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Abstract

The nonword repetition (NWR) test has been showbseta good predictor of
children’s vocabulary size. NWR performance hasmeelained using the working
memory model and specifically the phonological lowpich is seen as being critical
in the learning of sound patterns. However, noiletdink between long-term
memory and incoming sound patterns has been prdpAssomputational model of
children’s vocabulary acquisition (EPAM-VOC) is peated that concretely specifies
how working memory and long-term memory interactthis model performance
differences arise from differences in long-term\kfezige. The model’s behaviour is
compared with that of children in a new study of RWonducted in order to ensure
the same nonword stimuli and methodology across.dgis found that EPAM-VOC
showed a pattern of results similar to that ofdrih: performance is better for shorter
nonwords and for wordlike nonwords, and performangaoves with age. EPAM-
VOC also simulates the superior performance faglsiconsonant nonwords over
clustered consonant nonwords found in previous Naidies. EPAM-VOC
represents a good approximation of the learningoetl sound patterns that specifies
how working memory and long-term memory interasing an account that indicates

that capacity differences are not necessary tolatendevelopmental change.

Keywords: EPAM, working memory, long-term memorgnword repetition,

vocabulary acquisition, developmental change.
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Introduction

Children’s vocabulary learning begins slowly buticy increases — at the age
of sixteen months children know around 40 words€B&t al., 1994) yet by school
age children learn up to 3,000 words each yearyMagerman, 1987). There are
individual differences across children in term$ofv quickly they acquire
vocabulary, and in terms of how many words theywknOne of the sources of these
individual differences is hypothesised to be therhogical loop component of
working memory (e.g., Gathercole & Baddeley, 1988jich is perceived to be a
bottleneck to the learning of sound patterns. Adicay to this view, children with a
high phonological working memory capacity are @blenaintain more sound patterns
and are therefore able to learn words more quiitidy their low phonological
working memory capacity counterparts.

The nonword repetition (NWR) test has been showbeta reliable indicator of
phonological working memory capacity and of vocabylsize. The NWR test
(Gathercole, Willis, Baddeley & Emslie, 1994) inve$ saying a nonword to a child
and asking them to speak aloud the nonword thesdh8g using nonsense words,
the test guarantees that the child has never tleanparticular sequence of phonemes
before, so there is no stored phonological reptasen of the nonword in the mental
lexicon (Gathercole, Hitch, Service & Martin, 199Repeating nonwords should
therefore place more emphasis on phonological wgrkiemory than on long-term
phonological knowledge, and provide a more seresitieasure of phonological
working memory than traditional tests such as digan.

There are now a plethora of studies that indidsde NWR performance is the
best predictor of children’s vocabulary size oved above traditional memory tests

such as digit span, and tests of linguistic abgitgh as reading tests (e.g., Gathercole
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& Adams, 1993, 1994; Gathercole & Baddeley, 198®Qt Gathercole, Willis,
Emslie & Baddeley, 1992). Furthermore, the rolplodnological working memory in
NWR performance is shown in adults with a sped#dficit in phonological working
memory, who have difficulty in learning word-nonwlgsairs but show no impairment
for word-word pairs (e.g., Baddeley, Papagno & &iallLl988).

The strong relationship between NWR performancevacdbulary size led
Gathercole and colleagues to hypothesise that pbgical working memory plays a
pivotal role in novel word learning (e.g., Gathdec& Adams, 1993; Gathercole &
Baddeley, 1989; Gathercole, Willis, Baddeley & Ems1994). More specifically, the
phonological loop was believed to mediate the lmrga storage of phonological
knowledge (Gathercole & Baddeley, 1989). This waspsrted by Gathercole, Willis,
Emslie and Baddeley (1991), who compared the infteeof the phonological loop, in
terms of nonword length, versus the influence afabulary knowledge, in terms of
grammatical morphemes in a nonword. Whereas inesdgasnonword length led to a
decline in NWR performance, the number of gramnahtitorphemes in a nonword
had no reliable effect on NWR performance, sugggsiisignificant role for
phonological working memory in novel word learning.

However, it is not just phonological working memaimat influences NWR
performance. Gathercole (1995) found that repetiierformance for nonwords that
were rated as wordlike was significantly bettemtparformance for nonwords rated
as non-wordlike. The implication is that long-tentmemory of phonological structures
also influences NWR performance, and hence tha¢ tmeist be some form of
interaction between long-term memory (LTM) and ptlogical working memory for
NWR performance. This is supported by the fact MR performance significantly

correlates with performance in learning word-norvpairs, but not word-word pairs,
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whereas vocabulary knowledge significantly coredawith both types of pairing
(Gathercole, Hitch, Service & Martin, 1997). Thiggests NWR performance may
only be a predictor for novel words, while vocalylknowledge influences all types
of word learning.

While the importance of LTM in the production ofrmeords has been noted, it
is not known exactly how phonological memory andM_.@ombine as yet
(Gathercole, Willis, Baddeley & Emslie, 1994). Gattole and colleagues
hypothesise there to be a reciprocal relationsbtpiéen phonological working
memory and existing vocabulary knowledge (e.g.h&able, Hitch, Service &
Martin, 1997), and together with the learning of@osound patterns, the three share
a highly interactive relationship (Baddeley, Gatiode & Papagno, 1998). Novel
sound patterns are represented in phonologicalimgrkemory but can be supported
by phonological “frames” that are constructed frexisting phonological
representations in long-term memory (Gathercolediays, 1993; Gathercole, Willis,
Emslie & Baddeley, 1991). Frames may contain parttored lexical items that
share phonological sequences with the novel soatidrp contained in phonological
working memory. Wordlike nonwords share more sintyavith existing lexical
items, resulting in better performance for wordlii@words over non-wordlike
nonwords. Similarly, the more “novel” a sound pattis, the more reliance will be
placed on phonological working memory for learnihgt sound pattern.

An alternative though similar view is that it ixieal structure that influences
nonword repetition performance. Metsala (1999) sstgythat a child’s vocabulary
growth influences lexical restructuring, with wortiat have a large neighbourhood
requiring more restructuring than those that haspaase neighbourhood.

Neighbourhood is defined as how many other wordsbeaformed by the
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substitution, addition or deletion of one phoneméhe word. Words with large
neighbourhoods should have an advantage over watidsparse neighbourhoods
when performing phonological awareness tasks, Iseclkange neighbourhood words
have been structured at a deeper level. Metsa@®jdhowed that this is indeed the
case. Moreover, further regression analyses shtivwetghonological awareness
scores contributed unique variance in vocabulay after nonword repetition scores
had been entered into the regression, which wateatase when nonword repetition
scores were added after phonological awarenesesscinat is, lexical structure (as
measured by phonological awareness tasks) wasea petdictor of vocabulary size
than NWR performance.

Similar less-specified theoretical positions thath@rcole and Metsala exist.
For example, Munson and colleagues (e.g., Munsdwakds & Beckman, 2005;
Munson, Kurtz & Windsor, 2005) suggest that phogalal representations are
increasingly elaborated with age, and this woulpl@r why performance differences
in wordlike versus non-wordlike nonwords are mam@npunced in younger children.
Bowey (1996) argues for a phonological processhilityawhereby phonological
representations develop as vocabulary increaseardiog to this view, differences
between children with high scores on NWR testsamidiren with low scores on
NWR tests may reflect differences in their phonatabprocessing ability rather than
differences associated with phonological workingrmoey.

Although all of these explanations indicate conttibns of existing
phonological knowledge and/or phonological workmgmory capacity, none specify
how sound patterns are learned and how they intesittt phonological memory.
Furthermore, they do not detail how novel soundepas are stored in LTM or how

they are stored in phonological working memory.t8definitions are crucial for
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understanding how novel sound patterns are leaBiedlarly, a precise definition of
how the representations in LTM interact with thesphonological working memory
is crucial in order to understand the relative sdgleat LTM and phonological working
memory play in the learning of novel sound patterns

The goal of this paper is to fill in this theoretigap by providing a detailed
specification of the mechanisms that link phonatagiworking memory and LTM.
We present a computational model that is ablenlsite the NWR data. Not only is
the model consistent with the explanations of ihie hetween long-term and
phonological working memory that have been propdse@athercole and Metsala,
but it also fills in the detail which their expldins lack. In particular, we show that
while phonological working memory is a bottleneolanguage learning, LTM is
more likely to be the driving force behind the l@ag of novel sound patterns.

The layout of the remainder of the paper is a®¥adl First, a summary of the
existing NWR findings is given, together with a suary of existing models of NWR
performance. Second, an explanation of the compuatdtmodel is given. Third, a
new experiment on NWR performance is presentedusecexisting studies do not
use the same nonwords across ages, meaning thaepimental account of the
model cannot be compared to the same datasetghFibus shown that the model
can account for children’s data in our experimant] that the same model provides a
good account of the existing NWR data. Finallyeaeyal discussion of the findings

and the model is presented.

