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Abstract  

Purpose: This study examined the effects of different pressure threshold inspiratory loads on 

lactate clearance and plasma acid-base balance during recovery from maximal exercise. 

Methods: Eight moderately trained males ( 2OV peak = 4.29  0.46 Lmin
-1

) performed, on 

different days, four maximal incremental cycling tests (power started at 0 W and increased by 

20 Wmin
-1

) of identical duration (exercise time during the first trial was 16.32  1.12 min). 

During 20 min recovery subjects either rested passively or breathed through a constant 

pressure threshold inspiratory load of 10 (ITL10), 15 (ITL15), or 20 (ITL20) cmH2O. Plasma 

lactate concentration ([La
-
]) was measured and acid-base balance was quantified using the 

physicochemical approach which describes the dependency of [H
+
] on the three independent 

variables: strong ion difference ([SID] = [Na
+
] + [K

+
] – [Cl

-
] + [La

-
]), the total concentration 

of weak acids ([Atot
-
]), and the partial pressure of carbon dioxide (PCO2). Results: Peak 

exercise responses were not significantly different between trials. During recovery the area 

under the plasma [La
-
] curve was not different between trials (pooled mean = 261  60 mEq) 

and the [La
-
] measured at the end of the 20 min recovery was also similar (passive recovery = 

9.2  3.1 mEqL
-1

; ITL10 = 9.3  3.1  mEqL
-1

; ITL15 = 8.7  2.8  mEqL
-1

; ITL20 = 8.7  

3.2 mEqL
-1

). Similarly, changes in other strong ions contributing to [SID], and [Atot
-
], PCO2, 

and therefore [H
+
], were not different between trials. Conclusion: These data suggest that, in 

individuals of moderate endurance training status, inspiratory loading at the intensities used 

in the present study does not accelerate lactate clearance or modify plasma acid-base balance 

during recovery from maximal exercise.  

Key Words: INSPIRATORY LOADING, RECOVERY, LACTATE CLEARANCE, ACID-

BASE BALANCE, CYCLING 

 

 



3 

 

Introduction 

Paragraph Number 1 Elevated muscle and blood lactate concentrations ([La
-
]), and the 

accompanying H
+
 accumulation, have long been associated with impaired muscle function 

and exercise tolerance (15). Following high-intensity exercise an active recovery using the 

previously exercised muscles quickens the decline in blood [La
-
] (12,29,32,41) and, 

compared to passive recovery, may result in better maintenance of performance in subsequent 

exercise bouts (3,31). Conversely, active recovery using the previously exercised muscles 

may impair subsequent performance due to slower rates of muscle reoxygenation and 

phosphocreatine resynthesis (6,39). Since the primary fate of lactate during exercise and 

recovery is oxidative metabolism by skeletal muscle (2,17,18), the high capillary density and 

oxidative capacity of the inspiratory muscles (33) makes them ideally suited to lactate 

metabolism. The use of inspiratory loading during recovery may thus provide an alternative 

strategy by which lactate clearance may be enhanced without compromising the repletion of 

intramuscular energy stores within the previously exercised locomotor muscles. 

Paragraph Number 2 Two recent issues of Medicine and Science in Sports and Exercise 

(5,9) present conflicting evidence regarding whether inspiratory muscle loading can quicken 

blood lactate clearance following high intensity exercise. Chiappa et al. (9) showed that a 

pressure threshold inspiratory load (15 cmH2O) during recovery from high intensity exercise 

greatly accelerated lactate clearance from the blood. Specifically, when compared with 

passive recovery the absolute blood [La
-
] and area under the curve (AUC) for blood [La

-
] 

were lower with inspiratory loading by around 2.5 mEqL
-1

 (-24%) and 21 mEq (-16%), 

respectively. Furthermore, a follow-up study showed that peak cycling power in the second 

of two successive Wingate tests increased by 25% after this recovery intervention (8). 

However, despite using similar methodology Brown et al. (5) failed to reproduce the 

observations of Chiappa et al. (8,9). Specifically, lactate clearance during recovery from high 
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intensity exercise was accelerated by a 15 cmH2O pressure threshold inspiratory load only 

after inspiratory muscle training, and then only by a much smaller degree to that reported by 

Chiappa et al. (8,9).  

