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Abstract The spontaneous capillary-driven filling of

microchannels is important for a wide range of applica-

tions. These channels are often rectangular in cross-section,

can be closed or open, and horizontal or vertically orien-

tated. In this work, we develop the theory for capillary

imbibition and rise in channels of rectangular cross-section,

taking into account rigidified and non-rigidified boundary

conditions for the liquid–air interfaces and the effects of

surface topography assuming Wenzel or Cassie-Baxter

states. We provide simple interpolation formulae for the

viscous friction associated with flow through rectangular

cross-section channels as a function of aspect ratio. We

derive a dimensionless cross-over time, Tc, below which

the exact numerical solution can be approximated by the

Bousanquet solution and above which by the visco-gravi-

tational solution. For capillary rise heights significantly

below the equilibrium height, this cross-over time is

Tc & (3Xe/2)2/3 and has an associated dimensionless cross-

over rise height Xc & (3Xe/2)1/3, where Xe = 1/G is the

dimensionless equilibrium rise height and G is a dimen-

sionless form of the acceleration due to gravity. We also

show from wetting considerations that for rectangular

channels, fingers of a wetting liquid can be expected to

imbibe in advance of the main meniscus along the corners

of the channel walls. We test the theory via capillary rise

experiments using polydimethylsiloxane oils of viscosity

96.0, 48.0, 19.2 and 4.8 mPa s within a range of closed

square tubes and open rectangular cross-section channels

with SU-8 walls. We show that the capillary rise heights

can be fitted using the exact numerical solution and that

these are similar to fits using the analytical visco-gravita-

tional solution. The viscous friction contribution was found

to be slightly higher than predicted by theory assuming a

non-rigidified liquid–air boundary, but far below that for a

rigidified boundary, which was recently reported for

imbibition into horizontally mounted open microchannels.

In these experiments we also observed fingers of liquid

spreading along the internal edges of the channels in

advance of the main body of liquid consistent with wetting

expectations. We briefly discuss the implications of these

observations for the design of microfluidic systems.

Keywords Lucas–Washburn � Capillary rise �
Microfluidic channel

1 Introduction

The capillary-driven imbibition of liquids into tubes,

channels and porous media is fundamental to a diverse

range of applications, such as printing (Schoelkopf et al.

2002), lab-on-chip (Brody et al. 1996; Squires and Quake

2005), porous media (e.g., Marmur and Cohen 1997;

Siebold et al. 2000) and soil water repellency (Shirtcliffe

et al. 2006). The fundamental principles governing these

types of problems are based on balancing the inertial for-

ces, viscous forces, hydrostatic pressure and the capillary

forces. Effective use and control of capillary imbibition
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requires an understanding of the different layers of subtlety

that a problem may provide. Thus, there are different time

regimes from the very early stage inertia dominated stage,

described by Quéré (1997), to the late stage viscous regime

of Lucas (1918) and Washburn (1921); the transition

between these regimes for capillary rise is discussed by

Fries and Dreyer (2008a). For horizontally mounted chan-

nels where gravity can be neglected and these regimes are

described by the exact analytical Bousanquet solution

(Bousanquet 1923), whose form is valid whether the

channel is closed or open (e.g., Bouaidat et al. 2005;

Jokinen and Franssila 2008); the Lucas–Washburn solution

is the long time limit of the Bousanquet solution. We define

a closed channel as one whereby all walls are solid and an

open channel as one with a liquid–air interface as the

effective wall. Due to its importance in microfluidics,

capillary imbibition has previously been considered for a

wide range of cross-sectional shape channels, such as cir-

cular (e.g., Stange et al. 2003), rectangular (e.g., Ichikawa

et al. 2004; Jong et al. 2007; Zhu and Petkovic-Duran 2010)

and grooved/triangular (Yost and Holm 1995; Romero and

Yost 2006; Baret et al. 2007). Moreover, the same approach

has been taken for channels defined by hydrophilic paths on

a hydrophobic substrate (Darhuber et al. 2001) and by the

space between two parallel plates (Rosendahl et al. 2004)

under the assumption of flow with low Reynolds number

and liquid imbibing in a tube/slab-like manner. When

channels are mounted vertically gravity becomes important

and exact analytical solutions for capillary imbibition are no

longer possible in general. However, a visco-gravitational

solution for time as a function of meniscus position does

exist for the equivalent of the Lucas–Washburn regime

(e.g., Krotov and Rusanov 1999; Hamraoui et al. 2000;

Hamraoui and Nylander 2002), including for liquid–liquid

systems (Mumley et al. 1986). In these problems, the role of

the shape and wetting state of the walls are critical.

Advances in lithographic fabrication techniques are

increasing the range of studies in which capillary aspects of

imbibition and rise are critical. These advances are leading

to studies with microfluidic (e.g., Yang et al. 2011) and

nanofluidic capillaries widths of a few tens of nm (Han et al.

2006) or with depths as small as 6 nm (Oh et al. 2009).

Whilst non-constant channel cross-sections have been a

focus of study experimentally and theoretically (Legait

1983; Staples and Shaffer 2002; Reyssat et al. 2008; Liou

et al. 2009), increased solid–liquid contact area, and hence

increased capillary pull can be achieved using a range of

in-channel structures. In a series of studies, Bico and

co-workers studied imbibition using hemi-wicking, which

amplifies the capillary pull using wall roughness (Bico

2000; Bico et al. 2002; Bico and Quéré 2003; Ishino et al.

2007); ideas recently applied to rough Cu6Sn5/Cu inter-

metallic surfaces (Liu et al. 2011). Their work used average

parameters to characterize the capillary effect of roughness

and topographic structures. This has been complemented

by modeling studies by Kusumaatmaja et al. (2008) and

Mognetti and Yeomans (2009) focused on feature shape

and channel filling patterns, finite element modeling and

experiments incorporating both capillary and viscous

effects of flow through micropost (Srivastava et al. 2010;

Byon and Kim 2011), and experimental studies using, e.g.,

stars, octagons and squares (Chen et al. 2009).

In hemi-wicking, the simplest viewpoint remains a cap-

illary-driven penetration with a leading edge meniscus

advancing in a tube/slab-like manner. However, the actual

solid–liquid–vapor interface at the leading meniscus can be

far more complicated as is known for capillary rise in square

cross-section tubes, where the rise of a central meniscus is

preceded by liquid fingers rising up the four internal edges.

This reduces the equilibrium meniscus height by a factor of

(2 ? p1/2)/4 (Dong and Chatzis 1995; Bico and Quéré 2002).

These effects are due to the wetting effects in corners and

edges (Concus and Finn 1969; Ransohoff and Radke 1988;

Ramé and Weislogel 2009; Girardo et al. 2009, 2012;

Weislogel et al. 2011). Most recently, Ponomarenko et al.

(2011) have studied the capillary rise of wetting liquids in the

corners of different geometries and shown that in the viscous

dominated regime the meniscus of these fingers rises without

limit following a universal time1/3 law, in contrast to the

Lucas–Washburn time1/2 law which eventually saturates at

an equilibrium height. These geometry-induced wetting

effects can be expected to affect both capillary rise and

imbibition in microfluidic channels with non-circular cross-

sections. There is therefore a need to study capillary-driven

imbibition and rise within rectangular cross-section channels

and with open and closed boundaries.

In this paper, we first provide in Sect. 2.1 an overview of

the theoretical basis of capillary-driven rise and imbibition.

We do so in a form that brings out the coherence of the

equations and their solutions for different channel shapes in

different orientations. We develop simple interpolation

formulae for the viscous friction associated with open and

closed rectangular channels of different aspect ratio. We

show how within this formulation different contact angles

on the various channel walls can be incorporated using

surface free energy changes, including considerations of

surface roughness or topography as required for hemi-

wicking. Subsequently, in Sect. 2.2, we compare the exact

numerical solution for capillary-driven imbibition to the

various analytical solutions of the approximate equations

with and without gravity. We obtain a condition for the

cross-over time and rise height below which the Bousan-

quet solution is the best approximation and above which

the visco-gravitational solution is a more accurate

description. In Sect. 2.3, we discuss the sensitivity of

imbibition for open rectangular channels to the value of
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contact angle and the limitations of this approach when

corner filling along edges between walls due to wetting is

taken into account.

