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Abstract 

 

The nonword repetition (NWR) test has been shown to be a good predictor of 

children’s vocabulary size. NWR performance has been explained using the working 

memory model and specifically the phonological loop, which is seen as being critical 

in the learning of sound patterns. However, no detailed link between long-term 

memory and incoming sound patterns has been proposed. A computational model of 

children’s vocabulary acquisition (EPAM-VOC) is presented that concretely specifies 

how working memory and long-term memory interact. In this model performance 

differences arise from differences in long-term knowledge. The model’s behaviour is 

compared with that of children in a new study of NWR, conducted in order to ensure 

the same nonword stimuli and methodology across ages. It is found that EPAM-VOC 

showed a pattern of results similar to that of children: performance is better for shorter 

nonwords and for wordlike nonwords, and performance improves with age. EPAM-

VOC also simulates the superior performance for single consonant nonwords over 

clustered consonant nonwords found in previous NWR studies. EPAM-VOC 

represents a good approximation of the learning of novel sound patterns that specifies 

how working memory and long-term memory interact, using an account that indicates 

that capacity differences are not necessary to simulate developmental change. 

 

 

Keywords: EPAM, working memory, long-term memory, nonword repetition, 

vocabulary acquisition, developmental change. 



Learning novel sound patterns 3 

Introduction 

 
Children’s vocabulary learning begins slowly but rapidly increases – at the age 

of sixteen months children know around 40 words (Bates et al., 1994) yet by school 

age children learn up to 3,000 words each year (Nagy & Herman, 1987). There are 

individual differences across children in terms of how quickly they acquire 

vocabulary, and in terms of how many words they know. One of the sources of these 

individual differences is hypothesised to be the phonological loop component of 

working memory (e.g., Gathercole & Baddeley, 1989), which is perceived to be a 

bottleneck to the learning of sound patterns. According to this view, children with a 

high phonological working memory capacity are able to maintain more sound patterns 

and are therefore able to learn words more quickly than their low phonological 

working memory capacity counterparts.  

The nonword repetition (NWR) test has been shown to be a reliable indicator of 

phonological working memory capacity and of vocabulary size. The NWR test 

(Gathercole, Willis, Baddeley & Emslie, 1994) involves saying a nonword to a child 

and asking them to speak aloud the nonword they heard. By using nonsense words, 

the test guarantees that the child has never heard the particular sequence of phonemes 

before, so there is no stored phonological representation of the nonword in the mental 

lexicon (Gathercole, Hitch, Service & Martin, 1997). Repeating nonwords should 

therefore place more emphasis on phonological working memory than on long-term 

phonological knowledge, and provide a more sensitive measure of phonological 

working memory than traditional tests such as digit span. 

There are now a plethora of studies that indicate that NWR performance is the 

best predictor of children’s vocabulary size over and above traditional memory tests 

such as digit span, and tests of linguistic ability such as reading tests (e.g., Gathercole 
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& Adams, 1993, 1994; Gathercole & Baddeley, 1989, 1990; Gathercole, Willis, 

Emslie & Baddeley, 1992). Furthermore, the role of phonological working memory in 

NWR performance is shown in adults with a specific deficit in phonological working 

memory, who have difficulty in learning word-nonword pairs but show no impairment 

for word-word pairs (e.g., Baddeley, Papagno & Vallar, 1988). 

The strong relationship between NWR performance and vocabulary size led 

Gathercole and colleagues to hypothesise that phonological working memory plays a 

pivotal role in novel word learning (e.g., Gathercole & Adams, 1993; Gathercole & 

Baddeley, 1989; Gathercole, Willis, Baddeley & Emslie, 1994). More specifically, the 

phonological loop was believed to mediate the long-term storage of phonological 

knowledge (Gathercole & Baddeley, 1989). This was supported by Gathercole, Willis, 

Emslie and Baddeley (1991), who compared the influence of the phonological loop, in 

terms of nonword length, versus the influence of vocabulary knowledge, in terms of 

grammatical morphemes in a nonword. Whereas increases in nonword length led to a 

decline in NWR performance, the number of grammatical morphemes in a nonword 

had no reliable effect on NWR performance, suggesting a significant role for 

phonological working memory in novel word learning. 

However, it is not just phonological working memory that influences NWR 

performance. Gathercole (1995) found that repetition performance for nonwords that 

were rated as wordlike was significantly better than performance for nonwords rated 

as non-wordlike. The implication is that long-term memory of phonological structures 

also influences NWR performance, and hence that there must be some form of 

interaction between long-term memory (LTM) and phonological working memory for 

NWR performance. This is supported by the fact that NWR performance significantly 

correlates with performance in learning word-nonword pairs, but not word-word pairs, 
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whereas vocabulary knowledge significantly correlates with both types of pairing 

(Gathercole, Hitch, Service & Martin, 1997). This suggests NWR performance may 

only be a predictor for novel words, while vocabulary knowledge influences all types 

of word learning. 

While the importance of LTM in the production of nonwords has been noted, it 

is not known exactly how phonological memory and LTM combine as yet 

(Gathercole, Willis, Baddeley & Emslie, 1994). Gathercole and colleagues 

hypothesise there to be a reciprocal relationship between phonological working 

memory and existing vocabulary knowledge (e.g., Gathercole, Hitch, Service & 

Martin, 1997), and together with the learning of novel sound patterns, the three share 

a highly interactive relationship (Baddeley, Gathercole & Papagno, 1998). Novel 

sound patterns are represented in phonological working memory but can be supported 

by phonological “frames” that are constructed from existing phonological 

representations in long-term memory (Gathercole & Adams, 1993; Gathercole, Willis, 

Emslie & Baddeley, 1991). Frames may contain parts of stored lexical items that 

share phonological sequences with the novel sound pattern contained in phonological 

working memory. Wordlike nonwords share more similarity with existing lexical 

items, resulting in better performance for wordlike nonwords over non-wordlike 

nonwords. Similarly, the more “novel” a sound pattern is, the more reliance will be 

placed on phonological working memory for learning that sound pattern. 

An alternative though similar view is that it is lexical structure that influences 

nonword repetition performance. Metsala (1999) suggests that a child’s vocabulary 

growth influences lexical restructuring, with words that have a large neighbourhood 

requiring more restructuring than those that have a sparse neighbourhood. 

Neighbourhood is defined as how many other words can be formed by the 
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substitution, addition or deletion of one phoneme in the word. Words with large 

neighbourhoods should have an advantage over words with sparse neighbourhoods 

when performing phonological awareness tasks, because large neighbourhood words 

have been structured at a deeper level. Metsala (1999) showed that this is indeed the 

case. Moreover, further regression analyses showed that phonological awareness 

scores contributed unique variance in vocabulary size after nonword repetition scores 

had been entered into the regression, which was not the case when nonword repetition 

scores were added after phonological awareness scores. That is, lexical structure (as 

measured by phonological awareness tasks) was a better predictor of vocabulary size 

than NWR performance. 

Similar less-specified theoretical positions than Gathercole and Metsala exist. 

For example, Munson and colleagues (e.g., Munson, Edwards & Beckman, 2005; 

Munson, Kurtz & Windsor, 2005) suggest that phonological representations are 

increasingly elaborated with age, and this would explain why performance differences 

in wordlike versus non-wordlike nonwords are more pronounced in younger children. 

Bowey (1996) argues for a phonological processing ability whereby phonological 

representations develop as vocabulary increases. According to this view, differences 

between children with high scores on NWR tests and children with low scores on 

NWR tests may reflect differences in their phonological processing ability rather than 

differences associated with phonological working memory. 

Although all of these explanations indicate contributions of existing 

phonological knowledge and/or phonological working memory capacity, none specify 

how sound patterns are learned and how they interact with phonological memory. 

Furthermore, they do not detail how novel sound patterns are stored in LTM or how 

they are stored in phonological working memory. Such definitions are crucial for 
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understanding how novel sound patterns are learned. Similarly, a precise definition of 

how the representations in LTM interact with those in phonological working memory 

is crucial in order to understand the relative roles that LTM and phonological working 

memory play in the learning of novel sound patterns. 

The goal of this paper is to fill in this theoretical gap by providing a detailed 

specification of the mechanisms that link phonological working memory and LTM. 

We present a computational model that is able to simulate the NWR data. Not only is 

the model consistent with the explanations of the link between long-term and 

phonological working memory that have been proposed by Gathercole and Metsala, 

but it also fills in the detail which their explanations lack. In particular, we show that 

while phonological working memory is a bottleneck to language learning, LTM is 

more likely to be the driving force behind the learning of novel sound patterns. 

The layout of the remainder of the paper is as follows. First, a summary of the 

existing NWR findings is given, together with a summary of existing models of NWR 

performance. Second, an explanation of the computational model is given. Third, a 

new experiment on NWR performance is presented, because existing studies do not 

use the same nonwords across ages, meaning that a developmental account of the 

model cannot be compared to the same datasets. Fourth, it is shown that the model 

can account for children’s data in our experiment, and that the same model provides a 

good account of the existing NWR data. Finally, a general discussion of the findings 

and the model is presented. 

 

The nonword repetition test: Existing data and simulations 

 
There are four empirical phenomena that any computational model of NWR 

performance needs to simulate. First, repetition accuracy is poorer for long nonwords 
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than it is for short nonwords. For example, Gathercole and Baddeley (1989) found 

that 4-5 year old children’s NWR performance was superior for 2-syllable nonwords 

than 3-syllable nonwords, and for 3-syllable nonwords than 4-syllable nonwords 

respectively. Second, children’s repetition accuracy gets better with age. For example, 

Gathercole and Adams (1994) found 5 year olds’ NWR performance to be superior to 

that of 4 year olds. Third, performance is better for single consonant nonwords than 

clustered consonant nonwords (e.g., Gathercole & Baddeley, 1989). Fourth, NWR 

performance is better for wordlike nonwords than it is for non-wordlike nonwords, 

suggesting the involvement of LTM representations of phoneme sequences 

(Gathercole, 1995). 

Two influential models of nonword repetition exist, although neither was 

created with the intention of accounting for the key phenomena listed above. Hartley 

and Houghton (1996) detail a connectionist network that is presented with nonword 

stimuli in the training phase and is tested on the same nonwords in a recall phase. 

Decay incorporated within the model means that longer nonwords are recalled with 

less accuracy than shorter nonwords. Furthermore, the model is able to simulate 

certain types of error in nonword repetition. For example, the phonemes in a syllable 

have competition from other related phonemes such that substitutions can take place. 

