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Infrared thermography (IRT) was used to assess surface temperature change as an indirect measure of
muscle activity and exercise associated changes in blood flow in the working hind limb muscles of horses
(n¼7) undergoing water treadmill exercise. Three treatments were investigated including the treadmill
ran dry (TD), water at the height of the proximal interphalangeal joint (PIP) and water at the height of the
carpus (CP). Maximum skin surface temperature was recorded from the region of the semitendinosus
muscle during exercise at each water height. There was a significant difference in surface hind limb
temperature between exercise on the water treadmill ran dry and with water at the height of the PIP and
CP (Po0.0001) with hotter temperatures recorded during the TD treatment. There was a greater increase
in surface temperature of the hind limbs from pre exercise to maximum temperature during the PIP and
CP treatments when compared to the TD treatment, however, this was not significant (P¼0.58). There
was no significant difference in surface hind limb temperature found between exercise in water at the
height of the PIP and water at the height of the CP. The findings from this study suggest that IRT is able to
non-invasively detect muscle activity and associated changes in blood flow whilst horses are exercised
on a water treadmill. IRT could potentially be used as an alternative method to assess muscle activity and
temperature change in an aquatic environment where existing methods present methodological
challenges.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Water treadmills are a method of hydrotherapy used to
improve the cardiovascular and muscular capacities of horses
(Tokuriki et al., 1999) and they are becoming increasingly popular
in training centres worldwide, despite little being known about
their physiological effects. Exercise in water encourages muscle
development, develops muscle tone and improves muscle strength
(King et al., 2012) with a reduction in the concussive forces and
weight bearing stresses experienced by the equine distal limb
during land based exercise (Miyoshi et al., 2004).

Both elite and non-elite sport horses suffer with repetitive
strain injuries to the hind limb muscle groups, particularly
semitendinosus muscle strain (McKenzie, 2005; Rivero and
Piercy, 2008) which requires rehabilitation in order for the horse
to return to competition fitness. The muscles of the hind limb
provide the horse with the propulsive forces required in many
equestrian sporting disciplines. The hip retractors (gluteus medius
ll).
and biceps femoris) are the primary muscles responsible for
providing power to the horse (Crook et al., 2010). The biceps
femoris and semitendinosus muscles combine to form the equine
hamstring muscle group which is fundamental in facilitating
locomotion (Pusey et al., 2011)

Water treadmill exercise may be useful for horses undergoing
rehabilitation from injury to the limbs and back (Scott et al., 2010).
The water provides buoyancy and assists the horse in lifting its
limbs in the vertical plane and provides resistance to the limbs in
the sagittal plane (King et al., 2012) whilst the treadmill allows
speed to be controlled. A feature of many water treadmills is the
ability to alter the water height in which the horse is exercising in
and it has been shown that different water heights are responsible
for biomechanical alterations in gait with Scott et al. (2010)
reporting that horses walking in water at the level of the carpus
resulted in a lower stride frequency compared to walking in water
at hoof height. The biomechanical changes may be due to a higher
stepping motion from the horse in an attempt to minimise
resistance of the water on the distal limb. This could potentially
result in greater activity of the muscles involved in flexion of the
hind limb including the semitendinosus. These findings suggest
that there is greater resistance placed upon the horse when water
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is higher up the limb which has important implications for
rehabilitation and training regimes of horses using the water
treadmill. A study by Robert et al. (2000) used electromyography
(EMG) to determine how hind limb muscle activity varied with
speed and incline in the horse on a land based treadmill. The study
concentrated on the gluteus medius and tensor fasciae latae
muscles and concluded that both increases in speed and incline
lead to an increase in electromyographic activity and hence a
higher workload for the muscles investigated.

It is important to develop an understanding of the physiological
response of muscles during exercise in water in order to determine
the most appropriate programme and workload for targeting
specific muscle groups. No research has been carried out to date
on muscle activity at different water heights whilst exercising on
the water treadmill due to the assessment of muscle activity
during aquatic exercise presenting methodological challenges.
Electromyography (EMG) provides an assessment of muscle activ-
ity; however, the equipment presents challenges when testing in
water due to the presence of electrical wiring and self-adhesive
electrodes.

A solution to this problem may be the assessment of surface
temperature using infrared thermography (IRT) as an indirect
measure of the underlying physiological response to exercise.
Considerable heat is produced during muscle contraction
(Shepherd, 1982). Positive correlations have been found between
muscle temperature and exercise duration in horses, with muscle
temperature gradually increasing as exercise continues up to a
mean temperature of 38.8 (70.5) °C measured by muscle biopsy
(Lovell et al., 2006).

