Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999-2000. A. McNally¹, T. Cheasty², C. Fearnley¹, R. W. Dalziel¹, G. A. Paiba¹, G. Manning¹, D. G. Newell¹ ¹Food and Environmental Safety, Veterinary Laboratories Agency, Weybridge, UK, ²Laboratory of Enteric Pathogens, Health Protection Agency, Colindale, London, UK. Running Title: Y. enterocolitica in humans and livestock Corresponding author: Dr A. McNally, Department of Food and Environmental Safety, Veterinary Laboratories Agency, Woodham Lane, Addlestone, Surrey KT15 3NB. Tel 01932 357738 (e-mail: a.mcnally@vla.defra.gsi.gov.uk)

ABSTRACT

- A. McNally, T. Cheasty, C. Fearnley, R. W. Dalziel, G. A. Paiba, G. Manning, D. G.
- 3 Newell. 2003.
- 4 Aims: To investigate the relationship between livestock carriage of Y. enterocolitica
- 5 and human disease. The biotypes/serotypes of strains recovered from the faeces of
- 6 pigs, cattle and sheep at slaughter during a national survey in Great Britain in 1999-
- 7 2000, were compared to those of strains isolated from human cases of yersiniosis
- 8 during the same period.
- 9 Methods and results: The faecal carriage of Y. enterocolitica by cattle, sheep and
- pigs at slaughter was 6.3%, 10.7% and 26.1% respectively. Y. enterocolitica biotype
- 11 (BT) 1a was the most frequently isolated biotype from livestock (58%) and was the
- predominant biotype (53%) isolated from human cases over the same period. The
- main recognised pathogenic *Y. enterocolitica* biotype isolated from livestock was BT3
- 14 (O:5,27) (35% of sheep, 22% of pigs and 4% of cattle) but this biotype was not
- detected in any of the human isolates investigated. The major pathogenic biotypes of
- strains isolated from humans were BT3 (O:9) (24%) and BT4 (O:3) (19%) whereas of
- the veterinary isolates investigated, only pigs (11%) carried BT3 (0:9) strains.
- Significance and impact of study: Because of significant overlaps in phenotypes of
- 19 the veterinary and human strains it is not possible to comment on the correlation
- between host and pathogenicity, especially of biotype 1a. The data suggest that further
- 21 investigations using methods with greater discriminatory power are required.
- However the data also suggests that pigs may be the primary reservoir for human
- 23 pathogenic *Y. enterocolitica* infection.
- 24 **Keywords:** *Y. enterocolitica*, prevalence, pigs, cattle, sheep, humans, biotype.

INTRODUCTION

1

2 Yersinia enterocolitica is a Gram negative member of the Enterobacteriaceae family. 3 Infection with this organism in humans can lead to a range of diseases from mild 4 diarrhoea to the more severe complication of mesenteric lymphadenitis (Bottone 5 1999). Although severe disease is rare, septicaemia and death may occur in infected immunocompromised patients and patients transfused with contaminated blood 6 7 (Bottone 1999). Other post-infection sequelae such as arthropathies are common amongst some patient groups (Bottone 1999). Approximately 300 cases of yersiniosis 8 are reported per annum in England and Wales by the Communicable Disease 9 10 Surveillance Centre (CDSC), however diarrhoeic stool samples are rarely cultured for 11 presence of Yersinia spp. Y. enterocolitica is also difficult to isolate from such 12 specimens as it is overgrown by other enteric organisms. Therefore it is likely that the 13 reported incidence is underestimated. In continental Europe, the incidence and importance of yersiniosis as a cause of enteric disease is considerably higher. 14 Belgium, Holland, and Germany report enteropathogenic Yersinia as rivalling 15 Salmonella spp. as a cause of gastro-enteritis (Doyle 1985; Bottone 1997). 16 Y. enterocolitica strains are classified on the basis of biochemical 17 characteristics (biotype), and may then be further differentiated by serotype. Biotype 18 19 1b strains are presumed to be highly pathogenic due to their lethality in a mouse 20 infection model, while biotypes 2 - 5 are generally considered as having a relatively lower pathogenicity in the same model. Using the same criteria biotype 1a strains are 21 2.2. classified as non-pathogenic. Previous surveys of human cases in the UK have 23 implicated strains of biotype 3 (serotype O:9 and O:5,27), biotype 2 (serotype O:9), 24 and biotype 4 (serotype O:3) as major causative agents of yersiniosis (Prentice et al. 25 1991). However, the predominant biotypes may vary with geographical region, with

strains of biotype 1b and biotype 4 (serotype O:3) predominantly isolated in the United States (Bottone 1997).

