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Abstract 
 

Cognitive control over conflicting information has been studied extensively using 

tasks such as the colour-word Stroop, flanker, and spatial conflict task. Neuroimaging 

studies typically identify a fronto-parietal network engaged in conflict processing, but 

numerous additional regions are also reported. Ascribing putative functional roles to 

these regions is problematic, since some may have less to do with conflict processing 

per se, but could be engaged in specific processes related to the chosen stimulus 

modality, stimulus feature, or type of conflict task. In addition, some studies contrast 

activation on incongruent and congruent trials, even though a neutral baseline is 

needed to separate the effect of inhibition from that of facilitation. 

 

In the first part of this paper, we report a systematic review of 34 neuroimaging 

publications, which reveals that conflict-related activity is reliably reported in anterior 

cingulate cortex and bilaterally in lateral prefrontal cortex, anterior insula, and the 

parietal lobe. In the second part, we further explore these candidate ‘conflict’ regions 

through a novel fMRI experiment in which the same group of subjects perform related 

visual and auditory Stroop tasks. By carefully controlling for the same task (Stroop), 

the same to-be-ignored stimulus dimension (word meaning), and by separating out 

inhibitory processes from those of facilitation, we attempt to minimise the potential 

differences between the two tasks. The results provide converging evidence that the 

regions identified by the systematic review are reliably engaged in conflict 

processing. Despite carefully matching the Stroop tasks, some regions of differential 

activity remained, particularly in the parietal cortex. We discuss some of the task-

specific processes which might account for this finding. 
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Introduction 
 

The ability to process conflicting information and respond appropriately is critical to 

cognitive control. Many laboratory tasks have been devised to test conflict processing, 

and these generally require subjects to suppress the tendency to make an automatic or 

natural response in favour of an alternative stimulus-response mapping. The colour-

word Stroop task is a classic conflict paradigm of this type. In this task, subjects are 

required to name the colour of a printed word, whilst ignoring the meaning of the 

word. In congruent trials, the print colour and word meaning are compatible, while in 

incongruent trials they are not (e.g. ‘RED’ printed in blue ink). Incongruent trials 

reliably lead to performance costs in both reaction times (RTs) and accuracy, 

reflecting the need to inhibit the irrelevant stimulus feature and its corresponding 

inappropriate response. Other conflict tasks include i) the flanker task (Eriksen & 

Eriksen, 1974) where flanking arrows interfere with judgments about the direction of 

a central target arrow, ii) spatial conflict or ‘Simon’ tasks where stimulus-response 

incompatibility is generated by, for example, requiring a right-handed response to a 

left-sided stimulus (Lu & Proctor, 1995; Simon, 1990; Simon & Berbaum, 1990) and 

iii) the ‘go/no-go’ task where subjects must withhold a response to a non-target 

stimulus (see Buchsbaum, Greer, Chang, & Berman (2005) for a review).  

 

Neuroimaging studies have used these different tasks to identify the neural substrates 

of conflict processing. These studies typically identify a bilateral anterior network 

comprising the anterior cingulate cortex (ACC) and lateral prefrontal cortex (LPFC) 

(Buchsbaum et al., 2005; MacDonald, Cohen, Stenger, & Carter, 2000; Milham, 

Banich, & Barad, 2003; Smith & Jonides, 1999; Wager et al., 2005), with many 

studies also noting involvement of the parietal lobe (Buchsbaum et al., 2005; Bush et 
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al., 1998; Carter, Mintun, & Cohen, 1995; George et al., 1994; Hazeltine, Poldrack, & 

Gabrieli, 2000; Milham et al., 2002). Across different tasks, the fronto-parietal pattern 

appears to differ somewhat in terms of its regional specificity and hemispheric 

symmetry (Buchsbaum et al., 2005). Nevertheless, these regions are more consistently 

reported to be engaged in conflict processing than other cortical areas, such as the 

inferior temporal gyrus (Bush et al., 1998; Carter et al., 1995; Fan, Flombaum, 

McCandliss, Thomas, & Posner, 2003; Peterson et al., 2002), fusiform gyrus (Ruff, 

Woodward, Laurens, & Liddle, 2001; Ullsperger & von Cramon, 2001), middle 

occipital gyrus (Bush et al., 1999; Compton et al., 2003; Ullsperger & von Cramon, 

2001) and posterior cingulate (Paus, Petrides, Evans, & Meyer, 1993; Wager et al., 

2005). Differences across studies are typically attributed to individual biases at the 

perceptual, cognitive or response levels that are unique to each task. For example, any 

task-related activity could differ according to whether the conflict is associated with 

irrelevant stimulus features, response selection, response execution, and/or response 

mapping. Additionally, task-specific strategies may be employed to overcome 

conflict, such as selectively attending to the central arrow in the flanker task (Casey et 

al., 2000). 

 

In the first part of this paper, we examine the strength of evidence for the fronto-

parietal network (ACC, LPFC and parietal lobe) engaged during conflict processing, 

by reporting a systematic review of published neuroimaging studies on this topic. It is 

perhaps surprising that such evidence is not more readily available, although at least 

two meta-analyses were reported in 2005. One was concerned only with reports of the 

‘go/no-go’ task: a distinctive task that requires withholding a prepotent response, 

rather than producing a competing response (Buchsbaum et al., 2005). In this meta-
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analysis of 18 go/no-go studies, inhibition was reliably associated with activation in 

bilateral (but predominantly right-hemisphere) LPFC and inferior parietal lobe (IPL), 

and unilateral cingulate, fusiform gyrus, putamen, and thalamus. Another meta-

analysis combined studies of ‘go/no-go’, flanker and spatial conflict tasks (Wager et 

al., 2005), although details such as the number of studies are not provided. They 

found a more lateralised pattern of common activation including dorsolateral PFC 

(DLPFC, BA 9 & 46), medial prefrontal and angular gyrus on the right side, anterior 

insula on the left side and anterior cingulate on the midline. Consistent with the 

Buchsbaum study, the right-hemisphere bias was largely driven by the results from 

go/no-go studies. Here, we present a systematic review which combines data from 40 

neuroimaging studies of conflict tasks. We excluded go/no-go tasks, to include only 

studies which required subjects to process conflicting information and make an 

unnatural or competing response. The review should therefore identify regions of the 

fronto-parietal network, and elsewhere, which are reliably engaged by these 

processes. 