Infrared thermography can identify changes in skin surface
temperature which has been found to directly reflect the under-
lying circulation, tissue metabolism and local blood flow (Eddy
et al., 2001; Tunley and Henson, 2004). Previous work has shown
that water treadmill exercise is predominantly an aerobic activity
(Voss et al., 2002; Linder et al., 2003) and the overall effect of
aerobic exercise on circulation is to increase blood flow to
exercising muscles in order to meet the metabolic demands of
the working tissues (Van de Graaffe et al., 1999). As a result of
these physiological changes in blood flow and muscle contraction,
radiated heat will increase and can be identified using IRT.

IRT was used to assess muscle temperature in the human arm
during wheelchair driving (Matsuo et al., 2006). Surface tempera-
ture was found to significantly increase in the lower arm which
provides the power for the activity with a minimal increase in
surface temperature in the upper arm that plays a minor role in
the activity. In addition, electromyogram measurement showed
higher electrical activity of the muscle in the lower arm when
compared to the upper arm. These findings indicate that thermo-
graphy can be a useful tool to assess radiated heat as a non-
invasive measure of muscle activity and its use in other species
warrants investigation.

IRT is a commonly used tool in many fields of science; however,
its application in the equine industry has largely been in the field
of veterinary diagnostics (Von Schweinitz, 1999; Turner, 2001) and
it has not been until recently that wider applications have been
considered. Recent applications of IRT in horses are the assess-
ment of surface temperature change during exercise (Simon et al.,
2006) and temperature change of the eye associated with the
physiological stress response (McGreevy et al., 2012; Yarnell et al.,
2013). Interest is growing regarding further applications and uses
of thermal imaging due to its non-invasive nature and ability to
rapidly assess temperature, both of which are advantageous when
working with horses. The use of IRT to monitor surface tempera-
ture change associated with muscle contraction and alterations in
associated blood flow on a water treadmill has not yet been
explored.
Traditional methods of monitoring temperature in horses have
their own limitations including handling and manipulation of the
horse and invasive surgical implantation of biotelemetry equip-
ment (Parrott et al., 1999). External sensors can act as insulators
that may confound results and solid probes can give false readings
due to disruption by hair fibres (Nakayama et al., 2005). There are
factors which must be considered when utilising IRT to assess the
surface temperature of animals including fluctuations in ambient
temperature and airflow, radiation from sunlight particularly in
animals of varying coat colour (Cena and Clark, 1973) and a moist
or dirty coat of the animal (Tunley and Henson, 2004). Therefore,
measures must be taken to minimise sudden changes in ambient
temperature in addition to capturing images in a suitable environ-
ment free from draughts or powerful solar light and with a clean,
dry horse (Schaefer et al., 2002).

The skin overlying muscles is subject to an increase in tem-
perature during muscular activity (Redaelli et al., 2014). Infrared
thermography offers a non-invasive method to assess this increase
in surface temperature and overcomes the methodological chal-
lenges faced when using existing methods of temperature assess-
ment of horses in an aquatic environment.

IRT was utilised during this study to assess the effects of
differing water heights on the surface temperature of the hind
limbs in the region of the semitendinosus muscle. The muscles in
this area play an important role in equine locomotion and are
often targeted in rehabilitation and training programmes that
utilise a water treadmill and the semitendinosus muscle lies
superficially to the skin and can be palpated by hand. Horses were
exercised with the treadmill ran dry (TD), with water at the height
of the proximal interphalangeal joint (PIP) and with water at the
height of the carpus (CP). Recent research has demonstrated that
when horses were exercised in water at each of these heights,
differences in biomechanical parameters were found (Scott et al.,
2010), therefore, we wished to investigate if the same were true
for muscle activity and whether this can be identified using IRT.

Until now no attempt has been made to assess muscle activity
and associated changes in blood flow during exercise on a water
treadmill despite the importance of developing an understanding
of how the addition of water at different heights alters these
parameters.
2. Materials and methods

2.1. Horses and husbandry

Horses (n¼8) were provided by Bishop Burton College Eques-
trian Centre. Horses had a mean age of 14 years (75 years) and a
mean height of 156.1 cm (78 cm). Mean PIP height was 11.7 cm
(71.4 cm) and mean CP height was 44 cm (73 cm). The group
consisted of five geldings and three mares and all horses were
examined and declared sound by the college vet prior to the study
commencing. Ethical approval was gained from Bishop Burton
college ethics committee. All horses had resided at the college for
at least one year prior to the study and were ridden for up to two
hours per day, six days per week. All horses were involved in
practical lessons that utilised the water treadmill throughout the
academic year (twelve week term¼mean 871.7 sessions per
horse), therefore, they were all familiar with the process and
surroundings of the water treadmill building.