3 The primary route of human infection is proposed to be foodborne. 4 Transmission of enteropathogenic *Yersinia* spp. by food, particularly dairy and meat 5 products, is well documented and increasingly prevalent world-wide (Fredriksson-Ahomaa et al. 2000; Fredriksson-Ahomaa et al. 2001; Falcao et al. 2003; Fredriksson-6 7 Ahomaa and Korkeala 2003; Fredriksson-Ahomaa and Korkeala 2003; Jones 2003). In particular, porcine products are implicated as the major source of human Y. 8 enterocolitica infection, with numerous epidemiological studies linking consumption 9 10 of uncooked or undercooked porcine reticuloendothelial tissues with yersiniosis 11 (Prentice et al. 1991; Bottone 1999; Gourdon et al. 1999; Fredriksson-Ahomaa et al. 12 2001; Falcao et al. 2003; Fredriksson-Ahomaa and Korkeala 2003; Fredriksson-13 Ahomaa and Korkeala 2003; Jones 2003). The high prevalence of Y. enterocolitica in pigs has also been reported, as well as presence in other livestock, cats and dogs and 14 many wild animals (Skjerve et al. 1998; Fredriksson-Ahomaa et al. 1999; Floccari et 15 al. 2000; Fredriksson-Ahomaa et al. 2000; Atanassova et al. 2003; Bonardi et al. 16 2003; Watabe et al. 2003). As yet, no national structured survey of faecal carriage by 17 livestock has been undertaken in Great Britain. 18 19 Although the ubiquitous nature of *Yersinia* spp in livestock is well recognised the relationship between veterinary isolates and human disease remains unclear. The 20 comparative investigation of veterinary and human strains, geographically and 21 temporally related, is therefore required to determine whether all Y. enterocolitica 2.2. 23 strains present in the environment possess the ability to cause disease in humans, or if 24 only a subset of strains are likely to lead to human infection, as is the case with other

enteric pathogens (Kim et al. 1999; McNally et al. 2001).

The faecal carriage of *Y. enterocolitica* in cattle, sheep and pigs at slaughter in

2 Great Britain was last determined in a structured national survey performed in 1999-

3 2000. All Y. enterocolitica isolates were then biotyped and serotyped, and the

4 phenotypes compared to strains isolated from human cases of yersiniosis by the

5 Health Protection Agency (HPA) over the same period.

6

7

8

10

11

12

14

15

17

18

19

20

21

2.2.

MATERIALS AND METHODS

Abattoir survey and livestock sampling

9 Cattle, sheep, and pigs were sampled for carriage of Y. enterocolitica as part of the

first randomised national survey to determine the prevalence of foodborne pathogens

in livestock at slaughter in Scotland, England and Wales. The survey was undertaken

between March 1999 and February 2000. Ligated caeca were collected from 2509

pigs sampled at 34 abattoirs. Ligated rectal samples were collected from 891 cattle

and 973 sheep that were sampled at 118 abattoirs. All ligated samples were

transported to VLA testing laboratories for processing within 24 hours of collection.

16 Upon receipt at the testing laboratories, the samples were allocated a sample number,

conferring anonymity to the abattoirs and herds from which samples were taken.

Sampling was arranged to ensure even seasonal distribution throughout the 12-month

period and ensure sample collection was proportionate to the throughput of each of

the participating abattoirs. Samples were also taken to ensure an even spread of

sampling throughout Great Britain (28.4% Midlands region, 32.8% North and

Scotland, 38.8% South). A maximum of 5 samples was collected on any one occasion

23 to prevent the clustering of sampling from the same herds.