 

While meta-analyses and reviews can identify consistent patterns of activation, 

interpretations about common functional anatomy are somewhat limited by their low 

spatial resolution and limited power. For a number of reasons (Brett, Johnsrude, & 

Owen, 2002), stereotaxic co-ordinates can be difficult to compare across subject 

groups and across studies. At the individual level, participants’ brains vary in size and 

shape. Differences are also introduced during normalisation due to variations in 

normalisation templates and the contrast or signal-to-noise of structural images. 

Finally, researchers employ different analysis techniques and reporting conventions. 

To circumvent these problems, a few studies have presented different conflict tasks to 
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the same group of individuals, enabling direct statistical comparisons to be applied 

(Fan et al., 2003; Peterson et al., 2002; Wager et al., 2005).  

 

In the second part of this paper, we adopt this approach by examining the degree to 

which two closely related conflict tasks engage common cortical areas in the same 

group of participants. We then relate these findings to the candidate regions defined 

by the systematic review in Part 1. We were struck by the widespread differences in 

the patterns of conflict-related activity reported by Fan et al. (2003). Fan et al. report 

activation associated with conflict processing on three different tasks: the colour-word 

Stroop task; the flanker task; and a spatial conflict task. ACC and PFC were active 

during conflict processing on all three tasks, but a number of additional areas were 

engaged during conflict processing on only one or two of the tasks. In fact, in this 

study, the differences appear to far exceed the commonalities. Our imaging 

experiment explores Fan et al.’s (2003) claim that regions of differential activation are 

engaged in task-specific operations to resolve the conflict. Unlike Fan et al’s study, 

and other previous studies (Peterson et al., 2002; Wager et al., 2005), our fMRI 

experiment takes the same basic conflict task (the Stroop task) and presents it in 

different sensory modalities (vision and audition). Thus, we are able to control for the 

same task (Stroop), the same to-be-ignored stimulus dimension (word meaning) and 

hence the same conflict-resolution operations (i.e. suppression of the irrelevant 

stimulus dimension and competing response selection). This general approach has 

been used previously to identify regions of common and task-specific activation 

(Banich et al., 2000a; Banich et al., 2000b). In the first of these studies (Banich et al., 

2000a) subjects were presented with incongruent or neutral colour-word stimuli and 

colour-object stimuli, and asked to monitor for an atypical item (either a colour, word, 
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or object). On both tasks, right prefrontal cortex was more active for incongruent 

stimuli than for neutral stimuli when subjects monitored the more attentionally-

demanding stimulus dimension (colour in the colour-word task, and object in the 

colour-object task). However, additional regions of frontal cortex were active for the 

colour-word stimuli only, and neither task produced conflict-related activation in 

ACC or parietal lobe, suggesting that monitoring for an atypical item does not 

produce strong conflict-related activation. The second paper (Banich et al., 2000b), 

compared activation associated with conflict on colour-word and spatial-word Stroop 

tasks (Experiment 1). Both tasks revealed activation associated with conflict 

processing in the dorsolateral prefrontal cortex and left inferior parietal cortex. 

Unfortunately this paper focused on dissociations between activation on the two tasks, 

and did not report a conjunction analysis. As with previous studies, the analysis 

revealed a number of regions which were more active during conflict processing on 

one task than the other, including subdivisions of prefrontal cortex, cingulate cortex, 

supplementary motor area, and parietal cortex.  

 

Interpretative leverage is gained when behavioural data (RTs and accuracy) are also 

acquired during the imaging session. Significant correlations between behavioural 

measures of interference would validate the claim that different conflict tasks probe 

common cognitive processes. However, some studies have failed to find correlations 

between behavioural measures from different conflict tasks, despite showing common 

fronto-parietal activation (Fan et al., 2003; Wager et al., 2005). In a previous study of 

40 participants (Roberts, Hall, & Summerfield, 2004; see also Roberts, Summerfield, 

& Hall, 2006), we reported that RT interference costs were positively correlated 

across the two Stroop tasks presented in our fMRI study, strengthening our claim that 
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they are well-matched in terms of their capacity to elicit cognitive conflict. Another 

novel feature of our fMRI experiment is that we exclude the effects of facilitation 

from those of inhibition. Previous studies which have compared activation associated 

with conflict from different tasks (Fan et al., 2003; Peterson et al., 2002; Wager et al., 

2005) have contrasted activation on incongruent and congruent trials. However, this 

contrast includes components relating to both inhibitory and facilitatory processes. By 

including a neutral condition (in which the irrelevant dimension does not indicate a 

possible response), it is possible to separately evaluate interference generated by 

conflicting information, and facilitation generated when both stimulus dimensions 

indicate the same response. This may be important, since facilitation benefits are 

smaller (MacLeod, 1991) and more variable (Fan et al., 2003) than interference costs. 

Arguably, some of the reported differences in conflict-related activity across tasks 

could reflect this variability in facilitatory effects, rather than differences in conflict 

processing. 

 

Part 1 : Systematic review of the conflict network 
 

The systematic review identified cortical regions consistently associated with conflict 

processing. Neuroimaging (fMRI and PET) studies including the keywords ‘Stroop’, 

‘Simon’ or ‘flanker’ were identified through searches of ScienceDirect, Ingenta, 

PsycINFO, and the Proceedings of the National Academy of Sciences (PNAS) in 

August 2004. Five additional papers were identified through citation searches of 

recent review articles (Barch et al., 2001; Bush et al., 1998; Cabeza & Nyberg, 2000; 

Duncan & Owen, 2000; Nee, Jonides, & Wager, 2004). Studies from the resulting list 

of 80 papers were included if they satisfied five criteria: i) reported a conflict-
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generating task, ii) analysed data using comparisons between incongruent trials and 

either neutral or congruent trials, iii) reported results for normal adult participants, 

including studies which reported separate results for control and patient groups, iv) 

reported a whole-brain analysis (not a region of interest analysis), and v) reported 

stereotaxic co-ordinates of peak activity. Thirty-four papers, reporting a total of 40 

experiments, met these criteria. Of these, 24 used a neutral baseline, while 16 used the 

congruent condition as a baseline. Details of these papers are listed in Appendix 1. 

