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ABSTRACT

An MEG marker for pitch analysis (the pitch onset response, POR) has been 

reported for different types of pitch-evoking stimuli, irrespective of whether the 

acoustic cues for pitch are monaurally or binaurally produced. It is claimed that 

the POR reflects a common cortical representation for pitch, putatively in lateral 

Heschl’s gyrus. The result of this fMRI study sheds doubt on this assertion. We 

report a direct comparison between iterated ripple noise and Huggins pitch in 

which we reveal a different pattern of auditory cortical activation associated with 

each pitch stimulus, even when individual variability in structure-function 

relations is accounted for. Our results suggest it may be premature to assume 

that lateral Heschl’s gyrus is a universal pitch center.

Keywords : Functional imaging; auditory; monaural diotic pitch; binaural 

dichotic pitch.
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INTRODUCTION

Pitch is one of the most important auditory sensations, having a vital role in 

speech perception, music perception, and in the perceptual segregation of 

concurrent sounds. The fact that sounds with very different physical 

characteristics can be matched in terms of their pitch [1] suggests that at some 

stage in the auditory pathway there is a common neural representation of pitch. 

A recent primate neurophysiological study has suggested that a region 

immediately anterolateral to the primary auditory cortex may act as a pitch 

center, with an individual neuron in the region sensitive to a characteristic 

fundamental frequency (F0) irrespective of the spectral characteristics of the 

eliciting stimulus [2]. It is argued that this result is consistent with the many 

human neuroimaging studies demonstrating a pitch-sensitive region in the 

homologue of the primate pitch center; lateral Heschl’s gyrus [3]. One concern 

however is that the majority of these studies have used iterated ripple noise as 

a pitch-evoking stimulus [4-11]. Reliance on mapping a pitch-related neural 

response that is evoked by only one class of stimulus does not provide a robust 

test of a claim for a general pitch center.

Two recent magnetoencephalographic (MEG) studies have gone some way 

to addressing this issue by making within-subject comparisons of the responses 

to two different classes of pitch-evoking stimulus. Both studies compared the 

pitch onset response (POR) to a binaurally produced (dichotic) pitch with that to 

a monaural (diotic) pitch, either a tone in noise [12] or iterated ripple noise [8]. 
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The dichotic stimulus was a Huggins pitch in which the input to the two ears is 

an identical white noise except in a narrow frequency region. In this frequency 

region the input to the two ears is decorrelated. Listeners hear a pitch 

corresponding to the decorrelated region, and this pitch has been shown to 

support the production of musical melodies [13], thereby satisfying the most 

conservative definition of pitch. In a Huggins pitch, the input to each ear alone is 

simply white noise. This contrasts sharply with the pitches of single frequency 

tones, complex tones and iterated ripple noise, that do not depend on binaural 

integration. Huggins pitch is therefore a potentially useful test of the generality 

of a supposed neural pitch center.

The POR is defined as the deflection in the measured signal at the transition 

from a spectrally controlled noise to the pitch stimulus. In both studies [8, 12], 

the POR for Huggins pitch was similar to that for the monaurally produced pitch 

and the principal generating dipole was proposed to originate in the proximity of 

Heschl’s gyrus. The spatial precision of MEG is rather coarse and 

interpretations are generally guided by other information, such as results gained 

from fMRI. Nevertheless, the PORs reported by Chait [12] are at least 

consistent with a common generating dipole in lateral Heschl’s gyrus for both 

types of pitch; see also [11]. In order to test this assumption, we presented 

dichotic and diotic pitch signals to a set of listeners. The present fMRI 

experiment addressed two predictions arising from the MEG evidence:

1. With respect to a matched noise, Huggins pitch and iterated ripple 

noise produce comparable pitch-related fMRI responses
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2. Both pitch-related responses are co-located in lateral Heschl’s gyrus.

METHODS

Subjects: We recruited five female and four male, normally hearing listeners 

(≤ 25dB HL between 250 Hz and 6 kHz). Their mean age was 24½ years old, 

ranging from 18 to 40 years. All except one listener (#1) was strongly right 

handed and all except one listener (#8) was musically trained. Listeners gave 

written informed consent and the study was approved by the Nottingham 

University Medical School Ethics Committee.

Stimuli: Stimulus conditions each comprised a 15.5 s repeating sequence of 

stimulus bursts presented at a rate of 2 Hz. Each burst had a fixed duration of 

450 ms (including 10 ms onset and offset ramps). To avoid artifacts due to 

repeated presentation of identical noise portions, sequences contained different 

noise exemplars. 

