Diffusion mechanism of Zn in InP and GaP from first principles

Höglund, A., Castleton, C.W.M. ORCID: 0000-0001-6790-6569 and Mirbt, S., 2008. Diffusion mechanism of Zn in InP and GaP from first principles. Physical Review B, 77 (11), p. 113201. ISSN 1098-0121

Castleton2.pdf - Published version

Download (67kB) | Preview


The diffusion mechanism of Zn in GaP and InP has been investigated using first-principles computational methods. It is found that the kickout mechanism is the favored diffusion process under all doping conditions for InP, and under all except n-type conditions for GaP. In n-type GaP the dissociative mechanism is probable. In both p-type GaP and InP, the diffusing species is found to be Zni+2. The activation energy for the kickout process is 2.49 eV in GaP and 1.60 eV in InP, and therefore unintentional diffusion of Zn should be a larger concern in InP than in GaP. The dependence of the activation energy both on the doping conditions of the material and on the stoichiometry is explained, and found to be in qualitative agreement with the experimentally observed dependencies. The calculated activation energies agree reasonably with experimental data, assuming that the region from which Zn diffuses is p type. Explanations are also found as to why Zn tends to accumulate at pn junctions in InP and to why a relatively low fraction of Zn is found on substitutional sites in InP.

Item Type: Journal article
Publication Title: Physical Review B
Creators: Höglund, A., Castleton, C.W.M. and Mirbt, S.
Date: March 2008
Volume: 77
Number: 11
ISSN: 1098-0121
Divisions: Schools > School of Science and Technology
Record created by: EPrints Services
Date Added: 09 Oct 2015 10:02
Last Modified: 09 Jun 2017 13:17
URI: https://irep.ntu.ac.uk/id/eprint/6843

Actions (login required)

Edit View Edit View


Views per month over past year


Downloads per month over past year