Paragraph Number 3 Interestingly, Chiappa et al. (9) reported large reductions in blood [La
-
] 

with inspiratory loading without the concomitant changes in plasma [H
+
] and ][HCO-

3  that 

would be expected to occur. According to the physicochemical approach to acid-base balance 

(40) [H
+
] in intracellular and extracellular fluid is, together with ][HCO-

3 , a dependent 

variable whose value is dependent on the equilibrium state reached by the independent 

variables: strong ion difference ([SID], fully dissociated cations minus anions, which in 

plasma is equal to [Na
+
] + [K

+
] – [Cl

–
] + [La

-
]), the total concentration of weak acids ([Atot

-
]), 

and PCO2 (for reviews see refs: 21,23,25). Therefore, for plasma [H
+
] to have remained 

unchanged with inspiratory loading, the large reduction in blood [La
-
] observed by Chiappa et 

al. (9) must have been balanced by corresponding changes in the concentration of other 

strong ions and/or [Atot
-
] (40). This hypothesis was not supported by the work of Brown et al. 

(5) which showed that concentrations of other strong ions and [Atot
-
] were unaffected by 

inspiratory loading both before and after inspiratory muscle training. Indeed, the lower blood 

[La
-
] with inspiratory loading after inspiratory muscle training was exclusively responsible 

for an increase in [SID] and, subsequently, a lower [H
+
] (5).  

Paragraph Number 4 One potential explanation for the disagreement between the findings of 

Chiappa et al (8,9) and Brown et al. (5) may be that the magnitude of the pressure threshold 

load is an important determinant of whether inspiratory loading accelerates lactate clearance 

during recovery. Specifically, after inspiratory muscle training, which increased participants’ 

maximum inspiratory mouth pressure (MIP) by 34%, lactate clearance was accelerated only 

when inspiratory loading was performed at the same absolute (15 cmH2O or 10% MIP), but 

not relative (20 cmH2O or 13% MIP), intensity (5).   
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Paragraph Number 5 Therefore, the aim of the present study was to resolve some of the 

controversies surrounding the effects of inspiratory loading during recovery from high-

intensity exercise. Consequently, we investigated the effects of different pressure threshold 

inspiratory loads (10, 15 and 20 cmH2O), applied during recovery from high-intensity 

exercise, on lactate clearance and plasma acid-base balance quantified using the 

physicochemical approach.  

 

Methods 

Participants 

Paragraph Number 6 Following approval from Nottingham Trent University’s ethics 

committee, 8 healthy non-smoking males with normal lung function (Table 1) provided 

written informed consent to participate in the study. Throughout the study participants were 

instructed to adhere to their habitual training regimen and not to engage in any strenuous 

exercise the day preceding and the day of a trial. Participants arrived at the laboratory 2 h 

postprandial having abstained from alcohol and caffeine in the 24 h before testing.  

Experimental design 

Paragraph Number 7 Participants attended the laboratory on 5 separate occasions, at a 

similar time of day, separated by at least 48 h but no more than 1 week. During the first 

laboratory visit, pulmonary function and MIP were measured. During subsequent visits 

participants performed an incremental cycling exercise test (the first of which was continued 

to the limit of tolerance) followed by a 20 min recovery period comprising either passive 

recovery, or breathing against a constant inspiratory pressure threshold load of either 10 

(ITL10), 15 (ITL15), or 20 cmH2O (ITL20). The order of the exercise trials was randomized. 

The exercise duration achieved during the incremental exercise test of the first trial was 

replicated in all subsequent trials. 
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Pulmonary function and maximal inspiratory mouth pressure 

Paragraph Number 8 Pulmonary function was assessed according to published guidelines 

(30) using a pneumotachograph (Pneumotrac, Vitalograph, Buckinghm, UK) calibrated using 

a 3 L syringe. A hand-held mouth pressure meter (MicroRPM, CareFusion, Hampshire, UK) 

measured MIP as an index of global inspiratory muscle strength. The mouthpiece assembly 

incorporated a 1 mm orifice to prevent glottic closure during inspiratory efforts. Maneuvers 

were performed in an upright standing posture, initiated from residual volume, and sustained 

for at least 1 s. Repeat efforts separated by 30 s were performed until three serial measures 

differed by no more than 10% or 10 cmH2O, whichever was smallest (5). The highest value 

recorded was used for subsequent analysis. For each participant MIP was compared with 

predicted values using the equation of Wilson et al. (45), where: MIPpredicted = 142 – (1.03  

age). 