Those peak co-ordinates reported in Talairach space (Talairach & Tournoux, 1988) 

were converted into MNI space using objectively-defined transformation parameters 

(Brett, Christoff, Cusack, & Lancaster, 2001). To account for residual variability in 

the precise location of the peak co-ordinate, we extended each peak for 5 mm in 

3-dimensions to form a cubic activation volume of 11 mm3. This size approximates 

the typical smoothing kernel applied to image data for group analysis. A separate 

binary map was generated for each of the 40 experiments and the binary maps were 

then summed together to produce probability maps (Figure 1, column 1). An 

advantage of this procedure is that it reduces any weighting bias due to those studies 

that report multiple peaks in the same region, although we acknowledge that it does 

underestimate the typical extent of activation around each peak. 

 

-- Figure 1 -- 

 

The probability map revealed a broad scatter of peak co-ordinates throughout the 

brain. Table 1 summarises the most typical pattern by reporting the locations of those 

centres of activation identified by at least five studies. Activation was most reliably 

reported in the left inferior frontal gyrus (IFG), part of the LPFC. In this region, nine 
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studies reported peaks located around the central co-ordinate. The right IFG was also 

commonly engaged by conflict processing. Other centres of common activation 

included ACC, bilateral parietal lobes and anterior insula cortices. We acknowledge 

that this approach adopts a rather stringent criterion, since it excludes those studies 

which might also report activation in the vicinity of these regions, but whose peak co-

ordinates are located more than 10 mm away from the centre of activation. 

Nevertheless, the review was successful in confirming the proposed fronto-parietal 

model of conflict processing. It also raises interesting questions about the role of the 

anterior insula in conflict processing. The role of the insula is not well-defined, but it 

has been associated with error processing, failed inhibition in go/no-go studies, and 

response to oddball stimuli (Ramautar et al., 2006). 

 

-- Table 1 -- 

 

To investigate whether some of the study-to-study variability might be reliably 

associated with the different types of conflict task, we further divided the 40 

experiments into two groups: those using a traditional colour-word Stroop task (n=21) 

and those using a different type of Stroop or other conflict task (n=19). Separate 

probability maps were created using the same procedure as before and are shown in 

Figure 1 for comparison (columns 2 and 3). Of the nine studies which contributed to 

the centre of activation in left IFG, seven were colour-word Stroop tasks. The 

remaining two were adapted colour-word Stroop tasks (Norris, Zysset, Mildner, & 

Wiggins, 2002; Zysset, Müller, Lohrmann, & von Cramon, 2001) in which subjects 

were shown two rows of letters and decided whether the ink colour on the top row 

corresponded to the colour name on the bottom row. Although this task differs from 
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the colour-word Stroop task, it is the only other conflict task in the systematic review 

which requires the subject to inhibit a prepotent response generated by fast and 

automatic colour-word reading. A greater number of colour-word Stroop studies also 

contributed to the conjoint activation in the bilateral insula cortex (six out of seven 

studies in the left hemisphere and four out of five studies in the right). The remaining 

study was a speeded flanker task (Ullsperger & von Cramon, 2001). Activation in the 

other cortical regions showed no clear differentiation across the types of task. We 

anticipated more consistency in the ‘colour-word Stroop’ group than in the ‘other 

conflict task’ group, as the latter is contributed to by numerous different tasks. 

However, we were still struck by the degree to which activation from the two groups 

was segregated, particularly in left IFG.  

 

The systematic review confirms that IFG, ACC, parietal lobe, and insula cortex are 

reliably engaged during conflict processing. Furthermore, the pattern of results 

suggests that conflict tasks of the same type are more likely to generate activation in 

the same portion of these regions, since maximum overlap occurred for the colour-

word Stroop tasks in left IFG and anterior insula. One interpretation might be that the 

colour-word Stroop elicits a specific set of task-related processes. Although one can 

only speculate from these results, it is perhaps the linguistic nature of the conflict that 

determines the left-sided emphasis in IFG (Bookheimer, 2002). 

 

Part 2 : An fMRI study of visual and auditory Stroop tasks 
 

This study explores behavioural and neural correlates of two Stroop tasks. We 

examine the effect of interference on both behavioural performance and the pattern of 
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cortical activation, and compare these effects across the two tasks. The results of the 

systematic review generated a priori predictions about the location of conflict-related 

activation and informed our approach for statistical inference.  

 

Participants 
 

Sixteen healthy volunteers participated in this study. The mean age of the group was 

24.3 years (range 16-42) and nine were male. Participants were all right-handed native 

English speakers, with normal or corrected-to-normal visual acuity and normal 

hearing thresholds (< 25 dB HL between 250 Hz and 8000 Hz). Participants gave 

informed consent prior to the study and were paid for their time. Six additional 

participants were scanned whilst performing the Stroop tasks, but their data had to be 

rejected because head movement exceeded 6 mm during one of the tasks. 

 

Stimuli and presentation methods 
 

All participants were first exposed to Stroop conflict as part of a larger (n = 40) 

behavioural study (Roberts et al., 2006). In the behavioural study the auditory Stroop 

task was presented in the context of a spatial cueing paradigm, where target words 

were preceded by cues, and stimuli were presented in a random order. As part of this 

study subjects also performed a simple (uncued) colour-word Stroop task, with stimuli 

presented in counterbalanced order, with every condition following every other 

condition equally often (Roberts et al., 2004). Sixteen of the subjects from the 

behavioural study returned to take part in the neuroimaging study. Target stimuli were 

identical in the behavioural and fMRI studies, but for the fMRI study we presented 
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both tasks without cues, and optimised the detectability of conflict-related activation 

by presenting trials in blocks of the same trial type. Blocks were of 24 s duration and 

contained a sequence of 14 trials. The imaging study also included a baseline 

condition in which subjects either saw a black cross or heard a 1 kHz tone, presented 

at the same rate as the words. Visual Stroop stimuli were generated following Fan et 

al. (2003). Target words (RED, BLUE, GREEN, YELLOW, LOT, SHIP, KNIFE, 

FLOWER) were presented in one of four colours (red, blue, green, or yellow). 