In Sects. 3 and 4 we present experiments on the capillary

rise of polydimethylsiloxane (PDMS) oils in closed square

tubes of glass and in open rectangular channels of SU-8. We

observe that capillary rise in rectangular channels using

PDMS oils involves a rising central meniscus, but with thin

fingers spreading in advance of this main rise along the inside

corner edges qualitatively consistent with the type of

behavior described in Ponomarenko et al. (2011). The extent

of advance of the fingers is sufficient to completely exit our

channels. We find that fits to the numerical solution of

the exact differential equation describing capillary rise,

neglecting the fingers, up to the point where the fingers reach

the ends of the channels can describe the rise of the central

meniscus of the liquid in both of these cases. We also find

that the friction in the open channel case is consistent with a

non-rigidified liquid–air interface rather than for a rigidified

boundary as recently reported for imbibition into horizontally

mounted open microchannels (Yang et al. 2011).

2 Theoretical approach

2.1 Model formulation

In this section we review the standard analytical approach

for describing capillary-driven imbibition in order to pro-

vide a common notation and clarity on the assumptions

used, particularly with regards the wetting of the surfaces.

Our aim is to consider the structure of the equations for

uniform cross-section open and closed channels, but inde-

pendent of precise geometry.

2.1.1 Momentum and gravity terms

We consider a tube (or ‘‘slab’’) of liquid of density q,

constant cross-sectional area Ac and length x(t) advancing

along a channel displacing a gas phase. The rate of change

of momentum is then,

qAc

d

dt
x

dx

dt

� �
¼ qAcx

d2x

dt2
þ qAc

dx

dt

� �2

ð1Þ

where t is time. The force driving the imbibition (or rise) is

the capillary one and those resisting the imbibition are

gravity and viscous forces. For a vertically mounted

channel the gravitational force is,

fgrav ¼ �qg sin uAcx ð2Þ

where g = 9.81 m s-2 is the acceleration due to gravity

and u is the angle of orientation of the channel to the

horizontal.

2.1.2 Capillary terms

The capillary terms arise from the interchange or creation

of solid–vapor, solid–liquid and liquid–vapor interfaces as

the front of the tube of liquid advances. In this simplified

model the profile of the solid–liquid–vapor interface is

assumed to remain the same as a small advance forward,

Dx, occurs. The surface free energy change DF as the liquid

advances is then caused by changes in the various inter-

facial areas (Fig. 1),

DF ¼ Dx
X

i

LSV!SL
i ci

SL � ci
SV

� �
þ
X

i

LLV
i cLV

" #
ð3Þ

where the ci
SL and ci

SV are the interfacial energies per unit

area relating to the ith solid wall element, cLV is the surface

tension of the liquid, LSV!SL
i is the perimeter length of the

ith solid wall element on which contact with vapor is

replaced by contact with the liquid, and LLV
i is the perimeter

length of any liquid–vapor interface created. Since the

Young’s law contact angle is cos hi
e ¼ ðci

SV � ci
SLÞ=ci

SV and

the capillary force, fcap, is (-DF/Dx) in the limit of Dx ? 0,

we obtain,

fcap ¼ cLV

X
i

LSV!SL
i cos hi

e þ
X

i

LLV
i cos 180

�� �" #
ð4Þ

where cos (180�) = -1 has been used to show the simi-

larity in the terms when the interface between a liquid and

vapor is regarded as a perfectly hydrophobic surface.

Figure 2 shows three specific channel geometries:

(a) circular cross-section tube of radius R, (b) closed and

(c) open rectangular channel of width W and depth H. In

each case, it is assumed that the solid surfaces can have

different surface chemistries (i.e., contact angles). In the

simplest case of a tube, only the first term contributes and

the perimeter length is 2pR so that Eq. (4) becomes,

f tube
cap ¼ 2pRcLV cos he ð5Þ

In the case of the closed and open rectangular channels,

Eq. (4) becomes,

f rect
cap ¼ cLVW cos hB

e þ cos hT
e þ e cos hL

e þ cos hR
e

� �� �
ð6Þ

liquid vapor

channel

Δx

Li
SV→SL

Lj
LVliquid vapor

channel

Δx

Li
SV→SL

Lj
LV

Fig. 1 Surface free energy changes as a tube/slab of liquid penetrates

into a channel resulting in new solid–liquid and liquid–vapor

interfaces
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where e = H/W and (B, T, L, R) label the contact angles

for the bottom, top and left and right hand side surfaces; for

the open channel hT
e = 180� is used in Eq. (6).

Other shaped channels, such as a tube of elliptical cross-

section and V-shaped grooves or triangular channels, can

be assessed in the same manner from Eq. (4). For example,

an open or closed V-shaped channel of width W and depth

H gives,

f groove
cap ¼ cLVW cos hT

e þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e2

p
cos hL

e þ cos hR
e

� �	 


ð7Þ

where hT
e ¼ 180

�
gives the open groove result. For the case

of flow between two parallel plates with open sides along a

path defined by a hydrophilic stripe on the plates, Eq. (6)

with hL
e ¼ 180

�
and hR

e¼ 180
�

can be used.

2.1.3 Capillary terms and surface roughness

A slightly more complex situation is when one or more of

the surfaces are rough or topographically structured at the

small scale. In the Wenzel case the liquid fully penetrates

into the surface features whereas in the Cassie-Baxter state

the liquid bridges between surface features (Quéré 2008;

Shirtcliffe et al. 2010). When the contact angle is well

below 90�, surface roughness can drive enhanced spreading

(e.g., McHale et al. 2004). Using the surface free energy

argument, Eq. (4) becomes,

fcap ¼ cLV

X
i

LSV!SL
i cos hi

T þ
X

i

LLV
i cos 180

�� �" #
ð8Þ

where the Young’s law contact angle, hi
e, is replaced by the

Wenzel or Cassie-Baxter contact angle, hi
T with hi

T ¼ hi
W or

hi
T ¼ hi

CB, and LSV!SL
i is the planar projection of the

perimeter length of the ith solid wall element across which

the liquid advances. The Wenzel and Cassie-Baxter contact

angles are defined by,

cos hW ¼ rs cos he ð9Þ

and

cos hCB ¼ us cos he � 1� usð Þ ð10Þ

where rs is the roughness at the contact line and us is the

solid surface fraction. More generally, a mixed partially

penetrating state may exist and hi
T then takes on the

appropriate value taking into account both surface rough-

ness and solid surface fraction (Shirtcliffe et al. 2010).

Thus, Eqs. (5)–(7) attempt to take into account the effect of

roughness or topography on the capillary drive for imbi-

bition simply by the replacement of the contact angle by

the appropriate Wenzel, Cassie-Baxter or mixed state one

involving both the surface chemistry and surface structure.

This approach based on minimizing surface free energy

changes does not take into account contact line pinning and

hysteresis.

2.1.4 Viscous terms and interpolation formulae

The viscous force for flow down a tube or a channel can be

deduced from the flow velocity profile assuming incom-

pressible, Newtonian liquid with a laminar flow, and

solving the continuity and Navier–Stokes equations. For

the closed rectangular channel geometry, Brody et al.

