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Abstract 

 

Sound localisation is one of the key roles for listening, and measuring localisation 

performance is a mainstay of the hearing research laboratory.  Such measurements consider 

both accuracy and, for incorrect trials, the size of the error. In terms of error analysis, 

localisation studies have frequently used general univariate techniques in conjunction with 

either mean signed or unsigned error measurements.  This approach can make inappropriate 

distributional assumptions and so more suitable alternatives based on directional statistics (e.g. 

based on von Mises distributed data) have also been used.  However these are not readily 

computed using most commercially available, commonly used statistical software, and are 

generally only defined for simple experimental designs. We describe a novel use of a ‘centre of 

mass’ approach for describing localisation data jointly in terms of accuracy and size of error.  

This spatial method offers powerful, yet flexible, statistical analysis using standard multivariate 

analysis of variance (MANOVA).  
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I. Introduction 

 

Localising the source of auditory objects in space is one of the key roles of the auditory 

system, and has thus generated a substantial amount of scientific interest (Middlebrooks and 

Green, 1991; Moore and King, 1999; McAlpine, 2005). Spatial hearing has a dual role.  In 

addition to localising sounds, it is important in segregating sounds from noisy backgrounds and 

in complex auditory scenes (Hine, Martin et al., 1994; Middlebrooks and Green, 1991). 

Furthermore, a growing number of studies use spatial sound attributes to investigate other 

aspects of perception and psychophysics such as auditory plasticity and learning (Kacelnik, 

Nodal, et al., 2006; Wright and Zhang, 2006; Keuroghlian and Knudsen, 2007). These studies 

increasingly favour environmentally salient presentation paradigms, via either free-field or 

virtual auditory space, which provide a better indication of localisation performance than the 

lateralisation tasks used traditionally via headphone presentation. A number of different 

methods have been used to quantify localisation performance, with little consensus on which 

might be the most appropriate summary measure of performance or the most sensitive 

measure for detecting change over time.  

This paper presents a novel application of a ‘centre of mass’ (CoM) measure (Mardia and 

Jupp, 2000) that is both appropriate and sensitive for summarising the error characteristics of 

localisation performance. The CoM approach is presented in the context of alternative 

measures of horizontal (azimuthal) plane localisation, and direct comparisons are made using 



Page 4 of 19 

both simulated and experimental data. Examples are taken from the auditory domain, but the 

methods apply equally to the visual domain. 

 

II. Typical measures of localisation performance 

 

Accuracy and error are common measures of localisation performance.  Accuracy refers 

simply to the proportion of correct responses made at each sound source location.  While 

accuracy lends itself to binary logistic statistical techniques, generally authors have used 

accuracy merely as a summary statistic to which standard analyses such as t-tests and repeated 

measures ANOVA are applied (Abel and Paik, 2004; Hine, Martin et al., 1994; Kacelnik, Nodal, et 

al., 2006; Parsons, Lanyon, et al., 1999).  Nevertheless, accuracy can be a rather blunt tool as it 

provides no indication about the size of the localisation errors.  For example, localisation errors 

both at 15° and 150° away from the sound source are treated in the same way.  Usually interest 

relates to any systematic bias in errors or change in their dispersion, for example corresponding 

to experimental condition.  Accuracy measures are therefore often reported alongside 

corresponding error measures to summarise the magnitude of the incorrect localisations. 

However, when the testing arena contains sound sources that span -180° to +180°, incorrect 

responses made to sources close to these ‘boundaries’ may, in some schemes, lead to large 

errors. As an extreme example, a  change in an observation from  to  

would be treated as a much larger movement of  in the response. This ‘boundary’, or 

‘wrapping’, effect artificially inflates the observed variance of . Typically mean localisation 

errors will be reported, with correspondingly inflated standard errors.  Therefore, this kind of 
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error statistic may not provide a particularly sensitive measure of performance, particularly if 

there are many ‘large’ errors. Previous studies have mitigated this problem by using the mean 

absolute, or unsigned, error, so that the error values fall between 0° and 180°. However, these 

studies have used either parametric tests (Parsons, Lanyon, et al., 1999; Zahorik, Bangayan, et 

al., 2006) which incorrectly assume a normal distribution of the data, or non-parametric tests 

(Kacelnik, Nodal, et al., 2006) which offer reduced statistical power.  

