least squares fits for the DC and AC data, respectively. 
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3.4 Conclusion 

 

A series of AC and DC electrowetting on dielectric (EWOD) experiments have been 

conducted on planar hydrophobic substrates and porous MTEOS sol-gel coated substrates 

and compared to previous work. Knowledge of the production of sample surfaces has been 

gained and an appropriate experimental configuration has been constructed. 

Established electrowetting experiments on planar hydrophobic surfaces were repeated and 

were in agreement with the standard electrowetting equation (1.31) within error limits. The 

surface was characterized as one with low contact angle hysteresis and the level of 

electrowetting reversibility was typical for this type of surface. 

Superhydrophobic porous sol-gel surfaces exhibited high contact angle hysteresis and were 

found to be in a partial Wenzel state before the application of an electrowetting voltage 

with further penetration of the liquid between the surface features as a bias voltage was 

applied. The electrowetting state was found to be totally irreversible as has been found in 

other electrowetting work on rough surfaces. The nature of the surface topography is not 

easily described by established measures of roughness and wetting behaviour of a liquid 

drop on such a surface is likely to be composed of a series of metastable states as 

concluded in studies by Johnson and Dettre [43] and, more recently, by Synytska et al. 

[138]. In this case the contact area of the drop on the surface can be in a Wenzel in some 

parts yet in a Cassie-Baxter state in others such that, as a whole, the drop is only partially in 

either state. Electrowetting data offers little quantitative comparison with work done on 

geometrically patterned surfaces but there is some level of agreement with suggested 

theories of Bahadur et al. [59]. This chapter does, however, demonstrate, for another model 

superhydrophobic surface, the difficulty in obtaining droplet recovery for EWOD on such 

surfaces. 
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The following chapter investigates an alternative approach to EWOD on superhydrophobic 

surfaces by varying the surface topography at the droplet surface rather than the substrate. 
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4.1 Introduction 

 

The mechanisms of super-hydrophobicity and electrowetting are well documented and a 

combined system could allow fully tuneable wetting through the full range of contact 

angles. Since the capacitive charging of droplets should be possible regardless of whether 

the underlying surface is structured or smooth, such a system seems perfectly feasible. In 

practice, however, the application of an electrowetting voltage causes the liquid to 

penetrate into the surface features and so transform the droplet from the “slippy” Cassie-

Baxter state to a completely immobile “sticky” Wenzel state. This was encountered by 

Torkkeli et al. who attempted to use these combined effects to create a droplet-on-a-chip 

system with fully programmable motion of the droplets on a super-hydrophobic surface 

[122, 123]. Whilst the transformation from a “slippy” state into a “sticky” state is a 

problem for droplet actuation applications, it can have its uses; Krupenkin and co-workers 

have shown that the irreversible switching of a droplet from a Cassie-Baxter to a Wenzel 

state can be exploited to create reserve batteries [139].
 
However, there have been few 

other attempts to combine these two physical mechanisms due to the problems caused by 

this [electrowetting induced] switching of states.[12, 124-126] A transformation back to a 

Cassie-Baxter state can be achieved by, for example, using a current to vaporize the water 

between surface features [128, 129], but this is not the ‘true’ reversibility expected to 

result from simply removing the electrowetting voltage. 

For a complete non-wetting system, an alternative to placing a drop on a structured 

surface is to incorporate the structure around the liquid in a conformal coating. The 

resulting liquid marble [67-72], when resting on a flat surface, will effectively have a set 

of protruding features in the contact region upon which the liquid rests. This is similar to 

the way a set of hydrophobic posts fabricated on a solid surface suspend a droplet to give 
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a super-hydrophobic Cassie-Baxter surface except here the system of grains can conform 

to the shape of the liquid. 

 

 

4.2 Liquid Marbles 

 

Liquid marbles are formed when a small quantity of liquid is rolled around in a 

hydrophobic powder which causes the powder to spontaneously coat the drop (Figure 4.1). 

A number of studies have investigated the properties and behaviour of liquid marbles [67-

72] as well as the applications of this mechanism in systems ranging from ‘self-cleaning’ 

in the natural world [1, 140] and the detection of water surface pollution [141] to the 

transport of ionic liquids [142] and as droplet evaporation inhibitors [143], [144]. Powder 

coatings have consisted of mainly lycopodium or silica micro-particles [145] but have 

extended to include superhydrophobic aerogels [146] and, more recently, silica nano-

particles [144], polyvinylidene fluoride (PVDF) nanobeads [147], graphite powders [143], 

hydrophobic copper powders and poly-methylmethacrylate (PMMA) powders [148]. 

Liquid marbles are highly mobile, requiring a very small actuating force, with no leakage 

of liquid and are capable of floating on water for far longer than a water droplet [106, 149]. 

They appear to behave more like a soft solid and are robust enough to withstand physical 

contact and even division. These properties make liquid marbles potentially useful in lab-

on-a-chip applications as a means to efficiently transport liquid drops without leakage and 

reversible electrowetting in such a system would clearly be useful as a method for liquid 

deposition. 
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Figure 4.1 A liquid marble formed by rolling a water droplet in 

hydrophobized lycopodium powder. 
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4.2.1 Liquid Marbles as Droplets on Superhydrophobic Surfaces 

 

In previous work Aussillous et al. [71] proposed that if a powder ‘grain’ attaches to the 

surface of a water then it replaces a solid-vapour surface area with an equivalent amount of 

solid-liquid surface area. This area, if the grain is assumed to be smooth and spherical, is 

equal to 2πRg
2
(1+cosθe) where Rg is the radius of the grain and θe is the intrinsic (Young’s 

Law) contact angle. A water-vapour interfacial area of πRg
2
sin

2θe on the droplet is also 

replaced so that the net change in surface free energy is  

( )( ) LVegSVSLegF RRE γθπγγθπ 222 sincos12 −−+=∆  (4.1) 

where γij are the interfacial tensions. Using the Young equation (1.3), we obtain, 

( )22 cos1 eLVgF RE θγπ +−=∆  (4.2) 

Equation (4.2) is a form of the Young-Dupré equation (1.9) and has only a zero or negative 

solution. For a zero solution θe would have to be 180
o 

(complete non-wetting) whereas 

only ~120
o
 can be achieved on a hydrophobic surface. As such, the negative solution is the 

practically achieved case and suggests that it is always favourable for grains to 

spontaneously attach to the liquid-vapour interface, even if they are hydrophobic. As the 

equilibrium contact angle is increased, each grain will protrude further from the liquid into 

the air. If the grains are spherical with a radius Rg, the length of a grain protruding into air, 

dg, is, 

)cos1( g

egg Rd θ−=  (4.3) 
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Thus, the granular coating of a liquid marble will provide a gap of thickness dg between the 

liquid and any surface upon which the marble rests (Figure 4.2). The grains in the 

conformal skin will not usually be close-packed, but will adopt some distribution with an 

equilibrium separation between each grain so that the gap is a combination of the grains 

and the air between them. 

 

 

 

Figure 4.2 Hydrophobic powder grains adhered to the liquid 

surface of a liquid marble. 

 

 

When the liquid marble sits upon a flat surface, the water at the contact region effectively 

rests on a set of protruding grains which is similar to the way a set of hydrophobic posts 

fabricated on a solid surface suspend a droplet to give a super-hydrophobic Cassie-Baxter 

surface. A key difference between the two situations is that the system of grains is able to 

conform to the shape of the liquid. Figure 4.3a shows a side profile image of a droplet of 

water in a Cassie-Baxter state on a set of lithographically fabricated microscopic posts 

(Figure 4.3b). In comparison, Figure 4.3c shows a side-profile image of a liquid marble, 

formed using hydrophobic grains, on a completely flat surface; conceptually the water 

within the marble is supported by a set of grains (posts) in the contact region (Figure 4.3d). 

Hydrophobic powder grains 

Liquid drop 

θ
g

e θ
g

e 
dg 

Rg 
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If a marble is placed upon a metal surface and a voltage is applied between the 

[conducting] water in the marble and the metal surface, changes in the contact region will 

occur due to the capacitive charging of the interface (i.e. an EWOD type effect) as, 

providing the grains are not electrically conducting, the water will be separated from any 

surface by an electrically insulating gap. Experimentally a thin insulating layer on the 

metal may be required to prevent short circuit current flow should high voltages cause 

sufficient electrocapillary pressure for the water to intrude between the grains and 

eventually come into direct contact with the metal surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 a) a droplet on super-hydrophobic micro-post surface, 

b) lithographic micro-posts, c) a liquid marble on a flat surface, 

and d) concept of a conformal ‘skin’ of grains. 

b) a) 

c) 

water 

 substrate 
 

hydrophobic grains 
d)) 
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4.3 Theory of Electrowetting of a Non-Wetting Droplet 

 

A liquid marble under electrowetting conditions may be considered to follow one of two 

regimes, depending on its size. In the first case, the droplet is large compared to the 

capillary length κ-1
=(γLV/ρg)

1/2
, where ρ is the density of the liquid and g=9.81 m s

-2
 is 

acceleration due to gravity, and so becomes a puddle with a constant height. In the second 

case the droplet is small compared to the capillary length so the shape is a spherical cap 

with a small flat spot in the region of contact. By approximating the droplet shape to either 

a cylinder or a spherical cap a surface free energy functional can be set-up and solved to 

obtain a defining equation between the non-wetting droplet contact angle and the contact 

radius or any other geometric parameter, as formulated by McHale et al. [145]. 

 

 

4.3.1 Puddle case 

 

If the puddle is considered as  a cylinder with a height h and a contact radius r(0) (Figure 

4.4), the total energy, E, including surface energy, gravitational potential energy and 

electrostatic energy from the charging of the lower surface by an applied voltage V, is 

given by, 

( ) ( )∫+++−=
h

LVLVSVSL

puddle
zdzzrghzrzrzrzrE

0

222 )(2)()()]([ πρπγπγπγγ  

 22

2

1
rcV π−  (0<z<h) (4.4) 
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The capacitance per unit area is c= sεrεo/d where εo and εr are the permittivity of free space 

and relative permittivity, respectively, and d is the separation between the conducting 

metal plate and the liquid. The parameter s is a simple empirical correction factor to 

account for the complexities of charging the lower surface of the droplet when it is not 

simply a liquid-solid interface but formed by grains attached to a liquid-vapour interface. It 

may also be used to take into account any insulating layer coating the conducting surface; 

to a first approximation we assume s∼1. Evaluating the gravitational energy term, using 

Young’s law and rearranging gives, 









−++−=

LV

eLV

puddle

G

cV
h

r

h
rE

γ
κθπγ

22

12
cos1

2
222  (4.5) 

If we minimise Equation (4.5) subject to the constraint that the volume, Vo=πr
2
h remains 

constant we obtain, 

( ) ( )
2/1

2
1

4
cos1

2

1
2, 








−−= −

LV

ee

cV
Vh

γ
θκθ  (4.6) 

which can also be written as, 

( )
( )

2/1

2

2
1

2sin4
1

2
sin2, 








−








= −

eLV

e
e

cV
Vh

θγ

θ
κθ  (4.7) 

This gives the equilibrium configuration of the puddle where h(0,180)=2κ-1
 is the expected 

result when there is no voltage applied and the droplet is completely non-wetting (i.e. 

θe=180
o
) and which also provides a means to obtain a value for the capillary length, and 

hence the surface tension, of a marble by measurement of the limiting puddle height as the 

volume is increased [67-71]. For a liquid marble, the liquid within a conformal skin of 
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widely spaced hydrophobic grains can be viewed as sitting upon a layer of vapour and the 

first term in Equation (4.4) becomes γLVπr
2
 with γLV having an effective value for the 

surface tension between the marble and the vapour. The liquid droplet is separated from 

the solid surface by this cushion of powder and vapour and so allows θe = 180
o
 in Equation 

(4.7). In contrast, Young’s Law does not allow θe = 180
o
 in a conventional droplet-on-

solid-surface system. Should the droplet be in a Cassie-Baxter or a Wenzel state, θe in 

Equation (4.7) would be replaced by the Cassie-Baxter or Wenzel contact angles, 

respectively. Equation (4.7) can also be written in terms of the contact radius r(0) if the 

volume, 4πRo
3
/3 of a sphere of radius Ro is equated to the volume of the cylinder πr

2
h, so 

that h = 4 Ro
3
/3r

2
, i.e. 

( )
( )

4/1

2

2
2/32/1

2sin4
1

2
sin

3

2
,)(

−









−








≈

eLV

e

oe

cV
RVzr

θγ

θ
κθ (0<z<h) (4.8) 

where r(z)(0,180) = (2/3)
1/2

Ro
3/2κ1/2

. When no voltage is applied and the droplet is assumed 

to be completely non-wetting (i.e. θe = 180
o
), predictions of Equation (4.8) are in 

agreement with previously published results [67-71]. As a voltage is applied the puddle 

shape is expected to change in a similar way to a droplet undergoing EWOD in that the 

height and contact angle reduce as the droplet spreads.  
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Figure 4.4 Liquid marble puddle case with maximal radius r(z), 

considered as a cylinder with contact radius, r(0) and height, h. 