(1996) give the general approach and solution for the flow

(see also Ichikawa et al. 2004). The non-zero component of

the equations relates the flow velocity, u(y, z), in the

x-direction to the pressure gradient,

Δx

Lside
SV→SL=2πR

R

Lfront
LV=0

x
y

W
H Δx

Lbottom
SV→SL=Ltop

SV→SL=W
Lsides

SV→SL=H

z

W Lfront
LV=0

Δx

Lbottom
SV→LV=H, Ltop

LV=W

W
H

Lsides
SV→SL=H

x
y

z

Lfront
LV=0

(a)

(b)

(c)

Fig. 2 Solid–liquid and liquid–

vapor interfaces associated with,

a circular cross-section tube,

b closed rectangular channel,

and c open rectangular channel
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o2u

oy2
þ o2u

oz2
¼ 1

g
dp

dx

� �
ð11Þ

where g is the viscosity and p(x) is the pressure profile

which only depends upon x. This equation can be solved

for a channel of arbitrary aspect ratio e = H/W using a

Fourier series approach to obtain a general solution for

u(y, z) to which non-slip boundary conditions can then be

applied for the upper and lower channel surfaces. To work

out the viscous force we first evaluate the depth and width

averaged value of the flow velocity of the closed channel,

uc
ave,

uc
ave ¼ � dp

dz

� �
8H2

gp4

� �X1
l¼0

1

2lþ 1ð Þ4

� 1� 2e
2lþ 1ð Þp

� �
tanh

2lþ 1ð Þp
2e

� �	 

ð12Þ

This allows us to write the pressure gradient in terms of the

average flow velocity so that the flow profile is,

u y; zð Þ ¼ 48uc
ave

p3fc eð Þ

� �X1
l¼0

�1ð Þl

2lþ 1ð Þ3

� 1�
cosh ac

l y
�

W
� �

cosh ac
l

�
2

� �
" #

cos ac
l z
�

W
� �

ð13Þ

where ac
l ¼

2lþ1ð Þp
e and we have defined an aspect ratio

function, fc(e), as

fc eð Þ ¼ 96

p4

� �X1
l¼0

1

2lþ 1ð Þ4
1�

2 tanh ac
l

�
2

� �
ac

l

	 

ð14Þ

The viscous force on the top, bottom and two walls of the

rectangular channel is then,

f c
visc ¼ 2xg

ZW=2

�W=2

ou y; zð Þ
oz

� �
z¼H=2

dy

2
64

þ
ZH=2

�H=2

ou y; zð Þ
oy

� �
y¼W=2

dz

3
75 ð15Þ

which gives,

f c
visc ¼ �

12gxuc
ave

efc eð Þ ð16Þ

This form makes obvious the relationship between flow in

a closed rectangular channel of arbitrary aspect ratio and

the one-dimensional result because in the limit of a shallow

and infinitely wide channel, i.e., W ? ?, the aspect ratio

function fc(e) ? 1.

Repeating the previous approach for an open channel

gives,

uo
ave ¼

8GW2

gp4

� �X1
l¼0

1

2lþ 1ð Þ4
tanh 2lþ 1ð Þpeð Þ

2lþ 1ð Þpe
� 1

	 


ð17Þ

which allows the pressure gradient to be written in terms of

the average flow velocity so that the flow profile is,

u y; zð Þ ¼ � 12uo
ave

p3e2fo eð Þ

� �X1
l¼0

�1ð Þl

2lþ 1ð Þ3

� cosh ao
l z
�

H
� �

� tanh ao
l sinh ao

l z
�

H
� �

� 1
� �

cos ao
l y
�

H
� �
ð18Þ

where ao
l ¼ 2lþ 1ð Þpe and we have defined an aspect ratio

function, fo(e), as

fo eð Þ ¼ 24

p4e2

� �X1
l¼0

1

2lþ 1ð Þ4
1� tanh ao

l

ao
l

	 

ð19Þ

The viscous force on the bottom (but not top) and two walls

of the rectangular channel is then,

f o
visc¼�g

ZW=2

�W=2

ou y;zð Þ
oz

� �
z¼0

dyþ2

ZH

0

ou y;zð Þ
oy

� �
y¼W=2

dz

2
64

3
75

ð20Þ

which gives,

f o
visc ¼ �

3gxuo
ave

efo eð Þ ð21Þ

In a similar manner to the closed rectangular channel

result, Eq. (16), this form makes obvious the relationship

between flow in an open rectangular channel of arbitrary

aspect ratio and the one-dimensional result because in the

limit of a shallow and infinitely wide channel, i.e.,

W ? ?, the aspect ratio function fo(e) ? 1. It should be

noted that alternative, but equivalent Fourier series solu-

tions for the flow in an open rectangular exist, such as that

in Baret et al. (2007) and Yang et al. (2011).

Whilst Eq. (14) and Eq. (19) are exact, it is useful for

fitting to experimental data to have simple interpolation

formulae. For channels with aspect ratios in the range

e = 0.0–2.0, we find suitable interpolations with limits of

unity as e ? 0 are given by,

f�1
c eð Þ � 1þ 0:362374eþ 1:020980e2 ð22Þ

and

f�1
o eð Þ � 1þ 0:671004eþ 4:169711e2 ð23Þ

Figure 3 shows the exact summations given by Eq. (14) and

Eq. (19) and the interpolations from Eq. (22) and Eq. (23).

Below aspect ratios of 0.60, the agreement is good to around

3 % or better and above this aspect ratio up to e = 2.0 is better
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than 1 % (as shown in the inset of Fig. 3). A similar approach

could also be adopted for flow in other shapes of channels,

such as triangular grooves (Ayyaswamy et al. 1974).

For completeness, we note the standard expression for

viscous force for flow in a circular cross-section tube,

f tube
visc ¼ �8gpxutube

ave ð24Þ

2.1.5 Defining equation and its assumptions

The equation describing capillary-driven imbibition is

given by combining Eqs. (1), (2) and (8) with Eqs. (16),

(21) or (24) as appropriate for the channel or tube and

assuming uave = dx/dt can be used,

1

2

d

dt

dx2

dt

� �
¼ b� g sin ux� ax

dx

dt

� �
ð25Þ

In this equation, the viscous coefficient a has dimensions of

inverse time (s-1) and is defined for the tube, closed

rectangular channel and open rectangular channel as,

a ¼
8g
�
qR2

12g
�
qH2fc eð Þ

3g
�
qH2fo eð Þ

8<
: ð26Þ

and the capillary coefficient term b has dimensions of

speed2 (m2 s-2) and is defined in these three cases as,

b ¼ cLV

qAc

X
i

LSV!SL
i cos hi

T �
X

i

LLV
i

" #

¼
2cLV cos he=qR

cLV cos hB
e þ cos hT

e þ e cos hL
e þ cos hR

e

� �� ��
qH

cLV cos hB
e þ cos hT

e þ e cos hL
e þ cos hR

e

� �� ��
qH

8<
:

ð27Þ

For closed channels with smooth surfaces and the same

contact angle on all surfaces he, b ¼ 2cLV cos he 1þ eð Þ=qH.

For open rectangular channels, the free surface vapor

boundary acts as a perfect hydrophobic surface (i.e., hT
e ¼

180
�
), and if all other contact angles are the same,

b ¼ cLV cos he 1þ 2eð Þ � 1½ �=qH. The capillary coefficient

b [Eq. (27)] can thus be written for the three cases as:

b ¼
2cLV cos he=qR

2cLV cos he 1þ eð Þ=qH

cLV cos he 1þ 2eð Þ � 1½ �=qH

8<
: ð28Þ

Equation (25) is well known in the theory of capillary-

driven imbibition, but is written here in a form that

emphasizes the similarities between circular cross-section

tubes, closed and open rectangular channels of arbitrary

aspect ratio. Moreover, it allows the key assumptions to be

easily identified and their influence on the structure of Eq. (25)

to be assessed. For example, using the open form for viscous

dissipation in an open rectangular channel assumes that

momentum can be transferred across the liquid–vapor

interface as liquid flows up the tube of liquid to extend

itself. However, as indicated by Yang et al. (2011) in their

study on the capillary flow in horizontally oriented shallow

open rectangular channels (H = 19 lm and W = 15, 25, 50

and 75 lm) a rigidified liquid–vapor interface can occur due

to contaminants or surfactants on the liquid–vapor interface.

Their fitting therefore used the viscous parameter a from

Eq. (26) for a closed rectangular channel with the capillary

b parameter from Eq. (27) for an open rectangular channel.