2.2. Experimental design

The study was carried out over three consecutive days in
November 2012. Each horse was lead individually from their
stable to the building that housed the water treadmill (Aqua Line,



Fig. 1. The equine limb showing the water heights used during the study. This
image shows the equine limb and the levels of water height used in this study
which were the proximal interphalangeal joint (PIP) and the carpal joint (CP).
Horses (n¼8) were exercised at each height in addition to the treadmill ran dry
(TD) on three separate occasions.

Table 1
The ten IRT sampling time points during each treadmill session. This table details
the ten sampling time points when IRT was utilised to assess surface temperature
of the hind limbs in the study horses. The image number is given along with details
of the timing of image capture from six minutes pre exercise, 15 min during
exercise and until three minutes post-exercise.

Image number Details of timing of thermal image capture

1 6 min before commencing water treadmill exercise (in stable)
2 3 min before commencing water treadmill exercise (in water

treadmill building)
3 Immediately before commencing exercise (standing on

treadmill stationary)
4 3 min from commencing water treadmill exercise (warmup)
5 6 min from commencing water treadmill exercise
6 9 min from commencing water treadmill exercise
7 12 min from commencing water treadmill exercise
8 15 min from commencing water treadmill exercise, stationary
9 Immediately post-exercise (18 min from commencing

exercise. Horse stationary)
10 Three minutes post-exercise (21 min from commencing

exercise. Horse Stationary)

Fig. 2. Example thermal image of the equine hindquarters with area of the
semitendinosus muscle highlighted. This figure shows an example thermal image
of the equine hindquarters with thermal scale included on the right side of the
image. The polygon analysis function has been utilised (dotted rectangular line on
the right side of the image on the hindquarters) to highlight the area of the
semitendinosus muscle which is the area from which maximum temperature was
extracted.
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ACTIVO-MED water treadmill, Mechtersen, Germany). The distance
from the stable to the treadmill room was dependant on the
location of the individuals stable with a mean distance of 120 m
(725 m). Horses were exercised on the water treadmill in their
own bridle with a rein held by the same familiar handler. Each
horse was tested at three water heights (Fig. 1) which were
(1) water treadmill ran dry to simulate a standard land treadmill
(TD), (2) water at the height of the proximal interphalangeal joint
(PIP) and (3) water at the height of the carpus (CP). This allowed
comparisons in surface hind limb temperature to be made be-
tween the three exercise protocols.

Each horse was exercised for 15 min at each water height. The
speed of the treadmill belt varied dependant on the individual
horse. Each horse was assigned a comfortable active walking speed
with the mean walking speed for all horses being 5.7 (70.3) kph.
During the first 3 min of water treadmill exercise the water level
was increased to the desired level. The mean time taken for water
to reach the height of the PIP was 70 s (76 s) and the mean time
taken for water to reach the height of the CP was 180 s (76 s).
During the final 3 min of water treadmill exercise, the water level
was drained. These periods of time were utilised as the warm up
and cool down periods for the horses. Exercise from 3 min to
12 min involved the horse exercising at the desired water height
(TD, PIP or CP). Water in the treadmill was not artificially warmed
or cooled in any way and was stored at room temperature.
Ambient temperature was monitored in the treadmill room (Lascar
USB-2 temperature data logger, UK) throughout the study. Mean
ambient temperature was 9.7 (70.6) °C with no large fluctuations
recorded during the testing period. There was no air frost on any of
the study days and no precipitation. Horses were tested in the
same order on three separate consecutive days with one day used
for each of the water heights.

2.3. Thermal data collection

Thermal images were captured at 10 separate sampling time
points during each horse's water treadmill session (Table 1). All of
the thermal images that were collected throughout this study
were obtained using a FLIR B335 (30 Hz, 2010 model) thermal
imaging camera. The camera has a thermal sensitivity of o0.05 °C
at temperatures of Z30 °C, with a range of temperature detection
between �20 °C and þ120 °C and emissivity was set at 0.97.

Static thermal images were taken at a 90° angle at a distance of
1 m750 cm from the horse in accordance with recommendations
from existing research (Stewart et al., 2005; Yarnell et al., 2013).
Images were uploaded to the FLIR Quickreport analytical software
and using a mouse interface the polygon analysis tool was placed
over the area of the left and right semitendinosus muscle (Fig. 2)
and maximum temperature extracted. Maximum temperature was
chosen as existing work has stated that this is the most consistent
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measure giving the least variance (Cook et al., 2006; Stewart et al.,
2005).