24

Isolation and phenotyping of *Y. enterocolitica* isolates

1

14

15

22

2 All samples were processed within 3 days of collection. On receipt at the laboratory 3 the caecal/rectal contents were removed aseptically from the ligated viscera. Y. enterocolitica isolation was performed as described according to the method of 4 5 Schiemann (Schiemann 1979). Briefly, caecal/rectal material (2ml containing approximately 2g) were emulsified in 20ml of 0.066M phosphate buffered saline 6 (PBS - pH 7.3) and refrigerated at 2 - 8°C for 14 days. The broth was sub-cultured 7 8 onto selective CIN (Cephsulodin-Irgasin-Novobiocin) agar and incubated at 31°C for 9 18-24 hours. Suspect Yersinia colonies were sub-cultured on to 10% sheep's blood 10 agar and MacConkey agar and incubated at 37°C for 18-24 hours. Identification of Y. enterocolitica was confirmed by colony morphology, urease test and API 20E 11 12 biochemical typing strip. All confirmed Y. enterocolitica isolates were sub-cultured onto Dorset slopes and despatched to the Laboratory of Enteric Pathogens (LEP), 13

16 Isolation of human *Y. enterocolitica* isolates

During the corresponding time to the National Abattoir Survey (March 1999 -

and serotyped according the modified scheme of Wauters (Bottone 1999).

Health Protection Agency (HPA), Colindale for phenotyping. Isolates were biotyped

- February 2000), 164 Y. enterocolitica strains isolated from patients presenting to their
- 19 GP with diarrhoea, were confirmed by the LEP. All strains were isolated from patients
- 20 in England and Wales, and were biotyped and serotyped at the LEP using identical
- 21 methodology as that employed in the abattoir survey.

Veterinary and human strain comparison

- 23 The 814 *Y.enterocolitica* strains isolated from the abattoir survey study were grouped
- 24 according to source, and then further grouped according to biotype and serotype. The
- 25 pathotypes of these veterinary strains were then compared to the pathotypes of the 164

- 1 Y. enterocolitica isolates sent to LEP from laboratories throughout England and Wales
- 2 during the same period of 1999/2000. This allowed a temporal comparison of Y.
- 3 *enterocolitica* isolated in Great Britain during 1999 2000.

4

5 **RESULTS**

- 6 Prevalence and biotypes of *Y. enterocolitica* in pigs in Great Britain
- From a total of 2509 pigs sampled, 742 (29.6%) of the samples tested were positive
- 8 for Yersinia spp. Of the 742 isolates, 654 (26.1% of samples, 88% of total Yersinia
- 9 spp.) were Y. enterocolitica. Other species isolated from pigs were Y. intermediae, Y.
- 10 rhodei, and Y. frederksenii, the latter being the most common (1.6%, 1.1%, and 8% of
- 11 Yersinia spp. isolates respectively). There was no statistical bias of isolation with
- 12 respect to geographical region of the UK, though carriage rates were highest during
- 13 December and January, with carriage rates significantly decreasing during the summer
- months (p =0.00001, χ^2 -test). Of the pig Y. *enterocolitica* isolates, the most common
- 15 (53.4%) strain type was biotype 1a (Table 1). In addition, 22% were biotype 3 (O:5,
- 16 27), 11% biotype 3 (O:9) and 5% biotype 4 (O:3).
- 17 Prevalence of Y. enterocolitica in sheep and cattle in Great Britain
- Only 56 of the 891 cattle sampled in the survey (6.3%) yielded *Y. enterocolitica* by
- culture. Of these 56 isolates only 2 were recognised pathogenic biotypes, both being
- biotype 3 (O:5, 27) (Table 2) whilst the remainder were biotype 1a.
- 21 Of the 973 sheep sampled in the survey, 104 (10.7%) were positive for
- 22 Y.enterocolitica. Sixty two percent of isolates were biotype 1a but most of the
- remainder were biotype 3 (O:5, 27) (Table 3).

24

1 Characterisation of *Y. enterocolitica* strains from human cases of yersiniosis

- 2 During the same period of 1999/2000 that the national abattoir survey was conducted,
- 3 164 Y. enterocolitica strains were received by the LEP. The majority (53%) were
- 4 biotype 1a, 24% were biotype 3 (O:9) and 19% biotype 4 (O:3) (Table 4). Only 1.2%
- 5 were biotype 3 (O:5, 27).