The assumptions in the approach in Sects. 2.1.2 and 2.1.3

taken to derive the capillary terms is that they include a quasi-

equilibrium advancing state and this leads to the Young’s law

equilibrium contact angle, he. Many authors have questioned

this and replaced the contact angle by either the advancing

contact angle or the velocity-dependent dynamic contact angle

Hoffman’s formula (Siebold et al. 2000; Chebbi 2007) or

molecular-kinetic theory (Hamraoui et al. 2000; Hamraoui and

Nylander 2002; Blake and Coninck 2004) or have considered a

range of possible dynamic contact angle relationships (e.g.,

Popescu et al. 2008). It is also possible that a quasi-equilibrium

meniscus shape may be achieved, but only after an initial

capillary penetration. Even after the initial penetration, a fur-

ther assumption is that the profile of the liquid meniscus

advances in a tube/slab-like manner without change and this

we examine further in Sect. 2.3 using wetting concepts com-

monly used for corner filling problems. Possibly one of the

most limiting aspects in complex shape channels is that a given

wetting state, such as a Cassie-Baxter, Wenzel or mixed state

arising from minimum surface free energy change consider-

ations, is not known a priori. Moreover, the extent of hysteresis

and asymmetric imbibition properties can be linked to complex

topographies (e.g., Kusumaatmaja et al. 2008). Thus for cap-

illary filling in channels of complex shapes alternatives to a

purely analytical (with numerical solution) approach that have

Fig. 3 Geometric factors in the viscous force for flow in open and

closed rectangular channels with aspect ratio e = H/W between 0 and

2.0. The symbols are the exact results and the solid lines are the

interpolation formulae. The inset shows the corresponding % error

between the two
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been considered include the Lattice Boltzmann approach (e.g.,

Kusumaatmaja et al. 2008; Clime et al. 2012), numerical

simulation using diffuse interface models (e.g., Mehrabian

et al. 2011), smoothed particle hydrodynamics (e.g., Tarta-

kovsky and Meakin 2005) and molecular-dynamics (e.g.,

Ahadian et al. 2009; Stukan et al. 2010).

2.2 Exact and approximate solutions

Equation (25) predicts that experiments on capillary-driven

imbibition/rise into channels of different cross-sectional

shapes and with open and closed surfaces will show the

same type of behavior, but each will have its own length

and timescales determined by the appropriate form of the

two parameters a and b. Whilst it cannot be solved exactly,

approximate solutions can be obtained for the different

characteristic length and time scales. Fries and Dreyer

(2009) discuss a systematic approach to obtaining dimen-

sionless scaling for the case of a cylindrical tube and

porous media using the Buckingham p theorem.

2.2.1 Bousanquet solution for a horizontal capillary

To obtain a dimensionless form of Eq. (25) we scale the

position and time coordinates as T = at and X = ax/(2b)1/2,

d2X2

dT2

� �
¼ 1� G sin uX � dX2

dT

� �
ð29Þ

where we have defined a dimensionless constant

G = g(2/b)1/2/a. Using Eq. (26) and Eq. (28) the tube,

closed and open channel cases are,

G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2q3R5

64g2cLV cos he

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2q3H5f2

c eð Þ
144g2 1þ eð ÞcLV cos he

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2q3H5f2

o eð Þ
9g2cLV 1þ 2eð Þ cos he � 1½ �

s

8>>>>>>>>>>><
>>>>>>>>>>>:

ð30Þ

The dimensionless form given in Eq. (29) corresponds to the

Fries and Dreyer (2009) case 3 where the basic parameter is

gravity and the scaling parameters are inertia and viscosity.

Our definitions of X and T are not identical to their scaled

variables in the case of a tube, but our controlling parameter

G is simply related to their X by G = 21/2/X. When G

sin u ? 0 so that the capillary is horizontally oriented, the

solution to Eq. (29) is the Bousanquet solution (1923),

X2 Tð Þ ¼ T � 1� exp �Tð Þ½ � ð31Þ

At long timescales when T � 1 (i.e., t � 1/a), Eq. (31)

gives X(T) & T1/2 or x(t) = (2b/a)1/2t1/2, which is the

Lucas–Washburn solution when the viscous term domi-

nates; effectively the first term in Eq. (29) can be ignored.

At short timescales when T 	 1 (i.e., t 	 1/a), Eq. (31)

gives X(T) & T/H2 or x(t) = b1/2t, which is the inertial

solution of Quéré (1997) with a linear imbibition with time;

effectively the last term in Eq. (29) can be ignored.

In fitting experimental data for imbibition into horizontal

channels, the full Bousanquet solution [Eq. (31)] can be used

provided data is captured across both the long and short

timescales as determined by 1/a. If data for only short or only

long timescales is captured then either the Quéré (Inertial) or

Lucas–Washburn (Viscous) solutions should be used.

2.2.2 Viscous solution for a vertical capillary

When T � 1 and the inertial term can be ignored, but

gravity cannot be neglected, Eq. (29) becomes,

0 ¼ 1� G sin uX � dX2

dT

� �
ð32Þ

As shown by Washburn (1921), and discussed by Fries and

Dreyer (2008b) (see also Mumley et al. 1986; Krotov and

Rusanov 1999), this has an analytical solution, but for time

as function of position rather than for position as a function

of time. By rearranging Eq. (32) to,

2X

1� G sin uX

dX

dT

� �
¼ 1 ð33Þ

an exact integration can be performed to get the visco-

gravitational solution,

T ¼ �2

G sin uð Þ2
G sin uX þ log 1� G sin uXð Þ½ � ð34Þ

where X = 0 at T = 0 has been assumed. When G

sin u X ? 0, the log(1 – G sin u X) can be expanded

and this gives T & X2, which is the Lucas–Washburn

solution. As G sin u X ? 1, the logarithm diverges so that

T ? ? and so at equilibrium the capillary rise height is

Xe = 1/(G sin u), i.e., xe = b/(g sin u). Fries and Dreyer

(2008b) discuss the problems of inverting Eq. (34) and also

provide an analytic solution in terms of the Lambert W(x)

function defined by w = W(w) exp(W(x)). Equation (34)

can be rewritten in terms of x and t as

t ¼ � ab

g sin uð Þ2
x

xe

þ ln 1� x

xe

� �� �
ð35Þ

In fitting experimental data for imbibition into vertical

channels (u = 90�) the viscous-gravitational solution

[Eq. (34) or Eq. (35)] can be used provided data is

captured including both the early Lucas–Washburn stage

T & X2 and the approach to equilibrium as determined by

x ? b/g. The fact Eq. (35) is an analytical solution with
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time as a function of position, which cannot be easily

inverted, does not prevent fitting of experimental data since

time can be fitted as a function of measured position as

easily as position as a function of measured time.

2.2.3 Inertial solution for a vertical capillary

When T � 1 and the viscous term can be ignored, but

gravity cannot be neglected, Eq. (29) becomes,

d2X2

dT2

� �
¼ 1� G sin uX ð36Þ

There is no obvious closed form solution to Eq. (36), but a

perturbation solution can be constructed for X as a power

series in G sin u (Quéré 1997). When G sin u = 0 the

zeroth order solution is Xo
2(T) = T2/2. We then write

X(T) & Xo ? G sin u X1 and substitute into Eq. (36) and

keep first order terms in G sin u,

d2 TX1ð Þ
dT2

� �
� � T

2
ð37Þ

This has a solution X1(T) = -T2/12, which gives a gravity

modified inertial solution of,

X Tð Þ � Tffiffiffi
2
p 1�

ffiffiffi
2
p

G sin uT

12

� �
ð38Þ

or in non-scaled quantities,

x tð Þ �
ffiffiffi
b
p

t 1� g sin u t

6
ffiffiffi
b
p

� �
ð39Þ

Equation (38) can also be inverted to give,

T Xð Þ �
ffiffiffi
2
p

X 1þ G sin uX

6

� �
ð40Þ

2.2.4 Cross-over between Bousanquet

and visco-gravitational solutions

Equation (29) can be solved numerically for any value of

G sin u using the inertial approximation for the initial

boundary conditions X(0) = 0 and (dX2/dT)T=0 = 0.

Figure 4 shows the behavior of X(T) as a fraction of the

equilibrium height, Xe, for G = 0.1 and u = 90� together

with the, Bousanquet, Lucas–Washburn and inertial

approximations. Perhaps surprisingly even at capillary rise

heights up to 20 % of the equilibrium height both the

Lucas–Washburn and the viscous-gravitational approxi-

mations show substantial differences from the exact solu-

tion. Moreover, this is not significantly improved using the

first order gravitational correction to the inertial approxi-

mation. Numerically the initial rise height is best described

by the Bousanquet solution [Eq. (31)] until it crosses over

with the visco-gravitational solution [Eq. (34)] at around

(T, X/Xe) = (6.5, 0.22). Above this cross-over the visco-

gravitational solution ever more closely agrees with the

exact numerical solution as the rise height tends to its

equilibrium value; however, it always lies above the exact

numerical solution. Since the curve exponentially approa-

ches equilibrium as (X - Xe)/Xe * exp(-G2T/2), fitting

experimental data taken in the long time limit using

Eq. (34) could force better agreement by overestimating G.