Different colour-word combinations produced congruent, incongruent, and neutral 

conditions. These stimuli were first presented to a flat-screen monitor in a sound-

attenuated testing room. A single letter of the colour-word Stroop stimuli subtended 

0.58º of visual angle in height and 0.49º in width. The gap between letters subtended 

0.08º of visual angle. During the fMRI study, these stimuli were back-projected onto a 

screen placed at the end of the scanner bed and were viewed by participants through 

prism goggles. The size of the stimuli was adjusted to match the visual angle of the 

behavioural study. Stimuli used in the auditory Stroop task were words (HIGH, LOW, 

DAY) spoken on a high- and low-pitch and recorded in a high-quality digital format 

(sampling rate = 44,100 Hz). Three exemplars of each stimulus were selected to 

provide overall similarity in average duration (457 ms), pitch (high F0 =  290 Hz; low 

F0 = 112 Hz), and amplitude (RMS = -20.26 dB re: full scale). Again, different pitch-

word combinations produced congruent, incongruent, and neutral conditions. Spoken 

words were presented via Sennheisser HD 480II headphones in the sound booth, and 

specially-modified electrostatic transducers in the MR scanner (Palmer, Bullock, & 

Chambers, 1998). The speech was clearly audible above the background scanner 

noise. For each visual trial, participants were required to identify the ink colour and 

respond by pressing the corresponding button on a four button response box. For each 
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auditory trial, participants discriminated the pitch by pressing one of two buttons. In-

house software was used for stimulus presentation and response logging. Responses 

were only logged if executed within 1.5 seconds of stimulus onset. For each task 11 

blocks of each condition were presented in a counterbalanced order, giving a total of 

154 trials per condition.  

 

Imaging protocol 
 

Scanning was performed on a dedicated echo-planar imaging 3-Tesla MR system with 

purpose-built head gradient coils (Bowtell & Peters, 1999) and a TEM head coil 

(Nova Medical Inc.). A total of 354 functional scans were acquired during each 

Stroop task. These scans were collected using a T2*-weighted sequence (flip angle 

90°; in-plane resolution = 3 x 3 mm; 128 x 64 matrix; TR = 3 s, TE = 36 ms). Each 

scan contained 22 coronal slices, 8 mm thick with no slice gap. For the majority of 

participants, the field of view covered the whole head, but for some it excluded the 

occipital pole. Thus, an additional whole-head 64-slice T2*-weighted image at 4 mm 

slice thickness was acquired to facilitate post-processing.  

 

Image analysis 
 

Image analysis was performed on a Sun Ultra 2 computer (Sun Microsystems) using 

SPM99 software (Friston, Holmes et al., 1995: http://www.fil.ion.ucl.ac.uk/spm) 

running in MATLAB v6.5 (Mathworks Inc., Natick, MA, USA). The first two scans 

were discarded to allow for steady-state saturation and the remaining scans were 

realigned to account for head movement (Friston, Ashburner et al., 1995). By 
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selecting reference scans as the final scan in the first time series and the first scan in 

the second time series, we were able to minimise the effects of motion that occurred 

between the two tasks. All scans were transformed into a standard brain space using 

an amended version of the EPI template available in SPM99 (for details see Hall, 

Fussell, and Summerfield (2005)). Transformation was achieved using a nine-

parameter affine procedure, with non-linear deformations using discrete cosine 

transform basis functions to match the 64-slice scan to the template using a least-

squares algorithm (Friston, Ashburner et al., 1995). 

 

Normalised data were up-sampled to a resolution of 3 x 3 x 4 mm and spatially 

smoothed using a Gaussian kernel of 10 mm full-width-at-half-maximum. Data were 

modelled separately for each participant in a first-level analysis. The three Stroop task 

conditions were modelled using box-car functions, convolved with a 6-s delayed 

haemodynamic response function. Six additional regressors modelled estimates of the 

signal related to head movement and rotation. Cyclical variations in signal intensity, 

which could be associated with aliased respiratory and cardiac effects, were treated by 

high-pass filtering the time series using cosine basis functions up to a maximum 

frequency of 0.2 cycles per minute. T contrasts specified the difference between the 

incongruent and the neutral condition and the difference between the congruent and 

the neutral condition. Individual contrast images were then entered into a second-

level, random-effects analysis. One sample t tests were performed on the group data 

to separately determine the effects of interference and facilitation. In addition, to 

identify regions of common activation across the two tasks, we computed a 

conjunction analysis using SPM2 software (Nichols, Brett, Andersson, Wager, & 

Poline, 2005). This analysis properly assesses the conjunction using the null 
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hypothesis to identify regions that reach statistical significance in both contrasts. 

Unless otherwise stated, we specified a significance threshold of p<0.001 

(uncorrected) to find all voxels displaying a higher magnitude of activation on one 

condition relative to another (z = 3.09). In order to reduce Type 1 error (false positive 

error for one in every 1000 voxels), we took only those areas which comprised at least 

12 suprathreshold voxels. This extent threshold approximates to the expected number 

of voxels per cluster (<k>) for the chosen height threshold. 

 

Results 
 

Behavioural performance 
 

Behavioural performance during the fMRI study was highly accurate. Overall, 

subjects failed to respond during the 1.5-second response window on 2.25% of trials 

on the auditory Stroop task, and 2.81% of trials on the visual Stroop task. In addition, 

subjects responded incorrectly on 3.21% of auditory trials, and 3.95% of visual trials. 

For each participant, median correct RTs were calculated for each trial type. Group 

averaged RTs and error rates are shown in Table 2. 

 

-- Table 2 -- 

 

ANOVA analyses revealed that RTs were significantly (p<0.001) influenced by trial 

type for both visual (F2,30 = 68.1) and auditory (F1.2,18.4 = 23.2) Stroop tasks. Where 

the assumption of sphericity is violated a Greenhouse-Geisser correction has been 

applied. Both visual and auditory Stroop tasks elicited a significant (p<0.01) 
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interference effect (t15 = 5.5 and t15 = 4.4, respectively), as well as a significant effect 

of facilitation (t15 = 6.1 and t15 = 3.8). In both tasks, the interference cost was greater 

than the facilitation benefit (visual Stroop, 62 and 46 ms; auditory Stroop, 59 and 23 

ms, respectively). Performance accuracy was also strongly influenced by trial type 

(visual Stroop, F2,30  = 14.1; auditory Stroop, F2,30  = 8.1, p<0.01). Planned contrasts 

revealed that this effect was due to an interference cost (visual Stroop: t15 = 3.1; 

auditory Stroop: t15 = 2.5, p<0.05) in both tasks, but a facilitation effect only in the 

visual task (t15 = 1.6, p<0.05) (auditory task: t15 = 1.0). 