Based on data from Treiman and Danis (1988), the model displays similar types of 

error to those made by children and adults. 

Brown and Hulme (1995, 1996) detail a trace decay model in which the 

incoming list of items (e.g., nonwords) is represented as a sequence of 0.1 second 

time slices. For example, a nonword may take 0.5 seconds to articulate and will 

therefore comprise 5 segments, or 5 time slices of 0.1 seconds each. Each segment 

can vary in strength from 0 to 1, with segments beginning with a strength of 0.95 
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when they enter memory. As time progresses (i.e., every 0.1 seconds), each segment 

of the input is subjected to decay. For example, an item that occupies 5 segments will 

enter memory one segment at a time, and thus the first segment of the item will have 

been subjected to four periods of decay by the time the fifth segment of the item 

enters memory. Decay also occurs when the item is being articulated for output. To 

combat items decaying quickly, the strength of certain items is increased based on 

relationships to LTM traces, such that, for example, wordlike nonwords would 

increase in strength more than non-wordlike nonwords. 

Long nonwords decay more quickly than short nonwords, thereby supporting the 

existing literature on children’s performance of nonword repetition where repetition 

accuracy gradually decreases across 2 to 4 syllables. This leads to the prediction that 

long words will take longer for children to acquire than short words, and this 

prediction seems to be borne out by age-of-acquisition data (Brown & Hulme, 1996). 

In terms of the four criteria outlined at the beginning of this section, both models 

can account for longer nonwords being repeated back less accurately than shorter 

nonwords. However, none of the other criteria was simulated within either model. 

Furthermore, neither model explains how sound patterns are actually learned through 

exposure to naturalistic stimuli. A computational model will now be presented that (a) 

details how novel sound patterns are learned, (b) explains how these sound patterns 

then interact with phonological working memory, and (c) accounts for the key 

phenomena we have described.  

 

A new computational model of nonword repetition: EPAM-VOC 

 
EPAM (Feigenbaum & Simon, 1984) is a computational architecture that 

progressively builds a discrimination network of knowledge based on the input it 



Learning novel sound patterns 10 

receives. The discrimination network is hierarchical such that at the top there is a root 

node, below which several further nodes will be linked. Each of these nodes may in 

turn have further nodes linked below them, creating a large and organised knowledge 

base of the input received. Visually, the resulting hierarchy of nodes and links can be 

seen as a tree, and indeed EPAM shares similarities to what are known in computer 

science as “trie” structures (Fredkin, 1960). 

EPAM and its variants have been used to model human performance in various 

psychological domains, such as learning, memory, and perception in chess (De Groot 

& Gobet, 1996; Gobet, 1993; Gobet & Simon, 2000; Simon & Gilmartin, 1973), 

verbal learning behaviour (Feigenbaum & Simon, 1984), the digit-span task 

(Richman, Staszewski & Simon, 1995), the context effect in letter perception 

(Richman & Simon, 1989), and the acquisition of syntactic categories (Freudenthal, 

Pine & Gobet, 2002, 2006; Gobet, Freudenthal & Pine, 2004; Jones, Gobet & Pine, 

2000a) (see Gobet et al., 2001, for an overview). Thus, most of the mechanisms used 

in the model described in this paper have been validated by independent empirical and 

theoretical justifications, and their validity has been established in a number of 

diverse domains. 

The hierarchical structure of EPAM is particularly suited to the learning of 

sound patterns. If one considers a sentence, it can be broken down into a sequence of 

phonemes that represent each of the words in the sentence. This sequence of 

phonemes needs to be stored in a hierarchical fashion to preserve the order of the 

phonemes. EPAM provides a simple mechanism by which this can be accomplished, 

such that the resulting discrimination network becomes a long-term memory of sound 

patterns. Preliminary versions of the models have been described in Jones, Gobet and 

Pine (2000b, 2005). This section will first describe how EPAM-VOC builds a 
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discrimination network of sound patterns, and second, how phonological memory will 

be simulated and linked to the discrimination network. 

 

Learning sound patterns in EPAM-VOC 

The standard EPAM architecture builds a hierarchy of nodes and links that exist 

as a cascading tree like structure. EPAM-VOC is a simplified version of EPAM that 

uses phonemic input in order to build a hierarchy of phonemes and sequences of 

phonemes. 

When a sequence of phonemes is presented, EPAM-VOC traverses as far as 

possible down the hierarchy of nodes and links. This is done by starting at the top 

node (the root node) and selecting the link that matches the first phoneme in the input. 

The node at the end of the link now becomes the top node and EPAM-VOC tries to 

match the next phoneme from the input to all the links below this node. If an 

appropriate link exists, then the node at the end of the link becomes the top node and 

the process repeats. When a node is reached where no further traversing can be done 

(e.g., the next phoneme does not exist in the links below the current top node, or the 

node has no links below it), then learning occurs in one of two ways: 

1. Phoneme learning. If the next phoneme in the input sequence does not exist as 

a link below the root node, the phoneme is added as a link and node below the 

root node such that EPAM-VOC now has knowledge of the phoneme. 

2. Sequence learning. If the next phoneme in the input sequence exists as a link 

below the root node, it is added as a link and node below the current top node. As 

a result, a sequence of phonemes is learned consisting of the phonemes that were 

used to traverse the network up to the current top node, plus the new phoneme 
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just added. Sequence learning, where increasingly larger “chunks” of phonemes 

are acquired, is very similar to discrimination in traditional EPAM networks. 

 

EPAM-VOC begins with a null root node, meaning that the model begins with 

no knowledge of phonemes or phoneme sequences. When EPAM-VOC receives an 

input (a sequence of phonemes), new nodes and links are created. The initial learning 

for EPAM-VOC involves phoneme learning, so that each phoneme of the English 

language exists as a node below the root node. One may expect the child to already 

have knowledge of such phonemes, so it should be noted that the primary aim of 

phoneme learning is to ensure that all phoneme sequences beginning with a particular 

phoneme occur as nodes below the particular phoneme in the network. The vast 

majority of learning in the network will be sequence learning, where the information 

at nodes becomes sequences of phonemes and therefore segments of speech (e.g., 

specific words) rather than just individual sounds (i.e., phonemes).  

Let us consider an example of the network learning the utterance “What?”. 

Using the CMU Lexicon database, this utterance is converted to the phonemic 

representation “W AH1 T”. Note that the phonemic input to the model does not 

specify gaps between words, but does specify the stress on particular phonemes 

(0=unstressed; 1=primary stress; 2=secondary stress). 

When EPAM-VOC first sees the phonemic representation “W AH1 T”, it tries 

to match as much of the input as possible using its existing knowledge, and then learn 

something about the remainder of the input. In attempting to match the input to 

EPAM-VOC’s existing knowledge, the first part of the input (“W”) is applied to all of 

the root node’s links in the network. Since EPAM-VOC begins with no knowledge, 

the first time “W AH1 T” is input, EPAM-VOC tries to match “W” and fails. At this 
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point phoneme learning takes place, because the phoneme “W” does not exist as a 

link below the root node. A new node is created together with a link from the root 

node to the new node with the test “W”. Hence the phoneme “W” is learnt and 

EPAM-VOC can move on to the next part of the input (“AH1 T”). Again, “AH1” 

cannot be matched and so EPAM-VOC learns this phoneme in a similar manner 

before moving on to the remainder of the input (“T”). This is also learnt in a similar 

manner. Thus after first encountering “W AH1 T”, EPAM-VOC learns each of the 

constituent phonemes in the word. 

When “W AH1 T” is input to EPAM-VOC a second time, a match can be made 

with the first part of the input (“W”), and the “W” link can be taken such that the new 

top node becomes the “W” node. EPAM-VOC now moves on to the remainder of the 

input (“AH1 T”) and tries to match the first part of the remaining input (“AH1”) by 

examining the links below the current top node. Since the “W” node does not have 

any links below it, no further matching can take place. At this point, EPAM-VOC 

examines the remainder of the input and realises that it already knows about the 

“AH1” phoneme, and so sequence learning can occur. A new node and link is created 

below the “W” node containing the phoneme “AH1”. Some learning has taken place 

at the current top node, and so the current top node reverts back to being the root 

node, and EPAM-VOC moves on to the remainder of the input (“T”). This part of the 

input can be matched below the root node such that the “T” node becomes the current 

top node, but as there is no further input, no further learning takes place. 

Using “W AH1 T” as input a third time, EPAM-VOC is able to match the first 

part of the input (“W”), and so makes the “W” node the new top node. The next part 

of the input is then examined (“AH1”), and because this exists as a link below the 

“W” node, it can be matched, with the “W AH1” node, becoming the current top 
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node. The matching process then moves on to the next part of the input (“T”), but as 

no links exist below the “W AH1” node, no matching can take place. At this point, 

sequence learning can take place (because the phoneme “T” is already known to the 

model), and so a new node and link “T” can be made below the current top node. 

Thus after three successive inputs of the sequence “W AH1 T”, the whole word is 

learnt, and the network is as shown in Figure 1. 

------------------------------------------ 

Insert figure 1 about here 

------------------------------------------ 

This simple example serves to illustrate how EPAM-VOC works; in the actual 

learning phase each input line is only used once, encouraging a diverse network of 

nodes to be built. Note that EPAM-VOC needs to know individual phonemes before 

they can be learnt as part of a sequence of phonemes. For example, should the 

network in Figure 1 see the utterance “Which?” (“W IH1 CH”), it will traverse down 

the “W” link, and move on to the next part of the input (i.e., “IH1 CH”). However, the 

network does not know the phoneme “IH1”, and so phoneme learning needs to take 

place, learning the individual phoneme “IH1” before moving on to the remainder of 

the input “CH” (and learning this as an individual phoneme also). Although learning 

may seem to occur rather quickly within EPAM-VOC, it is possible to slow it down 

(e.g., by manipulating the probability of learning a new node), and this has been 

successful for other variants of EPAM models (e.g., Croker, Pine & Gobet, 2003; 

Freudenthal, Pine & Gobet, 2002). Reducing the learning rate is likely to yield the 

same results, but over a longer period of time. For the input sets that will be used here, 

which contain a very small subset of the input a child would hear, it is therefore 

sensible to have learning take place in the way that has been illustrated. 
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Implementing phonological memory and linking it to the discrimination network 

EPAM-VOC now requires a specification of phonological memory, or more 

specifically, the phonological loop, and a method by which the loop interacts with 

EPAM-VOC’s discrimination network. As in the standard working memory model 

(Baddeley & Hitch, 1974), the storage part of the phonological loop, the phonological 

store, is a decay based store which allows items to remain in the store for 2,000 ms 

(Baddeley, Thomson & Buchanan, 1975). EPAM-VOC therefore has a time-limited 

store that allows 2,000 ms of input. 

