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Abstract 

Structural equation modelling (SEM) of neuroimaging data is commonly applied to a network of 

distributed brain regions. We applied SEM to an fMRI dataset to identify condition-specific effects 

in a simple experiment composed of visual stimulation and baseline conditions.  The visual network 

was composed of three well-defined anatomical regions (V1, V2 and V5) and three path 

connections (V1→V2, V1→V5 and V2→V5).  This network was used to test four hypotheses: (1) 

whether the condition-specific effects for all three connections vary according to the data selected 

for modelling; (2) whether the ‘summary’ measures that are often used are indeed appropriate; (3) 

whether measures taken from the voxel timecourse can reliably predict the condition-specific 

effects for each one of the three path connections; (4) whether all voxels within an anatomical 

region yield equivalent SEM outcomes.  There was some variability in the significance of the 

condition-specific effects across randomly-selected voxels within regions. However, the SEM 

outcome from the ‘summary’ measures was comparable to the most frequent pattern of condition-

specific effects.  Magnitude, delay, spread and goodness-of-fit measures taken from a gamma fit to 

the voxel timecourses predicted reliably the significance of the SEM condition-specific effects for 

each connection.  This result enabled us to identify spatially coherent regions at the boundaries of 

V2 that displayed different condition-specific effects from those seen in the majority of the voxels. 

Although the generality of these results awaits further investigation, this example highlights a 

number of important issues for SEM. We have provided further evidence that the SEM outcome 

does vary somewhat according to the voxels selected and that, while the use of summary measures 

can give a generalised view of the connectivity pattern, they could fail to capture functional 

differences within specialised areas. 

 

Keywords: fMRI; summary measures; effective connectivity; functional heterogeneity.  
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Introduction 

 

Multivariate statistical modelling has been applied to neuroimaging data to examine the dynamic 

functional organisation of the human brain (Grafton et al. 1994; McIntosh and Gonzalez-Lima, 

1994; Büchel and Friston, 1997; Jennings et al., 1998; Köhler et al., 1998; Büchel et al., 1999; 

McIntosh et al., 1998; Fletcher et al., 1999; Bullmore et al., 2000; Della-Maggiore et al., 2000; 

Gonçalves et al., 2001, Mechelli et al., 2002). Structural equation modelling (SEM) is such a 

technique that examines covariances between a network of observed and latent dependent variables. 

When applied to neural systems, the logic of SEM is that brain function is the result of changes in 

the covariances of activity among different regions that are anatomically interconnected. The 

pattern of covariances between brain areas is held to be due to common influences and/or the direct 

anatomical connections between them (McIntosh and Gonzalez-Lima, 1994). SEM is best used in a 

highly constrained way, typically exploring the cortico-cortical connections between a network of 

brain regions whose anatomy is explicitly defined by a model. In so far as one brain region may 

influence the signal within another region, the relationship between regions can be quantified as a 

covariance. SEM further posits that interactions between regions specified by a model can be 

detected by examining the covariances of the measured functional signal within the brain (McIntosh 

and Gonzalez-Lima, 1994). SEM is a powerful statistical technique for neuroscientists because it 

can determine the significance of condition-specific effects on brain connectivity from the estimates 

of the path connections in each experimental condition.  

 Voxels within an anatomical region should lead to similar SEM results, since they are 

assumed to reflect neuronal tissue that is executing a common cognitive function. Thus, an 

important issue for SEM methodology is the criterion for data selection. With respect to brain data 

acquired using functional magnetic resonance imaging (fMRI) and positron emission tomography 

(PET), different authors have employed different approaches to selection. Some authors identify an 
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individual voxel within each region to represent the activity within that region. This voxel can be 

the one with the greatest statistical value, known as the peak voxel of activation, determined by 

contrasting the experimental conditions (Jennings et al, 1998; Gonçalves et al., 2001). Alternatively, 

the peak voxel within each region may be determined by a partial least squares analysis in which a 

‘seed’ voxel in a key brain region is used as a covariate in a general linear model to identify those 

voxels in other brain regions of which the time courses are significantly correlated with the ‘seed’ 

voxel (Horwitz et al., 1995; McIntosh et al., 1998; Della-Maggiore et al., 2000).  Other authors 

select a subset of voxels within each activated brain region. Here, input to the SEM may be the first 

eigenvariate (from a principal component analysis) of the activity in this group of voxels (Grafton et 

al. 1994; Büchel and Friston, 1997; Fletcher et al., 1999; Büchel et al, 1999; Bullmore et al., 2000; 

Honey et al., 2002, Mechelli et al., 2002), or it may be a simple average of those voxels (Köhler et 

al., 1998). If the image data are spatially smoothed by a broad smoothing function and/or the subset 

of voxels is small in number, then these measures may not materially differ from the peak voxel. 

All of the methods listed for data selection share the assumption that the observed variable provides 

a reliable and representative summary of the activity within each brain region. To be generalisable, 

the overall results given by the SEM, such as the fit of the data to the model and the significance of 

the condition-specific effects on the path connections, should be consistent between data selection 

methods. The SEM results derived from ‘summary’ variables are only representative if they 

successfully characterise the majority of results derived using voxels that are randomly-selected 

within the brain regions. It is well-known that the shape of the stimulus-evoked response varies 

spatially both within and across brain regions (Lange and Zeger, 1997). If this voxel variation has a 

functional basis, then the response shape of those selected voxels may influence the pattern of 

covariance between them, and hence the SEM outcome. If a subset of voxels within a region does 

not behave in the same way as the majority of the voxels in respect to the SEM results, this may 

imply the presence of functional differences within the regions.  Functional subdivisions may be 

particularly compelling if these voxels are spatially contiguous. 
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In this paper, we investigate the effect of the fMRI data selection criterion on the reliability and 

representativeness of the SEM outcomes for a sample dataset. First, we quantify differences in  the 

condition-specific effects on the path coefficients across a large random sample of voxel datasets; 

regional heterogeneity. Second, we evaluate whether the ‘summary’ measures often used do indeed 

correspond to the majority of the results yielded by these randomly selected voxels.  Third, using a 

generalised linear modelling (GLM) procedure, we also assess whether measures of the timecourse 

of voxel activation contribute significantly to differences in the condition-specific effect. Such 

measures include the delay, magnitude and duration (spread) of the response. Finally, we identify 

voxels that yield SEM results differing from the majority of voxels within a selected brain area to 

determine the spatial pattern of potential regional heterogeneity. 