2.3.1. Infrared thermography standardisation
In accordance with recommendations from Tunley and Henson

(2004) a number of measures were put in place to standardise the
thermal images captured. Horses were not ridden on any of the
study days it was ensured that all horses were dry and clean one
hour prior to their treadmill session. This was to prevent any heat
generated through grooming of the coat to have dissipated before
the study commenced. The horses tails were bandaged to ensure a
clear view of the hind limbs and all boots and rugs were removed
thirty minutes prior to treadmill exercise, again this was to allow
any heat due to the insulating properties of the horses rugs to have
dissipated before testing began. The roomwhere the treadmill was
housed was enclosed with a large front door that allowed natural
light but not strong solar radiation to enter the building. In
addition no artificial cooling methods were used on the horse
and ambient temperature was monitored in the treadmill room.
Whilst on the treadmill horses were not permitted to pass forward
or backwards beyond the set boundaries of the treadmills glass
viewing panel (Fig. 3). This was to ensure a consistent distance for
image capture for all horses. All horses had at least five minutes to
acclimatise to the water treadmill room before exercise
commenced.

2.4. Data analysis

For each water height a mean surface temperature (°C) was
taken from left and right hind limb for each horse at each
sampling time point. A mean surface temperature of all horses at
each sampling time point was then calculated for each water
height. The impact of water height on surface hind limb tempera-
ture was modelled using a mixed model approach (R Package;
nlme). Data from point 3 (immediately before warm up) to point
10 were included to model the whole exercise time period. Hind
limb surface temperature (square root transformed) was included
as the response variable with treatment (TD, PIP, CP) and time
(centred) as predictors. To accurately model how temperature
varied over time, the model was varied to include the quadratic,
cubic and quartic terms for time and their interactions with
treatment, the best fitting model was then selected using Akaike's
information criterion (AIC).
Fig. 3. A study horse working on the water treadmill. This figure shows one of the
study horses exercising on the water treadmill with water at the height of the CP.
The black arrows identify the points where the horse was not permitted to pass
beyond (either forward or backwards in direction) in order to standardise distance
that the thermal images were captured.
To further explore the three separate stages of the test (Warm
up, main exercise, cool down) three further mixed effect models
were ran with temperature as the response and time, treatment
and their interaction as predictors. The first model included time
points 3–4, the second 4–8 and the third 8–10. These models were
then restricted by removing non-significant effects in a backwards
stepwise procedure until only significant effects remained in the
model.

Horse ID was included in all analyses as a random effect to
account for repeated measures. Significances for model effects
were calculated using type III sums of squares. Normality assump-
tions for all models were checked by visualising residual plots. All
statistical analyses were performed using R 3.0.2.

The change in surface temperature from sampling time point
3 to maximum temperature was calculated for each horse during
each of the three treatments (TD, PIP, CP) Time point 3 was used as
a base measure as prior to this all of the horses were subjected to
identical exercise protocols (Table 1) and after time point 3 the
exercise regime differed with regards to water height. A one way
repeated measures ANOVA was conducted to investigate any
differences in temperature change from point 3 to point 8 between
treatments.
3. Results

One horse was required to be removed from the study, there-
fore, data is available for the seven remaining study horses.

Hind limb surface temperature in the region of the semitendi-
nosus muscle increased at the onset of exercise and continued to
rise until exercise was complete. This increase in temperature
occurred at all three water heights (Fig. 4). Once exercise had
ceased hind limb surface temperature began to decline and had
returned to basal levels for all treatments at the final IRT sampling
point.

The change in temperature over the whole exercise period was
best modelled using the quartic function of time. This analysis
demonstrated a significant difference in hind limb surface tem-
perature in the region of the semitendinosus muscle between the
different water heights during exercise on the water treadmill, (F2,
15 
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Fig. 4. Mean hind limb surface temperature (þstandard error) over time during
the three treatments: This figure shows the mean (7 standard error) hind limb
surface temperature measured using IRT of the seven study horses whilst working
on the water treadmill at each of the three water heights (TD, PIP and CP). The
analysis was performed from sampling time point 3 as prior to this the protocol
was identical for all treatments (PIP – circle, CP – diamond, TD – square). Lines
show model fit.
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155¼38.96, Po0.0001), but showed no difference in the pattern
of change in temperature over time between treatments. Pre-
planned contrasts showed the difference in temperature was
between TD and both CP and PIP treatments (Po0.0001) with
hind limb surface temperature being significantly warmer during
the TD treatment when compared to both PIP and CP treatments.
There was no significant difference in hind limb surface tempera-
ture between the PIP and CP treatments (P40.05).