Maximal incremental cycling test 

Paragraph Number 9 Exercise was performed on an electromagnetically braked cycle 

ergometer (Excalibur Sport, Lode, Groningen, The Netherlands). During the first trial a 

maximal incremental cycling test was performed, whereby power started at 0 W and 

increased by 20 Wmin
-1

 until participants could not maintain a cadence greater than 60 

revsmin
-1

 despite verbal encouragement. In an attempt to standardize the magnitude of 

elevation of plasma [La
-
], the exercise duration achieved during this first test was recorded 

for each participant and during subsequent tests each participant was required to exercise for 

an identical duration, at which point the test was terminated by the investigators. Cycling 

cadence was self-selected during the first test and repeated during subsequent tests. 

Participants wore a facemask (model 7940, Hans Rudolph, Kansas City, Missouri) connected 

to a pneumotachograph and a two-way non-rebreathing valve (model 2730, Hans Rudolph, 

Kansas City, Missouri). Respiratory variables were measured breath by breath (ZAN 
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600USB, Nspire Health, Oberthulba, Germany). The final power attained and the highest 

oxygen uptake ( 2OV ) recorded over any 30 s period defined maximal power ( W max) and 

2OV peak, respectively. The prescribed recovery intervention (see below) was imposed 

immediately upon cessation of exercise.  

Passive recovery 

Paragraph Number 10 At the cessation of the incremental exercise test a 0.5 m length of 

wide-bore (35 mm internal diameter) corrugated tubing was attached to the inspiratory port of 

the two-way valve and participants remained seated at rest on the cycle ergometer for 20 min. 

The tubing attached to the inspiratory port was used in the inspiratory loading trials to 

connect the participant to the inspiratory loading device (see below). Blood samples were 

taken at rest, upon the cessation of exercise and every 4 min during recovery. Upon the 

cessation of exercise and every 2 min during recovery heart rate was recorded using short-

range telemetry (Polar S610, Polar, Kempele, Finland) and arterial oxygen saturation was 

estimated (SpO2) using a finger pulse oximeter (Model 8500, Nonin Medical, Minnesota).  

Inspiratory pressure threshold loading 

Paragraph Number 11 Inspiratory loading trials were identical to the passive recovery trial, 

except that immediately after exercise the 0.5 m length of wide-bore tube connected to the 

inspiratory port of the two-way valve was connected distally to a custom-built weighted 

plunger pressure threshold inspiratory loading device identical to that used previously 

(5,19,20) and which has been shown to be flow independent over the physiological range 

(19); for a full description of the device see Johnson et al. (20). The threshold opening 

pressure during ITL10, ITL15, and ITL20 represented 8  3, 12  4, and 16  5% of MIP, 

respectively. Absolute pressure threshold loads were used to allow direct comparison with the 

work of Chiappa et al. (8,10) and Brown et al. (5). We have previously shown that the 
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performance of our breath by breath gas analyzer is unaffected by the negative pressures 

generated during ITL (5).  

Blood sampling and analysis 

Paragraph Number 12 Arterialized venous blood (6 mL) was drawn from a dorsal hand vein 

via an indwelling 21-G cannula (28). Arterialization was achieved by immersing the hand in 

water at 40C for 10 min prior to cannulation and by warming the hand during trials using an 

infrared lamp. Blood was analyzed immediately for PCO2 and pH (ABL520, Radiometer, 

Copenhagen, Denmark), which were subsequently used to calculate plasma bicarbonate 

concentration ( ][HCO-

3 ) using the Henderson-Hasselbalch equation: 

 
2

3

PCO0.03

HCO
logpKpH






 