6

7

DISCUSSION

In this study, the caecal/faecal carriage of Y. enterocolitica in livestock (pigs, cattle 8 9 and sheep) at slaughter in Great Britain has been defined using a structured national 10 abattoir survey. Over 25% of pigs, 10% of sheep, and 6% of cattle carried Y. 11 enterocolitica. Such a high prevalence in pigs is well documented (Skjerve et al. 12 1998; Fredriksson-Ahomaa et al. 1999; Fredriksson-Ahomaa et al. 2000; Atanassova 13 et al. 2003; Bonardi et al. 2003; Watabe et al. 2003). Although at a lower prevalence, 14 the carriage of Y. enterocolitica by sheep, cattle and other domestic animals is also 15 well recognised (Fantasia et al. 1985; Floccari et al. 2000; Falcao et al. 2003). More importantly, the role of such veterinary strains in human intestinal infectious disease 16 17 is unknown. Comparison of strain phenotypes in the various host populations is the classical approach to such a question. However, for Y. enterocolitica the population 18 19 structure, even in humans, appears to be geographically variable. For example, 20 biotype 1B strains are commonly reported in the USA but are almost unreported in 21 Europe, and there is biotype diversity even among studies across Europe (Bottone 2.2. 1999). Because all Y. enterocolitica isolates from human cases from England and 23 Wales are sent to the HPA for characterisation, this national abattoir survey provided 24 a unique opportunity to compare directly, using classical biotyping and serotyping 25 approaches, veterinary and human strains, which are temporally related.

1 In all three livestock species investigated Y. enterocolitica biotype 1a was the 2 major strain type recovered. This biotype is assumed to be non-pathogenic in humans, 3 due to the absence of known virulence factors including the lack of the yersinia 4 virulence plasmid (pYV) (Grant et al. 1999). It was interesting that 1a was also the 5 predominant (53%) biotype identified in cases of human yersiniosis. Whether such human isolates were causative of disease or merely secondary colonisers is unclear. In 6 7 a recent national intestinal infectious disease (IID) study (Food Standards Agency 8 2000), 85% of Y. enterocolitica isolates from patients presented to a General 9 Practitioner (GP), compared with 93% of isolates from matched healthy controls, 10 were biotype 1a, suggesting no association with disease. This was supported by data 11 for community cases and controls (73% and 90% respectively) in the same study. 12 Nevertheless, recent research, based on in vitro and in vivo models provides support 13 that biotype 1a strains are capable of causing disease in humans (Tennant et al. 2003; Tennant et al. 2003). One explanation for this anomaly may be that there is a range of 14 virulence potential in biotype 1a strains. This hypothesis is supported by experimental 15 16 evidence indicating that biotype 1a strains from human disease cases are generally 17 more invasive for, and escape at higher numbers from, eukaryotic cells in vitro compared to biotype 1a strains isolated from the environment (Grant et al. 1999). 18 19 From the data presented here and in the IID study (Food Standards Agency 2000) 20 biotyping and serotyping appear to contribute little to this debate. Typing techniques with greater discriminatory power, and preferably linked to pathogenicity markers, are 21 required to address this question. Preliminary evidence suggests that molecular 2.2. 23 typing techniques such as amplified fragment length polymorphism (AFLP) may be a 24 useful tool in the future (unpublished data).

1 Previous studies have demonstrated that Y. enterocolitica biotype 3 (O:9 and 2 O:5,27), biotype 2 (O:9), and biotype 4 (O:3) are the most common strains of the presumed pathogenic group isolated from humans in the UK (Prentice et al. 1991; 3 Bottone 1999). However, during the survey period (1999-2000) the predominant 4 5 strains received by the LEP were of biotype 3 (O:9) (24% of all isolates) and biotype 4 (O:3) (19% of all isolates), with no biotype 2 observed. Biotype 2 and Biotype 3 6 7 strains can often be confused due to the difficulty in interpreting the Indole test, which differentiates the two. All isolates were typed by dedicated staff at the HPA using 8 identical reagents which had successfully identified both BT2 and BT3 strains, 9 10 suggesting this is a real observation. This is consistent with the IID study (Food 11 Standards Agency 2000) where the only potentially pathogenic strains isolated from 12 human cases were biotype 3 (O:9) (12.7% of all isolates), and biotype 4 (O:3) (2% of 13 all isolates). Evidence for the potential pathogenicity of these biotypes is much stronger as no biotype 4 (O:3) strains and only 1 (2%) biotype 3 (O:9) strain was 14 isolated from healthy humans during this study. In contrast, the prevalence of biotype 15 4 (O:3) strains in livestock for 1999-2000 was considerably lower than in strains 16 17 typed by the LEP during the same period. In the abattoir survey prevalence of biotype 4 (O:3) was 5% in pigs, 1% in sheep and none in cattle. Thus, other potential 18 19 reservoirs of this pathogenic biotype need to be considered, though the possibility 20 may exist that BT4 (O:3) isolates are present in too few numbers to be isolated using these techniques. For example, very low numbers of BT4 (O:3) isolates may be 21 present in faecal contents but may proliferate on refrigerated meat products. Also 22. 23 Y. enterocolitica is more prevalent on the tonsils of pigs than in the intestinal contents, 24 leading to the possibility that only heavily colonised animals are detected in this 25 survey (Fredriksson-Ahomaa and Korkeala, 2003). Outside Great Britain, surveys

have shown that other domestic animals, particularly dogs are recognised carriers of

2 biotype 4 (O:3) (Fantasia et al 1985; Fenwick et al 1994; Fukushima et al 1984).