 

 

 

4.3.2 Spherical cap case 

 

When droplet sizes are smaller than the capillary length, the forces of surface tension begin 

to dominate gravity and a droplet adopts a more spherical shape with a flat spot lower 

surface contact region. For a drop of this shape (Figure 4.5) the height, h, base contact 

radius, r(0), spherical cap radius, r(z), and contact angle, θ , are related by, 

θsin)()0( zrr = ,  )cos1)(( θ−= zrh , 

3/1
3

)( 







=

πβ
oV

zr  (4.9) 

where 

)cos2()cos1(coscos32 23 θθθθβ +−=+−=  (4.10) 

z 

h 

r 
r(0) 

r(z) 
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The surface free energy, EF, of the spherical cap on a solid surface is given by, 

( ) capLVbaseSVSL

cap

F AAE γγγ +−=  (4.11) 

where the base and cap surface areas are, 

2
rAbase π=  and )cos1(2 2 θπ −= RAcap  (4.12) 

Due to the constant volume constraint, Equation (4.9), any variation in the contact angle 

can be related to the variation in base radius by, 

( ) 






 ∆
+−=∆

r

r
θθθ sincos2  (4.13) 

Thus, performing a variation of Acap subject to constant volume and re-writing the result in 

terms of  ∆(πr
2
), changes in the surface areas of the spherical cap and the base can be 

related as, 

basecap AA ∆=∆ θcos  (4.14) 

The change in surface free energy, ∆EF, subject to the constant volume constraint, is then, 

[ ] baseLVe

cap

F AE ∆−=∆ γθθ coscos  (4.15) 

where θe, is the contact angle given by Young’s Law (Equation (1.3)). 

For a spherical cap with an angle θ, at the contact with the flat spot, the gravitational 

energy term, EG , can be evaluated and is given by, 

( )2sin)cos3(
3

2 6

42

θθ
κπγ

+







=

R
E LVcap

G  (4.16) 
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The limit θ→0
o
 gives EG = 0 and the limit θ→180

o
 gives EG = msgR, where ms = 4πR

3
/3 is 

the mass of the sphere. An equivalent form of Equation (4.16) for the gravitational energy 

of a spherical cap droplet has also been given by Shapiro et al. [134]. Taking into account 

the volume constraint, and after some simplifying algebra, a variation in the base area 

gives, 

( )
( ) base

LVcap

G A
r

E ∆











 −
=∆ 2tan

6

0 2

22

θ
κγ

 (4.17) 

The surface free energy, gravitational potential energy and capacitive energy terms may 

then be combined to give a variation in the total energy E of, 

( ) ( )
base

LV

eLV

cap
A

rcV
E ∆










−−−=∆

6

2tan0

2
coscos

2222 θκ

γ
θθγ  (4.18) 

If capE∆  is set to zero, the observed equilibrium contact angle, θ, and contact radius, r(0), 

may be defined as,  

( ) ( )

LV

e

cVr

γ

θκ
θθ

26

2tan0
coscos

2222

++=  (4.19) 

Parameters θ and r(0) (or, equivalently, h and θ) are not independent variables as they 

require a constant volume, Vo. 

The vapour cushion scenario from the puddle case also applies here meaning that a liquid 

marble does correspond to θe = 180
o
 in Equation (4.19). The first term in Equation (4.11) 

now becomes γLVAbase with γLV taking on an effective value for the surface tension between 

the marble and the vapour.  



  Chapter 4 Electrowetting of Liquid Marbles 

   

The linear relation between cosθ and V
2
 in the electrowetting equation (Equation (1.31)) 

can also be seen in Equation (4.19) combined with the three energy terms. The first term 

on the right hand side represents the effect of surface free energy and for a liquid marble 

with θe = 180
o
 this would give -1. Charging around the base area of the marble provides 

capacitive energy given by the third term. The weight of the marble creates a flat spot, 

introducing the coupling between the contact angle and the contact radius, and this 

gravitational effect is given by the second term. The relevance of the second term depends 

upon a length scale set by κh (expected to be of the order 2κr(z)) and the maximal height, 

h, equates to r(0)tan(θ/2). 

 

 

 

 

Figure 4.5 Liquid marble spherical cap case with height, h, base 

contact radius, r(0) and spherical cap radius, r(z). 
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4.4 Experimental Method 

 

Liquid marbles were produced by depositing droplets of distilled water or 0.01M aqueous 

KCl from a syringe onto a sol-gel ‘dish’ dusted with hydrophobized lycopodium powder 

and stimulating a circular rolling motion to coat the drops with particles, as described in 

Chapter 2.3.  As also described, marbles were then transferred to the substrates using the 

‘spoon’ end of a metal laboratory spatula aided by a small plastic barrier to prevent excess 

roll. Shape characterization and electrowetting experiments on appropriate substrates were 

then conducted. 

 

 

4.4.1 Marble Shape Characteristics 

 

A value for the effective surface tension of the liquid marble was obtained from the 

capillary length, κ
-1

, related to the saturation of the marble height, h, with increasing radius, 

R. of the liquid marble. As such measurements of h and R were taken for a series of different 

sized marbles created using droplet volumes in the range 0.5 - 300µl [150]. This also 

confirmed that the system of marble production and deposition was consistent with 

previous work [68, 71]. In this case distilled water was used for the liquid drop as there was 

no requirement for improved conductivity but a cross-section of the volume range was 

repeated using 0.01M KCl solution to confirm that there was no change in characteristics. 

Each marble was carefully deposited on a glass slide and the profile captured in silhouette 

illumination (e.g. Figure 4.3c) on a Krüss DSA-10 contact angle meter. The resulting still 

images were analysed using the Krüss DSA-1 drop shape analysis software. This system 

requires a magnification factor, in pixels/mm, to convert measurement units from pixels to 
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mm. This factor is calculated by the system with reference to an image of a known 

diameter (usually a syringe needle) at a given zoom position and must be re-calculated if 

the zoom position changes. Particular care was required when handling marbles of volume 

>100µl as shape deformations during transfer to substrate very easily caused the marble to 

‘burst’ whereas the smaller the marble the more robust was its structure. 

 

 

4.4.2 Electrowetting 

 

For electrowetting experiments the experimental configuration was much the same as that 

used in Chapter 3 and is illustrated in Figure 2.12. Liquid marbles were transferred to a 

glass substrate that contained a sputter coated Ti/Au electrode with a spin coated polymer 

overlayer of Shipley S1813 photoresist (thickness 2.5µm and baked at 100
o
C for 60 

minutes) and a thin hydrophobic capping layer of Flutec
®

 LE15 (thickness ∼ 1µm), as 

described in (2.2.1). Although the powder forms an insulating layer it was necessary to 

insulate the substrate to prevent short circuit should the liquid penetrate between the grains. 

Low volume drops of 2µl each were used to ensure as close to perfect spherical shape as 

possible and hence the highest Young angle, θe, to present the closest analogy to a 

superhydrophobic surface. A hydrophobized copper contact wire of thickness ~0.1mm was 

then brought into contact with the water within the marble from above and a voltage 

applied [150]. The applied voltage was increased and decreased progressively in a sweep 

with increments of known periodicity. For DC voltages a Keithley 2410 source/meter was 

used and for AC voltages the output of an Agilent 33220A waveform generator was fed 

through a Trek PZD700 amplifier. The AC frequencies used were 1kHz and 10kHz, 

chosen to be orders of magnitude away from the droplet resonant frequencies and the limits 
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of the amplifier as discussed in (3.2.2) and (3.3.1). Preliminary experiments were 

performed to establish the optimum voltage range that would give the greatest change in 

contact angle without the liquid penetrating between the grains.  Marble profiles were 

again analysed using the Krüss DSA-1 software using placement of a baseline and the 

Tangent 1 method (see 2.2.2.3). Baseline placement can introduce a systematic error in the 

measurement of any non-wetting drops but in the case of liquid marbles, the blurring of the 

silhouette profile caused by the coating of grains further complicates the measurements. As 

a precaution, measurements were checked manually using the angle measuring tool in 

image processing software NIH ImageJ [73] by taking the mean value of six 

measurements, although this method carries its own source of error in the placement of 

baseline and tangent. Errors in baseline placement also affect the measurements of marble 

height, h, and radius, R, although uncertainties in these measurements are likely to be 

lower than those in contact angle measurement with liquid marbles. It is acknowledged that 

wetting states of liquid marbles could be investigated more accurately if electrowetting 

theory was formulated in terms of aspect ratio (h/R) rather than contact angle and contact 

radius. This would require, with liquid marble electrowetting, measurements of h to take 

into account distortions caused by the electrode wire. In this study, however, the contact 

angle method was used in the interests of consistency with other studies and the work in 

Chapter 3.   
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4.5 Results and Discussion 

 

Liquid marble spherical cap radius, R, was found to increase with volume whereas marble 

height, h, reached a limiting value indicating gravitational flattening of the marble shape. 

When an AC or DC bias voltage was applied to liquid marbles on a planar hydrophobic 

surface a reduction of contact angle (θ) was observed as the voltage was increased from 0V 

followed by an increase in (θ) as the voltage was reduced back to 0V. The electrowetting 

data in this section are indicative of three experimental runs for each electrowetting cycle. 

 

 

4.5.1 Marble Shape Characteristics 

 

Measurements of h and R were taken for distilled water liquid marble volumes in the range 

0.5 - 300µl just after deposition [150]. Figure 4.6 shows, at different magnifications, the 

two marble regimes where a) is a spherical-cap-shaped 1µl liquid marble (R ≈ 0.7mm) with 

the liquid just visible between the grains and b) is a 285µl marble (R ≈ 5.6mm) typical of 

the puddle regime. Marble height as a function of radius is shown in Figure 4.7 ( ) 

and from this data the height can be seen to saturate at a value of (4.6±0.05)mm. This is the 

limiting height, h, and h = 2κ -1 giving an estimate of the capillary length, κ -1, as 2.3mm 

compared to a value of 2.7mm for water. As κ-1 
= (γLV/ρg)

1/2
,
 
a reduction in the capillary 

length yields a value for γLV of (53±2)mN m
-1

, compared to 72.8mN m
-1

 for water, due to 

the hydrophobic lycopodium coating. This data is consistent with the data of Aussillous 

and Quéré [68]. Data for the sample of sizes using 0.01M KCl solution (���) is shown to 

lie on the curve for the water data indicating that the salt has no effect on marble shape. 

The data facilitated selection of suitable marble size for electrowetting, having a close to 
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spherical shape and high apparent contact angle. Throughout the full range of sizes the liquid 

drops are separated from the surface by the hydrophobic grains so that marbles are 

completely non-wetting and remain fully mobile, removable with only a gentle air stream. 

As the marble shape goes from the spherical cap to the puddle regime the effects of 

gravitational flattening give an apparent contact angle of less than 180
o
.  

 

 

 

  

 

Figure 4.6 a) a spherical-cap-shaped 1µl liquid marble (R ≈~0.7mm) and b) a 285µl 

marble (R ≈ 5.6mm) typical of the puddle regime. 
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Figure 4.7 Height as a function of radius for freshly deposited water drops 

converted into marbles; the transition from marble to puddle with increasing 

volume is shown. The limiting value of puddle height gives twice the capillary 

length. For comparison a number of drops of 0.01M KCl solution are shown as 

(���). 

 

 

 

 

4.5.2 DC Electrowetting 

 

When electrowetting of a 2µl marble, of spherical cap radius R = 0.78 mm, was performed, 

contact radius increased and the observed contact angle decreased due to the application of 

a DC applied bias up to 100V in 20V 10s steps [150]. At higher voltages liquid appeared to 

penetrate through grains and come into contact with substrate and, if the voltage was 

increased too high, the marble burst. When liquid penetrated through the grains, the marble 

irreversibly attached itself to the substrate and became immobile. Liquid marbles resting 
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directly on a metal substrate without the insulating and hydrophobic layers were more 

susceptible to bursting when the electrowetting voltage was applied. 