A portion (5 mL) of each blood sample was immediately centrifuged for 10 min at 3000g and 

the plasma supernatant was removed. Plasma [La
-
] was subsequently determined using an 

automated analyzer (Biosen C_line Sport, EKF Diagnostics, Barleben, Germany). Plasma 

[Na
+
], [K

+
], and [Cl

-
] were determined using ion selective electrodes and total protein 

concentration ([PPr
-
]) was assayed by immunoturbidimetry (ABX Pentra 400, Horiba, 

Northampton, UK). [Atot
-
] was calculated as 2.45  [PPr

-
] (37). Plasma strong ion difference 

([SID]) was calculated as the sum of the strong cations minus the sum of the strong anions 

(40): 

[SID] = ([Na
+
] + [K

+
]) – ([Cl

-
] + [La

-
]) 

Plasma [H
+
] was calculated using the following equation, which describes the dependency of 

[H
+
] on the three independent physicochemical variables ([SID], PCO2, and [Atot

-
]), as well as 

on mass action equilibria, conservation of mass, and electroneutrality (40): 

      

       0PCOKKK][HPCOKKK'PCOKK][H

K'PCOK][A[SID]K][H[SID]K][H

2C3A2C3W2CA

2

W2CtotA

3

A

4








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Values used for the equilibrium constants were: KA = 3.0  10
-7

 EqL
-1

, KC = 2.45  10
-11

 

(EqL
-1

)
2
; K3 = 6.0  10

-11
 EqL

-1
, and KW = 4.4  10

-14
 EqL

-1
.  

To assess the individual contributions of the three independent variables ([SID], PCO2, and 

[Atot
-
]) to changes in plasma [H

+
], the latter was calculated as one of the three variables was 

changed to the measured value while the others were held constant at resting values (35,40). 

Hereafter, the measured and calculated [H
+
] are referred to as [H

+
]measured and [H

+
]calculated, 

respectively. 

Data and statistical analysis 

Paragraph Number 13 The AUC for 2OV  and plasma [La
-
] during recovery was calculated 

using the trapezoidal rule. Data were analyzed using repeated measures ANOVA and 

pairwise comparisons were made according to Bonferroni-adjusted 95% confidence intervals. 

Statistical significance was set at P<0.05. Results are presented as mean  SD.  

 

Results 

Paragraph Number 14 For each participant the exercise duration, and thus W max, achieved 

during the first incremental exercise test (group mean: 16.32  1.12 min and 318  20 W) 

was replicated in all subsequent tests.  

Ventilatory responses, pulmonary gas exchange, heart rate and arterial oxygen 

saturation 

Paragraph Number 15 Breathing pattern, minute ventilation ( EV ) (155  27 Lmin
-1

), 

2OV peak (4.29  0.46 Lmin
-1

), 2COV peak (5.30  0.75 Lmin
-1

), heart rate (178  9 

beatsmin
-1

) and SpO2 (96  2%) at the end of maximal exercise were not different between 

trials (values in parentheses are pooled data from all trials). EV  throughout recovery was not 

different between trials (Figure 1). Respiratory frequency (R) during passive recovery (23  
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4 breathsmin
-1

) was greater than during ITL10 (19  4 breathsmin
-1

) and ITL15 (18  4 

breathsmin
-1

) (main effect for trial, P < 0.05). There was also a trend (P = 0.09) for R to be 

higher during passive recovery compared to ITL20 (19  4 breathsmin
-1

). Tidal volume (VT) 

during passive recovery (1.07  0.35 L) was lower (main effect for trial) than during ITL10 

(1.43  0.30 L) (P < 0.01), ITL15 (1.39  0.27 L) (P < 0.01), and ITL20 (1.42  0.31 L) (P < 

0.05). Duty cycle (TI/TTOT) during passive recovery (0.44  0.04) was greater than during 

ITL15 (0.38  0.06) (main effect for trial, P < 0.05). There was a trialtime interaction effect 

for TI/TTOT (P < 0.01) and differences were observed for passive recovery vs. ITL15 and 

ITL20 in the latter half of recovery (Figure 1). There were no differences between trials for 

mean 2OV  during recovery (pooled mean = 0.77  0.28 Lmin
-1

) or the AUC for 2OV  

during recovery (pooled mean = 19.4  2.9 L). Mean 2COV  during passive recovery (0.72  

0.14 Lmin
-1

) was not different from ITL15 (0.83  0.19 Lmin
-1

), but was less than ITL10 

(0.87  0.14 Lmin
-1

) and ITL20 (0.86  0.13 Lmin
-1

) (main effect for trial, P < 0.05). Heart 

rate during recovery was not different between trials (pooled mean = 101  15 beatsmin
-1

). 