In the standard working memory model, the phonological loop also has a sub-

vocal rehearsal mechanism, which allows items to be rehearsed in the store such that 

they can remain there for more than 2,000 ms. However, Gathercole and Adams 

(1994) suggest that children of five and under do not rehearse, or at least if they do, 

they are inconsistent in their use of rehearsal. Furthermore, Gathercole, Adams and 

Hitch (1994) found no correlation between articulation rates and digit span scores for 

four year old children, suggesting that children of four years of age do not rehearse (if 

they did, there should be a relationship between articulation rate and digit span 

because rehearsal rate would be related to how quickly the child could speak words 

aloud). Previous computational models have also shown that it is not necessary to 

simulate rehearsal in order to model memory span (e.g., Brown & Hulme, 1995). 

Hence EPAM-VOC does not use the sub-vocal rehearsal mechanism. The input is cut 

off as soon as the time limit is reached (i.e., the input representations are not 

refreshed), and so the phonological loop becomes a phonological store, in-line with 

current findings regarding rehearsal in young children. 
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Having described the model’s LTM (i.e., the discrimination network of nodes 

and links) and phonological store, we are now in a position to discuss the mechanisms 

enabling these two components to interact. This is the central contribution of this 

paper, as there is currently no clear explanation in the literature as to how the 

phonological store links to LTM and how this relation is modulated by learning. 

Within EPAM-VOC, it is relatively easy to specify how sound patterns in LTM 

interact with the phonological store. When sound patterns are input to EPAM-VOC, 

they are matched to those that are stored as nodes in the discrimination network; for 

any sound patterns that can be matched in LTM, a pointer to the relevant node is 

placed in the phonological store. That is, input sounds are not necessarily stored 

individually in the phonological store, but are mediated by LTM nodes that contain 

neural instructions as to how to produce them. The amount of information that can be 

held in the phonological store is thus mediated by the amount of information already 

stored in LTM. Retrieving each node and processing each phoneme within a node 

requires a certain amount of time, and the cumulative time required by these processes 

provides an explanation of how much information can be held in the phonological 

store. Let us explain in detail how this works. 

The length of time taken to represent the input is calculated based on the number 

of nodes that are required to represent the input. The time allocations are based on 

values from Zhang and Simon (1985), who estimate 400 ms to match each node, and 

84 ms to match each syllable in a node except the first (which takes 0 ms). (These 

estimates are derived from adult data.) As the input will be in terms of phonemes, 

with approximately 2.8 phonemes per syllable (based on estimates from the nonwords 

in the NWR test), the time to match each phoneme in a node is 30 ms. 
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Consider as an example the input “What about that?” (“W AH1 T  AH0 B AW1 

T  DH AE1 T”). Given the network depicted in Figure 1, all that can be represented in 

the phonological store within the 2,000 ms timescale is “W AH1 T  AH0 B AW1”. 

The “W AH1 T” part of the input is represented by a single node, and is allocated a 

time of 460 ms (400 ms to match the node, and 30 ms to match each constituent item 

in the node excluding the first item). Most of the other phonemes are not known to the 

model and are assumed to take the same time as a full node (400 ms; the time 

allocated to each phoneme is assumed to be constant). This means that only three 

additional phonemes can be represented within the phonological store, by which time 

the actual input to the model has required a time allocation of 1,660 ms. Matching 

another node would cost at least 400 ms, and thus exceed the time capacity of the 

store.  When the EPAM-VOC network is small, and nodes do not contain much 

information, only a small amount of the input can be represented in the phonological 

store. When the EPAM-VOC network is large, the model can use nodes that contain 

large amounts of information, and therefore a lot of the input information can be 

represented in the phonological store. Larger networks also enable more rapid 

learning, as increasingly large chunks of phonemes can be put together to create new 

chunks (i.e., new nodes in the discrimination network). 

It is worth noting that EPAM-VOC can readily simulate phenomena from the 

adult literature on working memory tasks, although it was not developed with this 

specific aim in mind. For example, the word length effect (e.g., Baddeley, Thomson 

& Buchanan, 1975) can be simulated under the assumption that a word will be 

represented as a single node in the model. Longer words will contain more phonemes 

within that node and will therefore take longer to be matched. The word frequency 

effect (e.g., Whaley, 1978) can be simulated under the assumption that timing 
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estimates are reduced for nodes that are accessed frequently because, with exposure, 

the information held in a sequence of nodes gets chunked in a single node (see 

Freudenthal, Pine & Gobet, 2005, for a description of how this mechanism has been 

used for simulating data on syntax acquisition). 

 

How EPAM-VOC fits in with existing accounts of the link between LTM and 

phonological working memory 

While much more detailed and specified as a computer program, the EPAM-

VOC explanation of the influence of existing phonological knowledge on NWR 

performance is actually consistent with that suggested by Gathercole and colleagues. 

EPAM-VOC learns individual sounds (i.e., phonemes) and also sequences of 

phonemes, or mini-sound patterns, that are not themselves words. Phoneme sequences 

can be used to aid the remembering of unfamiliar word forms, and in particular 

wordlike nonwords that are more likely to match phonological sequences in LTM. 

The reliance on the phonological store as a mediator of verbal learning therefore 

depends on EPAM-VOC’s existing knowledge of sound patterns, which is determined 

by the amount and variability of linguistic input the model receives. 

EPAM-VOC is also consistent with Metsala’s (1999) hypothesis surrounding 

neighbourhood size. EPAM-VOC learns more detail for words with large 

neighbourhoods relative to words with small neighbourhoods. Large neighbourhood 

words by definition have many other words that differ only by a single phoneme, 

whereas small neighbourhood words do not. All other things being equal, this means 

that EPAM-VOC learns more about large neighbourhood words because similar 

phoneme sequences will be seen as input. For example, compare the large 

neighbourhood word make (which has neighbours such as take and rake) with the 
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small neighbourhood word ugly. EPAM-VOC will learn something about make even 

if it does not ever see the word, because if the model is shown take or rake as input, 

the ending phoneme sequence of these words are shared by make. On the other hand, 

few similar words exist for ugly and so relevant phoneme sequences are only likely to 

be learned by EPAM-VOC if ugly itself is presented to the model. 

Existing explanations of the link between phonological knowledge and the 

phonological store suggest that the phonological store mediates NWR performance – 

it is the bottleneck to language learning (e.g., Gathercole, in press). Given that it is 

already known that existing phonological knowledge influences NWR performance, 

an alternative source of individual variation is the amount of phonological knowledge 

the child currently has – some children may have either been exposed to more 

linguistic input, more variation in linguistic input, or both. This is what will be 

explored in the simulations presented here. It will be shown that although 

phonological working memory is a bottleneck that restricts how much information 

can be learned, the amount of information that can fit into phonological working 

memory is likely to be strongly determined by children’s existing phonological 

knowledge. It will also be shown that it is possible to explain differences in children’s 

NWR performance across ages purely in terms of differences in the amount of 

knowledge of sound patterns that has built up in LTM. The implication is that 

developmental changes in working memory capacity are not necessary in order to 

explain developmental changes in children’s NWR performance. 

 

A study of nonword repetition performance 

 
EPAM-VOC offers the opportunity to examine developmental change in NWR 

performance. Comparisons of NWR performance can be made between young 
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children and the model at an early stage of its learning, and between older children 

and the model at a later stage of its learning. Unfortunately, the current set of NWR 

studies has tended to use different sets of stimuli (Gathercole, 1995), making 

comparison difficult. Furthermore, existing studies have carried out nonword 

repetition tests in different ways. For example, in Gathercole and Baddeley (1989), 

the children heard a cassette recording of the nonwords, whereas in Gathercole and 

Adams (1993), the children heard the experimenter speaking aloud the nonwords with 

a hand covering the speaker’s mouth. This reduces the consistency of the current 

NWR results. We therefore decided to collect additional empirical data in order to 

assess children’s NWR performance across ages using the same nonword stimuli and 

the same experimental method. 

The children who participated in this experiment were of 2-5 years of age, the 

ages at which NWR performance correlates best with vocabulary knowledge. A pilot 

experiment using 1-4 syllable lengths showed that younger children had great 

difficulty repeating back the 4-syllable nonwords, and so nonwords of length 1-3 

syllables were used across all age groups (Gathercole & Adams, 1993, used 1-3 

syllable nonwords for their 2-3 year old children).  

 

Method 

 

Participants 

There were 127 English speaking children, of which 66 were 2-3 years of age 

(mean = 2.49; SD = 0.47) and 61 were 4-5 years of age (mean = 4.22; SD = 0.33). All 

children were recruited from nurseries (2-3 year olds) and infant schools (4-5 year 
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olds) within the Derbyshire area. Six of the 2-3 year olds and one of the 4-5 year olds 

failed to complete the experiment leaving 120 children in total.  

 

Design 

A 2x2x3 mixed design was used with a between-subject independent variable of 

age (2-3, 4-5) and within-subject independent variables of nonword type (wordlike, 

non-wordlike), and nonword length (1, 2, 3 syllables). The dependent variables were 

nonword repetition response, vocabulary score, and span score. 

 

Materials 

A set of 45 nonwords of 1, 2, and 3 syllables were constructed. Five wordlike 

and 5 non-wordlike nonwords were used at each syllable length based on subjective 

mean ratings of wordlikeness as rated by undergraduate students. The remaining 

nonwords were not used. Examples of wordlike and non-wordlike nonwords at each 

of 1, 2, and 3 syllables respectively are: dar, yit, ketted, tafled, commerant, and 

tagretic (the stress for all nonwords was strong for the first syllable). The full list of 

nonwords used can be seen in the appendix. One audiotape was created, consisting of 

read-aloud versions of the wordlike and non-wordlike nonwords in a randomised 

order (as per the methodology of Gathercole & Baddeley, 1989). The randomised 

order was the same for all children. 

Nine different coloured blocks of equal size were used for a verbal memory span 

task, with three pre-determined sequences from length 2 to length 9 being created. For 

example, one of the sequences for length 3 was a red block, followed by a blue block, 

followed by a green block. A blocks task was used instead of the traditional digit span 
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task because it was assumed that young children would be more familiar with colours 

than numbers. 