  

Prior to the fMRI study, all participants had been exposed to the Stroop tasks as part 

of a larger behavioural study (Roberts et al., 2004; Roberts et al., 2006). In the 

behavioural study, the auditory Stroop task was presented in the context of a cueing 

paradigm. Measures of interference and facilitation were obtained by collapsing the 

data across the different cueing conditions. The pattern of results found in the 

behavioural study was similar to that found in the imaging study, for the same set of 

participants (Table 2). The main difference was that participants responded more 

slowly to the auditory trials during the behavioural study than during the scanning 

session. This is most likely to be a consequence of the cueing protocol, since no 

comparable difference in overall response times was observed for the visual Stroop 

task, which was uncued in both studies.  

 

RT measures of interference were correlated (0.28, p = 0.08) across the visual and 

auditory Stroop tasks presented in the behavioural study (n = 40) (Roberts et al., 

2004). This result confirms that the two tasks were well-matched in terms of their 

capacity to elicit cognitive conflict. The facilitation effect was not correlated across 
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tasks (0.04, p = 0.8). Behavioural measures of interference and facilitation obtained 

during the fMRI study were not significantly correlated between the two Stroop tasks. 

However, with only 16 participants it is difficult to interpret non-significant 

correlations.  

 

Activation patterns 
 

Interference 
 

To isolate those regions associated with conflict processing we used a directional 

hypothesis in which activation during neutral blocks was subtracted from that during 

incongruent blocks. This approach circumvents concerns about defining interference 

as the subtraction of congruent from incongruent trials (Fan et al., 2003; Peterson et 

al., 2002; Wager et al., 2005). The result revealed activity in widespread regions of 

the brain, which were broadly similar for the visual and auditory Stroop tasks. 

Common activation included bilateral frontal and left parietal regions and the anterior 

cingulate cortex (see Table 3). In the visual Stroop task, additional regions of 

activation included the IFG (extending up to the anterior insula) and parietal lobe on 

the right side. 

 

-- Table 3 --  

 

To evaluate the consistency with which our experimental results matched the outcome 

of the systematic review we overlaid the two sets of results (Figure 2). The white 

outlines depict the border of the principal regions identified by the systematic review 
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(Table1), excluding regions reported by only one study. Regions which were 

commonly engaged by visual and auditory Stroop conflict are shown in blue. The 

overlay reveals a high degree of coincidence. Activation within the bilateral frontal 

cortex (Figure 2; panels A and B), anterior cingulate (C) and left parietal lobe (D), for 

both visual and auditory Stroop conflict, coincided with the regions that had been 

identified by the systematic review. The right parietal activation was distant from the 

peak region identified by the review, but close to another region where three studies 

reported peaks (E). The right-sided IFG/insula activation observed during visual 

conflict was also close to the region defined by the systematic review (F). Given that 

the review had revealed the involvement of the bilateral anterior insula in conflict 

processing, we explored our experimental results again using a less stringent height 

threshold (p<0.01). Although not precisely coincident, the experimental data are 

generally supportive of this claim. For both tasks we found some support for left 

hemisphere involvement of the anterior insula (G). The visual analysis showed a 

cluster of 17 voxels with a peak location at -45 18 -4 mm and a voxel-level Z value of  

2.87 (P=0.002), while for the auditory task the large frontal cluster extended to 

include the anterior insula, with a local peak at -33, 21, 0 (z = 3.14, p=0.001). In 

addition, the lower threshold revealed common activation in right IPL, coincident 

with the region identified by the systematic review (H). 

 

-- Figure 2 -- 

 

Correlations between behavioural performance and the strength of activation in the 

above regions would strengthen the evidence for a supramodal network engaged in 

conflict processing. For each subject, we extracted an index of the response 
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magnitude within each of the clusters identified by the conjunction analysis. The 

response magnitude was based on the beta weights from the individual-level contrast 

between the incongruent and neutral conditions. These values were then correlated 

with RT and accuracy measures of conflict. When both tasks were combined, 

activation in left LPFC was broadly and positively correlated with accuracy costs 

(r=0.304, p=0.09). On the auditory task, RT and accuracy interference costs were 

correlated with the strength of activation in left LPFC (r=0.462, p=0.07) and ACC 

(r=0.466, p=0.07), respectively. No correlations were found for the visual task alone. 

Correlations from only 16 subjects should not be given too much weight, but these 

results are certainly consistent with the involvement of left PFC and ACC in conflict 

processing. 

 

Task-specific conflict processing 
 

A paired t-test showed two regions which were significantly more active during 

auditory Stroop conflict (incongruent – neutral) than during visual conflict. One 

region (30 voxels; peaks at -48, 42, 0 and -54, 24, 0) is part of the left LPFC region 

and appears to result simply from more extensive activation of LPFC during auditory 

conflict than during visual conflict. The other region (18 voxels; peaks at -63, -24, -4, 

and -63, -33, -4) is located in the superior temporal sulcus (STS), at the lower 

boundary of the auditory cortex. This region was not identified by the incongruent vs. 

neutral contrast. Only one area was significantly more active during visual conflict 

than auditory conflict: an area of 17 voxels in the right IFG (BA 11), with a peak at 

27, 30, -16 mm. This peak is immediately adjacent to peak in IFG for the colour-word 

Stroop task (24, 30, -16). 
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While the SPM paired t test did not identify any task-specific activation in the parietal 

lobe, subdivisions within this region appeared to be differentially engaged by visual 

and auditory conflict (see Figure 2, panel D). Common activation was found around 

the intraparietal sulcus (IPS), but activation then extended downwards: anteriorly and 

laterally for auditory conflict, and posteriorly and medially for visual conflict. Two 

different underlying patterns could give rise to this effect. First, activation could be 

centred on a common region for both visual and auditory contrasts, with the spread of 

activation extending in different directions. Second, interference could activate two 

separate regions, which intersect due to the spatial smoothness of the data. Figure 3 

plots the activation responses in an alternative format which has previously been used 

to address questions of this sort (Hall et al., 2002). Responses were obtained for 

points along a curved section (z = -0.1111y2 - 13.598y -367.76) of left-hemisphere 

cortex passing through the maximal peaks for visual and auditory conflict; located in 

the superior parietal lobe (SPL, at -30, -72, 36, z = 5.21)) and IPL (at -39, -51, 36, z = 

4.78)  respectively. The curve was also constrained to pass through another significant 

peak of activity for auditory conflict located in SPL (at -33, -66, 44, z=3.87). Each 

response value was based on the beta weight from the group-level contrast between 

incongruent and neutral conditions, for the visual and auditory tasks separately. 