When the model was broken down by stages, during the warm
up stage there was no significant increase in temperature and no
difference in rate of temperature change between treatments but
there was a difference in absolute temperature between treat-
ments (F2, 33¼8.79, Po0.0001). During the main exercise period
there was also no significant change in rate of temperature change
between or within treatments but there was again a difference in
absolute temperature between treatments (F2, 96¼32.85,
Po0.0001). During the cool down period temperature also dif-
fered between treatments (F2, 53¼7.38, Po0.01) and there was a
significant decrease in temperature (β¼�0.6770.07, F1,
53¼97.27, Po0.0001), during all three treatments but the rate
of change did not differ between treatments. At all three time
points planned contrast showed the difference in temperature was
between TD and both PIP and CP with TD being warmer
(Po0.001), but not between PIP and CP (P40.05).

The maximum hind limb surface temperature recorded during
the study was 30 °C and this was observed at 15 min post-onset of
exercise during the TD treatment. In addition maximum hind limb
surface temperature was recorded at fifteen minutes post-onset of
exercise for water at the height of the PIP and water at the height
of the CP. This sampling time point was the final image taken
before exercise ceased.

There was a greater increase in surface hind limb temperature
for all horses during the CP and PIP treatments when compared to
the TD treatment (Fig. 5). However, the results of a one way
repeated measures ANOVA showed this difference to be not
significant (F2, 12¼0.56, P¼0.586).
4. Discussion

Hind limb surface temperature in the region of the semitendi-
nosus muscle increased at the onset of exercise in all three
treatments (TD, PIP and CP) suggesting that heat produced by
muscle contraction (Shepherd, 1982) and increases in local blood
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Fig. 5. Change in hind limb surface temperature (°C) from pre warm up until
maximum temperature. This figure shows the change in hind limb surface
temperature (°C) from time point 3 (immediately before warm up) until maximum
temperature for each horse (n¼7) during each of the three treatments which were
treadmill dry (TD), Water at height of the proximal interphalangeal joint (PIP) and
water at the height of the carpus (CP). The maximum temperature recorded was at
time point 8 (immediately before exercise ceased) for all horses in all treatments.
flow (Eddy et al., 2001) in order to meet the metabolic demands of
the working tissues can be identified using IRT.

Surface temperature of the hind limbs underwent a greater
increase from pre warm up levels during exercise in water than
when horses were exercised without water although this was not
significant (P¼0.58).

No significant differences in rate of temperature change was
identified within or between each treatment with all three
exercise protocols. This suggests that surface temperature gradu-
ally increased and the rate of temperature increase was not
dependent or effected by water height within the treadmill.

Hind limb surface temperature had started to increase before
exercise commenced (at sampling point 2). This is likely to be due
to increased muscle activity and associated alterations in blood
flow as a result of the horse walking to the treadmill room from its
stable and walking up the incline onto the treadmill. This suggests
that muscle contraction and associated blood flow alterations to
support the increased muscle activity results in a rapid change in
surface temperature even as a result of low intensity exercise. Hind
limb surface temperature did continue to increase once exercise
commenced and until exercise ceased but this increase was
gradual with no significant rise between any sampling time points.

Surface temperature gradually increased throughout all three
exercise sessions with a maximum temperature of 30 °C recorded
during the TD treatment. The presence of water in the treadmill
may have resulted in a cooling effect upon the circulation and
subsequently may have caused the lower surface temperatures
recorded during the PIP and CP treatments. However, water did
not come into direct contact with the skin surface in the area of
the semitendinosus muscle and only reached the level of the
carpus. In addition, basal surface temperature was higher during
the TD treatment when compared to the PIP and CP treatments.
Maximum surface temperatures for all three treatments were
recorded at 15 min post-onset of exercise (PIP¼27.9 °C,
CP¼27.7 °C) which was the last thermal image captured before
exercise ceased. Surface temperature then began to decline and
had returned to basal levels for all three treatments at three
minutes post-exercise. This decline in surface temperature was
significant in all three treatments (Po0.0001) with no difference
in rate of change between treatments. The significant decrease in
temperature during the cool down period may have been due in
part to the draining of the water (and therefore a reduction in
resistance); however, the significant decrease in temperature was
also apparent during the TD treatment where no resistance was
present. Therefore, it is likely that a combination of the removal of
resistance of water and termination of exercise itself contributed
to the rapid cooling of the surface temperature of the hind limbs.
This also highlights that the rate of decrease in surface tempera-
ture was not dependent on the maximum temperature reached as
surface temperature had returned to below basal levels in all three
treatments at the final IRT sampling point.