At high applied voltages some of the lycopodium grains were ejected from the surface of 

the liquid marble indicating charging and high electric fields; this coincided with 

experiments where the marble did not return to its initial contact radius when the voltage 

was removed. However, by restricting the range of the applied voltage, a marble could be 

taken through an electrowetting cycle of 0-100-0V DC and a reversible change in contact 

angle achieved. Figure 4.8 shows a sequence of images obtained during the electrowetting 

cycle at the voltage maxima and minima where Figure 4.8 a) shows the marble at rest with 

no applied voltage, b) shows the marble with a maximum applied voltage of 100V DC 

following a series of 20V increments and c) is back at 0V following 20V decremental 

steps. Visually the marble clearly undergoes a change in wetting state from completely 

non-wetting with no applied voltage, where light can be seen through the gaps between the 

powder grains at the solid-liquid interface, to a wetting state where the contact radius more 

than doubles when the maximum voltage is applied. The initial state is then recovered 

upon removal of the voltage. This is confirmed by the data shown in Figure 4.9 where the 

measured contact angle for each step in voltage is shown with increasing voltage 

represented by (���) and decreasing voltage shown as (∆∆∆). The marble begins the 

cycle in a non-wetting state at 0V with a contact angle of (174±0.5)
o
 and this decreases 

linearly to a minimum of (148±0.5)
o
 as a stepped voltage is applied up to a maximum of 

100V DC. It then increases to (172±0.5)
o
 as the voltage is stepped back down to 0V. The 

change in contact angle with each voltage step was found to be the same for both the 

forward and reverse cycle indicating complete reversibility when compared with data from 

previous work done with droplets on a lithographically patterned surface, reproduced from 

[12] in Figure 4.10. Another notable contrast with this data is the apparent lack of a 
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threshold voltage to be reached before electrowetting begins whereas in the [12] data the 

contact angle does not begin to change significantly until around 40V is reached. Early 

experiments were performed using steps of 10V with 1s between steps and typical results 

can be seen in Figure 4.11. In this case, although the initial state was recovered at the end 

of the electrowetting cycle, a ‘hysteresis loop’ formed as the change in contact angle 

differed between forward and reverse cycles and a threshold voltage had to be reached 

before electrowetting began, as in the study by Herbertson et al. [12]. It is unclear why this 

hysteresis loop was observed but it could be related to the charge relaxation time of the 

substrate [60]. The influence of the potential ramp protocol may also affect the 

electrowetting threshold due to charging effects; charging of the powder grains could 

cause initial screening of the liquid from the electric field. It was found that an increase in 

time between steps was required to allow the marble to overcome charging effects which 

delayed the contact angle change. This presented an additional problem by increasing the 

experimental time by a factor of ten which allowed too much of the liquid to evaporate 

from between the powder grains causing the marble to lose integrity. To overcome this, 

the number of steps was halved by doubling the step voltage. 

 

 

 

   
 

 

Figure 4.8 Reversible electrowetting showing a) image of liquid marble with contact 

wire inserted, but no applied bias voltage; (b) image of the same marble with 100 V 

DC applied bias and c) image of same marble returned to 0V. 

a) b) c) 
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Figure 4.9 Contact angle as a function of voltage for a DC electrowetting cycle 

with a 2µL liquid marble in 20V, 10s steps with 0-100V shown as (���) and 100-

0V shown as (∆∆∆). 
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Figure 4.10 Contact angle as a function of voltage for a DC electrowetting cycle 

with a 2µL liquid drop on a lithographically patterned surface with 0-140V shown 

as (���) and 140-0V shown as (∆∆∆)§. 
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Figure 4.11 Contact angle as a function of voltage for a DC electrowetting cycle 

with a 2µL liquid marble in 10V, 1s steps with 0-100V shown as (���) and 

100-0V shown as (∆∆∆). 

 

 

 

To allow the data to be compared to theory described by Equation (4.19) subject to volume 

conservation (Equation (4.9)), it may be re-written as: 
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where Ro is the radius of a sphere of equivalent volume to the droplet and c1 = sεrεo/dγLV. In 

this case, for a 2µl marble, the value for Ro is the same as for a sphere of equivalent volume 

due to its spherical shape. A contact angle, θ, may then be deduced as a function of the 

Young’s Law contact angle, θe, the dimensionless size κRo, the electrowetting strength 

constant c1 and the applied voltage V. The thickness of the insulator layer on the surface 
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combined with typical lycopodium grain size is in the range of tens of microns so c1 = 

aεo/(γM ×10
-5

), where γM = 53 mN m
-1

 is the new surface tension of the marble. The new 

parameter a is both the ratio of the relative permittivity to effective insulator thickness in 

microns scaled by any shape factor, s, and the ratio of the surface tension of water to that 

of the marble.  

Figure 4.12 shows the cosine of the contact angle as a function of the square of the voltage 

for the liquid marble DC electrowetting cycle with the data for increasing voltage 

represented by (���) and that for voltage decrease shown as (∆∆∆). The trend of the data 

with increasing voltage is well-described by the minimum energy formula (Equation 

(4.20)) and the hysteresis on decreasing the voltage is small. Quantitatively, the data can be 

fitted to Equation (4.20) using κRo = 0.1 and θe = 174
o
 with an RSquare of 0.997 (solid line 

in Figure 4.12) and yields a = 1.77. While the relative permittivity is unknown for the 

lycopodium powder used in the experiment, taking a value of sεr = 3.5 and the effective 

insulator thickness of d = (20±3) µm yields a value for the surface tension of the marble of 

(53±8) mN m
-1

 compared to the value obtained from the data shown in Figure 4.7,of 

(53±2) mN m
-1

. The actual ratio of water-marble surface tension, however, gives a value 

for a of 1.37 which slightly increases the value for d. 
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Figure 4.12 Cosine of contact angle as a function of square of applied 

voltage for a DC electrowetting cycle with a 2µL liquid marble with 0-100V 

shown as (���) and 100-0V shown as (∆∆∆).Solid line is a fit to Equation 

(4.20) with κRo = 0.1 and θe = 174
o
. 
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4.5.3 AC Electrowetting 

 

Electrowetting cycles were also performed on the same sized marble using an AC bias 

from 0V to 200V pp then back to 0V in 40V pp 10s steps [150] at 1kHz and 10kHz. The 

contact radius and contact angle again varied with applied voltage in a similar manner to 

the DC experiments, with the exception of a slightly higher minimum contact angle of 153
o
 

but this was at a lower rms voltage of ~70V compared to the DC bias of 100V. The final 

contact angle, however, returned to 173
o
, a value even closer to the starting angle than in 

the DC experiments. Also the change in contact angle for the reverse voltage steps appears 

to follow more closely the angles for the forward voltage steps. Here too there is no 

apparent threshold voltage for electrowetting to begin. The data are shown in Figure 4.13 

where the measured contact angle for each step in voltage are shown with the data for 

increasing voltage represented by (���) and that for voltage decrease shown as (∆∆∆). 

Figure 4.14 shows the cosine of the contact angle as a function of the square of the voltage 

for the liquid marble AC electrowetting cycle with the data for increasing voltage 

represented by (���) and that for voltage decrease shown as (∆∆∆). The trend of the data 

with increasing voltage is less linear than the DC data but still fairly well-described by the 

minimum energy formula Equation (4.20) using, κRo = 0.1 and θe = 174
o
 with an RSquare 

of 0.976 (solid line in Figure 4.11) yielding a = 2.42. The contact angle hysteresis when 

decreasing the voltage is smaller than with the DC experiments and this is in agreement 

with the findings of other studies [151], [80]. Using a value of sεr = 3.5 effective insulator 

thickness of d = (20±3) µm yields a value for the surface tension of the marble of (38±8) 

mN m
-1

.and to obtain a value commensurate with the value obtained from the data shown 

in Figure 4.7 would require sεr = 5.5. Assuming the value of εr remains constant then the 
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shape factor s would require adjustment which could be accounted for by changes in 

marble shape due to the time-averaged change in contact angle. 
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Figure 4.13 Contact angle as a function of voltage for an AC electrowetting cycle 

with a 2µL liquid marble with 0-200V pp shown as (���) and 200-0V pp 

shown as (∆∆∆). 
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Figure 4.14 Cosine of contact angle as a function of square of applied voltage for an 

AC electrowetting cycle with a 2µL liquid marble with 0-200Vpp shown as (���) 

and 200-0Vpp shown as (∆∆∆).Solid curve is a fit to Equation (4.20) with κRo = 0.1 

and θe = 174
o
. 



  Chapter 4 Electrowetting of Liquid Marbles 

   

The AC and DC data for the cosine of the contact angle as a function of the square of the 

voltage are shown together in Figure 4.15. The DC data for increasing voltage are 

represented by (���), decreasing voltage shown as (∆∆∆) and the AC data for increasing 

voltage are represented by (���), decreasing voltage shown as (▲▲▲). The data follow 

very similar trends and the evidence of very low hysteresis is indicative of the absence of a 

Cassie-Wenzel transition during electrowetting with liquid marbles.  
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Figure 4.15 Cosine of contact angle as a function of square of applied voltage for 

AC and DC electrowetting cycles with a 2µL liquid marble. For DC data 0-100V 

is shown as (���) and 100-0V is shown as (∆∆∆). For AC data 0-200Vpp is 

shown as (���) and 200-0Vpp is shown as (▲▲▲). 
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One main problem with liquid marble measurements from images is that identification of 

the points of contact with the surface is extremely difficult. The droplet shape is strongly 

curving inwards as the contact line is approached and this, combined with a slightly 

“fluffy” profile caused by the powder skin, means that absolute measurements of contact 

radius and contact angle are relatively inaccurate. Accurate measurement of the spherical 

radius from images is possible, but any errors in the vertical location of a baseline can 

significantly alter the exact values recorded for the contact area and contact angle. The 

contact angles reported may be underestimates by around 5
o
-10

o
, even when checked with 

a separate image processing technique although repeated measurements on a given marble 

provide contact angles consistent to within ±1
o
. The measurements do, however, illustrate 

the trends in these parameters with voltage and so, providing the baseline is not moved 

during a series of measurements on a liquid marble, the data obtained is useful to illustrate 

the general trend and the reversibility. 

 

 

 

4.6 Conclusion 

 

Liquid marbles have been considered as an equivalent system to a droplet resting on a 

superhydrophobic patterned, textured surface where the surface features envelope the 

droplet in a conformal powder skin. They are in a highly mobile state and have high initial 

contact angles equivalent to droplets on superhydrophobic surfaces. While further work is 

needed to improve the accuracy of absolute measurements of contact angle and to clarify 

the quantitative fitting of the data, these experiments nonetheless demonstrate the principle 

that electrowetting can be performed with liquid marbles in a similar manner to EWOD of 
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simple water droplets. Further work could include formulation of electrowetting theory in 

terms of aspect ratio of the spherical cap height and radius rather than contact angle and 

contact radius. This would eliminate the problems associated with contact angle 

measurement on very rough surfaces. The wetting behaviour of liquid marbles under AC 

and DC electrowetting experimental conditions has been shown to contrast greatly with 

that of a liquid drop on a lithographically patterned superhydrophobic surface. The most 

important differences are a lack of threshold voltage for electrowetting to begin and 

complete reversibility with the liquid marbles. This important feature addresses a key 

problem with electrowetting on superhydrophobic surfaces, the transformation from a 

Cassie-Baxter to Wenzel state and, hence, lack of recovery of the original wetting state 

which normally limits applications in, for example, droplet microfluidics. The consistent 

lack of contact angle hysteresis in both AC and DC electrowetting indicates that, with 

liquid marbles, there is no Cassie-Wenzel transition. This level of recoverable mobility in 

electrowetting could be suitable for lab-on-a-chip applications if combined with a method 

for controlling marble movement and this is investigated in Chapter 6. Such an application 

would, however, need to be complemented by the development of methods to dispense, 

coalesce, separate and mix liquid marbles and to separate the liquid from the marble. 

Some of these issues are addressed with droplets by using forced oscillations and it 

therefore naturally follows that the same may be applied to liquid marbles. In the following 

chapter the resonant modes of liquid marbles under forced oscillation by electric field are 

investigated. 
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5.1 Introduction 

 

Sessile conducting droplets on a substrate are known to exhibit shape oscillations in an 

alternating electric field that are similar to those observed with completely spherical 

droplets – a phenomenon whose potential applications have generated some interest in the 

past decade. In liquid characterisation, oscillating droplet techniques may be used to 

measure surface tension and viscosity of liquids [152] and have been proposed for 

measurement of contact angles [153]. Oscillations can be used to create internal mixing 

within sessile droplets [74, 154] and surface wave induced oscillations have been deployed 

effectively to improve fluorescence in DNA microarrays [155]. In droplet microfluidics, 

oscillations driven by electric fields have been shown to be controllable and, hence, be used 

as a way to create self-propelling droplets [13]. It is conceivable that the combination of 

either substrate heterogeneity or contact angle hysteresis with droplet oscillations, however 

induced, could provide new methods to actuate droplet motion. In this case, a key factor in 

actuating and sustaining motion is likely to be reducing contact area to reduce the required 

driving force. Herein lies the problem with droplets on smooth, even hydrophobic, surfaces 

since the highest contact angles in such cases tend to be in the range 115
o
-120

o
. This 

highlights the importance of understanding oscillations of sessile droplets possessing small 

contact areas, such as those found on superhydrophobic surfaces. However, droplet 

oscillations on superhydrophobic surfaces are likely to result in an increase in contact area 

and contact angle hysteresis due to a Cassie–Wenzel transition as liquid penetrates between 

the surface features [156, 157]. 

Liquid marbles have been considered in Chapter 4 as an alternative to droplets on 

superhydrophobic surfaces, whereby a granular superhydrophobic coating forms a 

conformal skin around the droplet [68]. Liquid marbles exhibit extremely low contact angle 
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hysteresis and complete reversibility in electrowetting [145, 150]. This property suggests 

that liquid marbles can provide a possible solution for a droplet on a planar surface with a 

small contact area maintained under the influence of an AC electric field and they are 

experimentally investigated here with a comparison to sessile droplets on the same 

substrates [158]. In a more recent study Bormashenko et al. have investigated the shape 

oscillations of liquid marbles pinned to a laterally vibrating superhydrophobic substrate as 

a method for establishing effective surface tension [157].  