In all trials SpO2 was 98  1% at rest and 97  1% during recovery.  

 Plasma ions contributing to [SID] 

Paragraph Number 16 Changes in plasma ions contributing to [SID] are shown in Figure 2. 

Changes in [La
-
], [Na

+
], [K

+
], and [Cl

-
] after maximal exercise and during recovery were not 

different between trials, thus the following data reflect the pooled mean  SD. Plasma [La
-
] 

increased to 15.4  2.7 mEqL
-1

 after maximal exercise and peaked at 16.0  2.8 mEqL
-1

 

following 4 min of recovery, after which values progressively declined. The mean AUC for 

plasma [La
-
] during recovery was 261  60 mEq and was not different between trials. Plasma 

[Na
+
] increased 6.2  2.7 mEqL

-1
 from rest after maximal exercise (main effect for time, P < 

0.01) and remained elevated after 4 min of recovery (P < 0.05). Thereafter values were not 
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different from rest. Plasma [K
+
] increased 1.1  0.3 mEqL

-1
 from rest after maximal exercise 

(main effect for time, P < 0.01) and returned to rest after 4 min of recovery. Plasma [Cl
-
] was 

unchanged from rest after maximal exercise, but fell by 2.0  1.6 mEqL
-1

 after 4 min of 

recovery (main effect for time, P < 0.05). Plasma [Cl
-
] remained below rest at 8, 12 (P < 

0.01) and 16 min (P < 0.05) of recovery and returned to rest following 20 min of recovery.  

Plasma protein and the independent variables [SID], [Atot
-
] and PCO2 

Paragraph Number 17 Changes in [PPr
-
], [SID], [Atot

-
] and PCO2 after maximal exercise and 

during recovery were not different between trials (Figure 3), thus the following data reflect 

the pooled mean  SD. [PPr
-
] increased 0.9  0.3 gdL

-1
 from rest after maximal exercise 

(main effect for time, P < 0.01) and remained above rest throughout recovery (4-16 min 

inclusive, P < 0.01; 20 min, P < 0.05). [SID] fell 7.3  1.8 mEqL
-1

 below rest after maximal 

exercise (main effect for time, P < 0.01) and remained below rest throughout recovery (P < 

0.01). [Atot
-
] increased 2.2  0.7 mEqL

-1
 from rest after maximal exercise (main effect for 

time, P < 0.01) and remained above rest throughout recovery (4-16 min inclusive, P < 0.01; 

20 min, P < 0.05). PCO2 remained unchanged from rest after maximal exercise, but then 

declined and remained 7.3  4.0 mmHg below rest throughout recovery (main effect for time: 

4-16 min inclusive, P < 0.01; 20 min, P < 0.05).  

Changes in the dependent variables [H
+
] and ][HCO

-

3  

Paragraph Number 18 Changes in [H
+
]measured and ][HCO-

3  after maximal exercise and 

during recovery were not different between trials (Figure 4), thus the following data reflect 

the pooled mean  SD. [H
+
]measured increased 20.9  8.2 nEqL

-1
 after maximal exercise (main 

effect for time, P < 0.01) and remained above rest during 12 min of recovery (4 min, P < 

0.01; 8-12 min, P < 0.05). Thereafter values were not different from rest. The mean AUC for 

[H
+
]measured was 1095  137 nEq and was not different between trials. ][HCO-

3  fell 8.2  2.0 
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mEqL
-1

 below rest after maximal exercise and remained below rest throughout recovery 

(main effect for time, P < 0.01).  