Thus, dogs, and potentially other domesticated wildlife, could also be a significant

source of infections with this biotype in the UK.

2.2.

Biotype 3 (O:5,27) was by far the predominant pathogenic biotype carried by sheep and pigs, and was the only one recovered from cattle. As only 1% of human strains during 1999-2000 were biotype 3 (O:5,27), and none from the IID study, it seems likely that this biotype is either poorly transmissible or relatively non-pathogenic to man. In contrast, biotypes 3 (O:9) and 4 (O:3) were not uncommon in pigs (27% and 5 % respectively) and were also recovered from sheep. It seems likely therefore that livestock, and in particular, pigs are potential sources of human infection with these strains. Moreover, strain-specific differences in prevalence among humans and animals suggest some host-associated differences in colonisation potential that warrant further investigation.

Overall it seems from this first national abattoir survey of cattle, sheep and pigs, that *Y.enterocolitica* is a relatively ubiquitous organism in livestock in Great Britain. Unfortunately the relationship between these veterinary strains and human yersiniosis remains unclear as, using biotyping and serotyping as discriminatory tools, there is little correlation between the prevalence of strain carriage in livestock and disease in humans. This is further complicated by the high proportion of strains that belong to the putatively non-pathogenic, 1a, group in both humans and livestock. Clearly further research is required to elucidate the pathogenicity of biotype 1a strains and to determine their role in human infection. Because the only putatively pathogenic biotypes isolated from cattle and sheep were BT3 (O:5,27) strains, which were uncommon in humans, these food producing animals seem unlikely sources of human

- infection, however, pigs appear to be the reservoir of human cases caused by biotype
- 2 3 (O:9) and possibly biotype 4 (O:3). The use of molecular epidemiological tools,
- 3 with higher discriminatory power, will be required to further understand these
- 4 relationships.

5

6 **ACKNOWLEDGEMENTS**

- 7 This work was supported by the Department for Environment, Food and Rural Affairs
- 8 (Defra), Great Britain.

9

REFERENCES

2	
3	Atanassova, V., Hugenberg, J. and Ring, C. (2003). Detection of Yersinia
4	enterocolitica in slaughter pigs. Genus Yersinia: Entering the Functional
5	Genomic Era. 529: 325-327.
6	Bonardi, S., Brindani, F., Pizzin, G., Lucidi, L., D'Incau, M., Liebana, E., and
7	Morabito, S. (2003). Detection of Salmonella spp., Yersinia enterocolitica and
8	verocytotoxin-producing Escherichia coli O157 in pigs at slaughter in Italy.
9	International Journal of Food Microbiology 85(1-2): 101-110.
10	Bottone, E. J. (1997). Yersinia enterocolitica: the charisma continues. Clinical
11	Microbiology Reviews 10(2): 257-276.
12	Bottone, E. J. (1999). Yersinia enterocolitica: overview and epidemiologic correlates.
13	Microbes and Infection 1(4): 323-333.
14	Doyle, M. P. (1985). Food-borne pathogens of recent concern. Annual Reviews in
15	Nutrition 5 : 25-41.
16	Falcao, J. P., Falcao, D. P., Correa E. F., and Brocchi, M. (2003). A virulence study of
17	Yersinia enterocolitica O: 3 isolated from sick humans and animals in Brazil
18	using PCR and phenotypic tests. Genus Yersinia: Entering the Functional
19	Genomic Era. 529: 317-319.
20	Fantasia, M., Mingrone, M. G., Crotti, D., and Boscato, C. (1985). Isolation of

Yersinia enterocolitica biotype 4 serotype O:3 from canine sources in Italy.
Journal of Clinical Microbiology 22(2): 314-315