The derivative dX/dT can be calculated for each of

Eq. (31) and Eq. (34) and this shows that in the Bousanquet

case the initial slope of X(T) is 1/H2 whereas in the visco-

gravitational case the initial slope tends to infinity as 1/2X.

Since in both cases the slopes are positive at all positive T

and in the visco-gravitational case X ? Xe = 1/(G sin u)

whereas in the Bousanquet case X ? ?, there is one and

only one cross-over point (Tc, Xc) at which the two curves

meet. The cross-over time, Tc, can be calculated numeri-

cally as a function of G sin u by equating the Bousanquet

solution [Eq. (31)] to the visco-gravitational solution

[Eq. (34)]. For a vertical channel with u = 90� this is

shown in Fig. 5 (open circles symbols and left hand y-axis)

as a function of G = 1/Xe. A numerical interpolation of this

function accurate to 3.7 % in Tc over the range

G = 1 9 10-7 to 1.0 is given by a two-thirds power law,

Tc Gð Þ � 1:341

G2=3
¼ 1:341X2=3

e ð41Þ

The validity of the two-thirds power law can be shown

analytically for small G although the pre-factor in Eq. (41)
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Fig. 4 Comparison of approximate analytical solutions for Bousan-

quet (open circle), visco-gravitational (plus symbol), Lucas–Wash-

burn (open triangle), inertial (filled circle) and inertial with gravity

correction (dashed line) to the exact numerical solution (solid line) for

G = 0.1 and u = 90�. The capillary rise height X is shown as a

fraction of the equilibrium rise height, Xe. The inset shows the long

time behavior for the exact solution and the Bousanquet solution. On

this scale the visco-inertial cannot be distinguished from the exact

solution and the Lucas–Washburn approximation cannot be distin-

guished from the Bousanquet solution on the longer time scale
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is found to be (3/2)2/3 = 1.3104. Numerically, using

1.3104 is accurate to 4 % in the range of G up to 0.1, to

1 % in the range of G up to 0.01, and 5.8 % in the range of

G up to up to 1.32. A best fit interpolation for the

numerically calculated rise height at which the cross-over,

Xc, occurs over the range up to G = 0.25 is given by

1.07025/G1/3; the exact numerical calculation is shown in

Fig. 5 by the open triangles symbols (right hand y-axis) and

the interpolation is the dotted line. An improved estimate is

given by using the interpolation for Tc in the Bousanquet

solution [Eq. (31)] and this is shown as the solid line

passing through the open triangles symbols.

To derive the two-thirds power law for Tc we expand the

log term in the visco-gravitational approximation [Eq. (34)]

to 3rd order and regroup terms to get,

X2

T � X2ð Þ2=3
� 3

2G sin u

� �2=3

ð42Þ

From the Bousanquet solution [Eq. (31)], we then note that,

X2

T � X2ð Þ2=3
¼ Tc

1� 1� e�Tð Þ=T

1� e�Tð Þ2=3

" #
¼ Tf Tð Þ ð43Þ

which defines a function f(T). Combining Eq. (42) and

Eq. (43) at (T, X) = (Tc, Xc) then gives,

Tcf Tcð Þ �
3

2G sin u

� �2=3

¼ 3Xe

2

� �2=3

ð44Þ

when the cross-over time is large f(Tc) ? 1 and when it is

small f(Tc) ? 0.5Tc
1/3 so that the power law changes from

two-third to half as Tc becomes small. Since large Tc

corresponds to small G sin u (i.e., large Xe) we obtain the

numerically observed two-third power law with the pre-

factor of (3/2)2/3 = 1.3104. This also suggests that the

fractional cross-over rise height for small G sin u will be,

Xc

Xe

� 3

2X2
e

� �1=3

¼ 1:1447

X
2=3
e

ð45Þ

and this is shown in Fig. 5 as the dashed line (referenced to

the right hand side y-axis).

The Bousanquet and visco-gravitational solutions can be

combined to provide an overall approximate solution by

using the former solution when T \ Tc and the latter

solution when T [ Tc [i.e., the solution predicting the

lower capillary rise X(T)]. This provides a broad time range

approximate solution as shown in Fig. 6 for G = 0.1.

Figure 6 also illustrates the percentage error between the

exact solution and this approximate solution for a vertical

capillary with u = 90�, which has a maximum error of

6.7 % at T = 6.3 when Xc/Xe = 0.216. For G = 0.0283,

corresponding to a cross-over at Xc/Xe = 0.1, the maxi-

mum error is 3.2 % and for G = 0.814, corresponding to a

cross-over at Xc/Xe = 0.7, maximum error is around 17 %.

2.3 Filling conditions and capillary fingers

According to the approach in Sect. 2.2, for capillary-driven

imbibition to commence it has to be energetically favour-

able for the liquid to enter the channel, i.e., the surface free

energy change in Eq. (3) must satisfy DF \ 0, or equiva-

lently the capillary force in Eq. (4) must satisfy fc [ 0 and

the b parameter in Eq. (27) must be positive. Thus, for an

open or closed rectangular channel,
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Fig. 5 Cross-over time, Tc, at which the visco-inertial solution better

approximates the exact numerical solution than the Bousanquet

solution (circle symbol and left hand y-axis); the solid line is the

interpolation Tc & 1.3534Xe
2/3 optimized for G up to 0.25 with

u = 90� (left hand y-axis). Capillary rise height Xc/Xe at the cross-

over calculated numerically (triangle symbol) and an interpolation

using Xc & 1.07025/G1/3 (dotted line). Using the interpolation of Tc

in the Bousanquet equation gives an improved estimate of Xc (solid

line through triangle symbols); the dashed line shows the analytical

approximation Xc & (3/2)1/3Xe
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Fig. 6 The exact solution for G = 0.1 and u = 90� (solid curve and

left hand y-axis) and the approximation obtained using the lower

value for X taken from the Bousanquet and the visco-gravitational

solutions (crosses and left hand y-axis). The percentage error using

the approximation peaks at Tc (circles and right hand y-axis)
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cos hB
e þ cos hT

e þ e cos hL
e þ cos hR

e

� �
[ 0 ð46Þ

For a closed channel with smooth surfaces and the same

contact angle on all surfaces this simply means the contact

angle must be less than 90�. However, for an open

rectangular channel hT
e = 180� and so the condition

becomes,

cos he [
1

1þ 2e
ð47Þ

as noted by previous authors. Therefore, as the aspect ratio

of a rectangular channel reduces imbibition becomes

increasingly difficult and lower contact angles corre-

sponding to more wetting liquids are required. For exam-

ple, aspect ratios of e = 10, 0.6, 0.3 and 0.2 require contact

angles below 78.5�, 63.0�, 51.3� and 44.4�. Effectively the

capillary pull required is principally from the wall area

which becomes relatively less as the width of channel

increases.

From an experimental perspective the accuracy of

quantitative estimates of the capillary coefficient b

parameter in both the inertial (Quéré) and viscous (Lucas–

Washburn) regimes from the initial imbibition data become

more difficult for open rectangular channels. In these cases

data is typically analyzed using plots of (x, t) and (x2, t),

respectively, and in these cases the slopes, k, will be

proportional to b1/2 and b. Indeed, examining the exact

Bousanquet solution for capillary-driven imbibition,

Eq. (31), which describes horizontal channels over all

times, T, and approximately vertical channels at times

T \ Tc, shows that the contact angle dependence in x2(t)

arises from an overall factor proportional to b. Thus, if we

write x2(t) = bf(a, t) where f(a, t) is a function not

involving the contact angle, a plot of x2(t) versus f(a, t) will

have a slope of k = b. The sensitivity of the slope, k, to

small changes in the contact angle can be evaluated as a

fractional error in the slope on these plots. For the case of

closed and open channels with the same contact angle on

each surface, the error in the slope for the Lucas–Washburn

and Bousanquet plots is,

dk

k

����
����



dh ¼ db

b

����
����



dh

¼ tan he

2eþ 1ð Þ sin he= 2eþ 1ð Þ cos he � 1½ �

�
ð48Þ

As shown by Fig. 7, the error given by Eq. (48) as a

percentage change in slope per degree is large and changes

rapidly for contact angles close to the transition to

imbibition; a small uncertainty in contact angle results in

large changes in the slope and hence estimates of b from

experimental data. Experimentally, for open channels there

is therefore an incentive to work with liquids that wet the

surfaces effectively and therefore have contact angles

below that determined by the critical angle for imbibition

arising from the aspect ratio. However, this then leads to

increasing risks that the assumption that imbibition occurs

in a tube like manner with a meniscus of constant profile

will not be accurate as discussed below.