Paragraph Number 19 A change in plasma [H
+
] reflects the net change of the three 

independent variables ([SID], PCO2, and [Atot
-
]) (40). The proportion of change in plasma 

[H
+
] caused by a corresponding change in a discrete independent variable was calculated 

whilst assuming no change from rest in the remaining two independent variables. Similar to 

previous reports (5,35) excellent agreement was observed between [H
+
]measured and 

[H
+
]calculated (r = 0.848, P<0.0001). Plasma [H

+
]calculated and the origins of change in 

[H
+
]calculated due to changes in the 3 independent variables are shown in Figure 5, with positive 

values representing an acidifying effect and negative values an alkalinizing effect. [H
+
]calculated 

increased by 22.5 nEqL
-1

 after maximal exercise during the passive recovery trial. Of this 

increase, 67% (15.1 nEqL
-1

) was attributable to a decrease in [SID]. The slight increase in 

PCO2 after maximal exercise contributed a further 1.6 nEqL
-1

 (+7%), whereas the increase in 

[Atot
-
] contributed 3.4 nEqL

-1
 (+15%). [H

+
]calculated began to fall after 4 minutes of recovery. 

This was primarily due to a fall in PCO2 that reduced [H
+
]calculated by 7.2 nEqL

-1
 and 

countered the further decrease in [SID], which alone would have increased [H
+
]calculated by 

20.9 nEqL
-1

. For the remainder of recovery, the decline in [H
+
]calculated towards resting values 

was primarily due to a gradual increase in [SID] and the maintenance of PCO2 below rest. As 

evident in Figure 5, the origins of change in [H
+
]calculated during passive recovery were 

markedly similar to that observed during inspiratory loading trials.  

 

Discussion 

Paragraph Number 20 The main finding of the present study was that lactate clearance and 

changes in plasma acid-base balance during recovery from maximal exercise were not 

affected by pressure threshold inspiratory loading at 10, 15, or 20 cmH2O.  
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Paragraph Number 21 That ITL15 did not influence lactate clearance during recovery after 

maximal incremental exercise concurs with our previous observations (5). In contrast, using 

the same inspiratory load and a similar incremental exercise test Chiappa et al. (9) reported an 

approximate 2.5 mEqL
-1

 (25%) reduction in blood [La
-
] during 15 min recovery. Given the 

positive relationship between active muscle mass during recovery and rates of lactate 

clearance (17,32) it is surprising that the relatively small inspiratory muscles can affect 

lactate clearance to a similar magnitude as the leg muscles (12,29,41). However, the 

inspiratory muscles do possess a superior capillary density and oxidative capacity compared 

to limb muscle (33), which makes them ideally suited for lactate metabolism. Chiappa et al. 

(9) also report large reductions in blood [La
-
] with inspiratory loading without corresponding 

changes in [H
+
]. In our previous study (5) inspiratory loading lowered blood [La

-
] (after 

inspiratory muscle training) thereby increasing [SID], which lowered [H
+
]. In the absence of 

a change in blood PCO2 the unchanged [H
+
] observed by Chiappa et al. (9) was attributed to 

changes in other (non-measured) strong ions that prevented an increase in [SID]. For this to 

be the case the net change in the other strong ions must have been positive and equimolar to 

the reduction in [La
-
] (i.e. the net change in cations and [Cl

-
] would need to balance the 2.5 

mEqL
-1

 reduction in [La
-
]). Inspiratory loading-induced reductions in [K

+
] and/or [Na

+
], 

and/or increases in [Cl
-
], would allow this. After exercise transient increases in [K

+
] largely 

reflect significant efflux from muscle followed by rapid reuptake (22,24). Evidence is lacking 

to support the notion that inspiratory loading could significantly reduce K
+
 efflux from 

locomotor muscles or accelerate K
+
 reuptake. Furthermore, increases in plasma [Na

+
] and 

[Cl
-
] after exercise are largely attributed to reduced plasma volume (21,44). We can find no 

reason why inspiratory loading in recovery would either lessen the post-exercise reduction in 

plasma volume (thereby causing a relative decrease in [Na
+
]) or accentuate the decrease in 

plasma volume (thereby increasing  [Cl
-
]). Besides, any change in plasma volume results in 
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simultaneous changes in [Na
+
] and [Cl

-
] causing little net change in [SID] and therefore [H

+
]. 