 

 

5.2 Theory of Droplet Oscillation 

A droplet of liquid in a reduced gravity environment [159] or undergoing levitation by gas 

films, magnetic or other external forces [160, 161] adopts a completely spherical shape. 

The angular frequencies of free vibration of such an isolated droplet in vacuum for small 

amplitudes is described by, 

3

0

2 )2)(1(
R

nnn LV

n
ρ

γ
ϖ +−= , (n = 1, 2, 3, …) (5.1) 

where R0 is the spherical radius, ρ is the density, γLV  is the surface tension and n is the 

mode number representing the number of nodes in the oscillation [14]. With a droplet on a 

substrate in the presence of gravity, however, the mode number may not correspond to that 

of a free droplet; a low frequency (n=1) mode tending to a zero-frequency rigid body 

displacement as the size of the supported part of the droplet on a spherical bowl reduces to 

zero has been predicted in studies by Strani and Sabetta [162] such that the first mode for a 

free droplet then corresponds to the second mode of a constrained one. A low frequency 
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rotational mode about the longitudinal axis has also been reported for a pendant drop by 

Moon et al. [163] but this is not observed with a sessile drop on a substrate. Experimental 

studies which include the lowest order mode have previously been conducted with 

substrate supported drops having a fixed contact line [164] but, more recently, have 

investigated drops with mobile contact lines on hydrophobic substrates [165-167]. A recent 

theoretical analysis of oscillations of a substrate supported hemispherical droplet has 

considered the cases of both types of contact line. For a freely sliding contact line it was 

suggested that the natural frequencies should coincide with the natural frequencies of even 

oscillation modes for a spherical droplet [168]. Behaviour of vibrated sessile droplets 

possessing immobile and mobile contact line modes has previously been identified by 

Noblin et al. who labelled them type I and type II, respectively [169] and the present work 

will be related to these modes. 

The shape modes of freely suspended and perfectly spherical vibrated droplets can be 

described by a combination of Legendre polynomials as shown schematically in Figure 5.1 

[158]. For substrate supported droplets, the resonant modes are due to stationary surface 

waves and the nodal patterns observed in the droplet images allow pseudo-wavelengths to 

be defined in terms of fractions of the droplet spherical circumference [169]. For 1-D 

capillary-gravity waves on a liquid bath of depth h with wave vector qn=2π/λn, the angular 

frequency, ωn, is,  
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where κ-1 
= (γLV/ρg)

1/2
 is the capillary length. With a completely spherical droplet 

possessing the nodal shapes given by Figure 5.1, the side-view perimeter length, p = 2πR,  

must accommodate a whole number, n, of wavelengths, λn. Assuming a dominant capillary 
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term and a sufficiently high value of h, so that tanh(qnh)→1, Equation (5.2) approximates 

to, 

3

0

32

R
n LV

n
ρ

γ
ϖ ≈ , (n = 1, 2, 3, …) (5.3) 

which is equivalent to Equation (5.1) but with n(n-1)(n+2) replaced by n
3
. Numerically, 

this gives a ∼10% underestimate for n = 2 to 7 with this underestimate reducing at higher 

values of mode number n [158].  

With a sessile drop on a hydrophobic substrate, where immobile and mobile contact line 

modes can occur, the Noblin type I mode describes an immobile contact line with a 

constant contact radius and nodes at the droplet-substrate contact points (Figure 5.2a). For 

type I modes, the side-view profile perimeter, p, can thus accommodate a half-integer 

number of wavelengths, p = (j-1)λj/2, where j = 2, 3, 4, … and the resonant frequencies for 

capillary dominated waves are then described by [158], 
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which, if h→∞, approximates to, 
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πω −≈ , (j = 2, 3, 4, …) (5.5) 

Noblin type II modes describe a completely mobile contact line with a constant contact 

angle and anti-nodes at the droplet-substrate contact points (Figure 5.2b). The side-view 

profile perimeter, p, can again accommodate a half-integer number of wavelengths, p = 

kλk/2, where k = 2, 3, 4, … . In this case there is a quarter-wavelength distance between the 
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last node and the anti-node at the substrate on each side of the droplet. Equation (5.5) then 

becomes, 

( )
3

32

p
k LV

k
ρ

γ
πω ≈ , (k = 2, 3, 4, …) (5.6) 

for type II modes where the sequence of frequencies is the same as that predicted by 

Equation (5.5) with the indexing related by j = k+1. 

The analysis by Oh et al. [165] indicates that the electrowetting excitation excites the even 

modes possessing an anti-node at the droplet apex. Such apex anti-nodes could be imposed 

by a non-hydrophobized contact wire and may also be present in odd number sequences. 

Three half-wavelengths around the perimeter exist in the j = 4 immobile contact line case 

from Figure 5.2a but can also be fitted around the perimeter of the k = 3 mobile contact line 

case. This mode has two nodes above the substrate (one each side) and a node at the droplet 

apex; in these resonant frequency sequences, odd number j and k modes always possess 

nodes at the apex of the droplet. 

If Equation (5.1) is re-written using n(n-1)(n+2) ≈ n
3
 and p = 2πR0, the free spherical drop 

case  may be compared to Equation (5.6), 
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which appears to be a factor of eight larger than the approximation in Equation (5.6), but 

the same result is recovered if k is restricted to even values and k = 2n with n = 1, 2, 3, … 

[158]. 
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n = 2 n = 3 n = 4 n = 5 

 

 

 

 

 

Figure 5.1 Schematic illustrations of shape modes for freely 

oscillating spherical droplets in side-view profile. 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

Figure 5.2 Schematic illustrations of pure oscillation modes for sessile 

droplets translated from images of a 100µL drop at resonance with a) 

immobile contact line (Noblin type I), and b) mobile contact line (Noblin 

type II). For type I modes the three-phase contact line corresponds to a node 

of the vibration, whereas for type II it is an anti-node. 

    k=4  j=4 

Nodes 
Nodes 
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5.3 Experimental Method 

 

Liquid marbles were created by depositing droplets of 0.01M KCl in deionised water of 

volumes ranging from 5µL to 275µL on to hydrophobized grains of lycopodium powder of 

size dg = (17±3) µm and ‘roll-coating’ them as described in (2.3). Liquid marbles and 

droplets were deposited on to hydrophobic planar substrates in the AC electrowetting 

experimental configuration used in Chapter 4 and electric field driven oscillations were 

induced. Image sequences of resonant oscillations were captured using a high speed CCD 

camera and the specific resonant frequencies were identified using an image processing 

technique as described in (2.5). 

 

 

5.3.1 Resonant Oscillation Experiments 

 

In the oscillation experiments the liquid marbles were deposited onto a glass substrate that 

contained a sputter coated Ti/Au electrode with a spin coated polymer overlayer of Shipley 

S1813 photoresist (thickness 2.5µm and baked at 100
o
C for 60 mins.). This was then 

capped by a spin coated 1.3µm hydrophobic layer of amorphous Teflon
®

 AF1600 (DuPont 

Polymers). Although the hydrophobic powder of the marble forms an insulating layer it 

was necessary to insulate the substrate to prevent short circuit should the liquid penetrate 

between the grains. A hydrophobized copper contact wire of approximate diameter 0.1mm 

was inserted into the apex of the marble and an AC voltage applied by feeding the output of 

an Agilent 33220A waveform generator through a Trek PZD700 amplifier (Figure 5.3a). 

This configuration is similar to that used in a recent study of sessile droplet oscillations 

using AC electrowetting-on-dielectric excitation with a Teflon
®

 AF1600 substrate [165]. 
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The typical applied voltage was 200V peak-to-peak with a frequency sweep of 1-51Hz in 

steps of 1Hz s
-1

 so as to identify an approximate value for the fundamental resonant 

frequency for each marble size. To more accurately identify the fundamental frequencies 

for the full marble volume range, frequency sweeps across a narrower bandwidth of 10Hz 

at a rate of 0.25Hz s
-1

 were used. The frequency sweeps for higher resonant modes were 

chosen to be from 1Hz to 251Hz with a sweep rate of 5Hz s
-1

 so as to drive a sufficient 

number of detectable resonances with the appropriate video capture length and rate. A 

limited representative selection of the marble sizes was chosen in the range 10µL to 150µL 

for the higher modes. In this range marbles would be large enough at the lower end of the 

range to give a number of resonant modes and small enough at the upper end to ensure that 

marbles remained intact throughout the frequency sweep. For comparison purposes 

experiments were conducted on the same substrate using two sizes of sessile droplet 

without any powder coating (Figure 5.3b). Sweep rates were found to affect the observed 

frequencies and in a series of separate experiments, a factor of two variation in sweep rate 

was found to shift the frequencies for a given volume by up to ±5% for the higher modes. 

However, a higher sweep rate was necessary for wide band experiments due to limitations 

imposed by the camera system. The profiles of droplets were captured in silhouette 

illumination using a SVSI MemView high speed camera (and proprietary MemView 

software v1.6.1). A capture rate appropriate to the upper limit of the frequency sweep, up to 

1000 frames s
-1

 (fps) for the higher mode experiments, was used (see 2.5.2). The camera 

captures to internal dynamic memory of 1GB which dictates a maximum capture length 

based on the choice of image size and capture rate. This maximum permissible capture 

length must therefore be the time limit for the frequency sweep which, in turn, translates to 

the appropriate choice of sweep rate. 
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Figure 5.3 Configurations for inducing shape oscillations on a hydrophobic planar 

surface using a) a liquid marble and b) a sessile droplet. 

 

 

 

5.3.2 Image Processing 

 

Captured video sequences were converted to individual images and the NIH ImageJ image 

processing software was used to both present the nodal pattern of oscillation visually and 

provide a precise method of identifying the resonant frequencies from the captured images. 

A stack of still images was composed from a sequence and then a z-projection was created 

to provide a layered view of the stack. The anti-nodal positions vary in each frame and 

these could then be displayed simultaneously on one image. Figure 5.4a illustrates the first 

resonance for a small 5µL volume liquid marble on the flat hydrophobic surface. In this 

image, the contact line appears to be mobile rather than pinned, although it is difficult to 

confirm this visually because of the small contact area. Figure 5.4b shows a similar volume 

droplet in resonance and in both images the presence of the wire electrode does not appear 

to cause significant distortion. 
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Resonant frequencies could be identified from the image stack by establishing where the 

peak oscillation amplitudes occurred throughout the frequency sweep. If a rectangular box 

area was selected to encompass part of the marble or droplet and part of the background, 

the silhouette illumination provided high contrast between the two parts and any change in 

the proportions would change the mean greyscale value in the selected area. An oscillation 

anti-node in the selected area would produce such a change as it oscillated and so points of 

peak displacement would manifest as peak variances of mean greyscale value, defining the 

resonant frequencies. Plotting a z-axis profile of the mean greyscale value within the 

selection area displayed the values graphically as a function of frame number allowing the 

peaks to be easily identified. The frequency values could then be obtained from the frame 

numbers using the known parameters of capture frame rate, starting frequency and sweep 

rate. An example of anti-node displacement (as a mean greyscale value) as a function of 

driving frequency for the first 100Hz of the sweep for a 100µL liquid marble is illustrated 

in Figure 5.5, clearly showing peak variances. The selection area was positioned over an 

anti-node throughout the image sequence which was typically located just to the left or 

right hand side of the electrode wire. Unless the selection area was repositioned in every 

frame, however, the position could not be confirmed to be precisely at the maxima 

throughout the sequence due to lateral movements; this was particularly apparent with 

liquid marbles due to their high mobility. To confirm the negligible distortion effects from 

the electrode wire, frequency spectra were obtained from selection areas at two alternative 

locations around the surface of a 50µL drop. These were chosen to be on anti-nodes at the 

contact point and at 50
o
 to the right hand side of the electrode wire, to give an even spread 

of locations around the drop half-perimeter, and the data are shown in Figure 5.6. An offset 

has been applied to the mean greyscale values to allow all three spectra to be shown on the 

same graph where the spectra are for areas a) immediately to the right of the electrode wire, 
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b) at 50
o
 to the right of the wire and c) at the contact point. Although there is some degree 

of amplitude change this is likely to be due to inconsistent positioning over the anti-nodal 

peaks. The resonant frequencies do, however, appear to be consistent at all three locations 

to within ±0.5Hz indicating negligible influence on the resonant frequency by the electrode 

wire. This could be confirmed more systematically using more droplet volumes or liquid 

marbles and by testing more selection area locations on the surface. 

It should also be noted that liquid marbles are subject to deviations in the assumed 

axisymmetry due to shape deformations during production/deposition. These effects were 

found to introduce variations in marble height and diameter measurement of up to ±2.5% 

and in observed resonant frequency of up to ±10%, as described in (2.5.5). An improved 

method for monitoring the effect on resonant frequency during experiments could be to 

introduce a second high speed camera in a view plane at 90
o
 to the first. Although this 

would require some doubling up of equipment it would provide a means to compare 

measured frequencies from two aspects and, hence, introduce an associated error 

measurement. 
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Figure 5.4 Image stack z-axis projection showing a) the first resonance of 

a 5µL volume liquid marble on a flat hydrophobic surface and b) a similar 

volume droplet in resonance. In each case two nodes are apparent on the 

profile above the substrate and the stacked anti-node positions appear in 

shades of grey. 