Rectangular and many other cross-sectional shape

channels differ in their wetting properties from flat and

smoothly circular surfaces, precisely because two walls

meet at an angle. This effect, the corner filling condition,

can be understood by a simple two-dimensional model.

Consider two walls joining at an angle 2a with a liquid

initially partially filling the corner to a depth h (Fig. 8a).

When the corner fills with liquid by an additional amount

Dh, the surface free energy change is given by,

DF ¼ 2Dh
cSL � cSVð Þ

cos a
þ cLV tan a

	 


¼ 2DhcLV

cos a
sin a� cos he½ � ð49Þ

where Young’s law has been used to replace the

combination of interfacial tensions by cos he. Thus, the

change in surface free energy is zero or negative whenever

cos he C sin a, which gives,

ðaþ heÞ
 90
� ð50Þ

Fig. 7 The sensitivity of the fractional change in slope per degree in

the Lucas–Washburn equation to small changes in contact angle for

closed and open rectangular channels; aspect ratios of e = 0.1, 0.25

and 0.5 are shown

liquid vapor

corner

Δh

h2

Δh/cos

(a) (b)

α

α

Fig. 8 Surface free energy changes as a tube/slab of liquid penetrates

into a channel resulting in new solid–liquid and liquid–vapor

interfaces. a Two-dimensional corner viewpoint, and b an edge

viewed as a sequence of two-dimensional corners
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as the corner filling condition. In the case of a flat surface,

a = 90� and a surface wets when the contact angle van-

ishes, and. in the case of parallel plates, a = 0� and the

surface wets between the plates whenever he B 90�. Thus,

Eq. (46), which is the condition for imbibition assuming a

tube of liquid advancing in a channel, must be considered

alongside Eq. (50).

Whilst this was a two-dimensional argument, an edge

can be viewed as a sequence of two-dimensional corners

(Fig. 8b) and so the same condition, Eq. (50), will apply.

For example, for the open rectangular channel the side

walls meet the bottom surface at 90� so that the corner

filling condition is he B 45�, whereas Eq. (47) suggests

imbibition will only occur for channel aspect ratios, e,
larger than 0.207. Thus, fingers of liquid can imbibe into

open channels at aspect ratios lower than might otherwise

be expected. Bico and Quéré (2002) have shown that cor-

ner filling leads in square cross-section capillary tubes to

fingers of liquid rising along the internal edges against

gravity in advance of the central meniscus, which itself

rises to an equilibrium height which is a factor (2 ? p1/2)/4

less than would be the case without the fingers. Moreover,

Ponomarenko et al. (2011) have recently used scaling

arguments to show that in the viscous regime of capillary

rise against gravity and independent of specifics of the

geometry, the fingers spread faster than the main meniscus,

which follows a Lucas–Washburn law.

Thus, for good capillary-driven imbibition in open and

closed rectangular channels with reduced sensitivity to the

precise value of contact angle, Eq. (46) implies it is better

to use low contact angle liquids. However, doing so is

likely to lead to increasingly stronger effects from liquid

fingers spreading along the edges between walls at lower

contact angles and higher intrusion rates. From the point of

view of microfluidics and lab-on-a-chip, the consequences

of this are potentially serious with fingers of liquid spon-

taneously spreading in advance of the bulk liquid and

potentially causing contamination. An interesting question

is whether the capillary-drive imbibition/rise in open and

closed rectangular channels of the main meniscus can still

be accurately described by Eqs. (31) and (34). The exper-

imental consideration of this is given in Sect. 4.

3 Experimental methods

To test the theory on the influence of capillary shape

experiments were conducted on the capillary rise of poly-

dimethylsiloxane (PDMS) oils in three cross-sectional

geometries, circular glass capillary tubes, square glass

capillary tubes, and SU8 open rectangular cross-section

channels. The liquid–air interface in open channels is

essentially completely hydrophobic/oleophobic and so

a strongly wetting liquid, such as PDMS with its low

equilibrium contact angle (he = 0) is needed to ensure

complete wetting. This choice also eliminates any sensi-

tivity to the precise value of he for liquid penetration into

open channels discussed in Sect. 2.3. For each geometry,

four PDMS oils (Dow Corning Xiameter PMX-200) of

viscosities g = 96.0, 48.0, 19.2 and 4.8 mPa s (±5 %) and

corresponding densities of 960, 950, 930 and 913 kg m-3

were investigated. The surface tension of these oils is

constant at 19.8 mN m-1. The details of the tubes/channels

used are given in Table 1.

The open SU8 channels were fabricated on glass slides

using photolithography. After a slide was cleaned, a 20 lm

thick SU8 base layer (SU8-10 MicroChem) was spin-

coated, pre-baked (65 �C for 2 min then at 95 �C for

2 min), UV exposed through a mask, and then post-baked at

65 �C for 30 min. A second SU8 layer (SU8-50 Micro-

Chem), of a nominal thickness of 135 lm, was then spin-

coated, pre-baked, UV exposed and then post-baked (65 �C

for 30 min then at 958 C for 30 min) to form the side walls

of the channels; this ensured that all three faces of the

channels were constructed of SU8. The photoresist was then

developed to leave open rectangular channels. The depths

of the channels were measured with a stylus profilometer.

Variability in the depths of the channels was observed

between samples. The data presented in this report are for

channels with depths in the range 130-140 lm, and for each

channel the measured depth value is used when comparing

the data with theory. Commercially available square glass

capillary tubes of sides 400 lm and 600 lm were also used

in the experiments together with a 650 lm radius circular

glass capillary tube for calibration and comparison. SEM

characterisations found the internal wall surfaces of the

circular and square glass capillaries to be smooth and free

from striations.

Each tube/channel was cleaned in isopropylalcohol

(IPA) and dried at 100 �C for 1 h prior to measurements.

Table 1 Physical dimensions of channels and experimental

parameters

Channel Size (lm) Aspect ratio

(e = H/W)

Circular glass tube R = 650 –

Glass square tube H 9 W = 600 9 600 1

H 9 W = 400 9 400 1

SU8 open rectangular

channels

H 9 W = 135a 9 600b 0.225

H 9 W = 135a 9 400b 0.338

a ±5 lm
b ±5 lm
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A small amount of blue dye was used to increase contrast;

control experiments without the dye did not show any

differences in the dynamics of capillary rise. The sample

was mounted vertically next to a rectangular grid which

provided a length calibration. PDMS oil from a large res-

ervoir was brought up into contact with the tube/channel

very slowly until spontaneous filling started. A high speed

camera (NAC Hotshot 512SC) was used to capture videos

of the rise of the liquid at 50 frames per second. The videos

were analyzed after the experiment and the position of the

central meniscus measured in ImageJ from the corre-

sponding frames at a set of predetermined time intervals.

The initial time t = 0 was defined as the time the liquid

first appeared to enter the tube/channel; this was deter-

mined to within one frame (i.e., 20 ms). The spatial reso-

lution can be estimated from the field of view of the camera

and the pixel resolution and is around 0.02 mm. Each

sample/tube was used once only, but measurements were

repeated on samples with the same physical dimensions

several times and under the same conditions to check for

reproducibility.

4 Results and discussions

As discussed in Sect. 2.3, flow in non-circular channels can

be expected to be accompanied by advancing liquid fingers

that develop with time, increase in prominence and progress

ahead of the main meniscus of the liquid. These fingers

were visible in the closed square glass tubes (with aspect

ratio e = 1) along all four of the internal edges defined by

were two walls meet at 90�. These liquid fingers were very

thin and confined to the edges where the walls of the tubes

meet making them difficult to clearly image in our experi-

mental set up (Fig. 9a). These observations are consistent

with those of Girardo et al. (2009) for similar aspect ratio,

but in open channels. In contrast, the fingers in our open

rectangular SU8 channels with aspect ratios e = 0.225 and

0.338, which propagated along the internal edges defined by

where the bottom of the channel and a side wall meet, were

very prominent and extended far beyond the main meniscus

of the liquid (Fig. 9b). They were found to progress much

faster than the main front of the liquid, to such an extent as

to eventually exit from the end of the channels completely.