Horses sweat to dissipate heat through evaporation of moisture
from the skin surface and this could have contributed to rapid
cooling post-exercise. However, the study horses walked at a
comfortable pace for fifteen minutes and had taken part in tread-
mill work in the weeks preceding this investigation, therefore,
they were of sufficient fitness for this type of exercise. As a result,
none of the study horses displayed obvious signs of sweating and
airflow was minimal due to the stationary nature of treadmill
exercise and the absence of artificial cooling.

The gradual increase in temperature throughout the exercise
sessions supports the findings of Lovell et al. (2006) who found a
positive correlation between muscle temperature and exercise
duration in horses, with muscle temperature gradually increasing
up to 38.8(70.5) °C. The higher temperature compared to our
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study findings may be a reflection of the temperature collection
method of muscle biopsy rather than surface temperature.

As exercise intensity increases so does the temperature of
working muscle (Geor et al., 2000; McGowan et al., 2002). There-
fore, the larger increase in surface temperatures recorded with the
addition of water during this study suggest that the increased
resistance provided by the water resulted in higher muscle activity
(contraction of tissue and alterations in bloodflow) that was able
to be detected using IRT. However, the height of the water did not
significantly alter the surface hind limb temperature when a
comparison was made between the PIP and the CP.

Scott et al. (2010) found that increasing water height from the
foot up to the carpal joint in horses on a standard treadmill altered
the stride frequency of those horses. This biomechanical change is
not reflected physiologically in the present study; however, it may
be that IRT was unable to detect an altered muscle workload
between the two water heights. It could also be that no significant
difference in hind limb surface temperature between the PIP and
CP is due to increased muscular activity and blood flow changes in
both treatments caused by different aspects of water treadmill
exercise. The increased stride length and decreased stride fre-
quency reported by Scott et al. (2010) with water at the height of
the carpus is due to the resistance of water and therefore a higher
workload for the muscles involved. Whereas, when horses were
exercised in water at the height of the PIP this required a higher
flight arc (stepping motion) from the horse, therefore, greater hind
limb flexion which also resulted in increased muscle contraction
and changes in blood flow. Both scenarios result in a higher
workload for the muscles, therefore, increased heat dissipation
that was identified with IRT. This has implications for equine
professionals who must select specific parameters including water
height when devising training and rehabilitation programmes.

Further work is needed to investigate the effect of other water
heights used in water treadmill exercise (fetlock, shoulder, hock)
on hind limb surface temperature and whether IRT can detect
potential differences, in addition to other muscle groups utilised in
equine movement. It would be interesting to see whether an
increased length of time exercising at the two water heights
investigated in this study would result in a clear difference in
hind limb surface temperature when measured using IRT. An
additional area of further study would be to investigate whether
significantly warming or cooling of the water within the treadmill
has any physiological effect on surface temperatures during
exercise. This information could then be used to further develop
exercise programmes with regards to target muscle groups and
timing of activity.

It must be considered that surface temperature changes ob-
served during this study could be the result of changes in other
anatomical structures beneath the surface of the skin. However,
this seems unlikely as the semitendinosus muscle is a superficial
structure that is able to be palpated by hand and changes in
thermal patterns on the skin surface correspond to its location.
Redaelli et al. (2014) state that the skin overlying muscles is
subject to an increase in temperature during muscular activity
largely due to changes in vascularity and it has been shown that
this particular muscle group is active during treadmill exercise and
contributes to the stepping motion involved (Robert et al., 2000).

Kastelic et al. (1996) found that abrupt changes in ambient
temperature resulted in confounding results during use of IRT and
the authors suggest that moderate to cool temperatures of
between 5 and 15 °C are ideal to capture thermal images. No
abrupt fluctuations were recorded during this study and the
recorded mean ambient temperature was 9.7 °C which falls within
these recommended parameters.

Infrared thermography cannot measure actual muscle tempera-
ture but it can give an indication of the underlying tissue
metabolism and changes in blood flow which reflects the working
muscle in horses undergoing water based rehabilitation or train-
ing. Water treadmill exercise may be beneficial to horses as it can
provide the resistance of water with the advantage of controlled
parameters such as speed and incline that are not possible to
control when swimming horses in a hydrotherapy pool and IRT
has highlighted some interesting findings during this study that
equine trainers and therapists will find useful including informa-
tion of warm up and cool down timings and the increased
resistance but minor difference in impact upon muscle activity
and blood flow changes in the two water heights studied.