 

Materials and Methods 

 

FMRI scanning 

Details of the fMRI experiment have been reported in Hall et al. (2002). In summary, a single male 

volunteer participated in the experiment. He was aged 29, had no history of neurological, hearing or 

visual impairments and gave informed written consent. MR scanning was carried out using a Varian 

3 Tesla system equipped with a fast head gradient coil insert for echo-planar imaging.  A scan of 20 

T2*-weighted oblique axial brain images was acquired every 2.5 s, with a 64 by 64 image matrix, a 

field of view of 22.4 cm, a TE of 30 ms and a flip angle of 90°.  The in-plane voxel resolution was 

3.5 x 3.5 mm, and the slice thickness was 6 mm.  For registration with the volunteer’s own brain 

anatomy, a 50-slice, T1-weighted structural brain image was obtained at a voxel resolution of 1 x 1 

x 3 mm.  

Visual stimuli were projected onto a screen placed at the end of the scanner bed and viewed 

using prism goggles.  The visual stimulus was a blue and yellow checkerboard in which the colours 
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were reversed at a rate of 6.7 Hz.  This stimulus was presented for 900 ms and occurred within the 

period of every 9th scan (i.e. approximately every 22.5 s).  Within that period, it could occur at any 

of 5 different stimulus onset asynchrony values (250, 750, 1250, 1750 and 2250 ms) with respect to 

the image acquisition.  Thus, we were able to reconstruct the time course of the response to the 

stimulation across a 22.5 s time window with an effective temporal resolution of 500 ms.  A total of 

695 sets of images were acquired giving 14 data samples for each time point in this window. For an 

estimation of the baseline signal, 39 sets of images were acquired at the start of the functional 

imaging run and 16 sets of images at the end.  

 

Image Analysis 

The fMRI data were analysed using SPM99 software (http://www.fil. ion.ucl.ac.uk/spm).  Each set 

of brain images was slice-time corrected to the central 10th  slice and corrected for 3-D head 

movement.  The functional images were normalised into the MNI (Montreal Neurological Institute) 

brain space using the structural image as a reference.  For the purpose of other analysis, not reported 

here, which required a small final voxel size, normalised images were resampled to 0.8 x 1.0 x 1.9 

mm resolution using bi-linear interpolation and the image time series was not spatially or 

temporally smoothed.  Variations in mean global signal intensity were not removed, due to the 

danger of producing spurious local changes in the direction opposite to any change in global signal.  

However, to remove aliased respiratory and cardiac effects and other cyclical variations in signal 

intensity, low-frequency noise was removed using a 0.02 Hz high-pass filter. 

An event-related analysis was performed on these data to determine the pattern of visual-evoked 

activation.  The response to each visual event was modelled using a synthetic haemodynamic 

response function composed of two gamma functions with fixed parameters (to model the 

haemodynamic response with a slight undershoot) and their temporal derivatives (Josephs et al., 

1997).  The inclusion of derivatives allowed for some latitude in differential response latencies 
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across voxels.  The T contrast for the response and its temporal derivative was computed at a highly 

conservative threshold of T645  > 10. 

Widespread activation was observed in the occipital cortex including striate (BA 17), parastriate 

(BA 18) and peristriate (BA 19) cortex.  Functionally, this area of activation includes the primary 

visual region, V1, and non-primary visual regions, V2 and V5.  V5 is typically activated by visual 

motion; and probably here by the dynamic nature of the stimulus.  The activation was overlaid onto 

the corresponding normalised anatomical brain image. Activation was found in both hemispheres in 

all three visual regions, but for simplicity, we modelled this network for the left hemisphere only. 

Using anatomical landmarks such as the lingual gyrus and the calcarine sulcus, aided by peak co-

ordinates cited in other studies (Büchel and Friston, 1997; Amunts et al., 2000; Sunaert et al., 2000; 

Kastner et al., 2001), we defined regions of activation in the left hemisphere for V1, V2 and V5. 

The boundaries of these regions are shown in Figure 1. On the left, V1 activation encompassed 

2,821 resampled voxels, V2 contained 7,892 voxels and V5 contained 2,688 voxels.  

 

**Figure 1**  

 

Structural Equation Modelling 

Before we could use the voxels in a full SEM analysis, to make inferences about condition-specific 

effects on the path coefficients, we first need to define which sections of the voxel time series best 

represent the response to the stimulus and to the baseline conditions.  To do this, we used the 

reconstructed time course of the response to the visual checkerboard stimulus across the 22 s time 

window. The 45 time points within this experimental cycle were categorised into stimulus, 

undershoot and baseline intervals (Figure 2). The first 22 time points (0 to 10.5 s) were classified as 

the stimulation interval and the last 15 time points (15 to and 22 s) were classified as the baseline 

interval. The central 8 time points (11 to 14.5 s) were classified as the undershoot interval and were 
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excluded from any further SEM analysis.  These selected interval durations may not be ideal for all 

voxels (e.g. Figure 2 for baseline), but appeared to be reasonable for a majority of voxels. Indeed, 

prior analysis (reported in Figure 3, Hall et al., 2002) revealed that voxels activated during this 

paradigm had response delays between 3 and 7 s, thus spanning the stimulation interval defined 

here. The initial set of 39 images and the last 16 sets of images in the time series were defined as 

baseline. Thus, the number of data points for each voxel in the SEM was 308 for the stimulation 

condition and 265 for the baseline condition. 