The dependence of the shape of the fingers on e is consistent

with the measurements of Seemann et al. (2005) of static

liquids in open rectangular channels, who found that their

shape was determined by contact angle and aspect ratio, and

that, for completely wetting liquids (he = 0), thick and

extended fingers occurred when the height of channels was

sufficiently small compared to their width for e\ 0.5,

whereas thin fingers, restricted to the corners of the chan-

nels, were observed for e[ 0.5.

In our experimental conditions, the cross-over time for

the imbibition of the main body of liquid above which the

visco-gravitational solution is a better approximation than

the Bousanquet solution (discussed in Sect. 2.2) occurs

within the first 25 ms after liquids enter the tubes/channels

for all viscosities, which, in all our measurements, takes

place within the first measurement time interval. The vis-

cous-gravitational solution is, therefore, the best analytical

approximation for our experiments. For each measurement,

the variation of the position of the meniscus with time was

fitted to both the exact numerical solution [Eq. (25)] and

analytical solution [eq. (35) with u = 90�]. Both fits were

performed within Mathematica� (Wolfram research) using

three fitting parameters, a, b and t0, where the viscous

coefficient (a) and capillary coefficient (b) are defined by

Eq. (26) and Eq. (28), respectively. Fitting at the very early

stages of imbibition was found to be sensitive to the initial

time offset parameter t0 which was, in practice, found to be

less than one to, occasionally, two measurement time

intervals. In all fits, a constant contact angle value of

he = 0 was assumed, and for the open rectangular channels

Fig. 9 Micrographs of the shapes of the meniscus of the liquid in

rectangular channels/tubes. The arrows show liquid fingers which

develop with time and advance ahead of the main meniscus. a Closed

square tubes: fingers are thin and are confined to the four edges where

the walls of the tube meet. b Open rectangular channels with

e = 0.225 (also 0.338): fingers are thick and extended and propagate

along the internal edges defined by where the bottom of the channel

and a side wall meet
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data analysis was restricted to the part of the experiment

during which the wetting fingers remained in the channels.

The solid symbols in Fig. 10 show the variation with

time (t) of the capillary rise height (x) of the 19.2 mPa s oil

in (a) 650 lm radius glass tube, (b) 400 lm square tube,

(c) 600 lm square tube, (d) 400 lm open microchannel,

and (e) 600 lm open microchannel. The data show good

reproducibility in circular and square tubes. However,

some variability between samples (up to 10 %) was

observed for open channels. The most likely reason for this

is the variation in depth of the channels between samples.

The solid lines in Fig. 10 are the numerical solutions

[Eq. (25)], whilst the dashed lines are the fits obtained

using the approximate visco-gravitational solution

[Eq. (35)]. The data can be fitted accurately (to within 5 %)

using both solutions, albeit a discrepancy at the very early

stage of imbibition (seen in Fig. 10c, d e). This is, perhaps,

not surprising since our analysis assumes a constant contact

angle and does not take into account of any dynamic

contact angle changes during the initial entry into the

tubes/channels. Moreover, the parameters obtained from

fitting using the exact numerical solution and the approx-

imate analytical visco-gravitational solution agree to within

10 % for the viscous coefficient a and 3 % for the capillary

coefficient b. Thus, either the numerical or the visco-

gravitational solution can be used to fit the position of the

meniscus for our closed tubes and open channels. More-

over, the existence of liquid fingers advancing ahead of the

main meniscus of liquid do not seem to prevent the theory

from describing the advance of the meniscus for the main

body of liquid for values of channel aspect ratio e con-

sidered in our work.

Fig. 10 The variation of the

rise height with time of the

19.2 mPa s oil in: a 650 lm

radius glass tube, b 400 lm

square tube, c 600 lm square

tube, d 400 lm open channel

and e 600 lm open channel.

The solid symbols represent the

experimental data and the solid

and dashed lines the numerical

and analytical fits respectively.

The dotted lines give the

expected rise using the nominal

device parameters
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In our experiments, we found that the equilibrium cap-

illary rise height was broadly consistent with expectations

using the nominal device parameters. The value of the

capillary parameter b obtained from the fits agrees very

well (to within 2 % for circular cross-section tubes) with

the experimental observations of the equilibrium height

rise xe (b = xeg). However, the rate at which the liquid

approached this equilibrium was always slower than pre-

dicted by theory, as is illustrated by the dotted curves in

Fig. 10, which represent the expected rise. The value of the

viscous coefficient a is larger than predicted by theory for

all viscosities and most all tubes and channels except for

the 400 lm open channels. We found this parameter to be

around 4.2 (±0.2) times larger than the theoretical value

for circular tubes and around 1.5 (±0.1) and 1.3 (±0.1)

times larger than the theoretical value for 600 and 400 lm

closed square capillaries, respectively. For the 600 and

400 lm wide open channels the fitted values of the viscous

coefficient a is around 1.5 (±0.2) and 0.9 (±0.1) times the

value predicted from the theory. Preliminary measurements

on smaller radius circular cross-section capillary tubes

suggests there is a better agreement between fitted and

predicted values as the radius reduces to less than a tenth of

the capillary length of the liquid. The data for the square

tubes and rectangular channels also indicate a better

agreement for smaller dimensions with a reasonable

agreement for the 400 lm wide open channels.

Retardation of liquid rise in capillaries and tubes has

previously been reported by other authors who have sug-

gested a range of possible reasons. These include a possible

dynamic contact angle effect during flow (Siebold et al.

2000; Hamraoui and Nylander 2002; Chebbi 2007; Xiao

et al. 2006; Xue et al. 2006), and a possible retardation

coefficient arising from an increased frictional dissipation

of the moving liquid front (Hamraoui and Nylander 2002).

A number of different models for how cos he in the cap-

illary term b in Eq. (28), hence in Eq. (25), might be

replaced by a dynamic cos h and how that would relate to

dissipation were considered in detail by Popescu et al.

(2008). They considered four models for a dynamic contact

angle including both hydrodynamic (Hoffman 1975; de

Gennes 1985; Cox 1986) and molecular-kinetic theory

(Blake and Haynes 1969). In the Hoffman-de Gennes

(HdG) approach, the dynamic contact angle, h(t), edge

speed, dx/dt, relationship is,

dx

dt

� �
� kv�h tð Þ cos he � cos h tð Þð Þ ð51aÞ

where k is a constant determined by viscous dissipation and

v� = cLV/g is characteristic velocity determined by the

ratio of surface tension to viscosity. For the linearized

form of the molecular-kinetic theory (MKT) model the

analogous relationship is,

dx

dt

� �
¼ n�1v� cos he � cos h tð Þð Þ ð51bÞ

where the combination n�1v� is a coefficient related to

wetting line friction, which depends on both fluid viscosity

and solid–liquid interaction (Bertrand et al. 2009; Stukan

et al. 2010). If we focus on cylindrical tubes and use

cos h (t) from Eq. (51a, 51b) in Eq. (28) rather than cos he

to obtain a parameter bd using the dynamic contact angle,

i.e.,

HdG modelð Þ b! bd ¼ 2cLV cos h=qR

¼ 2cLV

qR
cos he �

1

kv�h
dx

dt

� �	 

ð52aÞ

and

MKT modelð Þ b! bd ¼ 2cLV cos h=qR

¼ 2cLV

qR
cos he �

1

n�1v�
dx

dt

� �	 

ð52bÞ

there then arises an additional velocity-dependent term.

Interestingly, when the dynamic parameter bd is used in

Eq. (25) rather than the equilibrium parameter b, the effect

can be viewed as retaining the original equilibrium b

parameter, but replacing the a parameter by a dynamic ad

parameter,

HdG modelð Þ a! ad ¼ a 1þ R

4x tð Þ

� �
1

kh tð Þ

� �	 

ð53aÞ

or

MKT modelð Þ a! ad ¼ a 1þ R

4x tð Þ

� �
n

	 

ð53bÞ

The additional term in Eq. (53a, 53b) is time-dependent

and vanishes as the imbibition progresses and the dynamic

contact angle relaxes to its equilibrium value. This type of

term can be expected to cause a slower approach to equi-

librium than might be expected from Eq. (25) using only a

constant contact angle approximated by the equilibrium

contact angle. This is consistent with the numerical

investigation of Popescu et al. (2008) and with physical

expectations that when a vertical tube first comes into

contact with the horizontal meniscus of the reservoir the

instantaneous contact angle is likely to be 90� and must

relax towards the equilibrium value as imbibition com-

mences. This is also consistent with our preliminary

observations that agreement of the fitted a parameter with

theoretical expectations improves as the radius of the tube

decreases. A similar argument should apply to square

capillaries and open channels.