The potential impact of IRT on the equine industry and its
further possible applications are very encouraging. IRT could be
used as a rapid, non-invasive screening tool to assess surface
temperature surrounding other important muscle groups involved
in equine movement and performance. In addition IRT could be
used during training programmes to ensure muscles are working
symmetrically and indicate which terrains or training programmes
results in an increase in muscle workload. IRT could also indicate
whether target muscle groups are responding to applied workload
and which muscle groups are being worked with specific exercise
regimes. From a therapeutic point of view IRT could allow
monitoring of surface temperature as an indirect measure of
muscle activity and associated changes in blood flow in surgical
patients who are not suitable candidates for invasive temperature
probes but would benefit from hydrotherapy. IRT could monitor
these parameters and how they change over time during a
rehabilitation programme and provide important information to
physiotherapists regarding length and intensity of treatment.
5. Conclusion

This study has demonstrated that IRT can detect surface
temperature change associated with underlying muscle activity
and associated changes in blood flow in horses. The assessment of
temperature change as a result of the underlying physiological
response to exercise in an aquatic environment has not been
carried out to date in horses. Further work is now required to
explore further applications of IRT and its growing popularity
within the equine industry.
Acknowledgements

The authors wish to thank the equine therapy centre staff at
Bishop Burton College for the provision of their horses, thermal
camera and water treadmill. Thanks to David Jukes at Nottingham
Trent University for his assistance with production of artwork and
thank you to Cassie White for Biomechanical and exercise physiol-
ogy based advice.
References

Cena, K., Clark, J.A., 1973. Thermographic measurements of the surface tempera-
tures of animals. J. Mammal. 54, 1003–1007.

Crook, T., Wilson, A., Hodson-Tole, E., 2010. The effect of treadmill speed and
gradient on equine hindlimb muscle activity. Equine Vet, J. 42 (38), 412–416.

Eddy, A., Van Hoogmoed, L., Snyder, J., 2001. The role of thermography in
management of equine lameness. Vet. J. 162 (10), 172–181.

Geor, R., McCutcheon, L., Hinchcliff, K., 2000. Effects of warm-up intensity on
kinetics of oxygen consumption and carbon dioxide production during high-
intensity exercise in horses. Am. J. Vet. Res. 61 (6), 638–645.

Kastelic, J.P., Cook, R.B., Coulter, G.H., Wallins, G.L., Entz., T., 1996. Environmental
factors affecting measurement of bovine scrotal surface temperature with
infrared thermography. Anim. Reprod. Sci. 41, 153–159.

http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref1
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref1
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref2000
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref2000
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref2
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref2
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref3
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref3
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref3
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref4
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref4
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref4


K. Yarnell et al. / Journal of Thermal Biology 45 (2014) 110–116116
King, M.R., Haussler, K.K., Kawcak, C.E., McIlwraith, C.W., Reiser, R.F., 2012.
Mechanisms of aquatic therapy and its potential use in managing equine
osteoarthritis. Equine Vet. Educ. 10 (1), 2042–3292.

Linder, A., Wurm, S., Beuttler, J., Hermann, H., Sasse, L., 2003. Effect of water height
on biochemistry and heart rate of horses exercising on a treadmill submerged
in water. Equine Nutr. Physiol. 18 (1), 204–206.

Lovell, D.K., Reid, T.A., Rose, R.J., 2006. Effects of maximal exercise on equine muscle
changes in metabolites, pH and temperature. Equine Exerc. Physiol., 312–319.

McGowan, C., Fordham, T., Christley, R., 2002. Incidence and risk factors for
extertional rhabdomyolysis in thoroughbred racehorses in the United Kingdom.
Vet. Res. 151 (1), 623–626.

McGreevy, P., Warren-Smith, A., Guisard, Y., 2012. The effect of double bridles and
jaw clamping crank nosebands on temperature of eyes and facial skin of horses.
J. Vet. Behav. 7 (3), 142–148.

McKenzie, E., 2005. Exercise associated muscle injury in horses. Sport. Inj. Horses
Man 21, 1–6.

Matsuo, T., Watanabe, K., Takahashi, T., Sakamoto, K., Yamamoto, K., 2006.
Application of thermography for evaluation of mechanical load on the muscles
of upper limb during wheelchair driving. J. Biomech. 39 (1), 537.

Miyoshi, T., Shirota, T., Yamamoto, S.I., Nakazawa, K., Akai, M., 2004. Effect of the
walking speed to the lower limb joint angular displacements, joint moments
and ground reaction forces during walking in water. Disabil. Rehabil. 26 (1),
724–732.

Nakayama, K., Got, S., Karaoke, K., Nakamura, K., 2005. Decrease in nasal tempera-
ture of rhesus monkeys (Macaca mulatto) in negative emotional state. Physiol.
Behav. 84 (5), 783–790.