The nonword repetition test: Existing data and $atons

There are four empirical phenomena that any conipuatel model of NWR

performance needs to simulate. First, repetitiaueacy is poorer for long nonwords
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than it is for short nonwords. For example, Gatbkerand Baddeley (1989) found
that 4-5 year old children’s NWR performance wagsesior for 2-syllable nonwords
than 3-syllable nonwords, and for 3-syllable nordgothan 4-syllable nonwords
respectively. Second, children’s repetition accyigets better with age. For example,
Gathercole and Adams (1994) found 5 year olds’ NMéRormance to be superior to
that of 4 year olds. Third, performance is bettersingle consonant nonwords than
clustered consonant nonwords (e.g., Gathercole édBley, 1989). Fourth, NWR
performance is better for wordlike nonwords thas for non-wordlike nonwords,
suggesting the involvement of LTM representationgshmneme sequences
(Gathercole, 1995).

Two influential models of nonword repetition exialthough neither was
created with the intention of accounting for thg kbenomena listed above. Hartley
and Houghton (1996) detail a connectionist netwbék is presented with nonword
stimuli in the training phase and is tested onsdo®e nonwords in a recall phase.
Decay incorporated within the model means thatéomgpnwords are recalled with
less accuracy than shorter nonwords. Furthermioeenibdel is able to simulate
certain types of error in nonword repetition. Feample, the phonemes in a syllable
have competition from other related phonemes sughsiubstitutions can take place.
Based on data from Treiman and Danis (1988), theéetdisplays similar types of
error to those made by children and adults.

Brown and Hulme (1995, 1996) detail a trace decaglehin which the
incoming list of items (e.g., nonwords) is reprasdras a sequence of 0.1 second
time slices. For example, a nonword may take Qcbrsgs to articulate and will
therefore comprise 5 segments, or 5 time slicésloéeconds each. Each segment

can vary in strength from 0 to 1, with segmentsr@gg with a strength of 0.95
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when they enter memory. As time progresses (veryed.1 seconds), each segment
of the input is subjected to decay. For examplatean that occupies 5 segments will
enter memory one segment at a time, and thusrgtesegment of the item will have
been subjected to four periods of decay by the tivadifth segment of the item
enters memory. Decay also occurs when the iterairgykarticulated for output. To
combat items decaying quickly, the strength ofasaritems is increased based on
relationships to LTM traces, such that, for examplerdlike nonwords would
increase in strength more than non-wordlike nonword

Long nonwords decay more quickly than short nonwptigereby supporting the
existing literature on children’s performance ohnerd repetition where repetition
accuracy gradually decreases across 2 to 4 sydlables leads to the prediction that
long words will take longer for children to acquilan short words, and this
prediction seems to be borne out by age-of-aceuistata (Brown & Hulme, 1996).

In terms of the four criteria outlined at the begny of this section, both models
can account for longer nonwords being repeated lesskaccurately than shorter
nonwords. However, none of the other criteria wamikated within either model.
Furthermore, neither model explains how sound padtare actually learned through
exposure to naturalistic stimuli. A computationaidel will now be presented that (a)
details how novel sound patterns are learned Xpas how these sound patterns
then interact with phonological working memory, gojplaccounts for the key

phenomena we have described.

A new computational model of nonword repetitionABRVOC

EPAM (Feigenbaum & Simon, 1984) is a computati@rahitecture that

progressively builds a discrimination network oblkriedge based on the input it
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receives. The discrimination network is hierarchgtach that at the top there is a root
node, below which several further nodes will b&éid. Each of these nodes may in
turn have further nodes linked below them, creatidgrge and organised knowledge
base of the input received. Visually, the resultimgyarchy of nodes and links can be
seen as a tree, and indeed EPAM shares similaiotietat are known in computer
science as “trie” structures (Fredkin, 1960).

EPAM and its variants have been used to model hyredgnrmance in various
psychological domains, such as learning, memony pemception in chess (De Groot
& Gobet, 1996; Gobet, 1993; Gobet & Simon, 2000n& & Gilmartin, 1973),
verbal learning behaviour (Feigenbaum & Simon, }98% digit-span task
(Richman, Staszewski & Simon, 1995), the contefdotfin letter perception
(Richman & Simon, 1989), and the acquisition oftagtic categories (Freudenthal,
Pine & Gobet, 2002, 2006; Gobet, Freudenthal & P20€4; Jones, Gobet & Pine,
2000a) (see Gobet et al., 2001, for an overvieWwlusT most of the mechanisms used
in the model described in this paper have beedatdd by independent empirical and
theoretical justifications, and their validity hasen established in a number of
diverse domains.

The hierarchical structure of EPAM is particulaslyited to the learning of
sound patterns. If one considers a sentence, ibedmoken down into a sequence of
phonemes that represent each of the words in titersge. This sequence of
phonemes needs to be stored in a hierarchicaloiasbipreserve the order of the
phonemes. EPAM provides a simple mechanism by wihishcan be accomplished,
such that the resulting discrimination network bees a long-term memory of sound
patterns. Preliminary versions of the models haentdescribed in Jones, Gobet and

Pine (2000b, 2005). This section will first desertitow EPAM-VOC builds a
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discrimination network of sound patterns, and sd¢cbiow phonological memory will

be simulated and linked to the discrimination nekwvo

Learning sound patterns in EPAM-VOC

The standard EPAM architecture builds a hierardhyodes and links that exist
as a cascading tree like structure. EPAM-VOC isrglfied version of EPAM that
uses phonemic input in order to build a hierarchgtmnemes and sequences of
phonemes.

When a sequence of phonemes is presented, EPAM{x&V€rses as far as
possible down the hierarchy of nodes and linkss Thdone by starting at the top
node (the root node) and selecting the link thatches the first phoneme in the input.
The node at the end of the link now becomes thetale and EPAM-VOC tries to
match the next phoneme from the input to all thiedibelow this node. If an
appropriate link exists, then the node at the drileolink becomes the top node and
the process repeats. When a node is reached whéuetiner traversing can be done
(e.g., the next phoneme does not exist in the lrétsw the current top node, or the
node has no links below it), then learning occarsrie of two ways:

1. Phoneme learnindf.the next phoneme in the input sequence doesxist as

a link below the root node, the phoneme is addetdledk and node below the
root node such that EPAM-VOC now has knowledgédefigthoneme.

2. Sequence learninf.the next phoneme in the input sequence exssts lank

below the root node, it is added as a link and rmlew the current top node. As
a result, a sequence of phonemes is learned dagsigtthe phonemes that were

used to traverse the network up to the currenhtmje, plus the new phoneme
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just added. Sequence learning, where increasiaghet “chunks” of phonemes

are acquired, is very similar to discriminatiortiaditional EPAM networks.

EPAM-VOC begins with a null root node, meaning tiiet model begins with
no knowledge of phonemes or phoneme sequences. BP#R-VOC receives an
input (a sequence of phonemes), new nodes anddieksreated. The initial learning
for EPAM-VOC involves phoneme learning, so thatreplioneme of the English
language exists as a node below the root noden@yeexpect the child to already
have knowledge of such phonemes, so it should tegiribat the primary aim of
phoneme learning is to ensure that all phonemees®gs beginning with a particular
phoneme occur as nodes below the particular phonmethe network. The vast
majority of learning in the network will be sequeriearning, where the information
at nodes becomes sequences of phonemes and teesefnents of speech (e.g.,
specific words) rather than just individual soufids., phonemes).

Let us consider an example of the network leartiiegutterance “What?”.
Using the CMU Lexicon database, this utteranceis/erted to the phonemic
representation “W AH1 T”. Note that the phonemiptihto the model does not
specify gaps between words, but does specify tkesbn particular phonemes
(O=unstressed; 1=primary stress; 2=secondary ytress

When EPAM-VOC first sees the phonemic representaiid AH1 T”, it tries
to match as much of the input as possible usingxitsting knowledge, and then learn
something about the remainder of the input. Imapténg to match the input to
EPAM-VOC'’s existing knowledge, the first part obtimput (“W”) is applied to all of
the root node’s links in the network. Since EPAM-@ ®egins with no knowledge,

the first time “W AH1 T” is input, EPAM-VOC trieotmatch “W” and fails. At this
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point phoneme learning takes place, because thaeepi® “W” does not exist as a
link below the root node. A new node is createcktbgr with a link from the root
node to the new node with the test “W”. Hence theneme “W” is learnt and
EPAM-VOC can move on to the next part of the ingAH1 T”). Again, “AH1”
cannot be matched and so EPAM-VOC learns this phena a similar manner
before moving on to the remainder of the input {“Trhis is also learnt in a similar
manner. Thus after first encountering “W AH1 T”,/AR-VOC learns each of the
constituent phonemes in the word.