 

 

 

 
 

Figure 5.5 An example of anti-node displacement (mean greyscale value) as a 

function of driving frequency for the first 100Hz of the frequency sweep for a 

100µL liquid marble. The displacement amplitude is directly proportional to the 

mean greyscale value within a rectangular box selection at an anti-node close to 

the electrode wire as a function of driving frequency. The resonant frequencies 

are identified by the peak variances in mean greyscale value. 

a) b) 

Resonant modes 
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Figure 5.6 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 50µL sessile droplet during a narrow-band sweep 

experiment with selection area positioned a) immediately to the right of the 

electrode wire, b) 50
o
 to the right of the wire and c) at the contact point. 

 

 

 

 

5.4 Results and Discussion 

 

When an AC voltage with a frequency sweep was applied to the liquid marbles and sessile 

droplets, resonant oscillations were observed with nodal patterns around the droplet 

periphery throughout the frequency range. The precise resonant frequency was dependent 

on marble volume; as volume increased so did the number of observed modes up to 14 for 

a wide band sweep with the largest volumes. Fundamental resonant frequencies of liquid 

marbles were identified from narrow band frequency sweeps and were found to decrease as 

marble volume increased. With liquid marbles a second, rigid body up and down type of 

a) 

b) 

c) 
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motion was observed at low frequencies. This was not localised to a single frequency, but 

occurred over a range of frequencies and was not observed with the sessile droplets. 

 

5.4.1 Sessile Droplets 

 

Resonant surface oscillations of sessile droplets were observed with mobile and immobile 

contact lines seemingly depending on the drop size. Small droplets of 10µL or less on the 

Teflon
®

 AF1600 hydrophobic planar surface appeared to always undergo resonances with a 

mobile contact line (Noblin type II). This is consistent with the observations reported by 

Oh et al. who also used Teflon
®

 AF1600 [165]. In the study by Noblin et al., however, 

using sessile droplets of water on a polystyrene substrate with excitation from below using 

a loudspeaker, they observed pure type I immobile contact line behaviour [169]. It has been 

noted, however, that the transition between these types of behaviour depends upon the 

magnitude of contact angle hysteresis and the amplitude of vibration. The frequency 

spectra of a 10µL sessile droplet during a wide-band sweep experiment are shown in Figure 

5.7. The dashed vertical lines show frequency values predicted by Equation (5.5) using k = 

2, 3, … , 7 and values for density and surface tension of ρ = 1000kg m
-3*

 and γLV = 

72.81mN m
-1

, respectively, for a 0.01M KCl solution  with the first major resonance 

occurring at 37.5 Hz.  

The square of the frequency plotted as a function of the mode number cubed (Figure 5.8) 

shows a close to linear relationship with a least squares fit to the data (���) shown as a 

solid line. The gradient of the fit represents the ratio (γLV/ρp
3
) with a ±5% variance and 

 

 

 
*Source: Sigma Aldrich Ltd.
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yields a value of γLV = 64.16mN m
-1

 using ρ = 1000kg m
-3

 and a measured value of the 

droplet profile perimeter length p; values for p were established using the measuring tools 

in the NIH ImageJ software from static images of a 10µL and a 100µL sessile droplet at rest 

on the planar hydrophobic substrate. Using this value of γLV  with Equation (5.5) improves 

the agreement between the capillary wave model and most of the resonant peaks in the 

experimental data in Figure 5.7 (shown as dotted lines). This value is, however, particularly 

low compared to the accepted value of surface tension for a 0.01M KCl solution and is 

possibly due to inaccuracies in the measurement of p. There is an estimated uncertainty in 

the measurement of p of ±5% based on inaccuracies in the fitting of elliptical and freehand 

lines to the drop profile in ImageJ (see 2.5.4.3). Taking this into account and the 

uncertainty in the fit line, a value for γLV of (64.16 ±20%)mN m
-1

 may be obtained using 

the accepted value for ρ. Factors influencing the fit may also include uncertainties in 

measurement when identifying resonant frequencies (2.5.4) and systematic errors in the 

frequency sweep experiments (2.5.2). Possibly the use of the cubic dependence on the 

mode number rather than a more complex function of mode number, as occurs in the exact 

theory for a free spherical droplet, may also be a factor. For larger 100µL droplets the 

situation was more complicated with both mobile and immobile contact line behaviour 

observable at similar frequencies. The frequency spectra of a 100µL sessile droplet is 

shown in Figure 5.9 where the upper curve corresponds to observations from the right hand 

side of the electrode wire and the lower curve is the data from the left hand side of the 

contact wire. The y-axis gives the anti-node displacement as a mean greyscale value in 

arbitrary units and an offset has been applied to separate the two data sets for display. Both 

sets of data show a sequence of sharp peaks with smaller and broader intermediate peaks 

and the change in amplitude of these peaks is partially due to the position of the maxima 

relative to the fixed position of the rectangular box selection region. The dashed vertical 
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lines show frequency values predicted by Equation (5.5) data using  j = 3, 4, … , 12 and the 

standard values for the density and surface tension of 0.01M KCl solution (ρ = 1000kg m
-3

 

and γLV = 72.81mN m
-1

) with the first major resonance occurring at 32.1 Hz corresponding 

to j = 4; this fitting is equivalent to Equation (5.6) using k = 2, 3, …., 11. The gradient of 

the fit line for the 100µL drop in Figure 5.8 yields a value of γLV = 74.66mN m
-1

 and this, 

again, improves the agreement between the capillary wave model and most of the resonant 

peaks in the experimental data in Figure 5.9 (shown as dotted lines). The same levels of 

uncertainty as for the 10µL drop apply. 

 

 

 

 

 

Figure 5.7 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 10µL sessile droplet during a wide-band sweep 

experiment. Dashed lines are single parameter fits to the capillary wave model 

using γLV=72.8 mN m
-1

 and dotted lines are the equivalent fits with an adjusted 

value of γLV=64.16mN m
-1

. 



 Chapter 5 Resonant Oscillations of Liquid Marbles 

   

0

10000

20000

30000

40000

0 200 400 600 800

n
3

(f
/H

z)
2

Figure 5.8 Square of frequency as a function of mode number cubed for the first 

five major resonances of a 10µL sessile droplet (���) and the first eight major 

resonances of a 100µL sessile droplet (▲▲▲) with trendlines indicating linearity. 

 

Figure 5.9 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 100µL sessile droplet during a wide-band sweep 

experiment. The upper and lower curves correspond to observations from the right 

and left hand sides of the electrode wire respectively. Dashed lines are single 

parameter fits to the capillary wave model using γLV = 72.8 mN m
-1

 and dotted 

lines are the equivalent fits with an adjusted value of γLV = 74.66mN m
-1

. 
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5.4.2 Liquid Marbles 

 

In the case of a perfectly non-wetting liquid marble contact angle hysteresis is completely 

absent and a mobile contact line (Noblin type II) behaviour is expected. In practice the 

marble displays ‘squatting’ rather than wetting behaviour during oscillation, much like a 

soft solid would at the contact line, where the contact angle increases and the contact line 

appears pinned. However, after the experiment the marble remained mobile, with no 

pinning due to liquid penetration between the powder grains, and could be removed from 

the surface by a light current of air suggesting a ‘quasi-mobile’ contact line. 

Although the contact angle of a liquid marble approaches 180
o
, for small marbles a flat spot 

with finite contact radius, r, at the interface with the substrate is induced due to gravity. 

This contact radius is given by r = (2/3)
1/2κRo

2
 where Ro is the radius of a sphere containing 

the same volume of liquid and the capillary length is κ −1 = (γLV/ρg)
1/2 

where g = 9.81 ms
-2

 is 

the acceleration due to gravity [67, 68]. As discussed in Chapter 4, the marble changes from 

spherical to ‘puddle’ shape with increasing volume and has a limiting height that tends 

asymptotically to twice the capillary length. From the associated experimental results the 

obtained value of capillary length yields an estimate of surface tension to be (53±2)mN m
-1

.  

Frequency spectra for liquid marble volumes 10µL, 30µL, 50µL, 100µL, 125µL and 150µL 

are shown in Figures 5.10 to 5.15 respectively. The damping effect of the powder skin on 

liquid marbles meant that the oscillation amplitudes were greatly reduced at higher 

frequencies. Resonances beyond 200Hz were virtually undetectable and so the data for 

frequencies greater than 200Hz has been omitted. The dashed lines show frequency values 

predicted by Equation (5.7) using an n
3
 mode dependence and the surface tension, γLV = 

(53±2)mN m
-1

, obtained from the maximal height of the liquid puddle. In each case the first 

major peak corresponds to n=2 with subsequent peaks at n = 3, 4, 5 up to 11 for the larger 
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volumes. An effective density value of ρ = 1750kg m
-3

 has been used for the 50µL to 

150µL marbles and it is emphasized that this is not the true density but is a method to set 

the numerical value of the overall combination γLV/ρp
3
 using a single fitting parameter. 

This takes into account any effects of the different densities of the powder coating and the 

encapsulated water as well as any error in the measurement of p or in using the static value 

of γLV. The data are in agreement with the model, within error limits of frequency and 

perimeter measurement, for all except the 30µL and 10µL marble which required 

adjustment of the effective density to ρ = 2250kg m
-3

 and ρ = 4550kg m
-3

, respectively. 

Although these adjustments provide better fits to the first two modes there is some 

deviation in the higher modes and this is possibly due to measurement inaccuracies of low 

amplitude oscillations. Error in the values of p due to shape distortion (2.5.5) can affect the 

level of agreement of Equation (5.7) with the data for the larger volumes but this is less 

likely to be a factor for the 10µL marble as it conforms to a spherical shape. It is 

conceivable that in this case the lowest n = 1 mode is observed in the form of a rigid body 

vertical displacement, manifested as a horizontal displacement of the larger marbles, and as 

such is only detected in the smallest one. Alternative frequencies, predicted by Equation 

(5.7) incorporating n = 1, are shown as dotted lines in Figure 5.10 with an adjustment of the 

effective density to ρ = 1250kg m
-3

. Although this gives better agreement for n = 2, 3 and 

4, there is some discrepancy with n = 1 suggesting that the first resonance is, in fact, the n = 

2 mode and the aforementioned inaccuracies account for the offsets at the higher modes. 

The solid vertical lines show the free fluid sphere model using the same parameters and the 

mode number combination n(n-1)(n+2) rather than n
3
. Adjustment of the effective density 

could, again, produce closer agreement between the model and the experimental data. 
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Figure 5.10 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 10µL liquid marble during a wide-band sweep experiment. 

Dashed lines are single parameter fits to Equation (5.7) using γLV = 53mN m
-1

 and 

ρ = 4550kg m
-3

. Solid lines are fits to the free fluid sphere model in Equation 

(5.1) using the same parameters. Dotted lines are the equivalent fits with an 

adjusted value for effective density of ρ = 1250kg m
-3

 and taking into account a 

low frequency n = 1 mode. 

Figure 5.11 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 30µL liquid marble during a wide-band sweep experiment. 

Dashed lines are single parameter fits to Equation (5.7) using γLV = 53mN m
-1

 and 

ρ = 2250kg m
-3

. Solid lines are fits to the free fluid sphere model in Equation 

(5.1) using the same parameters. 
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Figure 5.12 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 50µL liquid marble during a wide-band sweep 

experiment. Dashed lines are single parameter fits to Equation (5.7) using γLV = 

53mN m
-1

 and ρ = 1750kg m
-3

. Solid lines are fits to the free fluid sphere model 

in Equation (5.1) using the same parameters. 

 

Figure 5.13 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 100µL liquid marble during a wide-band sweep 

experiment. Dashed lines are single parameter fits to Equation (5.7) using γLV = 

53mN m
-1

 and ρ = 1750kg m
-3

. Solid lines are fits to the free fluid sphere model 

in Equation (5.1) using the same parameters. 
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Figure 5.14 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 125µL liquid marble during a wide-band sweep 

experiment. Dashed lines are single parameter fits to Equation (5.7) using γLV = 

53mN m
-1

 and ρ = 1750kg m
-3

. Solid lines are fits to the free fluid sphere model 

in Equation (5.1) using the same parameters. 