Stimulus-response plots (e.g. in the form of a bubble plot; Kacelnik, Nodal, et al., 2006) 

provide a common alternative approach to presenting performance. In this type of plot, 

response locations (in degrees) are plotted as a function of the source locations (in degrees).  

Correct responses lie along the diagonal and typically the size of the data point (‘bubble’) 

reflects the frequency of that stimulus-response pairing.  Stimulus-response plots provide a 

visually appealing way to present both accuracy and distribution of errors, but while they are a 

powerful tool for visualisation their distributional characteristics make them problematic as a 

basis for statistical analysis.  Data are typically analysed by linear regression where r = 1 

indicates a linear relationship between source and response and systematic changes over time 

are analysed by tracking the change in the slope (‘response gain’) and intercept(‘bias’) (Hofman, 

Vlaming, et al., 2002; Hofman, Van Riswick et al., 1998; Kacelnik, Nodal, et al., 2006; Van 

Wanrooij and Van Opstal, 2007).  As an alternative to normal linear regression, bootstrap 

methods have also been employed to estimate the probability of obtaining the given stimulus-

response data under a null hypothesis of no effect of the experimental condition (Van Wanrooij 

and Van Opstal, 2005).  Another potential limitation is that stimulus-response plots do not 

readily permit the presentation of multiple listeners or repeated testing of the same listener in 
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the same plot, and therefore are limited to mean data, or selected single-subject plots.  

Moreover they are also highly sensitive to boundary effects when used as a basis for data 

analysis, as we illustrate later. 

Stimulus-response analysis has been expanded to encompass azimuthal and elevational 

localisation, by observing elevation and azimuthal errors separately using a double-pole 

azimuth-elevation coordinate (Van Wanrooij and Van Opstal, 2005; Van Wanrooij and Van 

Opstal, 2007).  However, this method suffers from the same variety of the issues (e.g. 

wrapping) described above, as it effectively performs separate analyses per coordinate. 

The key features that are generally of interest when considering localisation errors are a) 

the directional bias; and b) the dispersion of the response.  None of the techniques outlined 

above directly describe either of these features and furthermore are confounded by the 

properties of directional data. In the next section, we describe the application of directional 

statistical methods to the problem of analysing auditory localisation data in a 360° plane which 

specifically address these aspects of performance errors. 

 

III. Circular statistics 

 

A directional response variable, such as localisation error (θ), has peculiar properties 

which do not apply in general to linear measurement variables.  For example, it is a feature of a 

circular probability density (pdf) f(θ) that .  For 

this reason, without loss of generality, we conventionally constrain θ to a 360° range.  Here we 

assume .  Such angular constraints are not readily implemented if  is 
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treated as a ‘linear’ variate with θ taking any real value.  In the case of parametric analyses the 

underlying model will generally indicate , with potentially both being non-

zero.  This is clearly in conflict with the directional paradigm and, depending on the magnitude 

of departure from this assumption, may result in potentially inappropriate inferences. 

Analysis of summary statistics, such as the mean error within a block of trials, might be 

performed instead.  However, this approach conceals further issues.  Extreme values of  will 

have a disproportionate effect on the analysis, as not only is their statistical ‘leverage’ large, 

but, as discussed earlier, a potentially small angular change in the response variable close to the 

(arbitrary) boundary may result in a huge change in .    This ‘boundary’ effect will serve to 

artificially inflate the observed sample variance of  and thereby the standard error of  .  

Alternative approaches to such problems include the adoption of non-parametric techniques, 

such as Mann-Whitney’s U and Kolmogorov-Smirnov’s Z tests.  Generally these tests may be 

robust to distributional departures from normality but their own assumptions may be infringed; 

specifically they remain sensitive to the problems encountered by wrapping at the boundaries.  

Non-parametric techniques may also suffer reduced power and, furthermore, the 

implementation of non-parametric methods with complex (e.g. multi-way factorial) 

experimental designs may be problematic. 

A family of techniques exists specifically to deal with such directional statistics (Mardia 

and Jupp, 2000).  These techniques have not been widely used in behavioural localisation 

analyses, but they have been adopted in other fields.  For example, the use of Rayleigh tests in 

vector strength analysis, in order to assess the significance of phase-locking as a departure from 

a null hypothesis of phase uniformity in auditory neurophysiology (Goldberg and Brown, 1969; 
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Buunen and Rhode, 1978).  In terms of localisation comparisons (where an increased response 

density at certain directions might be expected), an appropriate circular distribution is 

potentially the von Mises distribution (Mardia and Jupp, 2000), which might be considered the 

circular analogue of the normal distribution.  The von Mises ( ) distribution is expressed 

in terms of a mean direction, or location,  and a concentration  by the pdf 

  

where here we denote  in degrees.  (  denotes a 0 order modified Bessel function of the 

first kind.)  A high concentration corresponds to a distribution with little dispersion, and the 

special case where  corresponds to the uniform distribution.  Examples of von Mises 

densities for a variety of values of  and  are illustrated in Figure 1. 