When “W AH1 T” is input to EPAM-VOC a second tinreematch can be made
with the first part of the input (“W”), and the “Winhk can be taken such that the new
top node becomes the “W” node. EPAM-VOC now mowves$oothe remainder of the
input (*AH1 T”) and tries to match the first parfttbe remaining input (“AH1") by
examining the links below the current top nodec8ithe “W” node does not have
any links below it, no further matching can takagal. At this point, EPAM-VOC
examines the remainder of the input and realisstsitthlready knows about the
“AH1” phoneme, and so sequence learning can oécaew node and link is created
below the “W” node containing the phoneme “AH1".n®®learning has taken place
at the current top node, and so the current toe mederts back to being the root
node, and EPAM-VOC moves on to the remainder ofrthat (“T”). This part of the
input can be matched below the root node suclthledflT” node becomes the current
top node, but as there is no further input, nderrtearning takes place.

Using “W AH1 T” as input a third time, EPAM-VOC a&ble to match the first
part of the input (“W”), and so makes the “W” natie new top node. The next part
of the input is then examined (“AH1"), and becatlgs exists as a link below the

“W” node, it can be matched, with the “W AH1” nodecoming the current top
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node. The matching process then moves on to thepagtxof the input (“T”), but as
no links exist below the “W AH1” node, no matchican take place. At this point,
sequence learning can take place (because thempRkdiié is already known to the
model), and so a new node and link “T” can be nizew the current top node.
Thus after three successive inputs of the sequatc®H1 T, the whole word is

learnt, and the network is as shown in Figure 1.

This simple example serves to illustrate how EPARG/works; in the actual
learning phase each input line is only used oneep@raging a diverse network of
nodes to be built. Note that EPAM-VOC needs to kmoswidual phonemes before
they can be learnt as part of a sequence of phandfoe example, should the
network in Figure 1 see the utterance “Which?” (ML CH"), it will traverse down
the “W” link, and move on to the next part of tigut (i.e., “IH1 CH"). However, the
network does not know the phoneme “IH1”, and songimae learning needs to take
place, learning the individual phoneme “IH1” befoneving on to the remainder of
the input “CH” (and learning this as an individpéloneme also). Although learning
may seem to occur rather quickly within EPAM-VOGisipossible to slow it down
(e.g., by manipulating the probability of learnimgiew node), and this has been
successful for other variants of EPAM models (6Cgaker, Pine & Gobet, 2003;
Freudenthal, Pine & Gobet, 2002). Reducing thenlegrrate is likely to yield the
same results, but over a longer period of time.tRelinput sets that will be used here,
which contain a very small subset of the inputigdaliould hear, it is therefore

sensible to have learning take place in the walyltha been illustrated.
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Implementing phonological memory and linking itth@ discrimination network

EPAM-VOC now requires a specification of phonol@jimemory, or more
specifically, the phonological loop, and a methgduich the loop interacts with
EPAM-VOC'’s discrimination network. As in the stamdavorking memory model
(Baddeley & Hitch, 1974), the storage part of themological loop, the phonological
store, is a decay based store which allows itemsntain in the store for 2,000 ms
(Baddeley, Thomson & Buchanan, 1975). EPAM-VOC ¢fae has a time-limited
store that allows 2,000 ms of input.

In the standard working memory model, the phona@lalgoop also has a sub-
vocal rehearsal mechanism, which allows items teebearsed in the store such that
they can remain there for more than 2,000 ms. Hewevathercole and Adams
(1994) suggest that children of five and under diorehearse, or at least if they do,
they are inconsistent in their use of rehearsatheamore, Gathercole, Adams and
Hitch (1994) found no correlation between artidolatrates and digit span scores for
four year old children, suggesting that childrericafr years of age do not rehearse (if
they did, there should be a relationship betwegouation rate and digit span
because rehearsal rate would be related to hovklgute child could speak words
aloud). Previous computational models have alswaglthat it is not necessary to
simulate rehearsal in order to model memory span, Brown & Hulme, 1995).
Hence EPAM-VOC does not use the sub-vocal rehearsahanism. The input is cut
off as soon as the time limit is reached (i.e.,itipait representations are not
refreshed), and so the phonological loop beconp®aological store, in-line with

current findings regarding rehearsal in young ¢hitd
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Having described the model’'s LTM (i.e., the disanation network of nodes
and links) and phonological store, we are now position to discuss the mechanisms
enabling these two components to interact. Thisascentral contribution of this
paper, as there is currently no clear explanahdhe literature as to how the
phonological store links to LTM and how this retetis modulated by learning.
Within EPAM-VOC, it is relatively easy to specifypWw sound patterns in LTM
interact with the phonological store. When sounttigoas are input to EPAM-VOC,
they are matched to those that are stored as motles discrimination network; for
any sound patterns that can be matched in LTMjratgrato the relevant node is
placed in the phonological store. That is, inputrgts are not necessarily stored
individually in the phonological store, but are nadd by LTM nodes that contain
neural instructions as to how to produce them. aheunt of information that can be
held in the phonological store is thus mediatethieyamount of information already
stored in LTM. Retrieving each node and proceseaxh phoneme within a node
requires a certain amount of time, and the cumudatme required by these processes
provides an explanation of how much information barheld in the phonological
store. Let us explain in detail how this works.

The length of time taken to represent the inpeaisulated based on the number
of nodes that are required to represent the ififhé.time allocations are based on
values from Zhang and Simon (1985), who estima@m$ to match each node, and
84 ms to match each syllable in a node exceptitsie(fvhich takes 0 ms). (These
estimates are derived from adult data.) As thetimpilibe in terms of phonemes,
with approximately 2.8 phonemes per syllable (basedstimates from the nonwords

in the NWR test), the time to match each phonengerinde is 30 ms.
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Consider as an example the input “What about thd¥W”’AH1 T AHO B AW1
T DH AE1 T7). Given the network depicted in Figukeall that can be represented in
the phonological store within the 2,000 ms times¢al'W AH1 T AHO B AW1".
The “W AH1 T~ part of the input is represented bgiagle node, and is allocated a
time of 460 ms (400 ms to match the node, and 3@msatch each constituent item
in the node excluding the first item). Most of thtker phonemes are not known to the
model and are assumed to take the same time #sade (400 ms; the time
allocated to each phoneme is assumed to be constaig means that only three
additional phonemes can be represented withinlbeaglogical store, by which time
the actual input to the model has required a tihoeation of 1,660 ms. Matching
another node would cost at least 400 ms, and tkeesee the time capacity of the
store. When the EPAM-VOC network is small, andesdo not contain much
information, only a small amount of the input canrbpresented in the phonological
store. When the EPAM-VOC network is large, the mada use nodes that contain
large amounts of information, and therefore a fahe input information can be
represented in the phonological store. Larger nedsvalso enable more rapid
learning, as increasingly large chunks of phoneraasbe put together to create new
chunks (i.e., new nodes in the discrimination nek)o

It is worth noting that EPAM-VOC can readily simidghenomena from the
adult literature on working memory tasks, althoitghas not developed with this
specific aim in mind. For example, the word lenegftfect (e.g., Baddeley, Thomson
& Buchanan, 1975) can be simulated under the agsommat a word will be
represented as a single node in the model. Longetsawill contain more phonemes
within that node and will therefore take longebtmatched. The word frequency

effect (e.g., Whaley, 1978) can be simulated utlieeassumption that timing
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estimates are reduced for nodes that are accassprbhtly because, with exposure,
the information held in a sequence of nodes gaialadd in a single node (see
Freudenthal, Pine & Gobet, 2005, for a descriptibhow this mechanism has been

used for simulating data on syntax acquisition).

How EPAM-VOC fits in with existing accounts of thek between LTM and

phonological working memory

While much more detailed and specified as a comguitgram, the EPAM-
VOC explanation of the influence of existing phaygital knowledge on NWR
performance is actually consistent with that sutggkby Gathercole and colleagues.
EPAM-VOC learns individual sounds (i.e., phonenseg] also sequences of
phonemes, or mini-sound patterns, that are notsbbms words. Phoneme sequences
can be used to aid the remembering of unfamiliandviorms, and in particular
wordlike nonwords that are more likely to match pblogical sequences in LTM.
The reliance on the phonological store as a medidteerbal learning therefore
depends on EPAM-VOC's existing knowledge of souatlgrns, which is determined
by the amount and variability of linguistic inphietmodel receives.