In the baseline condition, we presented a Gaussian noise that was lowpass 

filtered at 2 kHz. Two different pitch-evoking stimuli were generated by 

manipulating this noise carrier. Neither pitch-evoking stimulus contained any 

spectral cues for pitch and both stimuli were matched to the noise in terms of 

their spectral envelope and spectral energy. We also confirmed, through 

cochlear simulation, that the energy of the neural excitation pattern in the 

auditory nerve was equivalent to that of the noise control. 
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The dichotic pitch was a Huggins stimulus in which the waveforms of the 

noise at the two ears differed only in the phases of a narrow band of 

frequencies from 190 to 210 Hz (200 Hz +/- 10%), generating a pitch 

corresponding to a pure tone of 200 Hz. This frequency region was given a 

progressive phase shift, linear in frequency between 0 and 2, in the left ear 

only. The sensation of dichotic pitch does not require extensive training [13]. 

Nevertheless, to ensure that our listeners were able to determine the pitch we 

first exposed them to a 2 interval-2AFC pitch discrimination task using the 

experimental stimulus as a reference. After one practice run, the threshold for 

the group reached an acceptable level of performance; 16 Hz (7.8 %) averaged 

over four adaptive tracks. Thresholds were not related to musicianship. 

The diotic pitch was an iterated ripple noise which contains regular intervals 

between successive peaks in the temporal waveform of the noise. The 

waveforms were identical at the two ears. This stimulus was created by adding

a copy of the noise segment back onto itself after a delay of 10 ms had been 

imposed onto the copy and then repeating this delay-and-add process for 16 

iterations to generate a salient pitch percept. The pitch of the iterated noise

corresponds to a pure tone with a frequency equal to the reciprocal of the delay; 

in this case, 100 Hz. All listeners reported that they could immediately perceive 

this type of pitch. 

Spectrally-complex pitch stimuli often contain peaks in spectral energy 

corresponding to the fundamental frequency and its higher multiples, even 

when they are not physically present in the original stimulus. These are 
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generated by the nonlinear mechanics of the basilar membrane and can 

contribute to the perception of complex pitches [14]. Given the hypothesis about 

a common central representation of pitch that responds irrespective of the 

spectral region, it is imperative that the contributions of peripheral mechanisms 

to neural responses are discounted before a central mechanism can be 

proposed. To avoid the effect of spectral distortion products, the iterated ripple 

noise was created using only the 1-2 kHz frequency band, while the 0-1 kHz 

band contained a Gaussian noise matched in spectral energy to act as an 

energetic masker.

Procedure: Scanning was conducted using a Philips 3 T Intera equipped 

with an 8-channel SENSE head coil. Sequences used a SENSE factor of 2 to 

reduce image distortions and a SofTone factor of 2 to reduce the background 

scanner noise level by 9 dB. For each participant, a high resolution (1 mm3) 

anatomical scan was used to position the functional scan centrally on Heschl’s 

gyrus. Functional scans consisted of 20 slices taken in an oblique-axial plane, 

with a voxel size of 3 mm3. We took care to also include the entire superior 

temporal gyrus and to exclude the eyes. Scans were collected at regular 8 s 

intervals, with the stimulus presented predominantly in the quiet periods 

between each scan (‘sparse imaging’ [15]). Each pitch stimulus was presented 

in a separate scanning run, but the same noise and silent baseline conditions 

were repeated in each run to provide a quantitative basis for comparison. 

Listeners were requested to attend to the sounds and to listen out for the pitch, 
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but were not required to perform any task. A custom-built MR-compatible 

system delivered distortion-free sound using high-quality electrostatic 

headphones. Sound levels were equal loudness (~ 90 dB SPL measured at the 

ear). 

Data processing: Image analysis was conducted using SPM 

(www.fil.ion.ucl.ac.uk/spm) separately for each listener. Pre-processing steps 

included within-subject realignment and spatial normalization. For each listener, 

normalized images were up-sampled to a voxel resolution of 2 mm3 and 

smoothed by a Gaussian kernel of 4 mm full width at half maximum. This 

procedure meets the smoothness assumptions of SPM without compromising 

much of the original spatial resolution, so preserving the precise mapping 

between individual brain structure and function. Individual analyses were 

computed for the two runs, specifying the two pitch and the two noise conditions 

as separate regressors in the design. In the individual analysis, we specified 

separate statistical contrasts for each sound condition relative to the silent 

baseline that was implicitly modeled in the design.