The British Picture Vocabulary Scale (BPVS, Dunn, Dunn, Whetton & Burley, 

1997) was used to establish vocabulary size. 

  

Procedure 

All children were tested in the first term of school. Before commencing the 

experiment, the researcher spent an afternoon in each school and nursery in order to 

familiarise themselves with the children. All children were tested individually in a 

quiet area of the school/nursery. The order of testing was consistent across all 

children: BPVS followed by NWR followed by digit span. The BPVS used difficulty 

level 1 for the 2-3 year olds and difficulty level 2 for the 4-5 year olds. In all cases, 

there were up to fourteen trials of 12 items each, with testing ending when 8 errors 

were made within a trial. The NWR test was carried out using an audiocassette player 

to present the nonwords in a randomised order. Each child was informed they would 

hear some “funny sounding made up words” and that they should try and repeat back 

immediately exactly what they heard. The experimenter noted whether the repetition 

was correct, partially correct (i.e., at least one phoneme correct), completely wrong, or 

if no response was given. For the block test, each child was given each of two 

sequences of coloured blocks (starting at length two). If each was repeated back 

correctly, then the length was increased by one and the process began again. If only 

one was repeated correctly, then a sequence from the third list was taken and if this 

was repeated back correctly, the length was increased by one and the process began 

again using sequences from the original two lists. Span length was taken as the 

highest length at which the child successfully repeated two sequences. 
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Results 

Descriptive statistics are shown in Table 1. A 2 (age: 2-3 year old or 4-5 year 

old) x 2 (nonword type: wordlike or non-wordlike) x 3 (nonword length: 1, 2, or 3 

syllables) ANOVA was carried out on the data. There was a significant main effect of 

age (F(1,118)=201.73, Mse=338.94, p<.001), with older children performing better on 

the nonword repetition test. There was also a significant main effect of nonword type 

(F(1,118)=603.47, Mse=196.36, p<.001), wordlike nonwords being repeated back 

more easily than non-wordlike nonwords. There was also a significant main effect of 

nonword length (F(2,236)=260.52, Mse=116.93, p<.001). Post-hoc Bonferroni tests 

showed that one-syllable nonwords were repeated back more easily than both two-

syllable nonwords and three-syllable nonwords, and two-syllable nonwords were 

repeated back more easily than three-syllable nonwords (all p<.001). There was no 

interaction between age and nonword type (F(1,118)=3.84, Mse=1.25, p>.05), but 

significant interactions existed for age and nonword length (F(2,236)=67.09, 

Mse=30.11, p<.001) and nonword type and nonword length (F(2,236)=7.53, 

Mse=2.52, p<.001). There was no three-way interaction (F(2,236)=.01, Mse=.01, 

p>.05). 

------------------------------------------ 

Insert table 1 about here 

------------------------------------------ 

In terms of span and BPVS scores, both measures showed superior performance 

for the older children (F(1,118)=113.63, Mse=4.50, p<.001, and F(1,118)=382.11, 

Mse=13.75, p<.001, respectively). Note that these two analyses are based on log 

transformed scores in order to ensure homogeneity of variance. 
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For the 2-3 year old children, there were significant correlations between span 

scores and vocabulary size (r(58)=.56, p<.001) and between nonword repetition 

scores and vocabulary size (r(58)=.49, p<.001). While the correlation between 

nonword repetition and vocabulary size may seem low at first glance, this is in fact a 

higher correlation than the significant correlation of .34 found by Gathercole and 

Adams (1993). 

For the 4-5 year old children, there were significant correlations between span 

scores and vocabulary size (r(58)=.81, p<.001) and between nonword repetition 

scores and vocabulary size (r(58)=.76, p<.001).  

Discussion 

The present results are consistent with existing NWR studies: children’s 

performance declines as the length of the nonword increases; children’s NWR 

performance is better for wordlike rather than non-wordlike nonwords; and older 

children perform better at repetition than their younger counterparts. The results also 

clarify an anomaly in previous NWR literature, where children’s nonword repetition 

performance was better for two-syllable nonwords than it was for one-syllable 

nonwords. Here, the reverse is true – children perform better on one-syllable 

nonwords than on all other lengths of nonword (as was found by Roy & Chiat, 2004). 

This supports the explanation put forward by Gathercole and Baddeley themselves 

that there were problems with the one-syllable nonwords they used (Gathercole & 

Baddeley, 1989). 

The correlational data are also consistent with previous findings, where 

significant correlations have been found between nonword repetition performance and 

vocabulary size, and between span scores and vocabulary size. Children with high 

NWR scores tend to have a larger vocabulary, as do children with high span scores. 
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The basic nonword repetition results and the results of the correlational analysis show 

a high degree of consistency with previous studies of nonword repetition, establishing 

a solid base for guiding the computer simulations.  

 

Simulating the nonword repetition results 

Carrying out the NWR test 

The NWR test for the model consisted of presenting each nonword as input to 

the model and seeing if it could represent the nonword within the 2,000 ms time 

capacity. However, children’s NWR performance is clearly error prone, whereas 

EPAM-VOC currently has no opportunity to make errors, except for being unable to 

fit a nonword into the store within the time limitation. Using one-syllable nonwords as 

an example, and assuming all necessary phonemes are known to the model, EPAM-

VOC would fit all one syllable nonwords into the store because they have a maximum 

of three phonemes – even if each phoneme was only matched as a single node in the 

network, the allocated time capacity would still only be 1,200 ms (3*400 ms). 

An error-producing mechanism was therefore introduced whereby EPAM-VOC 

could probabilistically take an incorrect link while traversing the network.  Thus, 

EPAM-VOC now produces repetition errors even when all phonemes can fit into the 

phonological store. The probability of producing an error was decreased as more input 

was seen by the model (see Table 2), because it was assumed that as children get 

older, they become more adept at encoding and articulating the sound patterns they 

receive.  

After the model has seen 25% of the input, the probability of taking an incorrect 

link was set at .10. This figure was not arbitrary but reflected the error rates in 2-3 year 

old children. In our experiment, single-syllable error rates were 24% and 50% for 
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wordlike and non-wordlike nonwords, respectively; in Gathercole and Adams’s (1993) 

study, the corresponding error rates were 17% and 22% for words and nonwords, 

respectively. This averages at an error rate of 28%. The average length of all the one-

syllable words and nonwords used by the two studies is 3.1 phonemes. A word or 

nonword of 3 phonemes would normally require three traversals to nodes in the 

network (one for each phoneme). If each traversal has a probability of error of .10, 

then the probability of making a correct sequence of three traversals is .9*.9*.9=.73, or 

a 27% error rate, which closely matches the 28% average error rate for single-syllable 

words and nonwords. Although the error rate was set to match that of one syllable 

items, the same was not true for two and three syllable items where the rate of error 

was open to the dynamics of the model. 

At the end of the input, the probability of making a traversal error was assumed 

to decrease to .04. Thus, for single-syllable nonwords, the probability of making a 

correct sequence of traversals was .96*.96*.96=.88, which corresponds to a 12% error 

rate. 

 

The input regime 

The simulations used both mothers’ utterances and pairs of random dictionary 

words as input. The utterances were taken from the Manchester corpus (Theakston, 

Lieven, Pine & Rowland, 2001), which includes twelve sets of mother-child 

interactions between mothers and 2-3 year olds recorded over a one year period. The 

average number of utterances for each mother was 25,519 (range 17,474-33,452). 

Pairs of random dictionary words were selected from the CMU Lexicon database 

(available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict). Pairs of words were 

used in order to keep consistent the number of phonemes used as input – the average 
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number of phonemes in an utterance (across all mother’s) was 12.03; the average 

number of phonemes in a random word from the CMU Lexicon database was 6.36. 

The relative ratio of mother’s utterances and pairs of random words from the 

lexicon were gradually altered to reflect an increased variation in input as the child 

grows older. The first 25% of the mother’s input was seen by EPAM-VOC, and 

thereafter gradually more and more pairs of random lexicon words were included 

within that input. 

Table 2 shows, at each stage of the model’s learning, the exact values that were 

used for the proportion of mother’s utterances to pairs of lexicon words. In terms of 

input, EPAM-VOC was presented with the same number of utterances that appeared in 

the mother’s corpus, but some of these were replaced by pairs of random lexicon 

words based on the amount of pairs of lexicon words that should be included in the 

input. For example, Anne’s mother used 31,393 utterances in total. At the beginning, 

EPAM-VOC was presented with the first 25% of these utterances, but for the next 

12.5% of the utterances, every tenth utterance was replaced with a pair of random 

lexicon words (to reflect the 10% of pairs of random lexicon words that needed to be 

input to the model, as indicated in Table 2). At this point, if a nonword repetition test 

was carried out, there would be a .09 probability of traversing down an incorrect link. 

------------------------------------------ 

Insert table 2 about here 

------------------------------------------ 

Although comparisons to the child data will only be made at certain points in the 

model’s learning (to correspond to 2-3 and 4-5 year old children), EPAM-VOC will be 

examined later at each developmental stage of learning in order to illustrate exactly 

how it was able to simulate the child data. 
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For all simulations, all input was converted into a sequence of phonemes using 

the CMU Lexicon database. This database cross-references words with the phonemic 

form of each word. All of the phonemes used in the database map onto the standard 

phoneme set for American English. The use of phonemic input assumed that some 

form of phonemic feature primitives already existed to distinguish one phoneme from 

another, which would be expected for children of two years and above. The phonemic 

input did not distinguish word boundaries, so no word segmentation had been 

performed on the input that is being fed to the model. 

 

Simulations of the data 

A total of 120 simulations were carried out (ten for each of the sets of mother’s 

utterances). Ten simulations per set of utterances were used in order to produce a 

robust set of results, given that the model has a random component (the possibility of 

selecting an incorrect link when traversing the network for matching nonwords). 

Changes to the input and the probability of making a traversal error were incorporated 

in accordance with the values in Table 2. Nonword repetition results were averaged 

across the 120 simulations. 

To compare EPAM-VOC with 2-3 year old children’s NWR performance, an 

NWR test was taken after the model had seen 25% of the input (i.e., when only 

mother’s utterances had been seen as input). To compare EPAM-VOC with 4-5 year 

old children, an NWR test was taken after EPAM-VOC had seen 87.5% of the input.  