EPAM-VOC is also consistent with Metsala’s (1999pbthesis surrounding
neighbourhood size. EPAM-VOC learns more detaibfords with large
neighbourhoods relative to words with small neigithoods. Large neighbourhood
words by definition have many other words thatedifinly by a single phoneme,
whereas small neighbourhood words do not. All othirgs being equal, this means
that EPAM-VOC learns more about large neighbourheorts because similar
phoneme sequences will be seen as input. For egasmwhpare the large

neighbourhood word makgvhich has neighbours such_as takel rakég with the
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small neighbourhood word ugliZEPAM-VOC will learn something about makeen

if it does not ever see the word, because if thdehis shown taker rakeas input,

the ending phoneme sequence of these words arddtyamakeOn the other hand,
few similar words exist for uglgnd so relevant phoneme sequences are only tikely
be learned by EPAM-VOC if ugligself is presented to the model.

Existing explanations of the link between phonatajknowledge and the
phonological store suggest that the phonologicaksnediates NWR performance —
it is the bottleneck to language learning (e.gth@ecole, in press). Given that it is
already known that existing phonological knowledgiences NWR performance,
an alternative source of individual variation is timount of phonological knowledge
the child currently has — some children may hatteeeibeen exposed to more
linguistic input, more variation in linguistic ingwr both. This is what will be
explored in the simulations presented here. It belshown that although
phonological working memory is a bottleneck thatriets how much information
can be learned, the amount of information thatfitanto phonological working
memory is likely to be strongly determined by chelial's existing phonological
knowledge. It will also be shown that it is possiliy explain differences in children’s
NWR performance across ages purely in terms oédiffces in the amount of
knowledge of sound patterns that has built up iIMLThe implication is that
developmental changes in working memory capacéynat necessary in order to

explain developmental changes in children’s NWRqrerance.

A study of nonword repetition performance

EPAM-VOC offers the opportunity to examine devel@ntal change in NWR

performance. Comparisons of NWR performance camdde between young
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children and the model at an early stage of itsleg, and between older children
and the model at a later stage of its learningodahately, the current set of NWR
studies has tended to use different sets of stif@athercole, 1995), making
comparison difficult. Furthermore, existing studies/e carried out nonword
repetition tests in different ways. For exampleGiathercole and Baddeley (1989),
the children heard a cassette recording of the noitsy whereas in Gathercole and
Adams (1993), the children heard the experimemtealsing aloud the nonwords with
a hand covering the speaker’s mouth. This redd@esdnsistency of the current
NWR results. We therefore decided to collect adddi empirical data in order to
assess children’s NWR performance across ages th@rgame nonword stimuli and
the same experimental method.

The children who participated in this experimentavef 2-5 years of age, the
ages at which NWR performance correlates bestwatabulary knowledge. A pilot
experiment using 1-4 syllable lengths showed tbatnger children had great
difficulty repeating back the 4-syllable nonwordad so nonwords of length 1-3
syllables were used across all age groups (GatleekcAdams, 1993, used 1-3

syllable nonwords for their 2-3 year old children).

Method

Participants

There were 127 English speaking children, of witi6lwere 2-3 years of age
(mean = 2.49; SD = 0.47) and 61 were 4-5 yeargef(mean = 4.22; SD = 0.33). All

children were recruited from nurseries (2-3 yedsphnd infant schools (4-5 year
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olds) within the Derbyshire area. Six of the 2-aryelds and one of the 4-5 year olds

failed to complete the experiment leaving 120 chkitdin total.

Design

A 2x2x3 mixed design was used with a between-stibjeependent variable of
age (2-3, 4-5) and within-subject independent \em of nonword type (wordlike,
non-wordlike), and nonword length (1, 2, 3 sylla)lerhe dependent variables were

nonword repetition response, vocabulary score spat score.

Materials

A set of 45 nonwords of 1, 2, and 3 syllables wemestructed. Five wordlike
and 5 non-wordlike nonwords were used at eachldgllength based on subjective
mean ratings of wordlikeness as rated by undergtadstudents. The remaining
nonwords were not used. Examples of wordlike andwordlike nonwords at each
of 1, 2, and 3 syllables respectively are: dar,ketted, tafled, commerant, and
tagretic (the stress for all nonwords was stromgHe first syllable). The full list of
nonwords used can be seen in the appendix. Onetapdiwas created, consisting of
read-aloud versions of the wordlike and non-wosrdlilonwords in a randomised
order (as per the methodology of Gathercole & B&yde989). The randomised
order was the same for all children.

Nine different coloured blocks of equal size wesedifor a verbal memory span
task, with three pre-determined sequences frontheado length 9 being created. For
example, one of the sequences for length 3 wad bloek, followed by a blue block,

followed by a green block. A blocks task was usesiead of the traditional digit span
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task because it was assumed that young childretdvib@eumore familiar with colours
than numbers.
The British Picture Vocabulary Scale (BPVS, Dunonb, Whetton & Burley,

1997) was used to establish vocabulary size.

Procedure

All children were tested in the first term of schd®efore commencing the
experiment, the researcher spent an afternoorcimshool and nursery in order to
familiarise themselves with the children. All chideh were tested individually in a
quiet area of the school/nursery. The order ofrtgstias consistent across all
children: BPVS followed by NWR followed by digitap. The BPVS used difficulty
level 1 for the 2-3 year olds and difficulty lex&for the 4-5 year olds. In all cases,
there were up to fourteen trials of 12 items eadth testing ending when 8 errors
were made within a trial. The NWR test was caroatiusing an audiocassette player
to present the nonwords in a randomised order. Ehibth was informed they would
hear some “funny sounding made up words” and tiet should try and repeat back
immediately exactly what they heard. The experimenbted whether the repetition
was correct, partially correct (i.e., at least pheneme correct), completely wrong, or
if no response was given. For the block test, eadd was given each of two
sequences of coloured blocks (starting at lengt).tif each was repeated back
correctly, then the length was increased by onetlamgrocess began again. If only
one was repeated correctly, then a sequence frethittd list was taken and if this
was repeated back correctly, the length was inetkhg one and the process began
againusing sequences from the original two lists. Sgagth was taken as the

highest length at which the child successfully e¢pd two sequences.
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Results

Descriptive statistics are shown in Table 1. Age(e&2-3 year old or 4-5 year
old) x 2 (nonword type: wordlike or non-wordlike)3x(nonword length: 1, 2, or 3
syllables) ANOVA was carried out on the data. Theas a significant main effect of
age (K1,118)=201.73, Mse838.94, §.001), with older children performing better on
the nonword repetition test. There was also a Bagmt main effect of nonword type
(F(1,118)=603.47, Ms€196.36, g.001), wordlike nonwords being repeated back
more easily than non-wordlike nonwords. There wsg a significant main effect of
nonword length (2,236)=260.52, Ms€116.93, g.001). Post-hoc Bonferroni tests
showed that one-syllable nonwords were repeatekl inace easily than both two-
syllable nonwords and three-syllable nonwords, taradsyllable nonwords were
repeated back more easily than three-syllable nosv@ll 3<.001). There was no
interaction between age and nonword typd (F18)=3.84, Msel.25, »».05), but
significant interactions existed for age and nordength (F2,236)=67.09,
Mse=30.11, .001) and nonword type and nonword lengtf2 (F36)=7.53,
Mse=2.52, x.001). There was no three-way interactio(2(E36)=.01, Mse.01,

p>.05).

In terms of span and BPVS scores, both measuregeshsuperior performance
for the older children (,118)=113.63, Mse4.50, <.001, and F1,118)=382.11,
Mse=13.75, .001, respectively). Note that these two analgsedased on log

transformed scores in order to ensure homogentitgrance.



Learning novel sound patterns 24

For the 2-3 year old children, there were signiitozorrelations between span
scores and vocabulary siz€5@)=.56, .001) and between nonword repetition
scores and vocabulary siz€5@)=.49, .001). While the correlation between
nonword repetition and vocabulary size may seemdbfirst glance, this is in fact a
higher correlation than the significant correlatadn34 found by Gathercole and
Adams (1993).

For the 4-5 year old children, there were signiftozorrelations between span
scores and vocabulary siz€5@)=.81, .001) and between nonword repetition
scores and vocabulary siz€5@)=.76, x.001).

Discussion

The present results are consistent with existingR\N8dies: children’s
performance declines as the length of the nonwwrkases; children’s NWR
performance is better for wordlike rather than mardlike nonwords; and older
children perform better at repetition than theiugger counterparts. The results also
clarify an anomaly in previous NWR literature, wlehildren’s nonword repetition
performance was better for two-syllable nonwordmth was for one-syllable
nonwords. Here, the reverse is true — childrengperibetter on one-syllable
nonwords than on all other lengths of nonword (as found by Roy & Chiat, 2004).
This supports the explanation put forward by Gatblerand Baddeley themselves
that there were problems with the one-syllable mmas they used (Gathercole &
Baddeley, 1989).