RESULTS

Average responses: The outputs of the individual statistical contrasts were 

entered into a within-subjects correlated-measures ANOVA that accounted for 

the variability across listeners. Both the pitch-evoking stimuli and the noise 

generated widespread bilateral auditory responses (Table 1). Activation was 
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highly reliable since it survived a statistical threshold of p<0.05 (corrected for 

false discovery rate and an extent of at least 10 voxels). Peak responses were 

mostly in Te1.0 (40-80% probability [17]).

** Table 1 **

The observed activation represents multiple classes of neural computation 

including not only the representation of pitch, but also that of the spectral 

content and the sound level of the signals. To test the specific hypothesis that 

both Huggins pitch and iterated noise access a common representation for 

pitch, it is desirable to eliminate the effects of all other neural computations that 

are common to both pitch and non-pitch stimuli. This was achieved by 

subtracting the matched noise from the pitch. The resulting pattern was very 

different across the two pitch contrasts (Table 1). The diotic pitch engaged

Heschl’s gyrus, planum polare (-54 -2 -12 and 50 -8 -4 mm) and anterior 

planum temporale (-60 -22 4 and 62 -24 6 mm).  The dichotic pitch reached 

significance only at an uncorrected threshold in left medial planum temporale (-

40 -42 10 mm). 

Individual responses: The group-averaged results are difficult to resolve 

with the dominant view of pitch coding in lateral Heschl’s gyrus [3]. However, it 

is well known that averaged data can obscure what is happening in individual 

listeners. For example, the position of a peak in the group data is not 

necessarily the location where a majority of the individuals all exhibit the same 
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peak; instead, it can represent a location where activation from individuals 

overlaps in some way [10]. 

** Figure 1 **

To get a clearer picture, each pitch condition was contrasted with its noise 

baseline for each listener. To enable data exploration we chose lenient 

threshold criteria (p<0.01). These maps were converted into binary images and 

then summed across the group to generate a map of the probability distribution 

for each pitch-related activation (Figure 1). For every listener, we observed a 

significant bilateral response to iterated noise. Its location was reasonably 

consistent across listeners; reaching a maximum overlap at the posterior 

boundary of Heschl’s gyrus (7/9 listeners in the left at -47 -17 3 mm and 6/9 

listeners in the right at 56 -9 1 mm). In contrast, the amount of pitch-related 

activation was significantly smaller for Huggins pitch (Wilcoxon signed rank test 

computed using the extent of activation across individual listeners, Table 2, 

z=2.98, p<0.01). It was also much more variable in its location. As Figure 1 

illustrates, the effect of Huggins pitch occurred in Heschl’s gyrus, posterior 

planum temporale, planum polare and the superior temporal sulcus, but was 

never present in the same voxel for more than two listeners. 

** Table 2 **

If there was a shared representation of pitch, then one would predict that 

fMRI responses to both types of pitch-evoking stimuli should engage the same 

brain region. However, typically there was no intersection between the two pitch 

effects (Table 2). 
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DISCUSSION

The present study reports the first demonstration of an auditory cortical 

response to a dichotic pitch measured by fMRI. While Huggins pitch produced 

activity in various auditory cortical sites, iterated noise activity was focused on 

lateral Heschl’s gyrus. Typically, the two pitch-related effects were non-

overlapping. Our data do not support the claim for a common neural substrate 

suggesting that it may be premature to assume that lateral Heschl’s gyrus is a 

universal pitch center. Although we observed no response to Huggins pitch in 

lateral Heschl’s gyrus, listeners did respond in other auditory regions. Hence, 

the absence of an Huggins pitch effect in lateral Heschl’s gyrus is unlikely to be 

due to a generalized response reduction which might be reasoned to stem from 

Huggins pitch’s lower perceptual salience.

We consider the apparent contradiction between our fMRI result and 

previous MEG reports of a common POR for both Huggins and other pitch 

signals, such as iterated ripple noise. It cannot be ruled out that different neural 

populations give rise to a similar POR. In support, although Hertrich [8] reported 

that the main POR dipole had the same response shape for Huggins pitch and 

iterated noise, important stimulus differences were present in the orthogonal 

response components. Thus, the dipole fits to the POR were consistent with 

different spatial distributions for the different pitch signals. It is entirely feasible

that, like the N100, the pitch effect captured by the POR is not best represented

by a single dipole [18]. Rather the dipole could simply represent a center of 

activity for multiple sites of pitch-specific activity. 
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Three key methodological differences are also noteworthy. The first point is 

simple to explain. MEG selectively detects tangential sources, notably in grey 

matter perpendicular to the skull, and so not necessarily all the neural activity 

revealed by fMRI has an MEG correlate. EEG comparisons of the POR to 

different pitch signals might be informative here since EEG detects sources at 

different orientations to the skull. The second point concerns the stimuli. The 

MEG reported the transient deflection associated with individual pitch onsets in 

the absence of a change in the signal energy, while our fMRI reported the 

integrated response to a sequence of pitch bursts punctated by quiet intervals. 