- Fenwick, S. G., Madie, P., Wilks, C. R. (1994). Duration of carriage and
- transmission of Yersinia enterocolitica biotype 4, serotype O:3 in dogs.
- *Epidemiology and Infection* **113**(3): 471-477.
- 4 Floccari, M. E., Carranza, M. M., and Parada, J. L. (2000). Yersinia enterocolitica
- 5 biogroup 1A, serotype O: 5 in chicken carcasses. *Journal of Food Protection*
- 6 **63**(11): 1591-1593.
- Food Standards Agency (2000). A report of the study of infectious intestinal Disease
- 8 in England. The Stationary Office. London.
- 9 Fredriksson-Ahomaa, M., Bjorkroth, J., Hielm, S., and Korkeala, H. (2000).
- Prevalence and characterization of pathogenic Yersinia enterocolitica in pig
- tonsils from different slaughterhouses. *Food Microbiology* **17**(1): 93-101.
- 12 Fredriksson-Ahomaa, M., Hallanvuo, S., Korte, T., Siitonen, A., and Korkeala, H.
- 13 (2001). Correspondence of genotypes of sporadic Yersinia enterocolitica
- bioserotype 4/O: 3 strains from human and porcine sources. *Epidemiology*
- *and Infection* **127**(1): 37-47.
- 16 Fredriksson-Ahomaa, M., Hielm, S., and Korkeala, H. (1999). High prevalence of
- yadA-positive Yersinia enterocolitica in pig tongues and minced meat at the
- retail level in Finland. *Journal of Food Protection* **62**(2): 123-127.
- 19 Fredriksson-Ahomaa, M. and Korkeala, H. (2003). Low occurrence of pathogenic
- 20 Yersinia enterocolitica in clinical, food, and environmental samples: a
- 21 methodological problem. *Clinical Microbiology Reviews* **16**(2): 220-229.
- 22 Fredriksson-Ahomaa, M. and Korkeala, H. (2003). Molecular epidemiology of
- 23 Yersinia enterocolitica 4/O: 3. Genus Yersinia: Entering the Functional
- 24 *Genomic Era.* **529:** 295-302.

- Fukushima, H., Nakamura, R., Iitsuka, S., Tsubokura, M., Otsuki, K., Kawaoka, Y.
- 2 (1984). Prospective systematic study of Yersinia spp. in dogs. Journal of
- 3 *Clinical Microbiology.* **19**(5):, 616-622.
- 4 Gourdon, F., Beytout, J., Reynaud, A., Romaszko, J. P., Perre, D., Theodore, P.,
- 5 Soubelet, H., and Sirot, J. (1999). Human and animal epidemic of Yersinia
- 6 enterocolitica O: 9, 1989-1997, Auvergne, France. Emerging Infectious
- 7 *Diseases* **5**(5): 719-721.
- 8 Grant, T., Bennett-Wood, V. and Robins-Browne, R. M. (1999). Characterization of
- 9 the interaction between Yersinia enterocolitica biotype 1A and phagocytes and
- epithelial cells in vitro. *Infection and Immunity* **67**(9): 4367-4375.
- Jones, T. F. (2003). From pig to pacifier: chitterling-associated yersiniosis outbreak
- among black infants. *Emerging Infectious Diseases* **9**: 1007-1009.
- 13 Kim, J., Nietfeldt, J., and Benson, A. K (1999). Octamer-based genome scanning
- distinguishes a unique subpopulation of *Escherichia coli* O157:H7 strains in
- cattle. Proceedings of the National Academy of Sciences of the United States
- *of America* **96**: 13288-13293.
- McNally, A., Roe, A. J., Simpson, S., Thomson-Carter, F. M., Hoey, D. E. E., Currie,
- 18 C., Chakraborty, T., Smith, D. G. E., and Gally, D. L. (2001). Differences in
- levels of secreted locus of enterocyte effacement proteins between human
- disease associated and bovine Escherichia coli O157. Infection and Immunity
- **69**: 5107-5114.
- 22 Prentice, M., Cope, D., and Swann, R. A. (1991). The epidemiology of Yersinia
- 23 enterocolitica infection in the British isles 1983-1988. Contributions to
- 24 *Microbiology and Immunology* **12**: 17-25.