Descriptive statistics are shown in Table 1. A 2 (stage of learning: early [25% of 

input] or late [87.5% of input]) x 2 (nonword type: wordlike or non-wordlike) x 3 

(nonword length: 1, 2, or 3 syllables) ANOVA was carried out on the data. There was 

a significant main effect of stage of learning (F(1,238)=495.60, Mse=490.0, p<.001), 
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with the late model performing better on the nonword repetition test. There was also a 

significant main effect of nonword type (F(1,238)=63.30, Mse=76.54, p<.001), 

wordlike nonwords being repeated back more easily than non-wordlike nonwords. 

There was also a significant main effect of nonword length (F(2,476)=310.98, 

Mse=314.86, p<.001). Post-hoc Bonferroni tests showed that one-syllable nonwords 

were repeated back more easily than both two-syllable and three-syllable nonwords, 

and two-syllable nonwords were repeated back more easily than three-syllable 

nonwords (all p<.001). There was an interaction between stage of learning and 

nonword type (F(1,238)=18.20, Mse=22.00, p<.001), between nonword type and 

nonword length (F(2,476)=35.32, Mse=34.95, p<.001), and between stage of learning 

and nonword length (F(2,476)=42.48, Mse=43.01, p<.001). There was also a 

significant three-way interaction (F(2,476)=6.40, Mse=6.34, p<.01). 

Figure 2 shows a comparison between early EPAM-VOC and the 2-3 year old 

children and Figure 3 shows a comparison between late EPAM-VOC and the 4-5 year 

old children. When all data-points for the model were correlated with those of the 

children, there was a highly significant correlation (r(10) = .91, p < .001; 

RMSE=9.08).  

------------------------------------------ 

Insert figure 2 about here 

------------------------------------------ 

------------------------------------------ 

Insert figure 3 about here 

------------------------------------------ 

 



Learning novel sound patterns 30 

The pattern of effects in NWR performance for EPAM-VOC is very similar to 

that of the children in the experiment presented earlier in this paper. Of even more 

importance is the fact that the results fit in with three of the four key criteria outlined 

earlier. First, nonword repetition performance declines as nonword length increases. 

Second, repetition performance improves at later stages in the model’s learning. 

Third, wordlike nonwords have a better repetition accuracy than non-wordlike 

nonwords.  

However, although the new data provided a solid base on which to test the 

model, the experiment did not include single and clustered consonant nonwords, 

which was the fourth criterion that must be met by any computational model of 

nonword repetition. In order to show that EPAM-VOC also fulfils this criterion, the 

model will be compared to the single and clustered consonant NWR performance of 

the four and five year olds used by Gathercole and Baddeley (1989). Two additional 

NWR tests were carried out using the nonwords used by Gathercole and Baddeley 

(their nonwords can be seen in the appendix). To compare with four year olds, a 

NWR test was taken after the model had seen 75% of the input, and to compare to 

five year olds, a NWR test was taken after the model had seen 100% of the input. The 

amounts of input fit in with the 87.5% level that was used when comparing 4-5 year 

olds in the study presented in this paper. Note that because of the problems outlined 

earlier regarding the one-syllable nonwords used in the Gathercole and Baddeley 

(1989) study, these are omitted from the analysis. 

Figure 4 shows the repetition performance for single consonant nonwords for 

EPAM-VOC at 75% and 100% of the model’s learning, and 4 and 5 year old children 

and Figure 5 shows the repetition performance for clustered consonant nonwords for 

EPAM-VOC at 75% and 100% of the model’s learning, and for 4 and 5 year old 
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children. When all data-points for the model were correlated with those of the 

children, there was a highly significant correlation (r(10) = .89, p < .001; 

RMSE=14.94). 

A 2 (stage of learning: 75% of input or 100% of input) x 2 (nonword type: 

single or clustered) x 3 (nonword length: 2, 3 or 4 syllables) ANOVA was carried out 

on the data. There was a significant main effect of stage of learning (F(1,238)=75.61, 

Mse=69.34, p<.001), with repetition performance being better for the 100% model. 

There was also a significant main effect of nonword type (F(1,238)=27.78, 

Mse=30.04, p<.001), with better repetition performance for single consonant 

nonwords over clustered consonant nonwords. There was also a significant main 

effect of nonword length (F(3,714)=898.79, Mse=849.16, p<.001). Post-hoc 

Bonferroni tests showed that two-syllable nonwords were repeated back more easily 

than both three-syllable and four-syllable nonwords, and three-syllable nonwords 

were repeated back more easily than four-syllable nonwords (all p<.001). There were 

no two-way or three-way interactions (all p>.05). The pattern of effects on repetition 

performance is consistent with that found by Gathercole and Baddeley (1989). In 

particular, an important result of this section is that EPAM-VOC, like children, 

performs better for single consonant nonwords than for clustered consonant 

nonwords. 

------------------------------------------ 

Insert figure 4 about here 

------------------------------------------ 

------------------------------------------ 

Insert figure 5 about here 

------------------------------------------ 
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Although repetition errors have not been analysed in great detail in children’s NWR 

studies, it has been noted that, for example, the highest proportion of errors in five 

year olds is due to phonological substitution (Gathercole, Willis, Baddeley & Emslie, 

1994). In the study presented, the nonwords were not recorded and therefore we have 

no data regarding the types of error that the children made. However, an analysis of 

the types of error made by the model showed that 64% of errors were phonological 

substitutions, 22% were phonological additions, and 11% were phonological 

deletions. Phoneme additions/deletions/substitutions were defined as two or less 

phonemes being added/deleted/substituted within a nonword. The model’s tendency 

to make substitution errors is a direct consequence of the model’s mechanism for 

simulating production errors, which involves (occasionally) taking incorrect links 

when traversing the network. 

 

Summary of the simulations 

EPAM-VOC provided a very good match to the new data from the experiment 

presented here, and the model also showed the same pattern of results that were seen 

in the 4 and 5 year old children studied by Gathercole and Baddeley (1989), although 

the goodness of fit was perhaps not as pronounced in this case as that obtained with 

the new data. The main issue for the 4 and 5 year old comparisons was that the model 

had a rather low repetition accuracy for four-syllable nonwords. This suggests that 

perhaps EPAM-VOC had not seen enough input or enough variation in input. The 

problem for the model, given that variation in the input is critical, is in determining 

the type and amount of input that a 4 or 5-year-old child is likely to have heard. 

Clearly, this is a very difficult task and any attempt to replicate the input is likely to 

be a crude approximation. For example, even though the model received half of the 
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mother’s utterances as input, this only constituted 3,046 different words on average. 

The lexicon words were used as an attempt to bolster this amount, but they are just an 

approximation of the diversity of input that 4 and 5 year old children receive. The 

model thus provided a good approximation of existing repetition performance based 

on what would seem to be a reasonable, but not perfect, approximation of the input. 

The results suggest that using more realistic input is likely to result in an even better 

match to the data. 

 

How EPAM-VOC simulates nonword repetition 

Thus far, it has been shown that EPAM-VOC, in spite of its relative simplicity, 

accounts for the NWR findings surprisingly well. How does EPAM-VOC achieve 

such a good fit to the results? Let us again turn to the four criteria outlined in the 

introduction, which specified what a model of NWR performance must be able to 

achieve. These will be considered in turn, and an explanation given for how EPAM-

VOC satisfies each of them. 

 

NWR performance is better for short nonwords than long nonwords 

In EPAM-VOC, longer nonwords are less likely to be represented in full within 

the phonological store until the model has learnt a lot about sound patterns, and so the 

model has difficulty repeating longer nonwords during the early stages of its learning. 

This can be illustrated by examining the time that is required to represent nonwords at 

various stages of the model’s learning. Figure 6 shows the average time to represent 

non-wordlike nonwords at different stages of the model’s input (averaged across all 

120 simulations). The figure clearly shows that for short nonwords, there is little 

benefit to further learning, as the model masters repetition of these nonwords at an 
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early stage. For longer nonwords, however, mastery occurs at a much later stage as 

EPAM-VOC learns more about the phonemic input and is therefore able to represent 

the nonwords using fewer nodes than at earlier stages. 

------------------------------------------ 

Insert figure 6 about here 

------------------------------------------ 

 

NWR performance improves with age 

A further illustration of how the model improves with more learning can be 

shown by plotting the number of nodes that are learnt at various stages of learning. 

Figure 7 shows that such a plot is almost linear. However, it should be pointed out 

that learning at later stages involves nodes that contain large sequences of phonemes, 

rather than nodes that contain short sequences of phonemes, which are what is found 

early on in learning. Performance thus improves with age because more knowledge 

about sequences of phonemes is learnt as EPAM-VOC receives more input – and this 

means that EPAM-VOC is more able to fit longer nonwords within the time limit of 

the phonological store. 

------------------------------------------ 

Insert figure 7 about here 

------------------------------------------ 

 

NWR performance is better for single consonant than clustered consonant 

nonwords 

Improved performance for single consonant nonwords over clustered consonant 

nonwords is actually very easy to explain once one considers the number of phonemes 
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required to articulate each type of nonword. The single consonant nonwords used by 

Gathercole and Baddeley (1989) contain an average of 5.50 phonemes whereas the 

clustered consonant nonwords contain an average of 7.75 phonemes. Children are 

therefore likely to find clustered consonant nonwords more difficult to repeat back 

because these nonwords are, in effect, longer. Similarly, in EPAM-VOC, it will be 

more difficult to fit clustered consonant nonwords into the phonological store than 

single consonant nonwords.  

 

NWR performance is better for wordlike than non-wordlike nonwords 

There is a slight difference in the phonemic length of wordlike nonwords and 

non-wordlike nonwords because non-wordlike nonwords tend to have clustered 

consonants. There is an average of 5.00 phonemes for wordlike nonwords versus 5.67 

phonemes for non-wordlike nonwords in the experiment presented. This in itself is 

unlikely to be sufficient to produce such striking performance differences between the 

two types of nonword. In terms of the model, wordlike nonwords are expected to 

contain phoneme sequences that are more familiar (i.e., that exist in already known 

words) than non-wordlike nonwords. Assuming that these sequences occur frequently 

in the input, EPAM-VOC should learn a substantial number of them, and therefore the 

component phonemes in wordlike nonwords should be stored as larger sequences of 

phonemes than the component phonemes in non-wordlike nonwords. Hence, what is 

expected is that wordlike nonwords can be represented using fewer nodes than non-

wordlike nonwords, meaning they can be represented in less time within the 

phonological store. Subjecting the model’s performance to the same ANOVA 

reported previously, but using the time to match nonwords as the dependent measure 

rather than nonword repetition scores, shows a highly significant difference for the 
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type of nonword (F(1,216)=844.26, Mse=7.74, p<.001 [log transformed data]), with 

non-wordlike nonwords taking longer to be represented within the phonological store. 