 

** Figure 2 **  

 

We defined a network between the three activated visual regions (V1, V2 and V5). Anatomical and 

functional evidence indicates that V1 and V2 segregate the visual information and parcellate out the 

different signals to different specialised areas (Zeki, 1993). V1 and V2 are therefore strongly inter-

connected and both project to V5. Thus, for the application of SEM, the three areas were linked by 

three connections (V1→V2, V1→V5 and V2→V5) (Figure 1).  For parsimony, we do not model 

feedback connections. The network is not intended to be a realistic model of the visual system, but 

is a heuristic tool to explore methodological considerations in the application of SEM to fMRI data. 

We expect from this network that the link between V1→V2 will be particularly affected by visual 

stimulation, hence we expect a significant condition-specific effect in V1→V2.  To investigate this 

hypothesis, we implemented SEM using a stacked modelling approach described previously 

(Gonçalves et al., 2001). Here, one level in the stack represented the data for the visual stimulation 

condition and the other level represented the data for the baseline condition (see Figure 1).  Latent 

variables were applied to the mean adjusted time course of the voxel-based data. For the observed 

variables, the error term was fixed at 50% of the total variance. The value of the error term 

determines how much of the variance in the data is to be explained by the model. Given that 
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variance within a region is unlikely to be accounted for by the connections with the other regions in 

the model, it should be greater than zero (see McIntosh and Gonzalez-Lima, 1994). Generally, the 

value of the residual variance ranges from 35-80%. In Gonçalves et al. (2001), we tested four 

different error values (30%, 40%, 50% and 80%), but found no meaningful changes in the 

goodness-of-fit of the models or in the path coefficients relative to the 50% value. Thus, in the 

present SEM, we again fixed the error term at 50 %. The error terms for the latent variables were 

left unconstrained since there were enough degrees of freedom in the SEM model to estimate them. 

We considered two outputs from the SEM; i) the chi-square (χ2) value, indicating how well the 

model fitted the observed variance-covariance structure in the dataset, and ii) the path coefficients, 

indicating how strongly one brain region influenced another. The path coefficients were estimated 

using bootstrapping methods which defined 95% confidence intervals for the path coefficients (see 

Gonçalves et al., 2001). In our stacked model, the path coefficients could differ between stimulation 

and baseline conditions. To assess the presence of any condition-specific effect on the path 

coefficients, we computed a chi-square difference (χ2
diff) for every path connection modelled. The 

χ2
diff  represents the difference in the χ2 value between two types of SEM models, a constrained 

model and an unconstrained model.  In the constrained SEM model, the path coefficients for the 

path connection being tested were forced to be equal across both levels. The χ2 value for the 

constrained model indicates how good the model is when one constraint of equality is placed in the 

path connection of interest.  In the unconstrained SEM model, all three path connections were 

allowed to have different path coefficients across the two levels. This model, in our case, was 

saturated, i.e. it had zero degrees of freedom, and so the fit of the model to the data was perfect, 

hence χ2 = 0.  A χ2
diff exceeding the value 3.841 (equivalent to P<0.05) indicates that the strength of 

the corresponding connection significantly differs between the stimulus and baseline conditions. 

Thus, for example, to assess the condition-specific effect on the connection V1→V2, we calculated 

the χ2
diff between the constrained SEM in which V1→V2 was the same across conditions and the 

unconstrained model in which V1→V2 differed across conditions. This procedure was repeated for 
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the connections V1→V5 and V2→V5; hence, yielding three χ2
diff values (χ2

diff V1→V2, χ2
diff V1→V5 

and χ2
diff V2→V5, respectively). 

 

Predicting the pattern of connectivity from measures of the voxel time course  

Gamma fitting We wished to determine whether the characteristics of the time course of the 

selected voxels exert a predictable influence on the outcome of the SEM, for example, in terms of 

the stimulus-dependent effects defined by χ2
diff V1→V2, χ2

diff V1→V5 and χ2
diff V2→V5.  In the present 

experiment, the shape of the response, ignoring the undershoot, approximates to a gamma curve 

(see Figure 2). Thus, measures were taken from a gamma fit to the average time course for each of 

the selected individual voxels using the procedure described by Hall et al. (2002).  Four measures 

were taken for each voxel from its best gamma curve fit; i) magnitude (the area under the positive 

portion of the fitted curve), ii) delay (the time in seconds, after stimulus onset, to the mean of the 

fitted response), iii) spread (the temporal width of the gamma function), and iv) the goodness-of-fit 

(the fit of the gamma to the average time course, where a low value represents a good fit).  