Our data (Figure 2) and those of others (22,24) also show that post-exercise changes in [Na
+
] 

and [K
+
] are transient and therefore unlikely to balance changes in [La

-
] over a recovery 

period of 15 min. Inspiratory loading during recovery is thus likely to influence [SID] only 

through changing [La
-
] (5). Furthermore, inspiratory loading is unlikely to influence plasma 

[Atot
-
], which also increases after maximal exercise secondary to exercise intensity-dependent 

reductions in plasma volume (21,35). Although Chiappa et al. (9) did not measure strong ion 

concentrations, our data do not support their assertion that changes in these ions may explain 

their findings. Thus, given our current understanding of physicochemical principles (40) it is 

difficult to resolve the reason(s) why their results differ from ours. However, our results 

demonstrate no effect of inspiratory loading during recovery on lactate kinetics and these data 

are also supported by our measurement of strong ions.  

Paragraph Number 22 The differences between our findings and those of Chiappa et al. (8,9) 

are intriguing since experimental protocols are very similar. Compared to Chiappa et al. (8,9) 

we observed a higher 2OV peak (present study: 53.6 mL
-1
kg

-1
min; Brown et al. (5): 52.4 

mL
-1
kg

-1
min; Chiappa et al. (8): 47.9 mL

-1
kg

-1
min;

 
Chiappa et al. (9): 45.5 mL

-1
kg

-1
min) 

and, during recovery, a shorter time to peak [La
-
] and a faster decline in [La

-
], which implies 

greater endurance training status in our participants (16,42,43). Since training tends to 

increase rates of blood and muscle lactate clearance (2,13,16) it seems counterintuitive that 

individuals with inferior endurance training status would demonstrate greater lactate 

clearance with inspiratory loading. However, coincident with a lower blood [La
-
] with 

inspiratory loading during recovery, Chiappa et al. (8) also reported increased heart rate and 

mean arterial blood pressure and, as measured by near-infrared spectroscopy, reduced m. 

vastus lateralis reoxygenation (suggestive of reduced convective oxygen delivery). These 

responses were attributed to respiratory muscle metaboreflex activation, whereby increased 
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afferent discharge from inspiratory muscles and a concurrent increase in sympathetic 

vasoconstrictor activity results in a redistribution of blood flow from the periphery to the 

inspiratory muscles (11). A resultant increase in inspiratory muscle perfusion would probably 

increase lactate uptake by inspiratory muscles (18). Conversely, by virtue of endurance 

training-induced increases in inspiratory muscle mitochondrial enzyme activity (34), the 

“threshold” for respiratory muscle metaboreflex activation may have been higher in our 

participants (1,26,46), thus precluding changes in heart rate, cardiac output distribution and 

hence systemic lactate distribution. Indeed, recent work by Callegaro et al. (7) demonstrates 

that compared to sedentary individuals ( 2OV peak = 36.7 mL
.
kg

-1.
min

-1
) those with a history 

of whole-body endurance training ( 2OV peak = 52.9 mL
.
kg

-1.
min

-1
) are more resistant to 

activation of the inspiratory muscle metaboreflex. The unchanged heart rate responses during 

inspiratory loading compared to passive recovery in the present and in our previous study (5), 

partly supports this notion. Of course, from an ecological validity perspective, if the efficacy 

of loaded breathing in aiding recovery is restricted to untrained individuals one may question 

its utility.   

Paragraph Number 23 Previously, Brown et al. (5) showed that after inspiratory muscle 

training, which increased participants’ MIP by 34%, lactate clearance was accelerated at the 

same absolute (15 cmH2O or 10% MIP), but not relative (20 cmH2O or 13% MIP), 

inspiratory load, thus suggesting that the magnitude of the pressure threshold load may be an 

important determinant of whether inspiratory loading accelerates lactate clearance. The 

findings of the present study do not support this hypothesis, although the possibility remains 

that inspiratory loads above 20 cmH2O may have increased lactate clearance due to activation 

of a respiratory muscle metaboreflex (see above). However, it is noteworthy that anecdotal 

reports from our participants suggest that 20 cmH2O was approaching the maximal tolerable 

load (most participants reported severe air hunger especially during the first 5 min of 
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recovery). Notwithstanding this, it seems increasingly likely that a training-induced increase 

in the oxidative capacity of the inspiratory muscles (4,27,36,46), rather than the intensity of 

the load relative to MIP, primarily explains our previous observation of increased lactate 

clearance during recovery with inspiratory loading after inspiratory muscle training (5).  