 

Figure 5.15 Anti-node displacement (mean greyscale value) as a function of 

driving frequency for a 150µL liquid marble during a wide-band sweep 

experiment. Dashed lines are single parameter fits to Equation (5.7) using γLV = 

53mN m
-1

 and ρ = 1750kg m
-3

. Solid lines are fits to the free fluid sphere model 

in Equation (5.1) using the same parameters. 
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Figure 5.16 shows the relationship between resonant frequency and mode number for liquid 

marbles with volumes from 10µL to 150µL. Trend lines are included on the data points to 

illustrate more clearly the pattern of relative change in frequency compared with change in 

volume. Data for the lower mode numbers can be seen more clearly in Figure 5.17 where a 

test of the dependence of frequency on mode for the full mode range shows a general 

agreement with a n
3
 mode dependence. The solid lines are all predictions using Equation 

(5.7) with γLV = (53±2)mN m
-1

 and starting at n = 2. The prediction for the 50, 100, 125 and 

150µL uses an effective density of ρ = 1750kg m
-3

. For the 30µL and 10µL marbles larger 

effective densities of ρ = 2250kg m
-3

 and ρ = 4550kg m
-3

, respectively, were used (i.e. a 

larger value of the combination γLV/ρp
3
). It is unclear why this was the case, but it could be 

due to the fraction of the total volume formed by the powder increasing as the marble 

volume decreases or the limited accuracy arising in this system when dealing with the 

smallest volumes. For the 10µL volume liquid marble the small amplitude of oscillation 

caused difficulties in accurately identifying the modes and this may account for the step in 

the trend of the data. Also, as the volume of the liquid marble reduces, the effect from the 

electrode wire at the apex of the marble and the change in volume due to evaporation will 

become relatively more important. 

When comparing frequency spectra for liquid marbles with those for the equivalent sized 

drops there is a clear decrease in resonant frequencies with the liquid marbles; first major 

resonance for the 10µL and 100µL marbles is at 30.9Hz and 16.4Hz respectively compared 

with 37.5Hz and 32.1Hz respectively for the equivalent sized drops. This is consistent with 

the resonant frequency dependence on contact angle first showed by Celestini et al. [170] 

and again by Jung et al. [171] where resonant frequency decreases as contact angle 

increases; high contact angles being a feature of liquid marbles (Chapter 4). 
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Figure 5.16 Square of frequency as a function of mode number cubed for liquid 

marbles of volumes 10µL (♦), 30µL (▲), 50µL (x), 100µL (■), 125µL (+) and 

150µL (●) with data trendlines included. 
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Figure 5.17 Frequency as a function of mode number (log-log representation) 

for liquid marbles of volumes 10µL (♦), 30µL (▲), 50µL (x), 100µL (■), 125µL 

(+) and 150µL (●). For the 50µL -150µL volumes the solid lines are predictions 

using Equation (5.7) using the same fitting parameter value of ρ = 1750kg m
-3

. 

For the 30µL and 10µL data values of ρ = 2250kg m
-3

 and ρ = 4550kg m
-3

 have 

been used. 
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Results of narrow band sweeps for lowest mode (n = 2) for liquid marble volumes in the 

range 10µL to 275µL are shown as a test of the frequency dependence on volume in Figure 

5.18. As increasing liquid marble size reaches the puddle regime the marble height 

approaches the limiting value and the resonant frequency also saturates despite increasing 

radius, confirming that the frequency has a volume dependence. Inconsistencies in the 

limiting values of resonant frequency for large marble volumes may be due to the 

previously highlighted shape distortions. If the dataset is reduced to comprise only the 

marble volumes which do not conform to the puddle regime (ie.10µL to 50µL), the 

relationship between frequency and volume may be represented logarithmically, as in 

Figure 5.19, where the data obeys the power law,  f∝V
-0.58

.
 
This is close to the relation 

expected from Equation (5.6) of f∝V
-0.5

, shown in Figure 5.19 as a solid line. Error bars 

represent estimated errors from sources discussed in (2.5.5). 
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Figure 5.18 Change in resonant frequency for lowest mode (n = 2) as a 

function of volume for liquid marbles in the range 10µL to 275µL. 
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Figure 5.19 Change in the liquid marble resonant frequency for mode n = 2 as a 

function of volume (10µL to 50µL). The solid line is a prediction using 

Equation (5.6). 
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5.5 Conclusion 

 

Resonant oscillations have been observed in liquid marbles in a low frequency EWOD 

configuration on a hydrophobic planar surface. Observed nodal patterns of these 

oscillations are due to stationary capillary surface waves that can be qualitatively described 

by the theory for free spherical columns of fluid using adjusted values for surface tension 

and effective density. A low frequency rigid body displacement was also observed in the 

liquid marbles but not in complementary experiments with sessile droplets in the same 

configuration. In the liquid marble case, the resonant oscillation involved a quasi-mobile 

contact line comparable to the mobile contact line of the droplet case. In all of the 

frequency spectra there is evidence of a low Q factor – a broadening of the peaks 

associated with imperfect energy transfer. This could possibly be due to inefficiencies in 

the electrowetting mechanism from charging of the powder coating or an effect of the 

hydrophobic coating on the electrode wire. Another possibility is frictional dissipation via 

bulk liquid viscosity during oscillation. Also, stretching of the surface coating during 

oscillation could cause re-ordering of the powder grains leading to a concentration gradient. 

This could create a Marangoni surface tension gradient at the surface. These mechanisms 

could be further investigated by repeating experiments with a range of surface tensions 

using different liquids and/or different powder coatings and comparing the different 

frequency spectra. To identify any transient morphologies of the powder coating, image 

processing techniques could be used to monitor transmitted light intensities from between 

the grains, for a given area, during oscillation. The liquid marble approach provides an 

idealized system for the study of the oscillations of a free liquid sphere without the need for 

any system to actively levitate the droplet. An alternative approach to using a liquid marble 

might be to use a liquid droplet on a superhydrophobic surface but in this case very small 
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feature sizes and high aspect ratios would be needed to prevent collapse into the Wenzel 

state [156, 157]. Resonances could also be excited using alternative methods, such as with 

a vertically or horizontally vibrating platform [156, 157, 171, 172] or by inducing 

vibrations using a loudspeaker [169]. The effects of shape distortion on the fundamental 

frequencies for large volume marbles, whose shape tends to liquid puddles, could be further 

investigated using different camera perspectives although this may require the use of 

transparent substrates and electrodes such as Indium Tin Oxide (ITO). Although liquid 

marbles in this case were produced using hydrophobized lycopodium powder, it has been 

shown in a recent study [172] that the value for effective surface tension may differ for 

alternative hydrophobic particles. 

Shape oscillations of liquid marbles have been investigated and these could provide a 

means to coalesce and mix liquids in lab-on-a-chip applications. In the following chapter a 

method for marble transport using an electrowetting-type arrangement is demonstrated. 

This is complemented by alternative method for controlling drop mobility using surface 

topography alone. 
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6.1 Introduction 

 

The manipulation of water droplets by locally varying the surface topography or by the 

application of external electric fields has been discussed in the previous chapters and the 

use of liquid marbles as an alternative concept for drops on superhydrophobic surfaces has 

been explored. 

It was suggested in Chapter 1 that requirements for droplet transport and manipulation 

exist at the micro and macro scales whether for lab-on-a-chip applications or the 

enhancement of surface drainage or water collection. It would seem, therefore, that 

experiments with superhydrophobic surfaces and liquid marbles would be far from 

complete without a demonstration of droplet mobility using these two main methods for 

influencing droplet morphologies at the solid-liquid interface. 

There follows a series of proof-of-concept experiments investigating two methods for 

actuating drop motion on a horizontal surface while maintaining drop integrity and without 

the influence of external lateral force or any physical contact. The first incorporates a 

patterned electrode configuration beneath a liquid marble in an electrowetting type 

configuration, but without the insertion of an electrode wire, to initiate rolling of the 

marble upon application of a local electric field. The second uses different height scales of 

electrodeposited copper to create a hydrophobic gradient which encourages droplets to roll 

from the most hydrophobic to the least hydrophobic areas. 

Although not quantitatively studied these experiments provide technological proof of the 

ability to manipulate small liquid volumes on the microlitre scale and the possibility of 

scaling up to larger volume liquid transport. 

 

 



  Chapter 6 Drop Mobility 

   

6.2 Electrostatic Liquid Marble Actuation 

 

It is well established that an electric field can influence the hydrostatic equilibrium of a 

liquid and this may be exploited for liquid handling in enclosed and open devices. Termed 

dielectrophoresis (DEP) this effect is an example of the ponderomotive force as 

demonstrated by Pellat in 1895 [173] and has been used along with electrowetting for the 

electrostatic transportation and mixing of liquids on the micro scale [5, 6, 13, 174-179]. 

Electrostatic transportation of water droplets has also been conducted on superhydrophobic 

surfaces [122, 123]. 

A free drop on a solid surface in air will experience a differential in contact angle between 

the leading and trailing contact lines if the surface is tilted (Figure 6.1), depending on the 

nature of the surface; the leading edge will experience an increase from the equilibrium 

contact angle while the trailing edge will decrease.  The amount of change in each contact 

angle is directly related to whether the drop rests in a ‘sticky’ Wenzel state or ‘slippy’ 

Cassie-Baxter state [33, 34, 36]. These tilt angles are comparable to the advancing and 

receding angles used to establish the level of contact angle hysteresis possessed by a 

surface and so the difference between them gives an indication of the hysteresis level. 

For a drop to exhibit high mobility on a surface it must be in the Cassie-Baxter state and so 

the surface must have very low hysteresis. This is known to be characteristic of surfaces 

which exhibit very high equilibrium contact angles. As previously discussed in Chapter 4 

liquid marbles are examples of non-wetting drops with contact angles approaching the 

maximum 180
o
. These marbles are highly mobile with very little actuating force and 

therefore provide a very low hysteresis scenario for electrostatic actuation. 
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Figure 6.1 A water drop on a tilted surface, showing the 

difference between the contact angles at the leading and 

trailing contact lines. 

 

 

 

6.2.1 Experimental Method 

 

Experiments were conducted using the basic electrowetting arrangement used in the 

previous chapters but with some modifications detailed in section 2.4.2 and illustrated in 

Figure 2.19. The probe-mounted electrode wire positioned above the sample stage was 

replaced with a section of copper plate of thickness ~0.5mm, width ~3mm and length 

~20mm. This was soldered to the probe tip but then bent through 90
o
 to give a flat, 

horizontal electrode and positioned above the marble to act as the reference electrode, fixed 

at 0V. A new substrate containing a lithographically produced, finger electrode 

configuration (see 2.4.1) replaced the hydrophobic/superhydrophobic substrates used 

previously. Each electrode was individually connected to one of twenty rotary switches 

housed in a purpose built switch box. Each switch was interconnected to be multi-position 

such that each electrode could be switched to and from any combination of V
+
, V

-
 or 0V. A 

Leading edge 

Trailing edge 
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DC bias of 150V was connected to the switch box across two series resistors of 10 MΩ 

with a centre tap-off providing the reference voltage. 

Liquid marbles were created and transferred to the device as described in (2.3.1) and 

(2.3.2) one or two at a time and then the upper electrode was swung into position above the 

marble but not in contact with it. This configuration differs from the typical parallel plate 

capacitor model in terms of the electric field and the field lines are difficult to plot because 

of the multi-state individual electrodes. This is especially true with a liquid marble in 

position but the net effect is that the field magnitude does depend on the upper and lower 

electrode separation so it could be considered as a capacitor with fringe effects; no 

movement of the marble could be detected if the separation was too great. The +75V and -

75V relative to the upper electrode were applied sequentially to adjacent electrodes 

beneath the marble and the Krüss DSA-1 software was used to capture a video sequence of 

the resulting change in marble position. In later experiments patterned electrode devices of 

the same configuration were spin-coated with an S1813 insulating layer which meant 

higher DC voltages of 200V – 400V could be used. In these experiments the voltage was 

applied with reference to neighbouring electrodes, removing the need for a separate plate 

above the marble. 

 

 

6.2.2 Results and Discussion 

 

Upon application of a bias voltage sequentially to the finger electrodes, a rolling motion of 

the liquid marble was observed in steps which followed the actuation of successive pairs of 

electrodes. The motion was evident both in experiments using an overhead electrode and 

those without. The motion sequences for 1µL and 2µL marbles are shown in Figure 6.2 a) 
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and b) respectively. The marbles can be seen to traverse the image window from right to 

left and the motion was found to be reversible if the switching sequence was reversed. The 

motion steps correspond to the digital electrode actuation and in each case the marble 

travelled a total distance equivalent to 2x marble diameter (which are 1.2mm and 1.6mm 

for 1µL and 2µL marbles respectively) giving total rolling distances of 2.4mm and 3.2mm. 

As the total distance travelled for the sequences shown in Figure 6.2 occurs in consecutive 

video frames, with each step taking one frame, then the marbles must be travelling at 

~15mm s
-1

 and 20mm s
-1

 respectively during each step. The electrode pattern consisted of 

fingers of width and spacing 0.3mm so the distance travelled in the examples shown can be 

equated to the sequential switching of 2-3 pairs of electrodes (as each pair with associated 

spaces totals 1.2mm). A noticeable feature in each of the motion steps is the apparent 

change in contact angle, ranging from 164
o
 to 150

o
, indicating that an electrowetting type 

effect is taking place and that a build-up of charge in the conformal skin of the marble 

could provide the necessary force required to cause the marble to roll. Charging of the 

powder grains is further evidenced by the ejection of some grains onto the surface upon 

voltage switching. 

Although a relationship between droplet volume and threshold voltage required to move 

the marble was not investigated, motion with some larger volume marbles was observed. 