The correlational data are also consistent witliptes findings, where
significant correlations have been found betweemmod repetition performance and
vocabulary size, and between span scores and Vacplsize. Children with high

NWR scores tend to have a larger vocabulary, ahddren with high span scores.
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The basic nonword repetition results and the resilthe correlational analysis show
a high degree of consistency with previous studiggnword repetition, establishing

a solid base for guiding the computer simulations.

Simulating the nonword repetition results

Carrying out the NWR test

The NWR test for the model consisted of presergimgh nonword as input to
the model and seeing if it could represent the rmydwvithin the 2,000 ms time
capacity. However, children’s NWR performance eacly error prone, whereas
EPAM-VOC currently has no opportunity to make esy@xcept for being unable to
fit a nonword into the store within the time lintitan. Using one-syllable nonwords as
an example, and assuming all necessary phonem&s@sm to the model, EPAM-
VOC would fit all one syllable nonwords into thes because they have a maximum
of three phonemes — even if each phoneme was aatighed as a single node in the
network, the allocated time capacity would stillyobe 1,200 ms (3*400 ms).

An error-producing mechanism was therefore intreduehereby EPAM-VOC
could probabilistically take an incorrect link wailraversing the network. Thus,
EPAM-VOC now produces repetition errors even whéplonemes can fit into the
phonological store. The probability of producingearor was decreased as more input
was seen by the model (see Table 2), because msgasned that as children get
older, they become more adept at encoding andibatiieg the sound patterns they
receive.

After the model has seen 25% of the input, the gindity of taking an incorrect
link was set at .10. This figure was not arbitrany reflected the error rates in 2-3 year

old children. In our experiment, single-syllableogrates were 24% and 50% for
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wordlike and non-wordlike nonwords, respectivety@athercole and Adams’s (1993)
study, the corresponding error rates were 17% afolfdr words and nonwords,
respectively. This averages at an error rate of.ZB% average length of all the one-
syllable words and nonwords used by the two studi8sl phonemes. A word or
nonword of 3 phonemes would normally require thragersals to nodes in the
network (one for each phoneme). If each traveraalehprobability of error of .10,
then the probability of making a correct sequerfaaree traversals is .9*.9*.9=.73, or
a 27% error rate, which closely matches the 28%agpeerror rate for single-syllable
words and nonwords. Although the error rate wascsetatch that of one syllable
items, the same was not true for two and threalshdlitems where the rate of error
was open to the dynamics of the model.

At the end of the input, the probability of makiagraversal error was assumed
to decrease to .04. Thus, for single-syllable naawothe probability of making a
correct sequence of traversals was .96*.96*.96=w8fch corresponds to a 12% error

rate.

The input regime

The simulations used both mothers’ utterances aird pf random dictionary
words as input. The utterances were taken fronMiduechester corpus (Theakston,
Lieven, Pine & Rowland, 2001), which includes twekets of mother-child
interactions between mothers and 2-3 year oldsdedoover a one year period. The
average number of utterances for each mother wad 2%range 17,474-33,452).
Pairs of random dictionary words were selected fioenCMU Lexicon database
(available at http://www.speech.cs.cmu.edu/cgidmmidict). Pairs of words were

used in order to keep consistent the number of gmes used as input — the average
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number of phonemes in an utterance (across allerisjhwas 12.03; the average
number of phonemes in a random word from the CMkidan database was 6.36.

The relative ratio of mother’s utterances and pafirandom words from the
lexicon were gradually altered to reflect an insexhvariation in input as the child
grows older. The first 25% of the mother’s inputsveeen by EPAM-VOC, and
thereafter gradually more and more pairs of rantxicon words were included
within that input.

Table 2 shows, at each stage of the model’s legytie exact values that were
used for the proportion of mother’s utterancesamspof lexicon words. In terms of
input, EPAM-VOC was presented with the same nurobetterances that appeared in
the mother’s corpus, but some of these were reglbgeairs of random lexicon
words based on the amount of pairs of lexicon windsshould be included in the
input. For example, Anne’s mother used 31,393 attegs in total. At the beginning,
EPAM-VOC was presented with the first 25% of theterances, but for the next
12.5% of the utterances, every tenth utterancerg@aced with a pair of random
lexicon words (to reflect the 10% of pairs of ramdizxicon words that needed to be
input to the model, as indicated in Table 2). As$ thoint, if a nonword repetition test

was carried out, there would be a .09 probabilitiraversing down an incorrect link.

Although comparisons to the child data will onlyrbade at certain points in the
model’s learning (to correspond to 2-3 and 4-5 yéarchildren), EPAM-VOC will be
examined later at each developmental stage ofiteam order to illustrate exactly

how it was able to simulate the child data.
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For all simulations, all input was converted intsegjuence of phonemes using
the CMU Lexicon database. This database crosserafes words with the phonemic
form of each word. All of the phonemes used inda@abase map onto the standard
phoneme set for American English. The use of phanerput assumed that some
form of phonemic feature primitives already existedlistinguish one phoneme from
another, which would be expected for children af fears and above. The phonemic
input did not distinguish word boundaries, so nad&egmentation had been

performed on the input that is being fed to the ehod

Simulations of the data

A total of 120 simulations were carried out (tendach of the sets of mother’s
utterances). Ten simulations per set of utteramese used in order to produce a
robust set of results, given that the model hamdom component (the possibility of
selecting an incorrect link when traversing themoek for matching nonwords).
Changes to the input and the probability of makirtgaversal error were incorporated
in accordance with the values in Table 2. Nonwejktition results were averaged
across the 120 simulations.

To compare EPAM-VOC with 2-3 year old children’s lRperformance, an
NWR test was taken after the model had seen 25¥%edhput (i.e., when only
mother’s utterances had been seen as input). TpaentEPAM-VOC with 4-5 year
old children, an NWR test was taken after EPAM-VREE seen 87.5% of the input.

Descriptive statistics are shown in Table 1. Atade of learning: early [25% of
input] or late [87.5% of input]) x 2 (nonword typ&ordlike or non-wordlike) x 3
(nonword length: 1, 2, or 3 syllables) ANOVA wasrgad out on the data. There was

a significant main effect of stage of learning1(238)=495.60, Ms490.0, x.001),
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with the late model performing better on the nordv@petition test. There was also a
significant main effect of nonword type((F238)=63.30, Mse76.54, .001),

wordlike nonwords being repeated back more edséy hon-wordlike nonwords.
There was also a significant main effect of nonwlerdyth (K2,476)=310.98,
Mse=314.86, g.001). Post-hoc Bonferroni tests showed that gtialde nonwords
were repeated back more easily than both two-dgllabd three-syllable nonwords,
and two-syllable nonwords were repeated back masgyethan three-syllable
nonwords (all g.001). There was an interaction between stageashing and
nonword type (FL,238)=18.20, Mse22.00, .001), between nonword type and
nonword length_(R2,476)=35.32, Mse34.95, 5.001), and between stage of learning
and nonword length (B,476)=42.48, Mse43.01, 5.001). There was also a
significant three-way interaction (&476)=6.40, Mse6.34, x.01).

Figure 2 shows a comparison between early EPAM-\A@&the 2-3 year old
children and Figure 3 shows a comparison betwederdBRAM-VOC and the 4-5 year
old children. When all data-points for the modeteveorrelated with those of the
children, there was a highly significant correlat{g10) = .91, p< .001;

RMSE=9.08).
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The pattern of effects in NWR performance for EPAM®@C is very similar to
that of the children in the experiment presentetiezan this paper. Of even more
importance is the fact that the results fit in vilthee of the four key criteria outlined
earlier. First, nonword repetition performance dexd as nonword length increases.
Second, repetition performance improves at latggest in the model’s learning.
Third, wordlike nonwords have a better repetiticowaacy than non-wordlike
nonwords.

However, although the new data provided a soli@ lmaswhich to test the
model, the experiment did not include single angtered consonant nonwords,
which was the fourth criterion that must be methy computational model of
nonword repetition. In order to show that EPAM-V@ISo fulfils this criterion, the
model will be compared to the single and clust@@isonant NWR performance of
the four and five year olds used by GathercoleBeamitleley (1989). Two additional
NWR tests were carried out using the nonwords bye@athercole and Baddeley
(their nonwords can be seen in the appendix). Tapawe with four year olds, a
NWR test was taken after the model had seen 75%edhput, and to compare to
five year olds, a NWR test was taken after the rhbdd seen 100% of the input. The
amounts of input fit in with the 87.5% level thaaswused when comparing 4-5 year
olds in the study presented in this paper. Notelibaause of the problems outlined
earlier regarding the one-syllable nonwords usdtiénGathercole and Baddeley
(1989) study, these are omitted from the analysis.