 

Generalised Linear Model To test whether the magnitude, delay, spread and goodness of fit  

response measures contribute significantly to differences in the condition-specific connectivity, we 

used a GLM to model the relationship between the response measures and the χ2
diff. A traditional 

linear regression model is not appropriate in this context because the χ2
diff data are not normally 

distributed (χ2
diff take only positive values). The GLM extends the traditional linear regression 

model, so that it is applicable to a wider range of problems. A GLM consists of a link function, 

which applies a data transformation within the model, and the choice of the link function is 

dependent on the distribution of the data modelled.  The general formula of a GLM is: 
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where g is the link function, E(Y) is the expected value or mean of the dependent variable (Y), x are 

the covariates of interest and β are the estimated parameters.  The χ2 data for the differences is 

gamma distributed since it is skewed to the right and the natural link function for the gamma 

distribution is the reciprocal (g(x) = 1/x) (McCullagh and Nelder, 1983).  However, in this 

particular case, we chose to use the log link function since it achieved better fitting and stable 

models.  The GLM for modelling the χ2
diff at each connection was defined as, 
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For each GLM, we determined the voxel measures that best predicted the χ2 
diff using a backward 

stepwise approach.  To yield GLM parameter estimates of a comparable range for the four voxel 

measures we standardised the response measures to have mean equal to zero and standard deviation 

equal to 1.  The first model iteration included all four response measures (magnitude, delay, spread 

and goodness-of-fit) plus the square of magnitudes and delays, and the product of magnitude and 

delay for the three voxels in V1, V2 and V5 to account for any non-linear structure in the model.  

The first iteration had 21 covariates in total. The least significant covariates were eliminated 

sequentially until all the covariates in the GLM had a P<0.2. 

 

Voxel selection 
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Individual-voxel datasets To determine whether the outcomes of SEM were dependent upon the 

voxels selected within each region, and to derive the optimal set of covariates for each GLM, 120 

voxels were selected at random within each region of V1, V2 and V5 (for voxel information and 

location consult http://www.ihr.mrc.ac.uk/caf/loctable.pdf). These voxel datasets were used to 

generate 120 three-way datasets representing different examples of the network for modelling. For 

each dataset, the observed χ2
diff were computed from the SEM and the corresponding predicted χ2

diff 

were computed from the GLM. 

 

Summary datasets In order to compare the SEM outcomes for the individual randomly-selected 

voxel datasets with those for ‘summary’ measures, we computed three commonly-used summary 

measures for the signal in each region, the peak voxel, the first eigenvariate and the simple average. 

The voxel with the highest T value defined the peak voxel for each region. Voxels located within a 

5 mm radius of each peak were then used to calculate the first eigenvariate and the simple average.  

The 5 mm radius yielded 348 voxels for V1, 324 for V2 and 297 for V5.  

 

Additional datasets for testing the GLM Clearly, the forecasting accuracy of the GLMs would be 

over-estimated if the GLMs were tested using the same datasets that had been used for their 

derivation.  Therefore, to test the predictive power of each GLM, we compared the observed and 

predicted χ2
diff values for additional datasets. The test set comprised 12 randomly-selected 

individual-voxel datasets; 10% of the size of the original 120 datasets.  The general predictive 

power of the GLMs was judged according to whether or not they successfully classified both 

significant and non-significant condition-specific effects, rather than whether or not they produced 

the correct absolute χ2
diff value.  

http://www.ihr.mrc.ac.uk/caf/loctable.pdf
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Thus, in total, we applied SEM to 135 datasets: 120 randomly-selected individual-voxel datasets, 

the peak, the first eigenvariate, the simple average and the 12 randomly-selected individual-voxel 

test sets. 

 

Functional differences within specialised areas 

The logic outlined in the Introduction posited that if a region of interest is functionally homogenous, 

then the significance of the condition-specific effects for the path connections should be consistent, 

irrespective of which voxels within that region are sampled for the SEM. The consistency of the 

SEM observed χ2
diff for the 120 individual-voxel datasets from this subject is one test of this 

assumption. A further test of the assumption can be made using the GLM predicted χ2
diff. This 

second test is arguably the more exhaustive of the two. The GLM approach is much more 

economical in computational terms, and so we can select each and every voxel within a region for 

modelling, rather than use a restricted sample as would be the case for SEM.  Furthermore, models 

used to generate the GLM predicted χ2
diff will always converge, since they rely solely on voxel 

measures to attain a result.  

To exemplify the approach, we fixed the data representing regions V1 and V5 by using the voxel 

response measures for the peak voxel in each region. Fixing the voxels in V1 and V5 facilitated the 

graphical representation of the role of V2, by simply generating two maps to illustrate condition-

specificity of the links between V1→V2 and V2→V5 respectively.  We then computed GLM 

outcomes using response measures for every one of the 7892 voxels within the third region, V2.  

This enabled us to assess how the condition-specific effects vary in V2 when it is mapped onto one 

voxel from V1 or V5. Given that we varied the data for V2, our assessment focused on the predicted 

χ2 
diff for the two connections that involved V2 (V1→V2 and V2→V5). We chose to vary V2 

because this area played the greatest role in the SEM (see Results). For each GLM, the predicted χ2 

diff values were dichotomised (≥ or < 3.841). The distribution of predicted outcomes can be 
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displayed as a spatial map to assess whether voxels within V2 behave differently from the 

representative peak voxel and if so, whether these are spatially co-localised.  

 

Results 

 

120 individual-voxel datasets The SEM for 11 of the 120 datasets did not successfully converge 

after 500 iterations and were eliminated from further analysis.  Of the remaining 109 datasets, the 

unconstrained model gave a wide range of absolute values of the path coefficients for each 

connection (see Figure 3).  However, the main focus of interest for this paper is on the significance 

of the positive difference between the stimulation and baseline condition (condition-specific effect 

where stimulation is greater than baseline), rather than on the absolute value of the path coefficient. 

The models also differed in terms of whether or not a connection showed a significant condition-

specific effect (also illustrated in Figure 3). For V1→V2, 66% (72/109) of the models indicated a 

significant effect of stimulus on the strength of this connection. 27% (29/109) of the models had a 

significant stimulus-specific effect for V1→V5 and 17% (19/109) of the models showed a 

significant stimulus-specific effect for V2→V5.  Two models for V1→V5 and four models for 

V2→V5 showed a significant baseline-specific effect.  All other models showed non-significant 

condition-specific effects. 