Experiments using two colliding marbles to attempt drop mixing were then conducted with 

some success as shown for two 3µL marbles in Figure 6.3.  
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Figure 6.2 Liquid marbles of volume a) 1µL and b) 2µL rolling on a planar 

hydrophobic surface containing a finger electrode pattern upon application of a 

DC bias voltage sequentially to electrode pairs. 

 

 

 

 

 
 

 

 

Figure 6.3 Two liquid marbles of equal size (3µL) rolling together and merging 

upon application of a DC bias voltage sequentially to electrode pairs. 

 

a) b) 
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6.3 Superhydrophobic Gradient Surfaces 

 

It has long been known that on surfaces with variations in surface chemistry droplets move 

towards regions of lower wettability. A number of studies using a variety of surface 

modification techniques have shown that a wettability gradient can effectively move liquid 

drops on a horizontal surface with no additional external force [11, 180, 181] and a recent 

study has even demonstrated that, with the correct surface topography,  liquids can be 

made to move vertically opposing gravity [182]. It has been suggested that lateral variation 

in topography to create a variation in superhydrophobicity should generate droplet motion 

even when the surface chemistry was homogeneous [8, 183] and there has been at least one 

attempt to model this theoretically [10].  

In the case of lateral gradient forces in superhydrophobicity the horizontal spacing between 

features is progressively decreased across a surface so that the contact angles at the left-

hand and right-hand sides of the droplet, θL, and θR, differ by a small amount. The driving 

force per unit length of the contact line is then γLV(cosθR-cosθL,) and a derivation of an 

expression for the driving force per unit length for the gradient in Cassie fraction for 

motion is given in reference [9]. This derivation does not take into account shape changes 

around the entire contact perimeter, which can be expected to change overall constants, but 

it does provide an attempt to understand a number of factors preventing or initiating 

motion. For example, if the average Cassie fraction, f(xo), is made smaller so that the 

droplet is in a stronger superhydrophobic state, the gradient in the Cassie fraction needed 

to initiate motion can be smaller. Similarly, a lower gradient is needed when the spherical 

radius, R0, is larger. Larger volume droplets roll more easily, not because of gravity, but 

because the contact radius, rc, is larger. Increasing the Young’s law contact angle also 
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reduces the need for larger gradients in the Cassie fraction. Self-actuated motion and 

definition of paths should be possible simply by varying the superhydrophobicity through 

topographic control and without changing surface chemistry. In this section a simple 

experimental example of such a surface is presented. If a widely spaced superhydrophobic 

surface texture is surrounded by a more narrowly spaced superhydrophobic surface texture 

a drop should experience a force so that it tends to roll onto the area with the more closely 

spaced texture, provided contact angle hysteresis can be overcome. The variation in lateral 

spacing will lead to a patterning of the effective surface free energy and hence can be used 

to define regions and paths on the surface [8] as can a variation in surface feature aspect 

ratio. A similar approach could be used with the Wenzel equation, but here we focus only 

on the Cassie-Baxter situation. To investigate this experimentally a previously reported 

electrodeposition method that uses diffusion limited aggregation was modified to give 

fractally rough superhydrophobic copper surfaces because it can produce surfaces having 

an exceptionally low contact angle hysteresis [75, 76]. 

 

 

6.3.1 Experimental Method 

 

A technique for creating an electrodeposited gradient surface on a circular substrate was 

devised which involved half immersing the substrate in the electrolyte and then elevating it, 

while simultaneously rotating it, during electrodeposition (see 2.6.3). A mechanical 

cantilever device was designed and built which used two geared DC motors to rotate and 

elevate the sample. Both motors could be fine controlled down to <1rpm and the elevation 

motor incorporated a micrometer plunger so the elevation rate and position could be 

monitored. The sample was held by a rubber ‘sucker’ through which the electrical 
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connection to the sample was made. The rotation motor could be tilted to allow enough of 

the substrate to be in the solution without the solution fill level needing to be close to the 

brim of the vessel, improving the safety of the process. A fan was positioned close to the 

rotating sample to blow-dry any solution remaining on the sample area as it emerged from 

the solution during rotation. That way electro-deposition did not continue on the part of the 

sample area not in solution by conduction through the liquid.  

Samples were produced using different combinations of substrate material, anode material, 

power supply, rotation speed and elevation rate with varying degrees of success. Electrical 

connection with the sample area, once fixed to the sample holder, was made by a 

mechanical pin contact with the surface and then the substrate was half immersed in the 

acidified copper sulphate solution. With the most successful method, using circular PCB 

substrates, voltage was applied to copper electrodes at a constant current of 3A giving a 

starting current density in the region of 350mA cm
-2

 (as no more than half the sample area 

was ever in the solution). With a rotation speed of ~2rpm a stepped gradient was created 

by repeatedly applying voltage for a known period at a fixed position then switching off 

while elevating by 5mm (effectively giving concentric rings of 5mm width). Following 

hydrophobization by immersion in Grangers wash-in solution contact angles on the surface 

were found to range from 125-130
o
 at the centre to up to 165

o
 at the perimeter. By then 

starting deposition with the sample immersed less than halfway by approximately 5mm, a 

centre spot remained free from any copper deposition lowering the centre contact angle to 

100-110
o
, typical of a flat hydrophobic surface. 

The surfaces were characterized by contact profilometry and SEM imaging which 

established that the change in vertical height of the surface from edge to centre (a 2cm 

distance) was below 25µm. 
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Experiments were conducted to visually demonstrate the spontaneous movement of water 

on the gradient surface. These comprised releasing drops from a syringe onto the edge of 

the surface and capturing the drop roll to the centre, the evaporation of a water layer from 

the surface and the condensation of steam on to the surface as described in (2.6.5). In each 

experiment video sequences were captured and still images from these sequences are 

shown in the following section. Contact angles of immobile drops on the surface and 

contact angle hysteresis were measured from images captured in the plane of the roughness 

gradient direction as described in (2.6.5.4).  

 

 

6.3.2 Results and Discussion 

 

As drops were released from the syringe needle at the edge of the sample where it was 

most hydrophobic, the drops spontaneously rolled with a smooth motion toward the least 

hydrophobic area at the centre where they pooled and remained pinned as shown in Figure 

(6.4). The drops were produced at the tip of the needle, lowered to the surface and the 

needle withdrawn slowly to prevent any droplet bounce. Drop motion was found to ensue 

only in regions beyond ~6mm radially from the centre of the sample surface, 

corresponding to areas of very small measured roughness gradient and roughness scale (see 

Figures 2.28 and 2.29) 

As described in (2.6.5.3) the cooled surface of the sample was mounted horizontally within 

a locally vapour enriched atmosphere whereupon condensation of spherical cap shaped 

droplets occurred on the surface. These droplets grew in size with more condensate until 

they reached a size where they touched and then pooling occurred with the bulk of the 

liquid concentrated at the least hydrophobic centre area, as shown in Figure (6.5). 
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When the sample was submerged in a water bath heated to ~60
o
C (see 2.6.5.2) evaporation 

of the water gradually reduced the depth of the water covering the sample until a very thin 

layer was visible with a trapped air layer between the sample surface and the water 

appearing silver coloured in the images in Figure (6.6). As the water layer depth reduced 

further a critical point was reached where the water layer was expelled from the surface 

within 40ms (a single frame of 25fps video) with a small quantity remaining at the sample 

centre. 

 

 

 

 

 

Figure 6.4 Water droplets released from a vertical syringe at the edge of a 

superhydrophobic gradient surface roll to the least hydrophobic area at the centre and 

remain there. 
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Figure 6.5 Steam condensing onto a copper superhydrophobic circular 

gradient surface. 

 

 

 

 

 
 

Figure 6.6 Evaporation of water from a copper superhydrophobic circular 

gradient surface. 
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Measurements of contact angle, θ, for immobile drops on the surface are shown in Figure 

6.8 where the angle can be seen to increase with distance from the centre of the sample 

from (96±2)
o
 at the centre to, on average (165±2)

o
 at the perimeter. It should be noted that 

these measured contact angles are of stationary drops on a partially non-wetting, 

inhomogeneous surface. They do not correspond to the equilibrium Young angle, θe, nor do 

they correspond to either the advancing or receding angles of a standard wetting 

experiment although they do fall within the hysteresis band. Measurements were taken 

from water droplets deposited at 3mm intervals from the centre and in four radial lines 

(represented by the four different symbols in Figure 6.7) to give a good representation of 

the whole of the sample area. This increase in contact angle is consistent with the type of 

wettability gradient created by gradually increasing surface roughness. The increase in 

angle is not linear and, rather, appears to increase sharply from the centre up to around 9-

10mm from the centre where it levels off. This coincides with an increase in aspect ratio of 

the roughness features (see 2.6.4) maintaining a Cassie-Baxter state. Although 

comparatively constant roughness was expected to exist at the same radial position around 

the surface (see 2.6.5.4), in practice the difference in measured angles at the equivalent 

positions on the four radial lines was found to be as much as 15
o
. This is likely to be due to 

the non-uniformity of the surface roughness and the difficulty in positioning droplets at 

precisely the same positions on each of these lines. Contact angle hysteresis, ∆θ, values are 

shown in Figure 6.8 at the same radial positions as in Figure 6.7 and these data confirm that 

a wettability gradient is present with increased hydrophobicity toward the perimeter of the 

sample surface. A high hysteresis “sticky” area (~90
o
) at the centre pins the droplets to the 

surface whereas a very low hysteresis “slippy” surface exists at the perimeter (~4
o
). This is 

despite the irregularity of the roughness scale producing some very broad features or 

separations in places (aspect ratio <1) which would normally encourage a Wenzel state. 
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The consistency of a Cassie state at the sample perimeter is possibly due to the effect of 

multi-scale roughness similar to that found by Shirtcliffe and co-workers on this type of 

surface [76]. The net effect is that droplets deposited at the perimeter possess high mobility 

and move toward the lower hydrophobicity areas where they merge and pool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter 6 Drop Mobility 

   

90

100

110

120

130

140

150

160

170

0 3 6 9 12 15 18 21

Distance from centre/mm

Im
m

o
b

il
e 

d
r
o
p

 c
o
n

ta
ct

 a
n

g
le

 

( θ
)/

d
e
g
r
ee

s

 

Figure 6.7 Contact angles of immobile water droplets on a copper 

superhydrophobic circular gradient surface at 3mm radial intervals from the 

centre. The four symbols represent four different radial lines at the four quadrants. 
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Figure 6.8 Contact angle hysteresis of water droplets on a copper 

superhydrophobic circular gradient surface at 3mm radial intervals from the 

centre. The four symbols represent four different radial lines at the four quadrants. 
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6.4 Conclusion 

 

The transport of liquid drops on a surface has been demonstrated using two contrasting 

methods, complementing the other work in this project; by electrostatic actuation using an 

electrowetting type arrangement and by varying the surface topography alone. 

Actuation of reversible motion of liquid marbles was achieved by locally applying an 

electric field to marbles deposited on an electrowetting substrate (dielectric on metallized 

glass) but with the underlying electrode in the form of a parallel finger pattern. As a 

positive or negative voltage was applied to electrodes sequentially with respect to 

neighbouring electrodes or an overhead electrode at 0V a stepped fast rolling motion was 

observed combined with a dynamic change in contact angle. The direction of motion could 

be reversed by reversing the electrode switching sequence. By switching converging pairs 

of electrodes beneath two liquid marbles in close proximity the marbles were observed 

rolling in opposite directions toward each other before colliding and then merging. This 

technique provides a possible method for transportation and coalescing of liquids on the 

microlitre scale in lab-on-chip type applications with no loss of liquid or wetting of the 

underlying surface. 

Electrodeposited rough copper surfaces were used to create a surface topography gradient 

that could control the wetting state and, hence, the mobility of water drops. Circular ‘arena’ 

type samples were created with a surface roughness that increased radially from the centre 

to the perimeter. This meant that the level of hydrophobicity, measurable by the contact 

angle and contact angle hysteresis of saline drops, increased with distance from the centre 

of the sample. Droplets deposited at the perimeter displayed high contact angles and very 

low hysteresis which meant that they were highly mobile and extremely difficult to keep 

stationary without tilting of the surface. The wettability gradient caused the mobile droplets 
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to spontaneously roll to the least hydrophobic areas toward the centre of the sample where 

they would transform from a Cassie-Baxter to a Wenzel state and become pinned to the 

surface. Droplet pinning at the centre caused further droplets reaching the centre to 

coalesce forming a pool and this effect was evident with droplets condensing onto the 

surface from the vapour phase as well as those deposited from a syringe volume. The 

evaporation of a water layer from this surface resulted in the water layer thinning until a 

layer of air between the water and the underlying surface could be observed before the 

surface spontaneously de-wetted with a fast-moving trailing contact line and a small 

quantity of water remained at the centre of the sample. These surfaces have displayed 

wetting properties which have applications in both water attraction and water repellence. 

As condensing drops are repelled from the most hydrophobic areas of the surface to pool at 

the least hydrophobic this could be used to collect volumes of water from airborne vapour. 