It is clear that wordlike nonwords can be represented using fewer nodes than non-

wordlike nonwords, and this is why it takes these nonwords less time to be matched in 

the phonological store.  

 

General discussion 

In the last decades, short-term memory capacity has been measured in two ways. 

Starting with Miller (1956), one group of researchers have proposed that STM 

capacity can be measured in chunks, that is, perceptual units. This idea has been 

embodied in EPAM, an influential computational model of perception, learning, and 

memory that has been applied to a number of domains ranging from chess expertise to 

letter recognition. Another group of researchers, centred around Baddeley and Hitch’s 

(1974) model of working memory, have proposed that the capacity of short-term 

memory – in particular auditory short-term memory – is time-based. Building on 

work by Zhang and Simon (1985) with adults, this paper has shown that these two 

approaches can be reconciled. In particular, we have shown that important data on 

phonemic learning can be explained by a computational model, EPAM-VOC, that (a) 

incrementally builds up chunks of knowledge about phonological sequences in long-

term memory, and (b) specifies the relation between working memory and long-term 

memory. 

Using the NWR task as a test-bed, we identified four criteria that any viable 

model should meet. The simulations presented in this paper have demonstrated that 

EPAM-VOC fulfils all of these criteria via an interaction between a fixed capacity 

phonological store and the chunking of phonemic knowledge, together with variation 
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in the amount of input. First, repetition accuracy was poorer for long nonwords than it 

was for short nonwords, which fits the children’s data on NWR performance (e.g., 

Gathercole & Adams, 1993; Gathercole, Willis, Emslie & Baddeley, 1991) and the 

findings of the experiment presented here. Second, repetition accuracy improved at 

each stage of the model’s learning, mirroring the fact that, as children grow older, 

their NWR accuracy improves (e.g., Gathercole, 1995; Gathercole & Adams, 1994). 

Third, performance was better for single consonant nonwords than clustered 

consonant nonwords, which is consistent with the findings of Gathercole and 

Baddeley (1989). Fourth, NWR performance was better for wordlike nonwords than it 

was for non-wordlike nonwords, which is supported both in previous literature (e.g., 

Gathercole, 1995; Gathercole, Willis, Emslie & Baddeley, 1991) and in the new 

experiment of NWR performance presented here. 

In addition to simulating the NWR data very well, EPAM-VOC makes two 

important theoretical contributions. First, it concretely specifies how phonological 

working memory interacts with existing LTM phonological knowledge. Second, the 

simulations illustrate how differences in performance across ages do not require 

explanations based around capacity differences – rather, the explanation is based on 

the extent of existing phonological knowledge. We expand on these contributions in 

turn. 

 

Interaction of phonological working memory with LTM knowledge 

The explanation of how phonological working memory interacts with LTM 

knowledge is both parsimonious and elegant. The model gradually builds up a 

discrimination network of phonological knowledge in order to increase the amount of 

information that can be held in the phonological store. As input is received by the 
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model, any existing long-term representations of any part of the input can be accessed 

such that if the model knows a three phoneme sequence, for example, those three 

phonemes do not need to be stored individually within the phonological store but 

rather a pointer can be stored to the equivalent node containing the sequence. As a 

result, the more phonological knowledge the model has in its LTM, the more items 

can be stored in the phonological store. Precisely how the phonological loop interacts 

with LTM has never been defined before in computational terms. 

While more precise and quantitative, EPAM-VOC’s account fits in with current 

views of how phonological working memory and LTM interact. Gathercole and 

colleagues (e.g., Gathercole & Adams, 1993; Gathercole, Willis, Emslie & Baddeley, 

1991) propose that phonological working memory is supported by phonological 

“frames” that are constructed from existing phonological representations in long-term 

memory. EPAM-VOC is able to operationalise this description: phonological frames 

are phonological sequences, and the way in which they interact with phonological 

working memory is captured by the idea that an input is recoded into sequences as 

much as possible. Wordlike nonwords share more phonological sequences with real 

words (which will have been learnt from the input) and so they have an advantage 

over non-wordlike nonwords that share less similarity with real words. In this way, 

EPAM-VOC predicts, as Gathercole and colleagues also predict, that the more 

“novel” a sound pattern is, the more reliance is placed on phonological working 

memory when learning it.  

Metsala (1999) hypothesises that it is the segmental structure of items in LTM 

that is critical for performance in nonword repetition. Wordlike nonwords are 

repeated more accurately than non-wordlike nonwords because wordlike nonwords 

have more lexical neighbours, and so they can be represented using larger lexical 
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units. This is exactly what is found in the EPAM-VOC simulations where the nodes 

(i.e., the existing phoneme sequences in the EPAM-VOC network) that are used to 

represent wordlike nonwords are larger than those that are used to represent non-

wordlike nonwords (because wordlike nonwords are more likely to share phoneme 

sequences with real words). This means that wordlike nonwords can be represented 

using fewer nodes than non-wordlike nonwords. Furthermore, Metsala found that 

children of 4-5 years of age showed better performance for early acquired words than 

later acquired words in onset-rime blending tasks – a finding that would be predicted 

by EPAM-VOC under the assumption that the model will have more detailed nodes 

for early acquired words, because they are likely to have occurred more frequently in 

the input. 

The key concept for Metsala (1999) is that it is vocabulary growth that 

influences lexical restructuring. Words having large neighbourhoods require more 

restructuring than words with sparse neighbourhoods, and thus there is more lexical 

structure surrounding large neighbourhood words. The difference between this view 

and that implemented in EPAM-VOC is that there is no restructuring in EPAM-VOC 

– learning reflects a deeper level of structure rather than restructuring per se. 

Nevertheless, both accounts are able to explain performance on nonword repetition 

tests without using phonological working memory as the primary influence. 

 

Are capacity differences necessary for explaining performance differences? 

EPAM-VOC has shown that children’s NWR performance can be simulated 

without the need for variations in capacity. Gathercole, Hitch, Service and Martin 

(1997) suggested that the capacity of the phonological loop is influenced by two 

factors – a “pure” capacity that differs across individuals and with 
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development/maturation, and the amount of vocabulary knowledge held at any one 

time. The results presented here suggest that capacity differences are not necessary, at 

least to explain developmental changes in NWR performance. Capacity differences 

have often been cited in the developmental literature yet it is actually difficult to 

measure capacity size without tapping into some form of long-term knowledge. For 

example, the digit span task is often used as a test of “pure” capacity; yet, it relies on 

children’s long-term knowledge of digits and digit sequences – and hence the NWR 

test has been found to be a purer test of phonological working memory capacity (e.g., 

Gathercole & Adams, 1993). This paper has shown that even the NWR task may 

suffer from the same problem. 

The difficulty of measuring memory capacity limitations is well known, 

especially in domains where learning is continuous (Lane, Gobet & Cheng, 2001), 

and other computational models have also questioned whether capacity differences 

produce the best explanation of the children’s data. For example, Jones, Ritter and 

Wood (2000) found that differences in strategy choice rather than capacity provided 

the best explanation of children’s problem solving performance. 

Some developmental theorists have also denied the role of memory capacity per 

se. For example, Case (1985) suggests that children have a functional memory 

capacity. In much the same way as in EPAM-VOC, as task experience increases, 

more complex knowledge structures can be held in memory, leading to improved task 

performance. EPAM-VOC can therefore be seen as an operationalised version of the 

Case theory that is focused on the task of language learning. Moreover, there is no 

reason to suggest that the same mechanisms used by EPAM-VOC could not be 

applied to other developmental tasks. For example, Chi (1978) and Schneider, Gruber, 

Gold and Opwis (1993) examined children’s chess playing, finding that working 
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memory capacity for chess-based information increased as a function of expertise, yet 

for other tasks, such as digit span, no difference was found between the chess players 

and controls. The mechanisms presented in this paper suggest that children’s chess 

expertise leads them to have a deeper structuring of chess knowledge in their LTM, 

and this facilitates how much information they can hold in WM in much the same 

way as EPAM-VOC’s network of sound patterns facilitates the amount of input that 

can be processed within its phonological store. 

 

Further predictions of the model 

The process by which LTM and phonological working memory interact in 

EPAM-VOC makes specific predictions regarding children’s and adult’s language 

capabilities. First, children who have more phonological knowledge in LTM should 

perform better on NWR tasks. An obvious follow-on from this is that, children who 

perform better on NWR tasks should, in turn, be more productive in their language 

use. This is exactly what was found by Adams and Gathercole (2000), who showed 

that four year old children who performed well on NWR tests produced a greater 

number of unique words and also produced longer utterances than children who 

performed less well on the NWR tasks. In line with the mechanisms proposed in this 

paper, good performance on NWR tasks is indicative of an above average knowledge 

base for phonological sequences, which is suggestive of a larger vocabulary. In turn, 

an above average knowledge base would mean the existence of large sequences of 

phonemes in LTM, and therefore the child being able to produce longer utterances 

within the same capacity.  

Second, children and adults who are multi-lingual should be able to perform 

better on NWR tasks because they have a comparatively larger amount of 
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phonological knowledge in LTM. Multi-lingual speakers have learnt sound patterns 

for two or more languages and thus their phonological knowledge is likely to be much 

richer than their monolingual counterparts. There are already studies that provide 

support for this prediction. 

Papagno and Vallar (1995) found that adult polyglots (defined by them as 

people who were fluent in at least three languages) performed better on NWR tasks 

than non-polyglots. The same findings have been found in children (Masoura & 

Gathercole, 2005). In fact, the findings of Masoura and Gathercole are strongly 

predicted by EPAM-VOC. Masoura and Gathercole split Greek children learning 

English into low and high vocabulary groups (based on vocabulary performance in 

English-Greek translation tests) and low and high NWR groups (based on NWR 

performance for English and Greek nonwords). EPAM-VOC would predict that any 

differences on English word learning tests would be governed by vocabulary 

knowledge, and hence differences should only be seen between the low and high 

vocabulary groups. This is exactly what Masoura and Gathercole found.  

 

Conclusion 

EPAM-VOC represents an important step not only in the simulation of NWR 

performance but also in the definition of working memory and how it links to LTM. 