 

** Figure 3 ** 

 

The response measures derived from the gamma curve fits to the data for all 120 datasets are 

summarised in Table 1. Across regions, there were some marked differences. The average voxel 

magnitude and spread were significantly lower in V5 than in V1 and V2 (P < 0.001 and P < 0.05, 
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respectively). The average voxel delay was significantly shorter in V5 than in V1 (P < 0.05), but not 

shorter than that in V2 (P > 0.05). The gamma curve fits to the responses in V5 were significantly 

worse than to those in both V1 and V2 (P < 0.001).  

 

** Table 1** 

 

Summary datasets The SEM model failed to converge for the first eigenvariate dataset because the 

variance of each eigenvariate was very close to zero. The implications of this finding are considered 

in the Discussion. The SEM model for the peak voxels converged after 12 iterations.  The path 

coefficients for all three connections fell within the range of the initial 120 datasets and their values 

are reported in Figure 3. V1→V2 showed a significant stimulus-specific effect (χ2
diff = 18.79, P < 

0.001). Condition-specific effects were absent for V1→V5 and V2→V5 (χ2
diff = 0.61, P = 0.43 and 

χ2
diff = 0.24, P = 0.63 respectively).  The response measures derived from the gamma curves fitted 

to the data for the peak voxel are summarised in Table 1. The SEM for the average of the 5mm 

radius sphere around the peaks was equivalent to that of the peak voxel (Figure 3). 

In summary, SEM outcomes for both the peak voxels and the average around the peak were 

consistent with the general outcome of the SEM results from the individual-voxel datasets with 

respect to the presence of a stimulus-specific effect on the V1→V2 connection.  

 

Additional 12 individual-voxel datasets for testing the GLM The SEM for one of the 12 test sets did 

not successfully converge and was eliminated from further analysis.  Figure 3 shows the range of 

the path coefficients and the significance of the condition-specific effects on the network 

connections for the test set. For V1→V2 path coefficients were within the range shown by the 

initial dataset for the connection (Figure 3).  However, for V1→V5, one of the additional datasets 
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had stimulus and baseline coefficients that exceeded those in the initial 120 dataset.  In addition, for 

V2→V5 two of the additional datasets had stimulus and baseline coefficients that were lower than 

those in the initial 120 datasets. Again, a high proportion of datasets revealed a significant stimulus-

specific effect for V1→V2 (82%).  For the other two connections, a significant stimulus-specific 

effect was present for only 9% of V1→V5 connections and for 27% of V2→V5 connections. 

The gamma fit measures for the 12 test sets were not significantly different to those for the 120 

datasets for both V1 and V2 (Table 1). However, in V5, the average magnitude was statistically 

smaller (P < 0.05) for the 12 test sets.  

  

Generalised Linear Model Each GLM, derived from the 120 individual-voxel datasets, described 

which set of response measures best predicted the estimate for χ2
diff V1→V2, χ2

diff V1→V5 and χ2
diff 

V2→V5 respectively.  Each GLM model had 6 covariates, whose significance was P < 0.2, although 

not all the same covariates reached significance across the three models. The covariates used in 

each model are reported in Table 2. The response measures that most contribute to the final GLMs 

(13 out of the total of 18 covariates) are the magnitude and delay.  A greater number of the 

measures from V2 reached statistical significance (P < 0.2) than from V1 and V5, indicating a 

larger role for V2 in the visual network.  

 

** Table 2 ** 

 

For comparison between predicted and observed χ2
diff, we used the inverse link function to linearize 

the predicted χ2
diff from the GLMs.  Figure 4 shows the plots of the observed values for the χ2

diff 

V1→V2, χ2
diff V1→V5 and χ2

diff V2→V5 against the GLM predicted values. For χ2
diff V1→V2, the GLM 

model correctly identified the significant and non-significant path differences in 80% of the 109 
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different connections.  For χ2 
diff V1→V5 and χ2 

diff V2→V5, the GLM correctly identified 73% and 79% 

respectively. The predictive power of the GLM was evaluated using the 11 test sets. The GLM 

correctly identified significant and non-significant χ2 
diff values in 9/11 (82%) cases for V1→V2, all 

11 cases for V1→V5 (100%) and 7/11 (64%) cases for V2→V5 (Figure 4).  Thus, these data 

suggest that the gamma measures used in the GLM can reliably predict which voxels within a 

region will yield significant condition-specific effects in the SEM.  

 

** Figure 4 **  

 

Functional differences within specialised areas 

Figure 5 shows axial views of V2 indicating voxels that behave differently from the representative 

peak voxel with V1 and V5 fixed, for V1→V2 and V2→V5 connections.  For the connection that 

projects from V1 to V2, the red voxels along the borders differed in their behaviour in that they 

showed a non-significant effect of stimulus condition (Figure 5A).  For V2→V5, voxels in blue 

along the edge (slices z = 11 and 13 mm) were the only ones to show a significant condition-

specific effect (Figure 5B). Thus, we were able to identify sub-regions within V2 in which the 

V1→V2 and V2→V5 connections displayed different condition-specific effects from the region as 

a whole. 