 

 [Figure 1 about here.] 

 

We note that, for large values of , ; i.e. for high-concentration 

circular distributions, the normal distribution may provide a convenient approximation. 

 

Parametric Tests 

In comparing various samples of circular data that are assumed to come from 

distributions ,  , circular statistics provide separate tests for the null 

hypotheses  assuming that  and 

 assuming that .  These one-way tests of equality of mean direction and 

equality of concentration respectively provide circular analogues to the normal one-way 
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ANOVA and test of homogeneity of variance.  Unfortunately though, they are not widely 

available in most statistical packages.  The examples provided here were implemented using 

the ‘circular’ package in R version 2.6.1 (R Development Core Team, 2007) and also using a von 

Mises simulation algorithm implemented in Matlab version 7.6 (Best and Fisher, 1979). 

 

Centre of Mass 

Here we propose a simple analysis that recognises the spatial nature of the data using 

standard Multivariate Analysis of Variance (MANOVA) methods, and effectively analyses 

accuracy and error size simultaneously.  Each response is treated spatially, effectively as a 

sound source location.  Planar (bivariate) Cartesian coordinates, relative to the central location 

of the listener, for a single error response of , are derived as   For a sample 

of  observations we can then define the sample mean as 

 . 

Assuming a unit mass at the end-point of each unit vector (corresponding to ) the 

sample mean represents the sample’s overall centre of mass.  As a summary measure the 

centre of mass (or CoM) avoids the influence that boundary effects exert on the mean signed 

and unsigned error.  Having converted the angular error response into bivariate coordinates, 

conventional MANOVA techniques are employed to analyse the data according to the 

corresponding experimental design.  Thereby, the benefits of such methods (use with complex 

experimental models, unbalanced data, etc.) can be fully and simply exploited. 

 

IV. Comparison of Methods 
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a. Simulated data 

 

To compare the performance of a variety of statistical approaches, pairs of 100 

observation samples were drawn from specified von Mises distributions.  Such simulations 

were run repeatedly in order to investigate the proportion of cases where the null hypothesis 

was rejected, according to each test, at a significance level of .  In this manner 

estimates of the power of each statistical test in identifying differences in the underlying 

samples were obtained. 

In each case one sample was drawn from a reference distribution of   and the 

other sample was drawn from an alternative distribution of  where  

and .  The sampled values from each distribution were then ‘discretised’ into 24 bins 

with  separation and midpoints  in order to better 

represent typical experimental paradigms, in our case mimicking 24 separate loudspeaker 

locations separated by 15° intervals. 

These data required modification to enable the investigation of stimulus-response 

analysis characteristics.  This was achieved by applying these directional errors (as generated 

above) to 24 source locations.  For each sample, individual sources were used four times, 

except for the loudspeaker locations at -90°, 0°, 90° and 180° which were each used five times.  

This provided an optimally balanced distribution of the 100 source locations. 

Each simulated set of directional data was subjected to the following tests: 

1. Centre of Mass test (using Wilks’ ); 
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2. von Mises test of equality of location; 

3. von Mises test of equality of concentration; 

4.  (Parametric) univariate ANOVA with: 

a. Signed error 

b. Unsigned error (c.f. Parsons, Lanyon, et al., 1999; Zahorik, Bangayan, et al., 

2006); 

5.  (Non-parametric) Mann-Whitney U test with: 

a. Signed error 

b. Unsigned error (c.f. Kacelnik, Nodal, et al., 2006); and 

6. Stimulus-Response analysis based on: 

a. Parametric ANOVA F test (c.f. Hofman, Van Riswick, et al., 1998; Hofman, 

Vlaming, et al., 2002; Kacelnik, Nodal, et al., 2006; Van Wanrooij and Van Opstal, 

2007) 

b. Bootstrap F statistic (c.f. Van Wanrooij and Van Opstal, 2005). 