Values for points along this curve were obtained for sagittal slices between x = -63 

mm and -9 mm (in 3 mm steps), and were then plotted in 3D mesh graphs (Figure 3). 

The graphs for both modalities show a ridge of activation across the IPS (illustrated 

by the black line). However, the peak of the visual Stroop contrast is clearly shifted in 

position relative to that for the auditory Stroop task. This shift across the axis of the 

IPS indicates functional segregation, suggesting that the peak of the conjunction 
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reflects the intersection of the spread of activation from two separate regions, rather 

than a common core region within the IPS. To statistically evaluate this hypothesis we 

entered the incongruent – neutral activation values into a two-way task (auditory, 

visual) by location (auditory peak, visual peak) ANOVA. We selected the most robust 

peak of conflict-related activation within left parietal lobe for the auditory (IPL: -36, -

51, 36) and visual (SPL: -30, -72, 36) tasks. As hypothesised, the results reveal a 

significant interaction (F(1,15) = 5.443, p<0.05) but no significant main effects. A 

graph of the interaction can be seen in Figure 3. 

 

Facilitation 
 

Subtracting congruent from neutral trials revealed activation in bilateral fusiform 

gyrus for the visual Stroop task (Table 3), but no significant effects for the auditory 

Stroop task. Thus, in line with behavioural evidence, the neural correlates of 

facilitation appear to be markedly less than those of interference. 

 

Discussion 
 

Neuroimaging studies implicate a range of cortical regions in conflict processing. 

Here, we report a systematic review which confirms that conflict processing is 

reliably associated with activation in ACC, and bilaterally in IFG, anterior insula, and 

the parietal lobe. Since comparing activation patterns across different studies has 

limited sensitivity, we also conducted a novel fMRI study to directly compare 

conflict-related activation on two different tasks: a visual colour-word Stroop task, 

and an auditory pitch-word Stroop task. These related tasks again confirmed common 
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activation in ACC, bilateral PFC, and left SPL, which coincided with the regions 

identified by the systematic review. In addition, activation associated with visual 

Stroop conflict was located close the systematic review region in the right anterior 

insula. A less conservative threshold revealed common activation in left anterior 

insula and right IPL, again coincident with the regions identified by the systematic 

review. These findings provide support for a supramodal fronto-parietal network 

engaged during conflict processing. 

 

To determine whether these cortical regions were directly involved in conflict 

processing, we additionally examined whether activation in these regions covaried 

with the extent of behavioural interference. The results indicate a link between 

increased interference costs and increased activity in LPFC and ACC. In other studies, 

practice-related reductions in interference costs have been associated with decreases 

in DLPFC activity, suggesting a specific role of DLPFC in implementing attentional 

control (Milham, Banich, Claus, & Cohen, 2003). Similarly, Wager et al. (2005) have 

shown that activation in bilateral anterior insula is positively correlated with 

behavioural measures of interference on three different conflict tasks, suggesting that 

the insula has a generic role in conflict processing.  

 

We used a blocked design to optimise detectability of conflict-related activation. 

However, it is important to note that subjects may have engaged different strategies 

on this task than on an event-related task in which stimuli are presented in random 

order. Leung et al. (2000) compared patterns of conflict-related activity on blocked 

(Peterson et al., 1999) and event-related (Leung et al., 2000) Stroop tasks conducted 

in their laboratory. They found that the patterns of activation were broadly similar in 
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terms of which regions were strongly activated. However, the distribution of insula 

and inferior frontal activation was more extensive in the event-related design. In 

addition, activation in middle frontal gyrus and the parietal lobe was bilateral in the 

event-related study but predominantly left-sided in the blocked design. The results 

from our fMRI study are consistent with this finding, and we would suggest that the 

left-hemisphere bias in our findings might reflect strategic preparatory processes 

which are present in blocked designs but might not be evident in event-related 

designs. One important drawback to the blocked design is that, in the congruent 

condition, it is not possible to determine whether subjects were complying with the 

task instructions and attending to the colour or pitch of the word or instead were 

simply attending to the word itself. As a result, one cannot confirm that the visual 

facilitation effect observed in the fusiform gyrus reflects different trial types. Instead, 

it may reflect different task strategies, such as those related to word reading. For this 

reason, a functional interpretation of the ‘facilitation’ effects must be viewed with 

caution. It is interesting to note that when directly contrasting incongruent and 

congruent conditions, Peterson et al. (2002) reported conflict-related activation in 

bilateral inferior temporal gyrus, close to the regions that we found to be activated in 

the contrast between neutral and congruent conditions. These findings underscore the 

importance of including a neutral condition to allow the effects of interference to be 

isolated. 

 

Turning back to the conflict-related activity, in addition to finding strong support for a 

fronto-parietal network engaged in conflict processing, the results of the systematic 

review and fMRI study indicate regions which might be engaged in task-specific 
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operations. In the next part of this section we consider this task-specific activation, 

and suggest some possible explanations for these findings.  

We chose to present the same task (Stroop) in different perceptual modalities (vision 

and audition) in the hope that any regions which were not commonly engaged would 

be easily ascribed to differences in task modality, rather than differences in conflict 

processing. Three regions were reliably activated by conflict processing on the visual 

task, but not the auditory task: right IFG, left premotor cortex, and the precuneus. Of 

these, only right IFG activity significantly differed across modalities. It is not clear 

how these regions might be attributed to differences in task modality. Instead they 

may relate to specific strategies used to overcome conflict on the two tasks. Activity 

in these regions could also be influenced by the different types of response required: 

for the visual task subjects made an arbitrary four-button stimulus-response mapping, 

while for the auditory task a more intuitive two-button mapping was required (high = 

upper button; low = lower button). In particular, this might account for the lack of 

reliable auditory conflict-related activation in the premotor cortex, since this region is 

involved in motor planning. 

 

We also observed evidence for a dissociation of activation across the parietal lobe. 