Figure 4 shows the repetition performance for sirgginsonant nonwords for
EPAM-VOC at 75% and 100% of the model’s learning] 4 and 5 year old children
and Figure 5 shows the repetition performance lisstered consonant nonwords for

EPAM-VOC at 75% and 100% of the model’s learning] for 4 and 5 year old
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children. When all data-points for the model weverelated with those of the
children, there was a highly significant correlati@10) = .89, p< .001;
RMSE=14.94).

A 2 (stage of learning: 75% of input or 100% ofut)x 2 (honword type:
single or clustered) x 3 (nonword length: 2, 3 @ylables) ANOVA was carried out
on the data. There was a significant main effectade of learning (&,238)=75.61,
Mse=69.34, 5.001), with repetition performance being bettertfee 100% model.
There was also a significant main effect of nonwgpk (K1,238)=27.78,
Mse=30.04, 5.001), with better repetition performance for #ngonsonant
nonwords over clustered consonant nonwords. Thasealgo a significant main
effect of nonword length (B,714)=898.79, Mse849.16, §.001). Post-hoc
Bonferroni tests showed that two-syllable nonwavdse repeated back more easily
than both three-syllable and four-syllable nonwpedsl three-syllable nonwords
were repeated back more easily than four-syllabtevords (all g.001). There were
no two-way or three-way interactions (a#.p5). The pattern of effects on repetition
performance is consistent with that found by Gathlerand Baddeley (1989). In
particular, an important result of this sectiothiat EPAM-VOC, like children,
performs better for single consonant nonwords thaclustered consonant

nonwords.
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Although repetition errors have not been analyseagreéat detail in children’s NWR
studies, it has been noted that, for example, idjieelst proportion of errors in five
year olds is due to phonological substitution (@atble, Willis, Baddeley & Emslie,
1994). In the study presented, the nonwords wetrescorded and therefore we have
no data regarding the types of error that the ofsidnade. However, an analysis of
the types of error made by the model showed th#t 6#errors were phonological
substitutions, 22% were phonological additions, ah%h were phonological
deletions. Phoneme additions/deletions/substitatwere defined as two or less
phonemes being added/deleted/substituted withomavard. The model’'s tendency
to make substitution errors is a direct consequehtiee model’'s mechanism for
simulating production errors, which involves (ogoaslly) taking incorrect links

when traversing the network.

Summary of the simulations

EPAM-VOC provided a very good match to the new diaten the experiment
presented here, and the model also showed thesatteen of results that were seen
in the 4 and 5 year old children studied by Gatblerand Baddeley (1989), although
the goodness of fit was perhaps not as pronoumctds case as that obtained with
the new data. The main issue for the 4 and 5 yldasamparisons was that the model
had a rather low repetition accuracy for four-dyléanonwords. This suggests that
perhaps EPAM-VOC had not seen enough input or dngagation in input. The
problem for the model, given that variation in thput is critical, is in determining
the type and amount of input that a 4 or 5-yearenittl is likely to have heard.
Clearly, this is a very difficult task and any ati& to replicate the input is likely to

be a crude approximation. For example, even tholigimodel received half of the
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mother’s utterances as input, this only constit@@d6 different words on average.
The lexicon words were used as an attempt to idlsseamount, but they are just an
approximation of the diversity of input that 4 @mglear old children receive. The
model thus provided a good approximation of exgstigpetition performance based
on what would seem to be a reasonable, but no¢gedpproximation of the input.
The results suggest that using more realistic irglikely to result in an even better

match to the data.

How EPAM-VOC simulates nonword repetition

Thus far, it has been shown that EPAM-VOC, in spftés relative simplicity,
accounts for the NWR findings surprisingly well. .wddoes EPAM-VOC achieve
such a good fit to the results? Let us again tortheé four criteria outlined in the
introduction, which specified what a model of NW&fprmance must be able to
achieve. These will be considered in turn, andxgte@ation given for how EPAM-

VOC satisfies each of them.

NWR performance is better for short nonwords tlmanm Inonwords

In EPAM-VOC, longer nonwords are less likely torbpresented in full within
the phonological store until the model has learot about sound patterns, and so the
model has difficulty repeating longer nonwords dgrihe early stages of its learning.
This can be illustrated by examining the time featquired to represent nonwords at
various stages of the model’s learning. Figuredshthe average time to represent
non-wordlike nonwords at different stages of thalai® input (averaged across all
120 simulations). The figure clearly shows thatdbort nonwords, there is little

benefit to further learning, as the model mastepgtition of these nonwords at an
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early stage. For longer nonwords, however, mastecyrs at a much later stage as
EPAM-VOC learns more about the phonemic input antierefore able to represent

the nonwords using fewer nodes than at earlieestag

NWR performance improves with age

A further illustration of how the model improvestiwvimore learning can be
shown by plotting the number of nodes that arentear various stages of learning.
Figure 7 shows that such a plot is almost lineawever, it should be pointed out
that learning at later stages involves nodes thiattain large sequences of phonemes,
rather than nodes that contain short sequencdsoofemes, which are what is found
early on in learning. Performance thus improves e because more knowledge
about sequences of phonemes is learnt as EPAM-\¢0&ves more input — and this
means that EPAM-VOC is more able to fit longer norg within the time limit of

the phonological store.

NWR performance is better for single consonant tlastered consonant

nonwords
Improved performance for single consonant nonwokas clustered consonant

nonwords is actually very easy to explain once aresiders the number of phonemes
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required to articulate each type of nonword. Tinglsi consonant nonwords used by
Gathercole and Baddeley (1989) contain an averf§&0 phonemes whereas the
clustered consonant nonwords contain an average 6fphonemes. Children are
therefore likely to find clustered consonant nomgomore difficult to repeat back
because these nonwords are, in effect, longerl&igiin EPAM-VOC, it will be
more difficult to fit clustered consonant nonwond® the phonological store than

single consonant nonwords.

NWR performance is better for wordlike than non-aie nonwords

There is a slight difference in the phonemic lengtivordlike nonwords and
non-wordlike nonwords because non-wordlike nonwdedsl to have clustered
consonants. There is an average of 5.00 phonemesfdlike nonwords versus 5.67
phonemes for non-wordlike nonwords in the experinpeaesented. This in itself is
unlikely to be sufficient to produce such strikipgrformance differences between the
two types of nonword. In terms of the model, wdedlnonwords are expected to
contain phoneme sequences that are more famikay tfhat exist in already known
words) than non-wordlike nonwords. Assuming thasthsequences occur frequently
in the input, EPAM-VOC should learn a substantiainbber of them, and therefore the
component phonemes in wordlike nonwords shoulddred as larger sequences of
phonemes than the component phonemes in non-wenadikwords. Hence, what is
expected is that wordlike nonwords can be represemsing fewer nodes than non-
wordlike nonwords, meaning they can be represantéss time within the
phonological store. Subjecting the model’s perfarogato the same ANOVA
reported previously, but using the time to matchwards as the dependent measure

rather than nonword repetition scores, shows aygjgnificant difference for the
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type of nonword (FL,216)=844.26, Mser.74, .001 [log transformed data]), with
non-wordlike nonwords taking longer to be represéntithin the phonological store.
It is clear that wordlike nonwords can be represgnising fewer nodes than non-
wordlike nonwords, and this is why it takes thesawords less time to be matched in

the phonological store.

General discussion

In the last decades, short-term memory capacitypphas measured in two ways.
Starting with Miller (1956), one group of reseanshkave proposed that STM
capacity can be measured in chunks, that is, perakegnits. This idea has been
embodied in EPAM, an influential computational mioafeperception, learning, and
memory that has been applied to a number of dommantng from chess expertise to
letter recognition. Another group of researcheestied around Baddeley and Hitch’'s
(1974) model of working memory, have proposed thatcapacity of short-term
memory — in particular auditory short-term memolig ime-based. Building on
work by Zhang and Simon (1985) with adults, thipgrehas shown that these two
approaches can be reconciled. In particular, we saown that important data on
phonemic learning can be explained by a computatimodel, EPAM-VOC, that (a)
incrementally builds up chunks of knowledge abdwinmlogical sequences in long-
term memory, and (b) specifies the relation betweerking memory and long-term
memory.

Using the NWR task as a test-bed, we identified twiteria that any viable
model should meet. The simulations presented snghper have demonstrated that
EPAM-VOC fulfils all of these criteria via an intation between a fixed capacity

phonological store and the chunking of phonemiokedge, together with variation
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in the amount of input. First, repetition accura@s poorer for long nonwords than it
was for short nonwords, which fits the childrensgalon NWR performance (e.g.,
Gathercole & Adams, 1993; Gathercole, Willis, Emdli Baddeley, 1991) and the
findings of the experiment presented here. Sea@petition accuracy improved at
each stage of the model’'s learning, mirroring et that, as children grow older,
their NWR accuracy improves (e.g., Gathercole, 1€2%hercole & Adams, 1994).
Third, performance was better for single consonantvords than clustered
consonant nonwords, which is consistent with thdifigs of Gathercole and
Baddeley (1989). Fourth, NWR performance was bébrewordlike nonwords than it
was for non-wordlike nonwords, which is supportethin previous literature (e.g.,
Gathercole, 1995; Gathercole, Willis, Emslie & Baldy, 1991) and in the new
experiment of NWR performance presented here.