In our case, it is also possible that some of the increased

viscous dissipation in the rectangular channels could be

induced by the wetting fingers and that their contributions
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may be dependent on the size and/or aspect ratio e of the

channels. However, Girardo et al. (2012) found that fingers

do not seem to induce appreciable extra dissipation in the

early stage of microcapillary imbibitions in horizontally

mounted smooth microchannels. It is also of note that the

fitted values of the viscous coefficient a for the open

channels are a factor 2 and 3 lower (for the 400 and

600 lm wide open channels) than would be expected for a

rigidified liquid–air boundary, as required by Yang et al.

(2011) to explain the dynamics of capillary flow in their

horizontally mounted open narrow microchannels. This

indicates that a non-rigidified liquid–air interface best

represents the flow in our lower aspect ratio channels. A

further detailed quantitative investigation would be needed

to clarify the dependence of the viscous coefficient on

channel size and aspect ratio on dissipation, but this is

beyond the scope of our report.

Whilst the measured equilibrium rise height values are

to within 2 % of the predicted theoretical value for the

circular cross-section tubes, they are around 5 % smaller

than theoretical predictions for square tubes. We attribute

this reduction to the wetting fingers, which are predicted to

reduce the equilibrium height by a value of (2 ? p�)/

4 = 0.943 in square geometries (Bico and Quéré 2002).

The equilibrium height is, however, a factor of 0.83

(±0.03) times smaller than theory for the open channels,

although confidence in the exact factor requires some

caution since the data has considerable scatter. This is,

perhaps, not surprising since the fingers are more promi-

nent, and so may induce a larger reduction in the equilib-

rium height (Bico and Quéré 2002).

Figure 11 shows the effect of viscosity on the capillary

rise in a square tube with sides of 600 lm. As expected, the

rise is faster for the lower viscosity oils, but the equilibrium

rise height xe = b/g remains constant as it is independent

of viscosity. For the same physical geometry, the visco-

gravitational solution predicts that, at a given rise height x,

t / ab / g [Eq. (35), and Eqs. (26) and (28)]. It should,

therefore, be possible to scale from one viscosity value to

another provided the density and surface tension of the

liquid are independent of viscosity, which is the case for

our liquids to within 5 %. To verify this experimentally,

the data in Fig. 11 are re-plotted with the time for each

viscosity data scaled to that of the 96.0 mPa s sample by

multiplying it by a factor equal to 96/g (t� = t 9 96/g); the

results are shown in the inset to Fig. 11. It can be seen that

the data scale with viscosity, supporting the above argu-

ment. Moreover, this indicates that liquid rise can be pre-

dicted for any viscosity value from the experimental data of

one given viscosity (taken here to be the 96 mPa s) by

scaling the value of a, obtained from the fit to the analytical

visco-gravitational solution, according to the ratio of vis-

cosities (dashed lines in Fig. 11). Similar results were

obtained for 400 lm square tubes (Fig. 12a) and round

capillaries (Fig. 12b). However, our data for the open

rectangular channels do not scale as well with viscosity

(Fig. 12c, d). We believe this is due to the variations in the

height of channels (130–140 (±5) lm) from one sample to

another that were difficult to prevent during their fabrica-

tion. An improved scaling is obtained (as shown in the

insets of Fig. 12c, d) if we account for the variations in

channel depths between samples at a given channel width

as explained in the next paragraph.

The inset of Fig. 13 shows the data from Fig. 10b, c

re-plotted to show the effect of the tube dimension on the

liquid rise in square tubes (H = W) for the 96 mPa s oil.

As expected the equilibrium rise height xe = b/g scales

inversely proportional to H [Eq. (28)]. For a given x/xe, the

visco-gravitational solution [Eq. (35)] predicts t / ab /
g= H3fcðeÞð Þ / gH�3, where fc(e) = fc(1) is independent

of dimension for square tubes. It should, therefore, be

possible to scale liquid rise of any sample of dimension H

relative to any other given dimension (say 400 lm) both

for rise height and time by multiplying x by H/400 and time

by (H/400)3. Moreover, time can also be scaled for vis-

cosity in the same way as performed above (Figs. 11, 12a).

The results are shown in Fig. 13. It is evident that the data

cannot be fully scaled for sample dimensions. The reason

for this is that theory underestimates viscous dissipation by

an amount that is dependent on sample dimension as

discussed above. For open channels of varying depths

and with he = 0, t / ab / ge= H3foðeÞð Þ / g= WH2foðeÞð Þ,
where fo(e) can be determined using Eq. (23). So it should

Fig. 11 The effect of viscosity on capillary rise for the 600 lm

square tube. The dashed lines are the expected rise obtained by taking

the fitted value of a for the 96.0 mPa s sample and scaling it

according to the ratio of viscosities. The inset shows the data scaled

for viscosity. The scaled time t� = 96t/g
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also be possible, in principle, to scale the liquid rise for any

sample of known width W, height H (hence e) and viscosity

g relative any other sample with given dimensions and

viscosity following the same procedure as for square cap-

illaries. The data can be scaled for viscosity and small

variations in channel depths at fixed channel widths (insets

of Fig. 12c, d); however, the data cannot be fully scaled for

channel width, in the same way as for closed square cap-

illaries, because of the dimension-dependent retardation

discussed above.

5 Conclusions

In this work, we have presented the theory for capillary-

driven imbibition into tubes of circular and square cross-

sections and into open and closed rectangular channels in a

common formalism. The theory can describe tubes and

channels at any angle to the horizontal from horizontal to

vertical. We have shown that there is a cross-over time and

imbibition length below which the exact numerical solution

of the equations is best described by the analytical

Bousanquet solution and above which by the analytical

visco-gravitational solution. We have also highlighted that

corner filling wetting ideas lead to the expectation of liquid

fingers advancing in square and rectangular tubes and

channels in advance of the main meniscus and we have

observed this to be the case experimentally. Nonetheless,

the theory accurately describes the form of the observed

imbibition for capillary rise of PDMS oils in closed square

and open rectangular channels of different width cross-

sections. We found that the analytical viscous-gravitational

solution as an approximation of the exact differential

equation for capillary imbibition can be adequately used to

fit capillary rise in the systems we studied. From these fits,

we found that the viscous friction coefficient is larger than

predicted by theory, but that agreement improves for

smaller dimension samples, and we attribute this to

dynamic contact angle effects. The data indicate that the

shapes of the wetting fingers are dependent on the aspect

ratio of the samples. For our completely wetting liquids

Fig. 12 Capillary rise scaled

for viscosity in: a 400 lm

square tube, b R = 650 lm

circular tube, c 600 lm open

channel and d 400 lm open

channel. The insets to c and

d show the data scaled to

account for depth variations

between samples

Fig. 13 The capillary rise in square tubes scaled for tube dimension

and viscosity for 400 lm (empty symbol) and 600 lm (filled symbol).

The scaled rise height x� = (Hx/400) and scaled time t� =

(H/400)3t. The inset shows the effect of the dimension of square

tube on the capillary rise for the 96.0 mPa s oil
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(he = 0), the liquid fingers are thin and form near the corner

edges for square tubes with aspect ratio e = 1, whereas they

are prominent for open channels with low values of e
(0.225, 0.338), in agreement with observations on static

fluids. These fingers may have important implications for the

design and performance of microfluidic devices based on

liquid imbibition of wetting liquids with contact angles

he B 45� in rectangular microchannels. It is possible that

they might affect the amount and dynamics of liquid flow,

cause contamination between the micro-compartments or

connect, what would otherwise be, separate area of liquids.
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Bico J, Quéré D (2003) Precursors of impregnation. Europhys Lett

61:348–353. doi:10.1209/epl/i2003-00196-9
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