Parrott, R.F., Lloyd, D.M., Brown, D., 1999. Transport stress and exercise hyperther-
mia recorded in sheep by radiotelemetry. Anim. Welf. 8 (1), 27–34.

Pusey, A., Brooks, J., Jenks, A., 2011. Osteopathy and the Treatment of Horses. Wiley-
Blackwell, United Kingdom.

Redaelli, V., Bergero, D., Zucca, E., Ferrucci, F., Nanni Costa, L., Crosta, L., Luzi, F.,
2014. Use of thermography techniques in equines: principles and applications.
J. Equine Vet. Sci. 34, 345–350.

Rivero, J.L.L., Piercy, J., 2008. Proceedings of the Conference on Equine Sports
Medicine and Science. Wageningen Academic, Netherlands.
Robert, C., Valette, J., Denoix, J., 2000. The effects of treadmill inclination and speed
on the activity of two hindlimb muscles in the trotting horse. Equine Vet. J. 32
(4), 312–317.

Schaefer, A.L., Matthews, L.R., Cook, N.J., Webster, J., Scott, S.L., 2002. Novel non-
invasive measures of animal welfare. In: Proceedings of Animal Welfare and
Behaviour, from Science to Solution Joint NAWAC/ISAE Conference, Hamilton,
New Zealand.

Scott, R., Nankervis, K., Stringer, C., Westcott, K., Marlin, D., 2010. The effect of water
height on stride frequency, stride length and heart rate during water treadmill
exercise. Equine Vet. J. 42 (38), 662–664.

Shepherd R.J., Physiology and Biochemistry of exercise, 1982, Praegar, New York.
Simon, E.L., Gaughan, E.M., Epp, T., Spire, M., 2006. Influence of exercise on

thermographically determined surface temperatures of thoracic and pelvic
limbs in horses. J. Am. Vet. Med. Assoc. 229 (12), 1940–1944.

Stewart, M., Webster, J.R., Schaefer, A.L., Cook, N.J., Scott, S.L., 2005. Infrared
thermography as a non-invasive tool to study animal welfare. Anim. Welf. 14,
319–325.

Tokuriki, M., Ohtsuki, R., Kai, M., Hiraga, A., Oki, H., Miyahara, Y., Aoki, O., 1999. EMG
Activity of the muscles of the neck and forelimbs during different forms of
locomotion. Equine Exerc. Physiol. 5 (Suppl. 30), 231–234.

Tunley, B., Henson, F., 2004. Reliability and repeatability of thermographic exam-
ination and the normal thermographic image of the thoracolumbar region in
the horse. Equine Vet. J. 36 (4), 306–312.

Turner, T.A., 2001. Diagnostic thermography. Vet. Clin. N. Am. Equine Pract. 17 (1),
95–113.

Van de Graaffe, K., Fox, S., Thouin, L., 1999. Concepts of Human Anatomy and
Physiology. McGraw-Hill, United States of America.

Von Schweinitz, G., 1999. Thermographic diagnostics in equine back pain. Vet. Clin.
N. Am. Equine Pract. 15 (1), 161–177.

Voss, B., Mohr, E., Krzywanek, H., 2002. Effects of aqua-treadmill exercise on
selected blood parameters and on heart-rate variability of horses. J. Am. Vet.
Med. Assoc. 49 (1), 137–143.

Yarnell, K., Hall., C., Billet, E., 2013. An assessment of the aversive nature of an
animal management procedure (clipping) using behavioural and physiological
measures. Physiol. Behav. 118, 32–39.

http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref5
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref5
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref5
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref6
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref6
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref6
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref7
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref7
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref8
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref8
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref8
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref9
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref9
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref9
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref10
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref10
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref11
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref11
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref11
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref12
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref12
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref12
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref12
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref13
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref13
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref13
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref14
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref14
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref15
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref15
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref16
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref16
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref16
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref17
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref17
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref18
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref18
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref18
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref19
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref19
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref19
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref20
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref20
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref20
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref21
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref21
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref21
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref22
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref22
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref22
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref23
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref23
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref23
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref24
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref24
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref25
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref25
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref26
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref26
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref27
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref27
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref27
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref28
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref28
http://refhub.elsevier.com/S0306-4565(14)00119-3/sbref28

	Monitoring changes in skin temperature associated with exercise in horses on a water treadmill by use of infrared...
	Introduction
	Materials and methods
	Horses and husbandry
	Experimental design
	Thermal data collection
	Infrared thermography standardisation

	Data analysis

	Results
	Discussion
	Conclusion
	Acknowledgements
	References