The bootstrap was implemented by resampling, with replacement, 1000 times from each 

simulated dataset at each source location across both original distributions. 

 

Type I Errors 

For each test the Type I error rate was estimated by allowing the alternative distribution 

to equal the  reference distribution and observing the proportion of 10,000 simulations 

where the corresponding tests yielded a p-value of less than the  level.  If Type I errors 

are suitably controlled then the empirical Type I error rate  should not differ significantly from 
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0.05.  From the observed Type I error rates given in Table 1 we observed that this was the case 

for all tests except those based on stimulus-response analyses which are shown to be 

anticonservative. 

 

 [Table 1 about here.] 

 

The anticonservative nature of the stimulus-response ANOVA test is due to the 

distributional properties of the model errors, especially for source locations close to 0° or 360°, 

in particular due to the ‘wrapping’ effect.  The bootstrap test suffers from relatively small 

numbers of trials at each source location.  Rerunning this analysis with 1,000 samples from each 

population, we obtained an estimated type I error rate of 0.0516 (95% CI: (0.047,0.056); 

p=0.477).  These results suggest some significant short-comings in stimulus-response analyses. 

 

Power 

In order to investigate the power characteristics of each test both the location ( ) and 

concentration ( ) of the alternative distribution were allowed to vary within the range specified 

above.  1000 repetitions for each combination  were performed in order to assess the 

observed power with regard to the underlying distributional differences at a level of .  

The obtained power estimates are detailed in Figure 2 below.  Local quadratic regression 

surfaces were fit for a smoothed estimation of the critical region and power differentials. 

 

[Figure 2 about here.] 
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Optimum power characteristics would correspond to a plot where power equates to 0.05 

(the α level) at the point where the alternative and reference distributions are equivalent (i.e. 

 and ) with power sharply increasing towards 1 as either location or concentration 

depart from this baseline. 

It is apparent that most tests performed reasonably under certain conditions.  Both von 

Mises based circular tests (Figure 2, panels 2 and 3) proved powerful under their respective 

constraints of homogeneity of location and concentration.  The univariate ANOVA (Figure 2, 

panels 4a and 4b) and Mann-Whitney U (Figure 2, panels 5a and 5b) tests yielded broadly 

comparable results.  The signed error results (Figure 2, panels 4a and 5a) were similar to those 

obtained from the von Mises location test (Figure 2, panel 2) at higher concentrations, 

indicating sensitivity to change in location but not to change in concentration when the data 

were typically distributed away from the boundary region.  However at lower concentrations 

the relative performance of the univariate tests degraded.  (The ‘J’ shape of the non-critical 

region is attributable to the asymmetry of extreme points being located at -165° and +180°.)  All 

analyses of unsigned errors (Figure 2, panels 4b and 5b) show undesirable power characteristics 

with ‘U’ shaped non-critical regions.  This is a feature of the destructive folding transformation 

whereby negative errors are mapped onto their positive counterparts.  This transformation 

jointly affects the mean and standard deviation of the transformed variable leading to this 

apparent anomaly.  Finally we note the poor characteristics and low levels of power obtained 

from the stimulus-response analyses (Figure 2, panels 6a and 6b); these are due primarily to 

wrapping of the response especially towards the extremes of the stimulus axis. 
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In contrast, the CoM MANOVA technique (Figure 2, panel 1) appeared to be sensitive to 

changes in location and/or concentration within the range of these comparisons, and was 

associated with a smaller non-critical region than any other test apart from the anticonservative 

stimulus-response analysis.  In the presence of confidence regarding homogeneity of location or 

concentration, specific tests did provide a slight improvement in power within the simulations 

explored.  The maximum power gain over the CoM test by von Mises location: +11%; von Mises 

concentration: +15%; signed-error ANOVA: +10%, unsigned error ANOVA: +8%; signed-error 

Mann-Whitney U: +10%; unsigned-error Mann-Whitney U: <+1%; stimulus-response ANOVA F 

test: +6%; and stimulus-response F statistic bootstrap: +2%.  However, these gains were not 

robust to departures from these respective assumptions of homogeneity and even maximal 

gains would typically provide little, if any, benefit once multiple testing corrections were made 

to allow for separate testing of change in location and concentration.  In most circumstances, 

unsigned error tests and stimulus-response analyses should be used with caution due to the 

peculiar and potentially misleading behaviour outlined above. 

 
b. Experimental data 

 
The data described in this section were collected as part of a study to assess the effect of 

a temporary unilateral conductive hearing loss on normally hearing listeners’ localisation ability, 

as well as to ascertain whether any immediate deficits in performance could be improved by 

training.  The listener was familiarised with the localisation task over three sessions prior to 

insertion of an earplug into the left ear.  Five subsequent testing sessions were carried out 

(once daily) with the earplug in place (Plug1 – Plug5), and one final session after plug removal.  