In addition to simulating the NWR data very welR&AVI-VOC makes two
important theoretical contributions. First, it costely specifies how phonological
working memory interacts with existing LTM phonoilcal knowledge. Second, the
simulations illustrate how differences in perforroamacross ages do not require
explanations based around capacity differenceghemahe explanation is based on
the extent of existing phonological knowledge. Wpand on these contributions in

turn.

Interaction of phonological working memory with LTihowledge

The explanation of how phonological working memiomgracts with LTM
knowledge is both parsimonious and elegant. Theetrgrdidually builds up a
discrimination network of phonological knowledgearder to increase the amount of

information that can be held in the phonologicalet As input is received by the
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model, any existing long-term representations gf@art of the input can be accessed
such that if the model knows a three phoneme seguéor example, those three
phonemes do not need to be stored individuallyiwitiie phonological store but
rather a pointer can be stored to the equivaledé montaining the sequence. As a
result, the more phonological knowledge the modslinh its LTM, the more items

can be stored in the phonological store. Precisely the phonological loop interacts
with LTM has never been defined before in compatsdl terms.

While more precise and quantitative, EPAM-VOC’s@att fits in with current
views of how phonological working memory and LTMaract. Gathercole and
colleagues (e.g., Gathercole & Adams, 1993; GatherdVillis, Emslie & Baddeley,
1991) propose that phonological working memoryuiggorted by phonological
“frames” that are constructed from existing phogatal representations in long-term
memory. EPAM-VOC is able to operationalise thisadggion: phonological frames
are phonological sequences, and the way in whie ititeract with phonological
working memory is captured by the idea that antimpuecoded into sequences as
much as possible. Wordlike nonwords share more gbgical sequences with real
words (which will have been learnt from the inpad so they have an advantage
over non-wordlike nonwords that share less sintjlarith real words. In this way,
EPAM-VOC predicts, as Gathercole and colleagues @miedict, that the more
“novel” a sound pattern is, the more reliance &pt on phonological working
memory when learning it.

Metsala (1999) hypothesises that it is the segrhstitacture of items in LTM
that is critical for performance in nonword regetit Wordlike nonwords are
repeated more accurately than non-wordlike nonwbedsiuse wordlike nonwords

have more lexical neighbours, and so they canfiresented using larger lexical
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units. This is exactly what is found in the EPAM-EQimulations where the nodes
(i.e., the existing phoneme sequences in the EPAMGWetwork) that are used to
represent wordlike nonwords are larger than thiogedre used to represent non-
wordlike nonwords (because wordlike nonwords areentikely to share phoneme
sequences with real words). This means that waditwords can be represented
using fewer nodes than non-wordlike nonwords. Farrttore, Metsala found that
children of 4-5 years of age showed better perfageador early acquired words than
later acquired words in onset-rime blending tasksftading that would be predicted
by EPAM-VOC under the assumption that the moddllwal’e more detailed nodes
for early acquired words, because they are likelgave occurred more frequently in
the input.

The key concept for Metsala (1999) is that it isatmulary growth that
influences lexical restructuring. Words having &rgighbourhoods require more
restructuring than words with sparse neighbourhoaxd thus there is more lexical
structure surrounding large neighbourhood wordg. difference between this view
and that implemented in EPAM-VOC is that thereag@structuring in EPAM-VOC
— learning reflects a deeper level of structurbemthan restructuring per se.
Nevertheless, both accounts are able to explafonqpeance on nonword repetition

tests without using phonological working memontees primary influence.

Are capacity differences necessary for explainiadagymance differences?

EPAM-VOC has shown that children’s NWR performanaa be simulated
without the need for variations in capacity. Gatloé, Hitch, Service and Martin
(1997) suggested that the capacity of the phoncdbdpop is influenced by two

factors — a “pure” capacity that differs acrossvitals and with
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development/maturation, and the amount of vocaplaowledge held at any one
time. The results presented here suggest thatitapeterences are not necessary, at
least to explain developmental changes in NWR perdmce. Capacity differences
have often been cited in the developmental liteeayet it is actually difficult to
measure capacity size without tapping into somen fof long-term knowledge. For
example, the digit span task is often used ast@tépure” capacity; yet, it relies on
children’s long-term knowledge of digits and digigiquences — and hence the NWR
test has been found to be a purer test of phorgabgiorking memory capacity (e.g.,
Gathercole & Adams, 1993). This paper has shownethen the NWR task may
suffer from the same problem.

The difficulty of measuring memory capacity limitats is well known,
especially in domains where learning is continuguase, Gobet & Cheng, 2001),
and other computational models have also questiatedher capacity differences
produce the best explanation of the children’s.dada example, Jones, Ritter and
Wood (2000) found that differences in strategy cbaather than capacity provided
the best explanation of children’s problem solviegformance.

Some developmental theorists have also deniedthef memory capacity per
se. For example, Case (1985) suggests that childrem a functionanemory
capacity. In much the same way as in EPAM-VOCaak experience increases,
more complex knowledge structures can be held imong, leading to improved task
performance. EPAM-VOC can therefore be seen agparationalised version of the
Case theory that is focused on the task of langlesgaing. Moreover, there is no
reason to suggest that the same mechanisms udg@Aiy-VOC could not be
applied to other developmental tasks. For exan@ié(1978) and Schneider, Gruber,

Gold and Opwis (1993) examined children’s chesgipta finding that working
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memory capacity for chess-based information in@eas a function of expertise, yet
for other tasks, such as digit span, no differemas found between the chess players
and controls. The mechanisms presented in thisrsaggest that children’s chess
expertise leads them to have a deeper structufiolgess knowledge in their LTM,
and this facilitates how much information they tatd in WM in much the same

way as EPAM-VOC'’s network of sound patterns faai#s the amount of input that

can be processed within its phonological store.

Further predictions of the model

The process by which LTM and phonological workingmory interact in
EPAM-VOC makes specific predictions regarding atgids and adult’s language
capabilities. First, children who have more phogalal knowledge in LTM should
perform better on NWR tasks. An obvious follow-oonh this is that, children who
perform better on NWR tasks should, in turn, bearoductive in their language
use. This is exactly what was found by Adams anth&aole (2000), who showed
that four year old children who performed well oWR tests produced a greater
number of unique words and also produced longerarites than children who
performed less well on the NWR tasks. In line with mechanisms proposed in this
paper, good performance on NWR tasks is indicatfvan above average knowledge
base for phonological sequences, which is suggesfia larger vocabulary. In turn,
an above average knowledge base would mean thtemogsof large sequences of
phonemes in LTM, and therefore the child being &bleroduce longer utterances
within the same capacity.

Second, children and adults who are multi-lingialidd be able to perform

better on NWR tasks because they have a compdyatiwvger amount of
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phonological knowledge in LTM. Multi-lingual speakehave learnt sound patterns
for two or more languages and thus their phonolddinowledge is likely to be much
richer than their monolingual counterparts. Theeeaready studies that provide
support for this prediction.

Papagno and Vallar (1995) found that adult pohg(defined by them as
people who were fluent in at least three languagedprmed better on NWR tasks
than non-polyglots. The same findings have beendon children (Masoura &
Gathercole, 2005). In fact, the findings of Masoana Gathercole are strongly
predicted by EPAM-VOC. Masoura and Gathercole $plegek children learning
English into low and high vocabulary groups (bagedocabulary performance in
English-Greek translation tests) and low and higidRgroups (based on NWR
performance for English and Greek nonwords). EPAMSAvould predict that any
differences on English word learning tests wouldjbeerned by vocabulary
knowledge, and hence differences should only be betveen the low and high

vocabulary groups. This is exactly what Masoura @athercole found.

Conclusion

EPAM-VOC represents an important step not onljhamgimulation of NWR
performance but also in the definition of workingmmory and how it links to LTM.
The way in which EPAM-VOC links short-term and letggm memory is such that at
an early stage of the model’s learning, emphag$aised on short-term memory (in
this case, the phonological store). At later starjgbe model’s learning, emphasis is
placed on long-term memory. The architecture of FP¥OC is consistent with the
idea that task experience is critical in orderrmcpss as many items as possible

within a store of limited duration and capacity.tiMimited or no task experience,
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very few items can be processed in short-term memuod thus short-term memory
acts as a bottleneck to long-term learning. Withientask experience, increasingly
large amounts of information can be processedantd¢brm memory, which in turn
allows more opportunity for further informationtbe learnt. The beauty of this
architecture is that developmental differences éinatoften attributed to capacity
changes can arise solely through exposure to a-taskler the assumption that young
children have less exposure to developmental thskstheir older counterparts. That
is, apparent developmental changes in capacitg &osn relative experience with
components of the task at hand.