 

** Figure 5 ** 

 

Discussion 

Although the precise nature of the voxel influences on the SEM outcome await further investigation 

using additional datasets, the example reported here is important in highlighting a number of issues 
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in the connectivity modelling of fMRI data. In this paper we used data from a single subject to test 

four important hypotheses concerning the application of SEM to fMRI data.  First, we demonstrated 

a wide variability in the path strengths for both stimulation and baseline conditions for 120 

randomly selected datasets and showed that the SEM outcome does vary somewhat according to the 

voxels selected. Nevertheless, a majority of the voxel datasets provided consistent condition-

specific effects in terms of significance level.  Second, the significance of the condition-specific 

effects from the summary measures (peak and average) were consistent with the majority of the 120 

randomly-selected voxels.  This finding indicates that commonly used voxel summaries are 

acceptable ways of summarising the overall information, but do risk missing any functional 

heterogeneity.  Third, in this example we have shown that characteristics of the voxel time course 

(especially magnitude, delay and spread) contribute significantly to the determination of whether or 

not a condition-specific effect is present in the SEM. Finally, we have demonstrated that SEM can 

be used to explore functional  heterogeneity within an anatomical area.  To illustrate this point, we 

showed that in V2 there were localised subregions at the boundaries of the region where the 

condition-specific effect behaved differently from that for the majority of the voxels.  

 

Contribution of timecourse measures to SEM 

The predictive power of the three GLM models provides evidence of the usefulness of the 

information within the voxel time course to determine the significance of the condition-specific 

effects in the SEM. Hence, this approach has the potential to be a useful tool to aid voxel selection. 

One caveat however, is that those measures contributing the most to the GLM may vary across path 

connections, and probably also across subjects and different anatomical models. The general value 

gained by using timecourse measures to inform the SEM requires further investigation. The 

significance of the condition-specific effect is likely to be determined by the data in the stimulus 

rather than the baseline condition, since the magnitude, delay and spread measures only correspond 

to the stimulus condition.  Thus, it is important that there be a clear distinction between the 



 19 

measures for each experimental condition, plus a good signal-to-noise ratio, or the ‘true’ condition-

specific effects may be wrongly estimated.  In the GLM model, we included  an additional measure 

(the goodness of fit of the gamma curve to the averaged time course) to control for the poorly fitting 

curves, since these curves will generate less reliable estimators of magnitude, delay and spread.  

Additionally, the strong relationship between the voxel time course measures and the condition-

specific effects can be used as a tool to efficiently and robustly select sets of voxels that behave 

similarly within an anatomical region. Other statistical tools, such as independent component 

analysis (McKeown et al., 1998), may carry out such discrimination more efficiently, but the main 

advantage of the GLM approach is that it also enables us to discriminate time courses which, 

despite being dissimilar in their characteristics, achieve similar condition-specific effects in the 

SEM.  However, the success of the GLM approach described here is dependent upon the quality of 

the gamma curve fit to the imaging data. Here the  experiment was carried out with the specific 

purpose of extracting reliable and robust estimates of the time course measures.  The fine temporal 

resolution of 500 ms and the 14 data values for each time point allowed us to fit gamma curves 

reliably and obtain quality estimators of the time course.  In many experimental designs, it is 

unlikely that such measures from the time course could be estimated as reliably. 

In the present study, we used the GLM with gamma errors to identify which measures were able to 

predict the significance of the χ2 
diff values.  However, other modelling strategies could have been 

used. One popular approach is the logistic regression (which is the same GLM with binomial 

errors). The logistic regression may seem more intuitive, since we were mainly interested in the 

dichotomy between the significant and non-significant condition-specific effects. However, we 

chose to use a more generalised approach to incorporate all the information contained in the χ2 

values. Manifestly, a χ2 value of 18 reveals a much more significant condition-specific effect than a 

χ2 value of 4; in the logistic regression model we would have coded both as one, losing important 

information within the modelling process.  This loss of information from logistic regression would 

have compromised the robustness and, consequently, the predictive power of the model. 
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Appropriateness of summary measures 

We have shown that both the peak voxel and the average of nearby voxels around the peak voxel 

are reliable summary measures of the condition-specific effects between areas.  The significance 

values of the condition-specific effects for both datasets were in agreement with the majority of the 

results from the 120 individual-voxel datasets and, most importantly, they were in agreement with 

the a priori expectation that the visual areas V1 and V2 are strongly connected and show a large 

effect of the visual stimulus. Despite good agreement in terms of  the significance of the effect, the 

strength of the path coefficients encompassed a broad range for both stimulus and baseline 

conditions. However, in SEM, the principal concern is whether or not the path coefficients show a 

change across conditions, rather than what is their absolute value (McIntosh and Gonzalez-Lima, 

1994). 

These findings appear to indicate that voxel selection within the visual cortex is not a major issue 

when applying the data to SEM. However, this indifference should not be overstated.  If voxels are 

arbitrarily selected, there is a risk of choosing  false-negative voxels (i.e. voxels in which the SEM 

outcome shows no significant condition-specific effect when there really is one). The risk of false-

negatives may be even greater in brain regions beyond the visual cortex.  In our experience, the 

visual cortex is strongly responsive in fMRI studies and generates an MR response that has a high 

signal-to-noise ratio. For brain regions that have poorer signal-to-noise ratio characteristics, the 

differences between experimental conditions will be blurred. As a consequence, the correlation 

structure will increasingly depend on the background activity (noise) than on the stimulus-induced 

signal. In addition, areas in which the anatomical and/or functional borders are ill-defined may 

generate inconsistencies in SEM outcome, since the SEM reported here provided divergent results 

close to the border of V2. This last point could also pose a problem for generalisation when a 

network of connectivity is postulated to be the same across a group of subjects (Gonçalves et al., 

2001).  In our experiment, we present data for one subject and the brain regions selected were 
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relatively large and well-defined, so the effects of precise boundary location on the summary 

measure will be minimal. However, with smaller brain regions or with those whose borders are not 

distinct, the boundaries will have a larger influence on the overall behaviour of a region and may 

consequently contaminate the summary measures.  Moreover, if one region in a network is very 

small, relative to the voxel size, data smoothing may confound the true effect of a region by 

including a contribution from other surrounding regions. All these reasons justify exercising careful 

control for the effects of voxel selection and subject differences when modelling any brain network. 