The subject was a 21-year old male with normal hearing (< 20 dB HL at 0.25, 0.5, 1, 2, 3, 4, 6 
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and 8 kHz). The experimental apparatus was a three-metre diameter, horizontal circular 

configuration of 24 numbered Bose Acoustimass cube loudspeakers situated in a sound- and 

echo-attenuated chamber.  The loudspeakers were evenly distributed at 15o intervals.  A BOSE 

Acoustimass bass unit was associated with each quadrant of six speakers to provide the low-

end output (< 300 Hz).  Stimuli were broadband pink noise bursts (100 ms duration with a 5 ms 

rise and fall time).  Stimulus amplitude was roved between 50 and 70 dB SPL from trial to trial in 

steps randomly determined by the presenting software.  A touch-screen, situated upon the 

listener’s lap, displayed a schematic representation of the speaker ring and was used to make 

responses.  The listener was required to indicate which of the loudspeakers produced the 

sound by touching the appropriate location on the screen.  Feedback was given throughout 

training.  The chosen loudspeaker location flashed green (correct) or red (incorrect). A session 

had 240 randomised trials. The full results of this study will be reported elsewhere.  Data for 

one listener from the Plug1 and Plug5 sessions are presented here solely for illustration.  

  

Results 

 

[Figure 3 about here.] 

 

The data are summarised in the stimulus-response plot in Figure 3.  In this case it is not 

appropriate to assume a consistent effect across different target locations, due to an 

anticipated decrement in performance for sounds presented from the load speakers located on 

the same (left) side as the earplug.  As a consequence, a simple two-sample comparison was 
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not performed.  Instead a two-way univariate ANOVA based on the signed error suggested a 

highly significant effect of loudspeaker location on performance (p<0.001) but a non-significant 

difference between performance on the two testing sessions (p=0.088).  If an interpretation 

were placed on the results of this analysis, the conclusion would be that there was no evidence 

of a systematic difference between training session.  However, when adopting the CoM 

approach (Using Wilks’ Λ) we obtained strong evidence for significant effects of both 

loudspeaker location and testing session (p<0.001 and p=0.005 respectively).  In this case the 

inferences based on the CoM method are stronger than those based on a simple signed-error 

analysis.  This may be symptomatic of the general gain in power noted above.  The data 

underlying this spatial analysis are summarised in Figure 4.  The improvement over sessions is a 

small one, but can clearly be seen to occur for sound sources in the posterior left-hand 

quadrant. 

 

[Figure 4 about here.] 

 

To illustrate one of the problems with direct statistical analysis of stimulus-response data, 

a regression model was fit to these data.  The model comprised session as a factor and target 

loudspeaker location as a covariate.  Where the target and response location were both coded 

as angular displacements (-165° through 180°), the session effect was found to be significant 

(p=0.027).  However, if both were coded as loudspeaker locations (1 through 24) then the 

session effect did not reach statistical significance (p=0.339).  This type of inconsistency is 

clearly highly undesirable. 
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V. Conclusion 

 
 

Examination of simulated data has illustrated difficulties with the implementation of a 

variety of common technique or analysing localisation data.  In particular, analysis of unsigned 

errors can lead to misleading conclusions, while signed error and stimulus-response analyses 

may suffer from problematic boundary effects.  Directional statistical theory provides solutions 

to these problems, although these can be more challenging to implement, especially with more 

complex experimental designs involving multiple participants, repeated testing sessions or 

different stimulus conditions. 

The CoM approach proposed in this paper is seen to be generally powerful, providing a 

robust and pragmatic solution to the exploration of such data.  In particular, where localising 

within an array of loudspeakers the underlying multivariate ANOVA methods provide a 

convenient method for separating out the effect of the loudspeaker location from other 

condition-specific effects.  Post-hoc methods can be used to investigate the nature of 

significant effects, such as front-back location effects or interactions.  Furthermore, CoM plots 

can be used to visualise the patterns of specific significant effects and to facilitate their 

interpretation.  They are complementary to the stimulus-response ‘bubble’ plots shown earlier.  