- Schiemann, D. A. (1979). Synthesis of a selective agar medium for Yersinia
- *enterocolitica. Canadian Journal of Microbiology* **25**(11): 1298-1304.
- 3 Skjerve, E., Lium, B., Nielsen, B., and Nesbakken, T. (1998). Control of Yersinia
- 4 enterocolitica in pigs at herd level. International Journal of Food
- 5 *Microbiology* **45**(3): 195-203.
- 6 Tennant, S. M., Grant, T. H., and Robins-Browne, R. M. (2003). Pathogenicity of
- 7 Yersinia enterocolitica biotype 1A. FEMS Immunology and Medical
- 8 *Microbiology* **38**: 127 137.
- 9 Tennant, S. M., Skinner, N. A., Joe, A. and Robins-Browne, R. M. (2003). Yersinia
- 10 enterocolitica biotype 1A: Not as harmless as you think. Genus Yersinia:
- 11 Entering the Functional Genomic Era. **529:** 125-128.
- Watabe, M., Rao, J. R., Stewart, T. A., Xu, J., Millar, B. C., Xiao, L., Lowery, C. J.,
- Dooley, J. S. G., and Moore, J. E. (2003). Prevalence of bacterial faecal
- pathogens in separated and unseparated stored pig slurry. Letters in Applied
- 15 *Microbiology* **36**(4): 208-212.

- Table 1. Prevalence of biotypes/serotypes of Y.enterocolitica isolates from pigs,
- 2 sampled at abattoirs in Great Britain during 1999-2000.

Biotype	Serotype	No. Isolates	Percentage
1A	06,30	77	11.79
	0,?*	82	12.56
	019,8	46	7.04
	05	42	6.43
	O10, K1	18	2.76
	O41,43	17	2.6
	O7	16	2.45
	O4,32	12	1.84
	О8	12	1.84
	O13,7	7	1.07
	Others †	20	3.05
BT 3	05,27	142	21.75
	0,9	71	10.87
	Ο,?	26	3.98
	Others	10	1.52
BT4	03	33	5.05
	Others	5	0.77
BT2	Various ‡	3	0.46
BT6	Various	2	0.3

^{*}O? indicates the strain was non-typeable.

3

7

8

9

[†]Others refers to uncommon serotypes of which only one strain was identified.

^{6 &}lt;sup>‡</sup>Various refers to the presence of more than one serotype within this biotype group.

- Table 2. Prevalence of biotypes/serotypes of Y.enterocolitica isolates from cattle
- 2 sampled at abattoirs in great Britain during 1999-2000.

Biotype	Serotype	Number	Percentage
BT1a	O:?*	14	30.44
	O:6, 30	10	21.74
	O:5, 27	4	8.7
	O:19, 8	4	8.7
	O:6, 31	3	6.52
	O:4, 32	2	4.35
	O:47	1	2.17
	O:41, 43	1	2.17
	O:4, 33	1	2.17
	O:37	1	2.17
	O:7	1	2.17
	O:21	1	2.17
	O:14	1	2.17
BT3	O:5, 27	2	4.35

^{*}O? indicates the strain was non-typeable.

Table 3. Prevalence of biotypes/serotypes of Y.enterocolitica isolates from sheep

2 sampled at abattoirs in great Britain during 1999-2000.

Biotype	Serotype	Number	Percentage
BT1a	O:6, 30	13	14.94
	O:?*	11	12.64
	O:19, 8	6	6.9
	O:5, 27	6	6.9
	O:4, 32	4	4.6
	O:6, 31	3	3.45
	O:5	2	2.3
	O:47	2	2.3
	O:41, 42	2	2.3
	O:41, 43	1	1.15
	O:7	1	1.15
	O:36	1	1.15
	O:13, 7	1	1.15
	O:10, K1	1	1.15
BT3	O:5, 27	30	34.5
BT4	0:3	1	1.15
BT2	O:9	1	1.15
	O:5, 27	1	1.15

^{*}O? indicates the strain was non-typeable.

Table 4. Prevalence of biotypes/serotypes of human *Y.enterocolitica* isolates received

2 by LEP, HPA during 1999-2000.

Biotype	Serotype	No Isolates	Percentage
1A	O,?*	28	17.1
	05	13	7.93
	O6,30	11	6.71
	O19,8	6	3.66
	O41,43	6	3.66
	O8	5	3.05
	O6,31	4	2.44
	O4,32	3	1.83
	010,K1	2	1.22
	O36	2	1.22
	013,7	1	0.61
	03	1	0.61
	046	1	0.61
	048	1	0.61
	05,27	1	0.61
	07	1	0.61
	O rough	1	0.61
,	O9	39	23.8
	Ο?	2	1.22
	O5	2	1.22
	O5,27	2	1.22
-	О3	32	19.5

^{*}O? indicates the strain was non-typeable.