While the peak of activation and the average of nearby voxels around the peak were successful 

measures for use in SEM, the first eigenvariate measure did not produce a converging model. The 

first eigenvariate was obtained using the SPM99 singular value decomposition approach. In singular 

value decomposition, the variance of the eigenvariate is scaled to be 1/(n-1), where n is the number 

of points in the time series. In our SEM time series where there were 573 data points, the variance 

value for the observed variables was close to zero. The low variance created a series of convergence 

problems in the SEM, arising because our model specified both observed and latent variables. The 

advantage of the latent variable approach is that one can control for measurement error but, for this 

control to be efficient, the true variance structure needs to be maintained.  If the observed variables 

have a variance that is close to zero, then it is likely that the error term of the latent variables 

becomes negative (this is known as Heywood cases).  Since the error term of the latent variable 

represents its variance, it cannot take a negative value, and hence the model does not converge. 

Most authors who apply connectivity modelling to neuroimaging data use only observed (and not 

latent) variables in a path analysis technique (Grafton et al. 1994; Büchel and Friston, 1997; 

Fletcher et al., 1999; Büchel et al., 1999; Bullmore et al., 2000; Honey et al., 2002, Mechelli et al., 

2002). Therefore, the scaling of the variance of the first eigenvariate poses no problem for model 

convergence, since only the correlation structure between the observed variables is of interest and 

no measurement error is taken into account. 
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A commonly used solution to the low variance problem when using the latent variable modelling 

approach is to set the error of the observed variables to zero, instead of 50% (Dillon et al. 1987).  It 

has been shown that fixing the error to zero is adequate if the cause of the negative variance is 

induced by sampling fluctuations (Dillon et al. 1987). However, this procedure suffers from a 

number of drawbacks in that the maximum likelihood theory has not been proven to be valid at 

boundary minima and setting the negative error to zero results in the observed variables having no 

measurement error, which is unlikely in fMRI. An alternative solution is to re-scale the 

eigenvariates, by regressing the average time series on the first eigenvariate and then scale the 

eigenvariate by the slope of this regression (Lawley and Maxwell, 1971).  We have implemented 

both these methods and both successfully eliminated the negative variance problems, enabling the 

SEM to converge.  The results of the SEM again revealed a single significant condition-specific 

effect for V1→V2 (P<0.001). Similar path strengths to those for the peak voxel and the average 

analyses were also obtained. 

 

Functional homogeneity 

The somewhat variable SEM outcome for the 120 randomly selected datasets, may indicate some 

functional heterogeneity within a region. The variability within a region may be random or 

systematic.  If the variability is random, the voxels in which the condition-specific effects are 

different from the majority are more likely to be scattered throughout the region.  Alternatively, if 

the variability is systematic, these voxels are more likely to be spatially coherent.  For the single 

subject reported here, we showed that this variability was indeed systematic because the differences 

occurred only along the edges of the brain region tested (V2). For simplicity, we reported only one 

view of a multi-dimensional problem because the map displaying the condition-specific effects is 

dependent on the voxel selection within the fixed regions.  In the example reported, we fixed the 

voxels in V1 and V5 to be the peak of activation, and then measured the effects across all voxels in 

V2.  A change in the selected voxels within either V1 or V5 will influence the outcome of the SEM, 
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thus changing the map of V2. Nevertheless, if the peak voxel is an appropriate summary measure 

for SEM, then the technique that we have described may be informative for data exploration. We 

speculate that SEM may be a useful technique for identifying functional subdivisions within a 

priori anatomically-defined regions, particularly when testing hypothesis for networks where little 

is know about their function. The visual cortex perhaps presents a special case where its functional 

organisation is well established. Retinotopic mapping has demonstrated a reliable relationship 

between the cortical surface and the visual field whereby mapping responses to the eccentricity and 

polar angle of a visual stimulus can be used to delineate functional boundaries between visual fields 

(see Warnking et al., 2002 for a review of the retinotopic mapping technique). A greater degree of 

uniformity in terms of the SEM outcome for different selected voxels might be achieved if the 

visual regions were defined using these functional criteria, although this proposition awaits 

investigation.  

 

Conclusion 

This example has demonstrated that aspects of connectivity obtained from SEM can be reliably 

predicted using measures from the voxel time course such as magnitude, delay and spread.  The use 

of the peak of activation voxel to model the network in SEM gives consistent results with the most 

other voxel selection strategies. However, in regions where voxel response characteristics are highly 

variable, problems of homogeneity will occur, interpretable as localised functional subdivisions. 

Consequently, SEM may be a useful technique for identifying functional differences within 

specialised areas. 
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Gamma Measures Initial 120 individual-

voxel datasets  

Peak Voxel Additional 12 datasets 

for testing the GLM  

V1    

 Magnitude 1697.43 (1602.35 ; 1792.51) 2462.95 1699.62 (1302.86 ; 2036.38) 

 Delay 5.16 (5.05 ; 5.28) 5.69 4.94 (4.63 ; 5.25) 

 Goodness of fit 1.53 (1.49 ; 1.58) 1.44 1.54 (1.38 ; 1.70) 

 Spread 12.49 (12.01 ; 12.97) 12.41 11.94 (9.17 ; 14.71) 

V2    

 Magnitude 1912.40 (1749.02 ; 2075.77) 4108.76 1893.18 (1272.75 ; 2513.61) 

 Delay 4.93 (4.81 ; 5.05) 4.95 4.63 (4.31 ; 4.95) 

 Goodness of fit 1.60 (1.56 ; 1.65) 1.57 1.56 (1.44 ; 1.68) 

 Spread 12.34 (11.86 ; 12.81) 13.81 13.45 (11.63 ; 15.26) 