However, where the latter is particularly suited to visualisation alone the former directly relates 

to a robust statistical analysis of localisation performance. 
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Figure Captions 
 
Figure 1: Probability density functions (pdf) for three von Mises distributions. 
 
 
Figure 2: Observed power from two sample tests using 1: Centre of Mass MANOVA; 2: von Mises 

location test; 3: von Mises concentration test; 4a: signed error univariate ANOVA; 4b: unsigned 

error univariate ANOVA; 5a: signed error Mann-Whitney U; 5b: unsigned error Mann-Whitney 

U; 6a: stimulus-response ANOVA F test; and 6b: stimulus-response F-statistic bootstrap.  Lighter 

shading indicates lower power; darker shading indicates increased power.  The black contour 

line indicates the region within which results are consistent with the null hypothesis. This region 

is estimated from a local quadratic regression surface. 

 
Figure 3:  Bubble plot indicating the number of responses at each location for each target 

location, separately for plugged sessions 1 and 5, for 100 ms stimuli.  The bubble width indicates 

the number of trials. 

 
Figure 4:  CoM plot showing listener’s performance at plugged sessions 1 and 5. Each marker 

indicates the ‘centre of mass’ of all the responses made for a particular source location.  Radial 

movement is indicative of inaccuracy and tangential movement is indicative of error direction.  

Colours indicate the loud speaker and the responses associated with it. 
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Test  95% CI p-value 

Centre of Mass 0.0467 (0.043,0.051) 0.136 
von Mises (mean) 0.0526 (0.048,0.057) 0.242 
von Mises (concentration) 0.0524 (0.048,0.057) 0.281 
Univariate ANOVA    
 signed error 0.0521 (0.048,0.057) 0.347 
 unsigned error 0.0503 (0.046,0.055) 0.909 
Mann-Whitney U    
 signed error 0.0502 (0.046,0.055) 0.945 
 unsigned error 0.0500 (0.046,0.054) >0.999 
Stimulus-Response    
 ANOVA F test 0.1059 (0.100,0.112) <0.001 
 F statistic bootstrap 0.0637 (0.059,0.069) <0.001 

 
Table 1:  Type I Error control estimated from 10,000 simulations of two 100 observation sample 

tests drawn from  distributions.  p-values correspond to the null hypothesis . 

 
 

Table 1



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/heares/download.aspx?id=62041&guid=346b4566-e2da-4cb7-bce7-277c3b418698&scheme=1


Figure 2
Click here to download high resolution image

http://ees.elsevier.com/heares/download.aspx?id=62042&guid=2794dae7-c6be-434c-88b4-1c43bbce04b4&scheme=1


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/heares/download.aspx?id=62043&guid=9acbc47e-7a94-4cbd-bab5-bb372aadb30d&scheme=1


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/heares/download.aspx?id=62044&guid=11efc8a4-8ffd-4ead-a072-e2eb2128b83d&scheme=1


MRC Institute of Hearing Research  University Park  Nottingham  NG7 2RD  United Kingdom

tel: +44 (0) 115 922 3431  fax: +44 (0) 115 951 8503  www.ihr.mrc.ac.uk

25 March 2009

Dear Professor Rubel

Methodological article: A novel application of a centre of mass approach to the 
statistical analysis of localisation performance

Please find enclosed the above manuscript, which I hope you will consider for publication in 
Hearing Research.  The paper highlights some serious concerns relating to analysis methods 
commonly applied to localisation data collected within a 360° arena. It is common for such 
localisation studies to be analysed in terms of both accuracy and error magnitude.  Error 
analyses typically apply conventional statistical techniques to signed or unsigned errors or 
assess the relationship between target and response locations using linear regression 
techniques.  Both methods fail to account for the peculiar distributional properties of 
directional data. Here, we systematically validate a pragmatic spatial alternative (Centre of 
Mass approach) investigating the power characteristics of this method alongside a range of 
alternative techniques and applying the method to an illustrative example dataset.

Our conclusion is that this spatial method offers powerful, yet flexible, statistical analysis 
using standard multivariate analysis of variance (MANOVA). We hope that this statistical 
method will have broad application in the field of Hearing Research.

Yours sincerely

Mark Edmondson-Jones
Research Statistician
Direct line: +44 (0) 115 951 8508 + 219
E-mail: mark.edmondson-jones@ihr.mrc.ac.uk
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