Paragraph Number 24 Consistent with previous observations (5,9) inspiratory loading 

modified breathing pattern compared to passive recovery. Specifically, the same EV  was 

achieved with a lower R and TI/TTOT, but greater VT. This breathing strategy was probably 

generated by the respiratory controller to minimize the energy cost of breathing by reducing 

the pressure-time integral of the inspiratory muscles (14,47). Furthermore, reducing TI/TTOT 

prolongs expiration, thus increasing inspiratory muscle relaxation time and reducing end-

expiratory lung volume, which enhances inspiratory muscle force generating capacity 

(14,38,47). This breathing pattern could also affect gas exchange by increasing the ratio of 

alveolar to dead space ventilation, which may explain why inspiratory loading in the present 

study increased 2COV  and resulted in a trend toward lower [H
+
]measured (see Figure 4). These 

changes were, however, very small and probably of limited significance.  

Paragraph Number 25 In conclusion, pressure threshold inspiratory loading at 10, 15, and 20 

cmH2O had no effect on lactate clearance or plasma acid-base balance when applied during 

recovery from maximal incremental exercise. These findings support our recent observations 

(5) but contradict those of Chiappa et al. (8,9). The reason(s) for this disagreement remains 

unclear, but may be related to inter-individual differences in endurance training status. The 

findings of the current study and of Brown et al. (5) also suggest that training of the 

inspiratory muscles may be necessary for this muscle group to engage in measurable lactate 

uptake with inspiratory loading. The influence of endurance training status on the efficacy of 

inspiratory muscle loading during recovery thus provides an attractive avenue for future 

investigation.   
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 TABLE 1. Descriptive characteristics of the 

participants. Mean  SD. 

Variable  

Age (yr) 26  6 

Body mass (kg) 80  6 

Height (cm) 184  4 

FVC (L) 5.54  0.51 (101  9) 

FEV1 (L) 4.40  0.52 (96  10) 

FEV1/FVC (%) 80  4 (96  5) 

MVV10 (Lmin
-1

) 190  36 (112  22) 

MIP (cmH2O) 145  39 (126  34) 

Values in parentheses represent the percentage of 

predicted values (26,38). FVC, forced vital 

capacity; FEV1, forced expiratory volume in 1 s; 

MVV10, maximal voluntary ventilation in 10 s; 

MIP, maximal inspiratory mouth pressure.  
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Figure Legends 

 

 

 
FIGURE 1-Ventilatory responses at the end of maximal exercise and during 20 min 

recovery. Values are mean  SD. Difference between trials (P < 0.05): a, passive recovery vs. 

ITL10; b, passive recovery vs. ITL15; c, passive recovery vs. ITL20. *, indicates P < 0.01.  
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FIGURE 2-Plasma ion concentrations at rest, after maximal exercise, and during 20 min 

recovery. Values are mean  SD. 
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FIGURE 3-Plasma protein concentration ([PPr

-
]) and the independent variables [SID], [Atot

-

], and PCO2 at rest, after maximal exercise, and during 20 min recovery. Values are mean  

SD. 
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FIGURE 4-Dependent variables [H

+
]measured and ][HCO-

3  at rest, after maximal exercise, and 

during 20 min recovery. Values are mean  SD. 

 

 

 
FIGURE 5-Plasma [H

+
]calculated (■), change in [H

+
]calculated (▲), and origins of change in 

[H
+
]calculated from changes in the 3 independent variables: [SID] (○), PCO2 () and [Atot

-
] (), 

after maximal exercise and during 20 min recovery. Values are mean  SD.   

 