This would allow drinking water to be obtained from the early morning mist in desert areas 

where water sources are limited [3]. The efficiency with which these surfaces de-wet has 

potential applications in waterproofing and self-cleaning surfaces as well as surface 

drainage as does the ability to direct the flow of water without the need for the creation of 

channels. 
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7.1 Conclusions 

 

The opening chapter of the thesis provides an overview of the work highlighting the 

relevant aims and objectives. The basic theories that underpin this work have been 

established in this chapter along with some key associated applications. Such applications 

provided the motivation and focus for the work in addressing recognized issues 

experimentally. 

 

Methods for the production of surfaces with hydrophobic and superhydrophobic coatings 

as well as electrowetting experiments thereon have been detailed in Chapter 2. This has 

extended to the specific production of and experimentation with liquid marbles in the areas 

of electrowetting, oscillation and motion by applied voltage and the use of image 

processing techniques as analytical tools. The development of a method for creating 

surfaces with a hydrophobic gradient by copper electrodeposition has also been described 

together with associated techniques for characterizing and visualizing the surface 

interaction with water. 

 

In Chapter 3 a series of AC and DC electrowetting on dielectric (EWOD) experiments have 

been conducted on planar hydrophobic substrates and porous MTEOS sol-gel coated 

substrates and compared to previous work. Established electrowetting experiments on 

planar hydrophobic surfaces were repeated and were in general agreement with theory. The 

surface was characterized as one with low contact angle hysteresis and the level of 

electrowetting reversibility was typical for this type of surface. 

Superhydrophobic porous sol-gel surfaces exhibited high contact angle hysteresis and were 

found to be in a partial Wenzel state before the application of an electrowetting voltage 
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with further penetration of the liquid between the surface features as a bias voltage was 

applied. The electrowetting state was found to be totally irreversible, as has been found in 

other electrowetting work on rough surface. This demonstrated, for another model 

superhydrophobic surface, the difficulty in obtaining droplet recovery with EWOD on such 

surfaces. 

 

In Chapter 4 liquid marbles have been considered as an equivalent system to a droplet 

resting on a superhydrophobic patterned textured surface where the surface features 

envelope the droplet in a conformal powder skin. They are in a highly mobile state and 

have high initial contact angles equivalent to droplets on super-hydrophobic surfaces. The 

wetting behaviour of liquid marbles under AC and DC electrowetting experimental 

conditions was shown to contrast greatly with that of a liquid drop on a lithographically 

patterned superhydrophobic surface. The most important differences were a lack of 

threshold voltage for electrowetting to begin and complete reversibility with the liquid 

marbles. This important feature addresses a key problem with electrowetting on 

superhydrophobic surfaces – lack of recovery of the original wetting state. This normally 

limits applications in, for example, droplet microfluidics where liquid marbles could be 

used as a method for manipulating small liquid volumes without any loss of liquid. 

 

Work with liquid marbles continued in Chapter 5 to investigate shape oscillations in a low 

frequency EWOD configuration on a hydrophobic planar surface and compare to those of 

similar sized sessile droplets. Resonant oscillations have been observed in liquid marbles 

and the nodal patterns of these oscillations are due to stationary capillary surface waves. 

The theory for free spherical columns of fluid qualitatively describes these oscillations 

using adjusted values for surface tension and effective density. A low frequency rigid body 



 Chapter 7 Conclusions and Future Developments  

   

displacement was also observed in the liquid marbles but not in complementary 

experiments with sessile droplets in the same configuration. In the liquid marble case, the 

resonant oscillation involved a quasi-mobile contact line which was comparable to the 

mobile contact line of the droplet case. Oscillations of liquid marbles complement the 

electrowetting of liquid marbles in terms of lab-on-chip type applications as a means to 

coalesce and mix small liquid volumes. 

 

In Chapter 6 the transport of liquid drops on a surface has been demonstrated using two 

contrasting methods which complement the other work in this project; by electrostatic 

actuation using an electrowetting type arrangement and by varying the surface topography 

alone. 

Electrostatic actuation of liquid marbles was achieved by locally applying a bias voltage to 

marbles deposited on an electrowetting substrate (dielectric on metallized glass) but with 

the underlying electrode in the form of a parallel finger pattern. A stepped, fast rolling 

motion was observed combined with a dynamic change in contact angle as the voltage was 

applied to electrode pairs sequentially. The direction of motion could be reversed by 

reversing the electrode switching sequence. By switching converging pairs of electrodes 

beneath two liquid marbles in close proximity the marbles were observed rolling in 

opposite directions toward each other before colliding and then merging. This provides a 

further technological solution to liquid handling in lab-on-chip type applications using 

liquid marbles as a method of droplet transport.  

Electrodeposited rough copper surfaces were used to create a surface topography gradient 

which could control the wetting state and, hence, the mobility of water drops. Circular 

‘arena’ type samples were created with a surface roughness that increased radially from the 

centre to the perimeter. Droplets deposited at the perimeter displayed high contact angles 
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and very low hysteresis which meant that they were highly mobile and extremely difficult 

to keep stationary without tilting of the surface. The wettability gradient caused the mobile 

droplets to spontaneously roll to the least hydrophobic areas toward the centre of the 

sample where they would transform from a Cassie-Baxter to a Wenzel state and become 

pinned to the surface. Droplet pinning at the centre caused further droplets reaching the 

centre to coalesce forming a pool. This effect was evident with droplets condensing onto 

the surface from the vapour phase as well as those deposited from a syringe volume. As 

condensing drops are repelled from the most hydrophobic areas of the surface to pool at the 

least hydrophobic, this could be used to collect volumes of water from airborne vapour 

which would allow drinking water to be obtained from the early morning mist in desert 

areas [3]. The evaporation of a water layer from this surface resulted in the water layer 

thinning until a layer of air between the water and the underlying surface could be observed 

before the surface spontaneously de-wetted. This occurred with a fast-moving trailing 

contact line and a small quantity of water remained at the centre of the sample. The 

efficiency with which these surfaces de-wet has potential applications in waterproofing and 

self-cleaning surfaces as well as surface drainage as does the ability to direct the flow of 

water without the need for the creation of channels. 
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7.2 Future Developments and QCM Work 

 

The culmination of any research project opens doors to new challenges and new 

opportunities. This work has introduced some new approaches to the areas of droplet 

manipulation and interaction with superhydrophobic surfaces and some suggestions of 

potential opportunities for development follow. In addition there follows a summary of 

some incomplete further work on the effects of superhydrophobic surface coatings on the 

Quartz Crystal Microbalance (QCM) as a commonly used acoustic wave sensor device. 

 

7.2.1 Future Developments 

 

Electrowetting reversibility on superhydrophobic surfaces is an area of ongoing interest and 

development [133] and so alternative methods for droplet recovery warrant investigation. 

These could include appropriate geometrical patterning of the surface coating to create 

pockets such that air streams could be forced between the features to create an air cushion 

before the liquid fully penetrates the surface structure. 

The use of liquid marbles, however, provides an apparent solution to this problem and the 

development of liquid marble variants with alternative liquids as well as alternative powder 

coatings would enhance their versatility. Contact angles of liquid marbles on any surface 

are problematic due to the roughness level at the contact line and, hence, difficulty in 

placing a baseline and fitting a drop profile. Further work could include formulation of 

wetting behaviour in terms of aspect ratio of the spherical cap height and radius rather than 

contact angle and contact radius. Combinations of such varying materials could introduce 

the potential for particle take-up and/or ejection as a method for doping of liquids and the 

creation of on-device micro-solutions of solids. 
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The liquid marble approach provides an idealized system for the study of the oscillations of 

a free liquid sphere without the need for any system to actively levitate the droplet. An 

alternative approach to using a liquid marble might be to use a liquid droplet on a 

superhydrophobic surface but in this case very small feature sizes and high aspect ratios 

would be needed to prevent collapse into the Wenzel state [156, 157]. Resonances could 

also be excited using alternative methods, such as with a vertically or horizontally vibrating 

platform [156, 157, 171, 172] or by inducing vibrations using a loudspeaker [169]. The 

effects of shape distortion on the fundamental frequencies for large volume marbles, whose 

shape tends to liquid puddles, could be further investigated using different camera 

perspectives although this may require the use of transparent substrates and electrodes such 

as Indium Tin Oxide (ITO). Although liquid marbles in this case were produced using 

hydrophobized lycopodium powder, other hydrophobic particles may be used. Also other 

liquids could be used and the introduction of alternative surface tensions into the system 

could be used to investigate the mechanisms of energy dissipation in the oscillating 

marbles. Image processing techniques similar to those used to identify the resonant modes 

in this study could also be developed to monitor the surface coating morphology in terms of 

dynamic distribution of powder grains. This could then be used to identify surface 

concentration gradients and, hence, confirm the presence of surface tension gradients. 

An alternative to the electrostatic actuation of liquid marbles would be to use magnetic 

fields with marbles formed using hydrophobic ferrite particles [184] or to use a modified 

version of the above mentioned vibrating platform used to excite resonances. 

 

The applications for surfaces with wettability gradients in terms of both collecting and 

repelling water have obvious requirements for scaling up surface areas. Using 
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electrodeposition techniques to create surface roughness on the m
2
 scale would require very 

high current power supplies and so alternatives could be investigated such as fractal metal 

growth without electrolysis [185].  

 

 

7.2.2 Superhydrophobic QCM Sensors 

 

In a separate set of experiments, the effect of a rough surface coating on the response of a 

Quartz Crystal Microbalance (QCM) to a Newtonian liquid mass loading was investigated. 

This aspect of the project required further work to fully satisfy its objectives but the 

preliminary findings are reported here. Surface coatings of electrodeposited silver, titanium 

dioxide based sol-gel and fumed silica nano-particles (Degussa Aeroxide LE1 andLE2) 

were applied to QCMs, complementing previous work done using SU-8 micropillars [186]. 

Coated and uncoated QCMs were systematically loaded with water/glycerol mixtures of 

different concentrations (0% - 80% glycerol) and their impedance spectra recorded using 

an Agilent Technologies E5061A network analyzer. Superhydrophobic states were noted 

and contact angles measured (using a Krüss DSA-1 system) on all QCM surfaces before 

and after each experiment. Spectra were fitted to a Butterworth van Dyke equivalent 

oscillator circuit model to obtain values for resonant frequency and bandwidth. 

An added mass, m, per unit area, A, on the surface of a thickness-shear mode resonator 

causes a change in frequency as described by the Sauerbrey equation [187], 
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where f is the operating frequency, µq and ρq are the shear modulus and density of the 

crystal respectively. For a QCM operating in a liquid the physical model reported by 

Kanazawa and Gordon is commonly used [188], 
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whereη is the viscosity and ρ is the density for the liquid and the quartz substrate. For a 

liquid a usual no-slip boundary condition applies and contact with a homogeneous smooth 

QCM surface results in a greater frequency decrease as well as increased dissipation. 

A superhydrophobic surface coating introduces a slip boundary condition and a derivation 

of the QCM response under the assumption of this condition has previously been 

performed by McHale and co-workers [189-191]. Depending on the surface topography, 

the frequency change and dissipation may follow the Kanazawa and Gordon model but 

with an additional Sauerbrey-like “trapped” liquid mass. Alternatively a large slip length 

may be introduced by the liquid effectively de-coupling from the surface and no significant 

change in frequency or dissipation would be observed. 

QCM responses were found to have a strong dependence on the surface chemistry. In the 

case of a hydrophobized titanium dioxide based sol-gel or electrodeposited silver with low 

aspect ratios for the surface structures, liquid penetrating into the structure caused an 

additional frequency decrease beyond that expected from the Kanazawa and Gordon 

equation, but no significant change in the dissipation (bandwidth) [192]. This effect was 

interpreted as being due to a small negative slip length or, equivalently, due to an additional 

Sauerbrey-like “trapped” liquid mass. In the case of a hydrophobic silicon dioxide surface 

droplets displayed a high contact angle and were completely mobile indicating a non-

penetrating superhydrophobic state. The QCM frequency decrease and increased 
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dissipation on immersion in the liquid were greatly reduced compared to the values 

expected from the Kanazawa and Gordon equation. This effect can be interpreted, using an 

acoustic reflection view, as being due to the crystal resonance remaining defined by the 

strong reflection from the upper crystal surface. This surface remains mainly in contact 

with air despite the immersion of the crystal in the liquid. Equivalently, the effect of the air 

layer between the crystal and the liquid can be interpreted as introducing an infinite slip 

length. 

The very different QCM responses require further investigation both qualitatively and 

quantitatively but the penetrating and non-penetrating liquid states suggest opportunities 

for new sensors based on hydrophobic effects. For example, surfaces could be designed to 

switch from the non-penetrating superhydrophobic state to a penetrating liquid state under 

a physical stimulus (binding event, temperature change, liquid property change). 

Alternative surface geometries of lithographically patterned SU-8 coatings could be 

investigated by varying the feature shape and/or spacing in addition to the height. By 

increasing the coating thickness to obtain secondary resonances the dependence of the 

resonant condition on the thickness of the coating could be confirmed. 
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