V5    

 Magnitude 989.06 (915.31 ; 1062.80) 1683.34 1055.04 (904.78 ; 1206.58) 

 Delay 4.91 (4.83 ; 4.99) 5.68 4.99 (4.78 ; 5.19) 

 Goodness of fit 1.91 (1.85 ; 1.97) 1.42 1.64 (1.56 ; 1.71) 

 Spread 11.05 (10.36 ; 11.74) 14.67 14.85 (12.52 ; 17.19) 

 



 
 

Covariates β P 

V1→V2   

 V1 Magnitude 0.357 0.009 

 V2 Magnitude 0.598 < 0.001 

 V2 Spread -0.603   < 0.001 

 V2 Delay2 -0.125   0.019 

 V2 Magnitude2 -0.117   0.029 

 V1 GoF 0.327   0.001 

 Constant 2.100   < 0.001 

V1→V5   

 V1 Gof 0.322 0.011 

 V1 Magnitude*Delay 0.316 0.143 

 V1 Delay2 -0.103 0.124 

 V5 Magnitude*Delay 0.492 0.130 

 V2 Delay2 0.208 0.014 

 V5 Delay 0.682 0.056 

 Constant 0.879 < 0.001 

V2→V5   

 V2 Delay -0.208 0.081 

 V2 Magnitude 0.582 0.011 

 V2 GoF 0.617 0.001 

 V1 Magnitude*Delay -0.467 0.023 

 V2 Magnitude2 -0.143 0.110 

 V2 Spread -0.240 0.146 

 Constant 0.801 < 0.001 

 



Table Legends 

 

Table 1. Mean and 95% confidence intervals of the measures derived from the gamma curve fits to 

the data for the initial 120 individual-voxel datasets, for the peak of activation voxel and for the 

additional 12 datasets for testing the GLM. Delay is measured in seconds, while the other gamma 

measures have arbitrary units.  The values in the brackets represent the 95% confidence interval 

based on an asymptotic normal distribution.  The peak value has no confidence interval since it is a 

single value.  

 

Table 2. Summary of the final generalised linear models for the three different path connections. 

The column of β values reports each beta coefficient for the regression, where P is the 

corresponding p-value. 

 

 

Figure Legends  

 

Figure 1. Three functional regions selected for modelling of the visual network in the left 

hemisphere; V1 (red), V2 (blue) and V5 (yellow). Regions are overlaid onto coronal, sagittal and 

axial views at the co-ordinate x = -6 mm, y = -85 mm, z = 12 mm. The schematic diagram in the 

lower right panel illustrates the directional connections that were modelled between V1, V2 and V5 

for the two levels in the stacked model.  

 

Figure 2. Example of a typical voxel response and its gamma fit. The voxel shown is the peak voxel 

for V2 (T645 = 23.72) and it is located at x = -12, y =-99 , z =-15.2 mm. The solid line represents the 

average time-course calculated by discarding the upper and lower 20% of the values from the drift-

corrected data.  The dashed line represents the best gamma fit to the data. Also illustrated are the are 

the three categorisations of the time-course: stimulus, undershoot and baseline. The first 22 time 



points (0 to 10.5 s) were classified as stimulation, the central 8 time points (11 to 14.5 s) were 

classified as undershoot and the last 15 time points (15 to and 22 s) were classified as baseline.  

Also illustrated are the measures of magnitude and delay taken from the gamma fit. The delay is 

represented by the time that the gamma fit takes to reach its maximum. The magnitude corresponds 

to the shaded area under the curve. 

 

 

Figure 3. Plot of the coefficients derived from the SEM unconstrained model for the stimulation and 

baseline conditions for the three connections: V1→V2, V1→V5 and V2→V5.  Values above the 

diagonal line of equality in the diagrams indicate values in which the path coefficient for the 

stimulation condition is greater than the path coefficient for the baseline condition.  Conversely, 

points below the diagonal of the plot indicate values in which the path coefficient for stimulation 

condition is weaker then the path coefficient for the baseline condition. The black points represent 

the values from the individual-voxel dataset where there was no significant condition-specific 

effects.  The red points represent the values from the individual-voxel dataset where there was a 

significant condition-specific effect. The cyan points represent the connection strengths for 

stimulation and baseline conditions for the additional 12 datasets used for testing the GLM.  The 

points marked as ‘⊕’ and ‘   ’ represent the peak voxel and the average of the area within a 5 mm 

radius of each peak, respectively.  

+

 

Figure 4. Plot of the chi-square differences derived by subtracting the SEM unconstrained model 

from SEM constrained model, and the GLM best fit predictions for V1→V2, V1→V5 and V2→V5 

connections. The black points represent the values from the individual-voxel dataset.  The cyan 

points represent the additional 11 datasets of the 12 datasets used for testing the predictive power of 

the GLM.  One dataset did not converge.  The two dotted lines represent the cut-off point of 3.841.  

All points within the bottom left and the top right quadrants represent a successful fit by the GLM.  



Conversely, all points within the bottom right and the top left quadrants represent a unsuccessful fit 

by the GLM. 

 

Figure 5. Axial views showing the effects of voxel selection in V2 on the path connection from the 

SEM modelling for V1→V2 (A) and V2→V5 (B) when the voxels for V1 and V5 are fixed to be 

the peak of activation.  The blue areas indicate voxels in which the difference between the stimulus 

and baseline conditions were significant (χ2
diff > 3.841).  Conversely, the red areas indicate voxels 

in which there was no significant condition-specific effects (χ2
diff < 3.841). The images are 

displayed for every third brain slice from z = -17.1 mm to z = +22.8 mm; incorporating the location 

of peak voxel in V2 which is at slice z = -15.2 mm. 
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