Given that the energy onset response and the POR interact with one another in 

such a way that the POR becomes refractory when it occurs close to the energy 

onset [19], it would be informative to compare these MEG results to an fMRI 

study in which the noise baseline was presented continuously during the pitch 

sequence. However, one would have to assume different refractory states for 

the two pitch signals to fully account for the differences reported in the present 

study. This would be unlikely. The final point concerns whether the transient 

and sustained pitch-related responses represent the same neural phenomena. 

A common source in lateral Heschl’s gyrus has been demonstrated by 

simultaneous modeling of both the transient response and the sustained field 

evoked by regular click trains [20]. This result holds promise that the MEG and 

fMRI are probably measuring different manifestations of the same neural coding 

of pitch even though the dipole source is not definitive.
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CONCLUSION

Our results provide novel evidence that the spatial organization of activity for 

a dichotic pitch differs from that for a diotic pitch. This is evidence against the 

claim for a single pitch center located in lateral Heschl’s gyrus.
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LEGENDS

Table 1. Location and extent of sound-evoked activation, including the 

degree to which three anatomical subdivisions of HG (central: Te 1.0, medial:

Te 1.1 and lateral: Te 1.2 [16]) respond to each stimulus contrast. These values 

are reported as a percentage of the total volume of each region, calculated

using the SPM anatomy toolbox [17]. The pitch > noise contrasts reached 

cluster-level significance (p<0.001) using statistics corrected for the volume of 

the main effect, except for those results presented in italics which reached only 

an uncorrected voxel-level significance (p<0.001) within the same functional 

volume. 

Table 2. Number of suprathreshold voxels (p<0.01) in the superior temporal 

gyrus for each pitch effect and the intersection. 

Figure 1. Probability-weighted distribution of pitch-related activity across the 

nine listeners; overlaid on axial slices. Colour scale represents the percentage 

of listeners with significant activation. 
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Table 1

Peak MNI 
coordinate 

mm
Te1.0 Te1.1 Te1.2

x y z

Z value Cluster 
size

(#voxels)

Side

Huggins pitch

-56 -14 6 5.63 1044 L 88    89 46
60 -6 2 5.01 846 R 87 62 53

Gaussian noise 

-48 -16 0 5.57 977 L 87 87 38

60 -6 2 5.37 682 R 79 47 52
Effect of dichotic pitch (Huggins pitch > noise)

-40 -42 10 3.44 10 L 0 0 0

Iterated ripple noise
-42 -22 8 6.74 1670 L 96 96 66

60 -10 6 6.02 1395 R 98 82 78

Gaussian noise 

-42 -22 8 6.45 1186 L 98 95 0

46 -18 8 5.62 1182 R 95 85 44

Effect of diotic pitch (Iterated ripple noise > noise)

-54 -2 -12 4.31 206 L 21 40 7

66 -18 -2 4.04 269 R 19 0 32

-60 -22 4 3.48 37 L 0 0 0
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Table 2.

Subject Huggins pitch Iterated noise Both pitches
L R L R L R

1 612 485 648 829 242 70
2 652 252 571 597 148 28
3 159 66 155 295 0 4
4 102 2 204 84 0 0
5 78 119 218 135 0 0
6 0 161 571 597 0 0
7 371 3 713 554 20 0
8 204 186 41 185 0 0
9 3 19 573 414 0 22
Median 159 119 571 414 0 0
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As suggested by the Section Editor, I have substantially reduced the use of 
abbreviations. The following abbreviations are now written in full throughout.

HP: Huggins pitch
IRN: Iterated ripple noise
PT: Planum temporale
PP: Planum polare
HG: Heschl’s gyrus
STG: Superior temporal gyrus

1) The reviewer suggested that we were mainly guided by primate studies. 
While the introduction does cite 2 primate studies of pitch coding (only of 
which is a report of novel data – the other is a review), we do in fact cite 9
human imaging studies in the same section [refs 4-12]. Thus we feel the 
weight of our Introduction is guided more by human neuroimaging evidence 
than by the primate neurophysiology.

This focus now clarified by stating ‘This result is consistent with the many 
human neuroimaging studies demonstrating a pitch-sensitive region in the 
homologue of the primate pitch centre’

Pitch is a very diverse field. Some researchers study pitch as a musical 
phenomena which contributes to melody. As part of this research focus they 
can also consider the relationships between pitch and timbre. Some 
researchers use pitch differences between sounds as a way to explore the 
effects of training on frequency or pitch discrimination. In contrast, other 
researchers study the psychoacoustics and physiology of pitch coding, for 
example to address the contribution of spectral and/or temporal mechanisms 
of pitch coding and to address whether there is a common representation of 
pitch.