The way in which EPAM-VOC links short-term and long-term memory is such that at 

an early stage of the model’s learning, emphasis is placed on short-term memory (in 

this case, the phonological store). At later stages of the model’s learning, emphasis is 

placed on long-term memory. The architecture of EPAM-VOC is consistent with the 

idea that task experience is critical in order to process as many items as possible 

within a store of limited duration and capacity. With limited or no task experience, 
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very few items can be processed in short-term memory and thus short-term memory 

acts as a bottleneck to long-term learning. With more task experience, increasingly 

large amounts of information can be processed in short-term memory, which in turn 

allows more opportunity for further information to be learnt. The beauty of this 

architecture is that developmental differences that are often attributed to capacity 

changes can arise solely through exposure to a task – under the assumption that young 

children have less exposure to developmental tasks than their older counterparts. That 

is, apparent developmental changes in capacity arise from relative experience with 

components of the task at hand. 

EPAM-VOC is obviously only a first attempt at simulating the learning of novel 

sound patterns. There are clearly areas where the model is limited. For example, 

relationships between phonemes are not represented, such that phenomena such as the 

phonological similarity effect (e.g., Conrad & Hull, 1964) cannot be simulated. 

However, improvements to the model could be made by considering further findings 

in the vocabulary acquisition and memory literature, and considering other 

computational models in this area (e.g., Burgess & Hitch, 1992). 

The model presented here represents a good first pass at learning novel sound 

patterns. The model is able to simulate nonword repetition findings surprisingly well, 

and provides important insights into the sophistication of the child language learner. 

EPAM-VOC is the first step in modelling vocabulary acquisition using a 

parsimonious model and using large-scale datasets as input. 

EPAM-VOC reconciles time-based and chunked-based approaches to memory 

capacity. By doing so, it provides well-specified mechanisms on the relation between 

working memory and long-term memory, in particular explaining how long-term 

knowledge interacts with working memory limitations. These mechanisms shed light 
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not only on how the bottleneck imposed by limitations on working memory restricts 

learning ability, but also on how the capacity of this bottleneck changes as a function 

of what has been learned. The implication is that developmental changes in 

performance on working memory tasks may be an indirect effect of  increases in 

underlying knowledge rather than a direct effect of changes in the capacity of working 

memory.  



Learning novel sound patterns 45 

References 

 
Adams, A-M., & Gathercole, S. E. (2000). Limitations in working memory: 

Implications for language development. International Journal of Language and 

Communication Disorders, 35, 95-116. 

Baddeley, A. D., Gathercole, S. E., & Papagno, C. (1998). The phonological 

loop as a language learning device. Psychological Review, 105, 158-173. 

Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. Bower (Ed.), 

The psychology of learning and motivation: Advances in research and theory (pp. 47-

90). New York, NY: Academic Press. 

Baddeley, A. D., Papagno, C., & Vallar, G. (1988). When long term learning 

depends on short-term storage. Journal of Memory and Language, 27, 586-595. 

Baddeley, A. D., Thompson, N., & Buchanan, M. (1975). Word length and the 

structure of short-term memory. Journal of Verbal Learning and Verbal Behaviour, 

14, 575-589. 

Bates, E., Marchman, V., Thal, D., Fenson, L., Dale, P., Reznick, J. S., Reilly, 

J., & Hartung, J. (1994). Developmental and stylistic variation in the composition of 

early vocabulary. Journal of Child Language, 21, 85-123. 

Bowey, J. A. (1996). On the association between phonological memory and 

receptive vocabulary in five-year-olds. Journal of Experimental Child Psychology, 63, 

44-78. 

Brown, G. D. A., & Hulme, C. (1995). Modeling item length effects in memory 

span: No rehearsal needed? Journal of Memory and Language, 34, 594-621. 

Brown, G. D. A., & Hulme, C. (1996). Nonword repetition, STM, and word age-

of-acquisition: A computational model. In S. E. Gathercole (Ed.), Models of short-

term memory (pp. 129-148). Hove, UK: Psychology Press. 



Learning novel sound patterns 46 

Burgess, N., & Hitch, G. J. (1992). Toward a network model of the articulatory 

loop. Journal of Memory and Language, 31, 429-460. 

Case, R. (1985). Intellectual development: Birth to adulthood. Orlando, Florida: 

Academic Press. 

Chi, M. T. H. (1978). Knowledge structures and memory development. In R. S. 

Siegler (Ed.), Children's thinking: What develops? Hillsdale, N.J: Erlbaum. 

Conrad, R., & Hull, A. (1964). Information, acoustic confusion, and memory 

span. British Journal of Psychology, 55, 429-432. 

Croker, S., Pine, J. M., & Gobet, F. (2003). Modelling children's negation errors 

using probabilistic learning in MOSAIC. In F. Detje, D. Dörner & H. Schaub (Eds.) 

Proceedings of the Fifth International Conference on Cognitive Modeling (pp. 69-74). 

Bamberg:Universitäts-Verlag. 

De Groot, A. D., & Gobet, F. (1996). Perception and memory in chess. 

Heuristics of the professional eye. Assen: Van Gorcum. 

Dunn, L. M., Dunn, L. M., Whetton, C., & Burley, J. (1997). The British Picture 

Vocabulary Scale (2nd ed.). Windsor, UK:NFER-Nelson. 

Fredkin, E. (1960). Trie memory. Communications of the ACM, 3, 490-499. 

Feigenbaum, E.A. & Simon, H.A. (1984). EPAM-like models of recognition and 

learning. Cognitive Science, 8, 305-336. 

Freudenthal, D., Pine, J. M. & Gobet, F. (2002). Modelling the development of 

Dutch optional infinitives in MOSAIC. In W. D. Gray & C. D. Schunn (Eds.), 

Proceedings of the 24th Annual Meeting of the Cognitive Science Society (pp. 328-

333). Mahwah, NJ: Erlbaum. 



Learning novel sound patterns 47 

Freudenthal, D., Pine, J. M., & Gobet, F. (2005). Resolving ambiguities in the 

extraction of syntactic categories through chunking. Cognitive Systems Research, 6, 

17-25. 

Freudenthal, D., Pine, J. M., & Gobet, F. (2006). Modelling the development of 

children’s use of optional infinitives in Dutch and English using MOSAIC. Cognitive 

Science, 30, 277-310. 

Gathercole, S. E. (in press). Nonword repetition and word learning: The nature 

of the relationship. Applied Psycholinguistics. 

Gathercole, S. E. (1995). Is nonword repetition a test of phonological memory 

or long-term knowledge? It all depends on the nonwords. Memory & Cognition, 23, 

83-94. 

Gathercole, S. E. & Adams, A-M. (1993). Phonological working memory in 

very young children. Developmental Psychology, 29, 770-778. 

Gathercole, S. E. & Adams, A-M. (1994). Children’s phonological working 

memory: Contributions of long-term knowledge and rehearsal. Journal of Memory 

and Language, 33, 672-688. 

Gathercole, S. E., Adams, A-M., & Hitch, G. J. (1994). Do young children 

rehearse? An individual differences analysis. Memory & Cognition, 22, 201-207. 

Gathercole, S. E., & Baddeley, A. D. (1989). Evaluation of the role of 

phonological STM in the development of vocabulary in children: A longitudinal 

study. Journal of Memory and Language, 28, 200-213. 

Gathercole, S. E., & Baddeley, A. D. (1990). The role of phonological memory 

in vocabulary acquisition: A study of young children learning new names. British 

Journal of Psychology, 81, 439-454. 



Learning novel sound patterns 48 

Gathercole, S. E., Hitch, G. J., Service, E., & Martin, A. J. (1997). Phonological 

short-term memory and new word learning in children. Developmental Psychology, 

33, 966-979. 

Gathercole, S. E., Willis, C. S., Baddeley, A. D., & Emslie, H. (1994). The 

children’s test of nonword repetition: A test of phonological working memory. 

Memory, 2, 103-127. 

Gathercole, S. E., Willis, C. S., Emslie, H., & Baddeley, A. D. (1991). The 

influence of number of syllables and wordlikeness on children’s repetition of 

nonwords. Applied Psycholinguistics, 12, 349-367. 

Gathercole, S. E., Willis, C. S., Emslie, H., & Baddeley, A. D. (1992). 

Phonological memory and vocabulary development during the early school years: A 

longitudinal study. Developmental Psychology, 28, 887-898. 

Gobet, F. (1993). A computer model of chess memory. In W. Kintsch (Ed.), 

Proceedings of the Fifteenth Annual Meeting of the Cognitive Science Society (pp. 

463-468). Boulder, CO: Erlbaum. 

Gobet, F., Freudenthal, D., & Pine, J. M. (2004). Modelling syntactic 

development in a cross-linguistic context. In W. G. Sakas (Ed.), Proceedings of the 

COLING 2004 Workshop “Psychocomputational Models of Human Language 

Acquisition” (pp. 53-60). Geneva: COLING. 

Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I. & 

Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive 

Sciences, 5, 236-243. 

Gobet, F. & Simon, H.A. (2000). Five seconds or sixty: Presentation time in 

expert memory. Cognitive Science, 24, 651-682. 



Learning novel sound patterns 49 

Hartley, T. & Houghton, G. (1996). A linguistically constrained model of short-

term memory for nonwords. Journal of Memory and Language, 35, 1-31. 

Jones, G., Gobet, F. & Pine, J.M. (2000a). A process model of children’s early 

verb. In L.R. Gleitman & A.K. Joshu (Eds.), Proceedings of the Twenty-Second 

Annual Meeting of the Cognitive Science Society (pp. 723-728). Mahwah, NJ: 

Erlbaum. 

Jones, G., Gobet, F. & Pine, J. M. (2000b). Learning novel sound patterns. In N. 

Taatgen & J. Aasman (Eds.), Proceedings of the 3rd International Conference on 

Cognitive Modeling (pp.169-176). Groningen, Netherlands: Universal Press. 

Jones, G., Gobet, F. & Pine, J.M. (2005). Modelling vocabulary acquisition: An 

explanation of the link between the phonological loop and long-term memory. 

Artificial Intelligence and Simulation of Behaviour Journal, 1, 509-522. 

Jones, G., Ritter, F.E. & Wood D.J. (2000). Using a cognitive architecture to 

examine what develops. Psychological Science, 11, 93-100. 

Lane, P. C. R., Gobet, F., & Cheng, P. C. H. (2001). What forms the chunks in a 

subject's performance? Lessons from the CHREST computational model of learning. 

Behavioral and Brain Sciences, 24, 128-129. 

Masoura, E. V. & Gathercole, S. E. (2005). Contrasting contributions of 

phonological short-term memory and long-term knowledge to vocabulary learning in 

a foreign language. Memory, 13, 422-429. 