EPAM-VOC is obviously only a first attempt at siratihg the learning of novel
sound patterns. There are clearly areas where tlelns limited. For example,
relationships between phonemes are not represesteld that phenomena such as the
phonological similarity effect (e.g., Conrad & Hull964) cannot be simulated.
However, improvements to the model could be madedmgidering further findings
in the vocabulary acquisition and memory literatamed considering other
computational models in this area (e.g., Burges$it€h, 1992).

The model presented here represents a good fgstgidearning novel sound
patterns. The model is able to simulate nonworetigpn findings surprisingly well,
and provides important insights into the sophisiticaof the child language learner.
EPAM-VOC is the first step in modelling vocabulagquisition using a
parsimonious model and using large-scale datasetgpat.

EPAM-VOC reconciles time-based and chunked-basptbaphes to memory
capacity. By doing so, it provides well-specifiedechanisms on the relation between
working memory and long-term memory, in particidaplaining how long-term

knowledge interacts with working memory limitatioifiese mechanisms shed light
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not only on how the bottleneck imposed by limitai@n working memory restricts
learning ability, but also on how the capacitytugtbottleneck changes as a function
of what has been learned. The implication is tleaetbpmental changes in
performance on working memory tasks may be anectlgffect of increases in
underlying knowledge rather than a direct effeatltdnges in the capacity of working

memory.
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Appendix

Nonwords used in the study presented, with phoneepiesentations

Wordlike nonwords

DAR

LAN

FOT

TULL

DUTT
JARDON
DINNULT
KETTED
RINNER
LITTING
VOLERING
COMMERANT
BANNAFER
HAPPAMENT
CANNARRATE

(D AALR)

(L AE1 N)

(FAOLT)

(T AH1 L)

(D AH1 T)

(JH AAL R D AHO N)
(DIHLNAHOL T)

(K EH1 T AHO D)

(R IH1 N ERO)

(L IH1 T IHO NG)

(V AAL L ERO IH1 NG)
(K AAL M ERO AE1 N T)
(B AE1 N AE1 F ERO)
(HH AE1 P AHO M AHO N T)
(K AELN EH1REY2T)

Non-wordlike nonwords

GICK

FOLL

JID

DOP

YIT
MOSTER
LIGDALE
HAGMENT
PUNMAN
TAFLED
DOPPELRATE
TACOVENT
DERPANEST

(G IH1 K)

(F AAL L)

(JH IH1 D)

(D AAL P)

(Y IH1 T)

(M AO1 S T ERO)
(LIHLGDEY1L)

(HH AEL G M AHO N T)

(P AH1 N M AE1 N)

(T AE1 F L EH1 D)
(DAALP AHOLREY1T)
(T AALK OWO V EHL N T)
(DERLP AELINEH1ST)
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NARTAPISH
TAGRETIC

(N AAL R T AHO P IH1 SH)
(T AE1 G R EH1 T IHO K)

Gathercole and Baddeley’s (1989) nonwords, withnginaic representations

Single consonant

PENNEL (P EH1 N AHOL)

BALLOP (B AE1 L AHO P)

RUBID (RUW1B IHO D)

DILLER (D IH1 L ERO)

BANNOW (B AE1 N OWO0)

DOPPELATE (DAO1PEHOLEYOT)
BANNIFER (B AE1 N AHO F ERO)
BARRAZON (B AE1 R AHO Z AAO N)
COMMERINE (K AA1 M ERO IYO N)
THICKERY (THIH1 K ERO 1Y0)
WOOGALAMIC (W UW1 G AEO L AE1 M IHO K)
FENNERISER (F EH1 N ERO AY1 Z ERO)
COMMEECITATE (KAHI1MIY1SAHOTEYOT)
LODDENAPISH (L AA1 D EHO N EY1 P IHO SH)
PENNERIFUL (P EH1 N ER1IHO FUHOL)

Clustered consonant

HAMPENT (HHAEL1M P EHONT)
GLISTOW (GLIH1S T OWO)

SLADDING (SLAE1 D IHO NG)
TAFFLEST (TAEIFLEHOST)

PRINDLE (PRIH1INDAHOL)
GLISTERING (GLIH1STEROIHO NG)
FRESCOVENT (FREH1SKAHOVAHONT)
TRUMPETINE (TRAH1MP AHO T IYO N)
BRASTERER (B RAE1 ST ERO ERO)
SKITICULT (SKIHLTAHOKAHOLT)

CONTRAMPONIST

(KAAINTRAE1MPAHONAHOST)



PERPLISTERONK
BLONTERSTAPING
STOPOGRATTIC
EMPLIFORVENT

Learning novel sound patterns

(PER1PLIH1STEROAAO NG K)
(BLAALNTEROSTEY1PIHONG)
(STAALP OWO G R AE1 T IHO K)
(EHLMPLIHOFAOLIRVEHONT)
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Mean correct responses (standard deviations imfgaases) for all dependent

measures, for the children and EPAM-VOC. Maximumrss for the NWR, coloured

block task, and BPVS tests were 5, 9, and 168emiely.

2-3year EPAM- 4-5 year EPAM-
olds VOC, 25% olds VOC,
of input 87.5% of
input

Wordlike nonwords, one- 3.77 (.72) 3.53 (1.00) 4.47 ((57) 4.22(.77)
syllable
Wordlike nonwords, 3.18 (.70) 2.96 (1.10) 4.27 (.69) 3.65(1.04)
two-syllables
Wordlike nonwords, 1.78 (.87) 2.09 (1.02) 3.87 (.72) 3.47(1.01)
three-syllables
Non-wordlike nonwords, 2.53(.68) 3.51 (1.11) 3.40 (.72) 4.22 (.87)
one-syllable
Non-wordlike nonwords, 2.28 (.99) 2.38(1.12) 3.55(.87) 3.60(1.05)
two-syllables
Non-wordlike nonwords, .53 (.57) 57 (.73) 2.77 (.83) 2.88(1.27)
three-syllables
Coloured block task 2.25 (.44) 3.33 (.68)
BPVS 27.18 (5.74) 53.25 (9.42)



Table 2.
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Parameter values at each stage of the model’sitearn

Amount of input

Percentage of pairs Probability of

seen by the model of lexicon words  selecting an
(%) included in the incorrect link
input
0-25 0 10
25-375 10 .09
37.5-50 20 .08
50 - 62.5 30 .07
62.5-75 40 .06
75-87.5 50 .05
87.5-100 60 .04
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Figure legends

Figure 1.Structure of an EPAM-VOC net after receiving thput “W AH1 T” three
times.

Figure 2.Repetition accuracy for EPAM-VOC after 25% of thput, plotted against
2-3 year old children.

Figure 3.Repetition accuracy for EPAM-VOC after 87.5% o thput, plotted
against 4-5 year old children.

Figure 4.Single consonant nonword repetition accuracy AE-VOC after 75%
and 100% of the input, plotted against the 4 yé&haaod 5 year old children of
Gathercole and Baddeley (1989).

Figure 5.Clustered consonant nonword repetition accuraciERAM-VOC after
75% and 100% of the input, plotted against theat wéd and 5 year old children of
Gathercole and Baddeley (1989).

Figure 6.Average time to match non-wordlike nonwords atous stages of EPAM-
VOC's learning.

Figure 7.Nodes learned by EPAM-VOC at various stages ohlag.
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Figure 2
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Figure 3
100
—o—4-5 year olds, wordt

> 80 like nonwords
o
S 60- - Late EPAM-VOC,
g word-like nonwords
2 40
Q —a— 4-5 year olds, non-
& 20 word-like nonwords

0 ---a--- Late EPAM-VOC,

1 2 3 non-word-like
nonwords
Syllables in nonword

60



Learning novel sound patterns

Figure 4
100
— —o— 4 year olds
&> 801
@
5 | T M e - 0
§ 60 | L ERAM VOC, 75%
& of input
é 40 —a— 5 year olds
*g )
o 20- . ---a-- EPAM-VOC,
100% of input
0
2 3 4
Sylables in single consonant nonword

61



Learning novel sound patterns

Figure 5
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Figure 6

Learning novel sound patterns

Time to match chunk (rr

2000
1800
1600
1400
1200
1000
800
600
400
200 ~

—=— 25%
—e—50%
—a— 75%

——100%

2

Syllables in non-word-like nonword

3

63



Figure 7
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