The current manuscript deals with the latter approach. Therefore we do not 
consider it really appropriate to expand the Introduction to include the 
suggested references which address pitch processing from one of these other 
perspectives.
EG Meyer M, Baumann S, Jancke L: Electrical brain imaging reveals spatio-
temporal dynamics of timbre perception in humans NEUROIMAGE 32 (4): 
1510-1523 1 2006  This paper deals with the processing of complex 
instrumental tones.
EG Jancke L, Gaab N, Wustenberg T, Scheich H, Heinze HJ Short-term 
functional plasticity in the human auditory cortex: an fMRI study COGNITIVE 
BRAIN RESEARCH 12 (3): 479-485 2001 
This paper deals with pitch discrimination and training listeners using
sequences of pure tones of 950 Hz (standard) and deviant tones of 952, 954, 
and 958 Hz.

2) How does musicianship influence pitch perception? 

Response to review

http://apps.isiknowledge.com/WoS/CIW.cgi?SID=R2MLAcFjKFNgKi8@3nA&Func=OneClickSearch&field=AU&val=Jancke+L&ut=000172984200014&auloc=1&curr_doc=2/3&Form=FullRecordPage&doc=2/3
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=R2MLAcFjKFNgKi8@3nA&Func=OneClickSearch&field=AU&val=Gaab+N&ut=000172984200014&auloc=2&curr_doc=2/3&Form=FullRecordPage&doc=2/3
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=R2MLAcFjKFNgKi8@3nA&Func=OneClickSearch&field=AU&val=Wustenberg+T&ut=000172984200014&auloc=3&curr_doc=2/3&Form=FullRecordPage&doc=2/3
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=R2MLAcFjKFNgKi8@3nA&Func=OneClickSearch&field=AU&val=Scheich+H&ut=000172984200014&auloc=4&curr_doc=2/3&Form=FullRecordPage&doc=2/3
http://apps.isiknowledge.com/WoS/CIW.cgi?SID=R2MLAcFjKFNgKi8@3nA&Func=OneClickSearch&field=AU&val=Heinze+HJ&ut=000172984200014&auloc=5&curr_doc=2/3&Form=FullRecordPage&doc=2/3


Added the sentence 
Thresholds were not related to musicianship.

3) The reviewer asked about the task. The task was the same for both pitch 
conditions. We have used this type of task widely, in a range of published 
papers, for stimulus mapping of the auditory cortex in well-motivated listeners.

Procedure :
Listeners were requested to attend to the sounds and to listen out for the 
pitch, but were not required to perform any task.

4) The reviewer asked about the quality of the sound signals delivered to the 
listeners

Procedure :
A custom-built MR-compatible system delivered distortion-free sound using 
high-quality electrostatic headphones.

5) The reviewer disagreed with the first sentence of the Discussion “The 
present study reports the first demonstration of an auditory cortical response 
to a dichotic pitch measured by fMRI.” by referring to a study of dichotic tone 
perception by Jancke et al (2003). As we explain below, dichotic listening and 
dichotic pitch perception are very different processes. Therefore  we are 
confident that our initial claim still holds true.

We would like to clarify the difference between a dichotic listening task (as 
used by Jancke) and dichotic pitch coding. Dichotic listening refers to the 
presentation of two separate signals that are presented monaurally, one to 
each ear. Hence, there are two simultaneous sound percepts. The listener 
can be instructed to listen out for a  target signal presented in either the left or 
the right ear. This is a useful paradigm for investigating focused attention (e.g. 
as in the Jancke study).
Dichotic pitch refers to a single signal that is presented binaurally to both ears 
and the result is a single stimulus percept.. In a dichotic pitch, the pitch 
information can only be extracted by a process of integration between the 
signals at the two ears. 
These characteristics of a dichotic pitch are described in the Stimuli section.
And to highlight the difference between this and the diotic pitch (the iterated 
ripple noise) we have added the following sentence when describing the diotic 
pitch.
 ‘The waveforms were identical at the two ears.’

To clarify this a little I have expanded the keywords the include the phrase 
‘monaural diotic and binaural dichotic pitch’.

6) The reviewer suggested that we mention the probabilities obtained from the 
Rademacher-Morosan atlas.

For brevity, we summarise the results as follows :



‘Peak responses were mostly in Te1.0 (40-80% probability [17]).’