Metsala, J. L. (1999). Young children’s phonological awareness and nonword 

repetition as a function of vocabulary development. Journal of Educational 

Psychology, 91, 3-19. 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some 

limits on our capacity for processing information. Psychological Review, 63, 81-97. 



Learning novel sound patterns 50 

Munson, B., Edwards, J., & Beckman, M. (2005). Relationships between 

nonword repetition accuracy and other measures of linguistic development in children 

with phonological disorders. Journal of Speech, Language, and Hearing Research, 48, 

61-78. 

Munson, B., Kurtz, B. A., & Windsor, J. (2005). The influence of vocabulary 

size, phonotactic probability, and wordlikeness on nonword repetitions of children 

with and without specific language impairment. Journal of Speech, Language, and 

Hearing Research, 48, 1033-1047. 

Nagy, W. E. & Herman, P. A. (1987). Breadth and depth of vocabulary 

knowledge: Implications for acquisition and instruction. In M. G. McKeown & M. E. 

Curtis (Eds.), The nature of vocabulary acquisition (pp. 19-35). Hillsdale, NJ: 

Lawrence Erlbaum Associates. 

Papagno, C. & Vallar, G. (1995). Verbal short-term memory and vocabulary 

learning in polyglots. Quarterly Journal of Experimental Psychology, 48A, 98-107. 

Richman, H. B., & Simon, H. A. (1989). Context effects in letter perception: 

Comparison of two theories. Psychological Review, 3, 417-432. 

Richman, H. B., Staszewski, J., & Simon, H. A. (1995). Simulation of expert 

memory with EPAM IV. Psychological Review, 102, 305-330. 

Roy, P., & Chiat, S. (2004). A prosodically controlled word and nonword 

repetition task for 2- to 4-year-olds: Evidence from typically developing 

children. Journal of Speech, Language, and Hearing Research, 47, 223-234. 

Schneider, W., Gruber, H., Gold, A., & Opwis, K. (1993). Chess expertise and 

memory for chess positions in children and adults. Journal of Experimental Child 

Psychology, 56, 328-349. 



Learning novel sound patterns 51 

Simon, H. A., & Gilmartin, K. J. (1973). A simulation of memory for chess 

positions. Cognitive Psychology, 5, 29-46. 

Theakston, A. L., Lieven, E. V. M., Pine, J. M. & Rowland, C. F. (2001). The 

role of performance limitations in the acquisition of Verb-Argument structure: An 

alternative account. Journal of Child Language, 28, 127-152. 

Treiman, R., & Danis, C. (1988). Short-term memory errors for spoken syllables 

are affected by the linguistic structure of the syllables. Journal of Experimental 

Psychology: Learning, Memory and Cognition, 14, 145-152. 

Whaley, C. P. (1978). Word-nonword classification time. Journal of Verbal 

Learning and Verbal Behavior, 17, 143-154. 

Zhang, G., & Simon, H. A. (1985). STM capacity for Chinese words and 

idioms: Chunking and acoustical loop hypothesis. Memory and Cognition, 13, 193-

201. 



Learning novel sound patterns 52 

Appendix 

Nonwords used in the study presented, with phonemic representations 

 

Wordlike nonwords 

DAR   (D AA1 R) 

LAN    (L AE1 N) 

FOT   (F AO1 T) 

TULL    (T AH1 L) 

DUTT    (D AH1 T) 

JARDON   (JH AA1 R D AH0 N) 

DINNULT   (D IH1 N AH0 L T) 

KETTED   (K EH1 T AH0 D) 

RINNER   (R IH1 N ER0) 

LITTING   (L IH1 T IH0 NG) 

VOLERING   (V AA1 L ER0 IH1 NG) 

COMMERANT  (K AA1 M ER0 AE1 N T) 

BANNAFER   (B AE1 N AE1 F ER0) 

HAPPAMENT  (HH AE1 P AH0 M AH0 N T) 

CANNARRATE  (K AE1 N EH1 R EY2 T) 

 

Non-wordlike nonwords 

GICK    (G IH1 K) 

FOLL    (F AA1 L) 

JID    (JH IH1 D) 

DOP    (D AA1 P) 

YIT    (Y IH1 T) 

MOSTER   (M AO1 S T ER0) 

LIGDALE   (L IH1 G D EY1 L) 

HAGMENT   (HH AE1 G M AH0 N T) 

PUNMAN   (P AH1 N M AE1 N) 

TAFLED   (T AE1 F L EH1 D) 

DOPPELRATE  (D AA1 P AH0 L R EY1 T) 

TACOVENT   (T AA1 K OW0 V EH1 N T) 

DERPANEST  (D ER1 P AE1 N EH1 S T) 
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NARTAPISH   (N AA1 R T AH0 P IH1 SH) 

TAGRETIC   (T AE1 G R EH1 T IH0 K) 

 

Gathercole and Baddeley’s (1989) nonwords, with phonemic representations 

 

Single consonant 

PENNEL    (P EH1 N AH0 L) 

BALLOP    (B AE1 L AH0 P) 

RUBID    (R UW1 B IH0 D) 

DILLER    (D IH1 L ER0) 

BANNOW    (B AE1 N OW0) 

DOPPELATE    (D AO1 P EH0 L EY0 T) 

BANNIFER    (B AE1 N AH0 F ER0) 

BARRAZON    (B AE1 R AH0 Z AA0 N) 

COMMERINE   (K AA1 M ER0 IY0 N) 

THICKERY    (TH IH1 K ER0 IY0) 

WOOGALAMIC   (W UW1 G AE0 L AE1 M IH0 K) 

FENNERISER   (F EH1 N ER0 AY1 Z ER0) 

COMMEECITATE   (K AH1 M IY1 S AH0 T EY0 T) 

LODDENAPISH   (L AA1 D EH0 N EY1 P IH0 SH) 

PENNERIFUL   (P EH1 N ER1 IH0 F UH0 L) 

 

Clustered consonant 

HAMPENT    (HH AE1 M P EH0 N T) 

GLISTOW    (G L IH1 S T OW0) 

SLADDING    (S L AE1 D IH0 NG) 

TAFFLEST    (T AE1 F L EH0 S T) 

PRINDLE    (P R IH1 N D AH0 L) 

GLISTERING   (G L IH1 S T ER0 IH0 NG) 

FRESCOVENT   (F R EH1 S K AH0 V AH0 N T) 

TRUMPETINE   (T R AH1 M P AH0 T IY0 N) 

BRASTERER   (B R AE1 S T ER0 ER0) 

SKITICULT    (S K IH1 T AH0 K AH0 L T) 

CONTRAMPONIST   (K AA1 N T R AE1 M P AH0 N AH0 S T) 
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PERPLISTERONK   (P ER1 P L IH1 S T ER0 AA0 NG K) 

BLONTERSTAPING  (B L AA1 N T ER0 S T EY1 P IH0 NG) 

STOPOGRATTIC   (S T AA1 P OW0 G R AE1 T IH0 K) 

EMPLIFORVENT   (EH1 M P L IH0 F AO1 R V EH0 N T) 
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Table 1. 

Mean correct responses (standard deviations in parentheses) for all dependent 

measures, for the children and EPAM-VOC. Maximum scores for the NWR, coloured 

block task, and BPVS tests were 5, 9, and 168, respectively. 

 

 2-3 year 

olds 

EPAM-

VOC, 25% 

of input 

4-5 year 

olds 

EPAM-

VOC, 

87.5% of 

input 

Wordlike nonwords, one-

syllable 

3.77 (.72) 3.53 (1.00) 4.47 (.57) 4.22 (.77) 

Wordlike nonwords, 

two-syllables 

3.18 (.70) 2.96 (1.10) 4.27 (.69) 3.65 (1.04) 

Wordlike nonwords, 

three-syllables 

1.78 (.87) 2.09 (1.02) 3.87 (.72) 3.47 (1.01) 

Non-wordlike nonwords, 

one-syllable 

2.53 (.68) 3.51 (1.11) 3.40 (.72) 4.22 (.87) 

Non-wordlike nonwords, 

two-syllables 

2.28 (.99) 2.38 (1.12) 3.55 (.87) 3.60 (1.05) 

Non-wordlike nonwords, 

three-syllables 

.53 (.57) .57 (.73) 2.77 (.83) 2.88 (1.27) 

Coloured block task 2.25 (.44)  3.33 (.68)  

BPVS 27.18 (5.74)  53.25 (9.42)  
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Table 2. 

Parameter values at each stage of the model’s learning. 

 

Amount of input 

seen by the model 

(%) 

Percentage of pairs 

of lexicon words 

included in the 

input 

Probability of 

selecting an 

incorrect link 

0 – 25 0 .10 

25 - 37.5 10 .09 

37.5 – 50 20 .08 

50 - 62.5 30 .07 

62.5 – 75 40 .06 

75 - 87.5 50 .05 

87.5 – 100 60 .04 
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Figure legends 

 

Figure 1. Structure of an EPAM-VOC net after receiving the input “W AH1 T” three 

times. 

Figure 2. Repetition accuracy for EPAM-VOC after 25% of the input, plotted against 

2-3 year old children. 

Figure 3. Repetition accuracy for EPAM-VOC after 87.5% of the input, plotted 

against 4-5 year old children. 

Figure 4. Single consonant nonword repetition accuracy for EPAM-VOC after 75% 

and 100% of the input, plotted against the 4 year old and 5 year old children of 

Gathercole and Baddeley (1989). 

Figure 5. Clustered consonant nonword repetition accuracy for EPAM-VOC after 

75% and 100% of the input, plotted against the 4 year old and 5 year old children of 

Gathercole and Baddeley (1989). 

Figure 6. Average time to match non-wordlike nonwords at various stages of EPAM-

VOC’s learning. 

Figure 7. Nodes learned by EPAM-VOC at various stages of learning.
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Figure 2 
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Figure 3 

0

20

40

60

80

100

1 2 3

Syllables in nonword

R
ep

et
iti

on
 a

cc
ur

ac
y 

(%
)

4-5 year olds, word-
like nonwords

Late EPAM-VOC,
word-like nonwords

4-5 year olds, non-
word-like nonwords

Late EPAM-VOC,
non-word-like
nonwords



Learning novel sound patterns 61 

Figure 4 
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Figure 5 

0

20

40

60

80

100

2 3 4

Syllables in clustered consonant 
nonword

R
ep

et
iti

on
 a

cc
ur

ac
y 

(%
)

4 year olds

EPAM-VOC, 75%
of input

5 year olds

EPAM-VOC, 100%
of input



Learning novel sound patterns 63 

Figure 6 
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Figure 7 
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