While there were no significant differences between the amount of conflict-related 

activation on the two tasks, analysis of variance revealed a significant interaction 

between the type of conflict (auditory or visual) and the location of the activation 

(auditory peak within IPL or the visual peak within SPL). We identify two possible 

explanations for this task-related shift in the pattern of parietal activity. As with the 

other regions engaged by only one of the tasks, it could relate to task-specific 

strategies for overcoming conflict. This explanation is particularly applicable to the 
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parietal lobe, since it has been shown to play a role in selective attention (Corbetta, 

Kincade, Ollinger, McAvoy, & Shulman, 2000). Selective attention can be employed 

in task-specific ways to reduce conflict: for example, an effective strategy for 

overcoming colour-word Stroop conflict is to selectively attend to a small section of 

the word. To differentiate between selective-attention and conflict-resolution 

processes, Casey et al. (2000) varied the probability of an incongruent trial being 

presented on a flanker task. They hypothesised that if an incongruent trial was highly 

probable, an efficient strategy would be to selectively attend to the target item in the 

array, suppressing the flankers. However, this strategy might prove less efficient when 

incongruent trials were less probable, and would therefore be less likely to be 

engaged. The results showed different patterns of activation for the two probabilities, 

and were consistent with an anterior system involved in conflict resolution, 

incorporating ACC and DLPFC, and a posterior system involved in selective 

attention, including SPL. Our finding of common conflict-related activation in ACC 

and PFC, and task-specific activation in the parietal lobe, is also consistent with these 

functional roles. An alternative explanation for the pattern of activity in the left 

parietal lobe is that it reflects the flow of information between sensory and higher-

order areas. Task-specific activation appears to spread from IPS towards the 

respective sensory cortex (anterior and lateral to auditory cortex; and posterior and 

medial to visual cortex), along well-specified anatomical pathways linking the 

sensory cortices to the parietal lobe (e.g. Mishkin, Ungerleider, & Macko, 1983; e.g. 

Romanski et al., 1999). In addition, modality-specific activation has been reported in 

the parietal lobe during auditory and visual spatial localisation tasks (Bushara et al., 

1999) and oddball tasks (Nishitani, Nagamine, & Shibasaki, 1998). While the pattern 

of activation in these studies does not precisely match that found in this study, they 
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nevertheless provide further support for modality-specific processing in the parietal 

lobe.  

 

While the fMRI study revealed common activation in lateral PFC and anterior insula, 

there was some suggestion of task-specificity when the systematic review studies 

were divided into colour-word Stroop tasks and other types of conflict task. One 

simple explanation for this pattern of results is that these regions are engaged in 

processes which were common to both visual and auditory Stroop tasks, but which 

differ across other types of conflict task. Unfortunately our data do not allow us to 

address this issue fully, and so questions such as which specific processes are 

involved, and whether other tasks might activate nearby areas of the same functional 

regions, remain open. 

 

Conclusions 
 

We present converging evidence for a supramodal fronto-parietal network engaged 

during conflict processing. A systematic review of 34 published neuroimaging studies 

revealed that ACC, and bilateral IFG, parietal lobe, and anterior insula, are reliably 

engaged during conflict processing. An fMRI study of related visual and auditory 

Stroop tasks confirmed the involvement of these candidate regions, even when we 

contrasted incongruent with neutral trials (thereby removing any potential effects of 

facilitation from the conflict network). Regions of task-specific processing were also 

identified, and are discussed in terms of flow of activation from sensory areas, 

selective attention strategies for overcoming conflict, and task-specific stimulus-

response mappings.  
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Figure Captions 
 

Figure 1: Probability maps showing the distribution of  previously-reported peaks of 

conflict-related activation, overlaid onto a canonical brain. The first column of images 

reports the outcome of the complete meta-analysis. For each brain region, sagittal 

slices are displayed through the peak co-ordinates reported in Table 1. The insula 

cortex is presented on axial slices, again taken through the peak co-ordinates. The two 

additional columns of images illustrate the contribution of the 21 traditional colour-

word Stroop tasks (second column) and the 19 other studies of conflict processing 

(third column) to the overall pattern of activity reported in the first column. The 

colour scale shows the number of studies reporting peaks in each region. 

 

Figure 2: Interference-related activation on the auditory (red) and visual (yellow) 

Stroop tasks, and from a conjunction of the two (blue). Regions identified by the 

meta-analysis are outlined in white. Panels are as follows (coordinates in MNI space). 

A: L PFC, x=-45. B: R PFC, x=48; C: ACC, x=-3; D: L SPL, x=-30; E: R SPL, x=24 

(region identified by only 3 meta-analysis studies); F: R IFG / ant. ins., x=30 (visual 

Stroop only); G: L IFG / ant. ins., x=-36, p<0.01; H: R IPL, x=41, p<0.01. 

 

Figure 3: Magnitude of conflict-related activation (incongruent - neutral) in the left 

parietal lobe resulting from the two Stroop tasks. The red and yellow dots indicate the 

location of the peak of activation for the auditory and visual tasks, respectively, while 

the blue dot shows the peak of the conjunction. SPL denotes the superior parietal lobe 

and IPL denotes the inferior parietal lobe. The black line shows the approximate 

location of the intraparietal sulcus. The example sagittal slice is at x = -36 mm; the 



white line shows the shape and location (in y and z) of the curve. The middle inset 

shows the significant interaction between the type of conflict (auditory or visual) and 

spatial location (auditory or visual activation peak). The solid line represents the size 

of the auditory conflict effect at the two spatial locations. The dotted line represents 

the visual conflict effect. 
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Table 1: Regions of activation reliably reported in studies of conflict processing. This 

table reports those co-ordinates which were identified in five or more studies. Co-

ordinates are reported in MNI space.  

Region BA Max. 
Overlap 

Approx. 
Centre 

Extent in X Extent in Y Extent in Z 

L IFG 44 9 -43 5 35 -51:-37 -3: 14 28:41 

R IFG 44 5 48 10 31 46:51 8: 12 27:35 

ACC 32 7 1 12 47 -8:5 11: 27 35:52 

L SPL 7 6 -28 -67 40 -31:-25 -71: -65 39:45 

R IPL 40 5 41 -51 46 41:42 -53: -50 46:47 

L Ant. Ins.   7 -31 14 1 -36:-26 6: 16 0:5 

R Ant. Ins.  5 31 13 5 31:31 10: 16 0:5 

 
IFG: inferior frontal gyrus; ACC: anterior cingulate cortex; SPL: superior parietal 

lobe; IPL: inferior parietal lobe; Ant. Ins.: anterior insula cortex. 

 

 

 

 

 



Table 2: Overall reaction times (RTs) and error rates for the different trial types 

within the Stroop task (n=16 participants). The first value in each cell relates to 

performance measured during fMRI scanning using a blocked-trial design. The 

second value (in parentheses) relates to performance for the same set of participants 

using a randomised-trial design, measured in a quiet laboratory.  

Task Incongruent Neutral Congruent 

Reaction time (ms)    

 Visual Stroop 723 (737) 661 (662) 615 (633) 

 Auditory Stroop 578 (729) 518 (619) 495 (590) 

Error rates (%)    

 Visual Stroop 7.0 (7.2) 5.0 (8.9) 3.9 (6.8) 

 Auditory Stroop 6.1 (8.9) 3.2 (2.8) 2.4 (1.0) 

 

 

 

 

 

 



Table 3: Areas of activity associated with interference (incongruent - neutral) and facilitation 

(congruent vs. neutral) for the visual and auditory Stroop tasks (p<0.001, extent > 12 voxels). The size 

of the activation cluster is given by the number of suprathreshold voxels and the cluster level 

significance is indicated by ***p<0.001, **p<0.01 and *p<0.05. All peak co-ordinates are reported in 

MNI space and peak locations are estimated using the Brodmann atlas. 

  Visual Stroop Auditory Stroop Conjunction 

Region BA # voxels Peak # voxels Peak # voxels Peak 

Incongruent - Neutral      

L lateral PFC 44/45 197*** -45 27 20 460*** -45 12 24 185 -48 15 20 

   -48 18 20  -54 21 20   

     -51 18 4   

R lateral PFC 44 29 48 15 24 99** 45 15 24 53 45 15 24 

 8  45 12 40  48 30 8   

ACC 32 48* -6 30 48 107** -3 21 44 40 -3 24 48 

L Premotor 6 21 -30 9 56   3 -30 6 56 

   -39 0 56     

L SPL 7 174*** -30 -72 36 297*** -33 -66 44 90 -36 -57 48 

 7  -12 -78 48     

L IPL 40   [297***] -39 -51 36   

     -45 -30 36   

R SPL 7 92** 30 -72 40   3 24 -75 44 

Precuneus 7 [92**] 6 -72 44     

R IFG / ant. ins. 22 24 30 -16     

        

Neutral - Congruent      

L fusiform 37 40* -42 -51 -20     

R fusiform 37 27 39 -66 -20     

   39 -54 -20     

        

Congruent - Neutral      

L MOG 19 20 -45 -75 16     
PFC: prefrontal cortex; ACC: anterior cingulate cortex; SPL: superior parietal lobe; IPL: inferior 

parietal lobe; IFG: inferior frontal gyrus; ant. ins.: anterior insula cortex; MOG: middle occipital 

gyrus. 

 



Appendix 1: List of studies entered into the meta-analysis, including date published, 

type of conflict task, number of participants and number of activation foci. For some 

studies, multiple foci were reported within a single cluster of activation. Where the 

same incongruent-trial activation was compared against different baseline conditions 

we selected the neutral-word baseline (Bench et al., 1993; Taylor et al., 1997) or 

neutral-trial baseline (Carter et al., 1995; Mead et al., 2002; Zysset et al., 2001).  

 
Author Year Task Participants 

(N) 
Foci 
(N) 

Colour-word Stroop Task   

 Adleman et al. 2002 Colour-word Stroop 11 3 

 Banich et al. 2000 Colour-word Stroop 10 4 

 Bench et al. 1993 Colour-word Stroop 6 2 

 Bench et al. 1993 Colour-word Stroop 6 5 

 Brown et al. 1999 Colour-word Stroop 7 4 

 Carter et al. 1995 Colour-word Stroop 15 6 

 Compton et al. 2003 Colour-word Stroop 12 5 

 Fan et al. 2003 Colour-word Stroop 12 13 

 George et al. 1994 Colour-word Stroop 21 10 

 George et al. 1997 Colour-word Stroop 11 3 

 Mead et al. 2002 Colour-word Stroop 18 1 

 Milham et al. 2001 Colour-word Stroop 16 7 

 Milham et al. 2002 Colour-word Stroop 12 14 

 Pardo et al. 1990 Colour-word Stroop 8 13 

 Peterson et al. 1999 Colour-word Stroop 34 40 

 Potenza et al. 2003 Colour-word Stroop 11 10 

 Ruff et al. 2001 Colour-word Stroop 12 10 

 Steel et al. 2001 Colour-word Stroop 7 26 

 Taylor et al. 1997 Colour-word Stroop 12 10 

 Taylor et al. 1997 Colour-word Stroop 6 10 

 Videbach et al. 2004 Colour-word Stroop 46 13 



 
 
Author Year Task Participants 

(N) 
Foci 
(N) 

Other types of Conflict Task   

 Banich et al. 2000 Colour-object Stroop 10 3 

 Brass et al. 2001 Inhibition of imitative responses 10 5 

 Bunge et al. 2002 Flanker (inc. go/no-go) 16 11 

 Bush et al. 1998 Counting Stroop 9 7 

 Bush et al. 1999 Counting Stroop 8 7 

 de Zubicaray et al. 2001 Picture-word conflict 8 9 

 Fan et al. 2003 Flanker 12 14 

 Fan et al. 2003 Spatial conflict 12 11 

 Hazeltine et al. 2000 Flanker 8 4 

 Liu et al. 2004 Simon task 11 34 

 Liu et al. 2004 Spatial Stroop 11 15 

 Maclin et al. 2001 Spatial conflict 8 5 

 Matthews et al. 2004 Counting Stroop 18 5 

 Norris et al. 2002 Adapted colour-word Stroop 7 10 

 Tamm et al. 2002 Counting Stroop 14 3 

 Taylor et al. 1994 S-R compatibility 8 3 

 Ullsperger et al. 2001 Flanker 9 34 

 van Veen et al. 2001 Flanker 12 8 

 Zysset et al. 2001 Adapted colour-word Stroop 9 9 
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