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Abstract

Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol
plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of
cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-
acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is
essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the
cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and
results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous
high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT
that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT
activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT
inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial
activity against M. tuberculosis with MIC values of 2.3–16.9 mM. Treatment of the MMNAT enzyme with this set of inhibitors
resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition
by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure
determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate
and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that
have a novel mode of action different from known anti-tubercular drugs.
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Introduction

Tuberculosis (TB) remains the leading cause of death by

bacterial infection [1]. According to WHO reports, latent infection

represents the major pool of worldwide TB cases, making the

treatment of latent TB an important strategy towards eradicating

the disease [2]. Persistence of Mycobacterium tuberculosis (M.

tuberculosis) within the host’s macrophages is the hallmark of latent

infection [3].

The unique lipids of the mycobacteria cell wall have been

shown to contribute to the persistence of mycobacteria within the

macrophage and to play an important role in the virulence and

pathogenicity of M. tuberculosis [4,5]. Cholesterol has been shown

to play an important role in the entry of mycobacteria into

macrophages [6]. Furthermore, M. tuberculosis is capable of using

cholesterol as a carbon source inside the macrophage. The

catabolism of cholesterol affects the propionate pool in mycobac-

teria and augments the production of virulence lipids [7–9].

Propionyl-CoA (Pr-CoA) is converted to methylmalonyl-CoA

(Mm-CoA), which is considered to be the building block of

multimethyl-branched mycolic acids such as Phthiocerol Dimyco-

cerosate (PDIM) [8]. Several gene clusters that were shown to be

involved in cholesterol degradation are also essential for myco-

bacterium survival inside the macrophage [10–12].
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The catabolism of the sterol nucleus of cholesterol in M.

tuberculosis involves the action of the hsaADCB products of a gene

cluster which includes nat (Figure 1) [13,14], the gene encoding for

arylamine N-acteyltransferase (NAT). NAT utilises Pr-CoA in

addition to acetyl-CoA (Ac-CoA) as an acyl donor, both of which

are products of degradation of the alkyl moiety of cholesterol

[15,16]. Both whole genome [17] and candidate gene approaches

[18,19] have shown the importance of this gene cluster in the

intracellular survival of mycobacteria.

NAT is a cytosolic enzyme that is found in M. tuberculosis and

many other organisms [20]. This enzyme catalyses the transfer of

an acyl group, usually an acetyl, to an arylamine substrate using a

conserved cysteine residue by a Ping-Pong bi-bi mechanism [21].

The nat genes from M. tuberculosis and M. bovis Bacillus Calmette–

Guérin (BCG) are identical and are encoded in virtually identical

gene clusters in both organisms (Figure 1).

Deleting the nat gene from M. bovis BCG resulted in delayed

growth and caused morphological changes of the BCG bacilli.

Moreover, the Dnat mutant severely lacked mycolic acids and

virulence-lipid content (PDIM and the cord factor). These effects

were overcome when the mutant strain was complemented with

the target gene [19]. Chemical inhibition of the NAT activity

within mycobacteria resulted in similar changes in morphology,

cell-wall lipids and intracellular survival to those observed upon

deleting the gene [22]. Furthermore, the chemically treated strains

showed high sensitivity to gentamicin and hygromycin, which have

weak activity against mycobacteria [19]. This enzyme is thus an

attractive therapeutic target in the search for new anti-tubercular

agents.

Despite the near-ubiquitous occurrence of the NAT enzyme,

mycobacterial NATs appear to have distinguishing features from

the eukaryotic enzymes [23]. Structural studies on the CoA bound

forms of both Human NAT2-CoA (HNAT2-CoA, PDB code

2PFR) [24] and M. marinum NAT (MMNAT-CoA, PDB code

2VFC) [23], showed distinct binding sites for CoA in these two

enzymes [25]. Interestingly, potent micromolar inhibitors of

human NAT1, which have been investigated as a marker for

breast cancer, did not exhibit any inhibition of mycobacterial

NATs [26]. NAT inhibitors that are selectively toxic to

mycobacteria, therefore, would remove any potential human

toxicity caused by inhibition of the human NAT enzymes.

The search for novel drugs that can shorten the treatment

course for TB has become pressing in the light of the shortcomings

of the current therapy and the emergence of extensively-drug

resistant (XDR) strains [27,28]. New compounds with a variety of

mechanisms of action are being developed and are in the

preclinical and clinical phase [29,30]. However, none of the

current investigational compounds specifically targets cholesterol

catabolism in mycobacteria or products of the gene cluster

encoding NAT. Therefore, the development of novel inhibitors

targeting these enzymes would provide new therapeutic options for

the treatment of latent and XDR TB.

In a previous study, we have identified 3-benzoyl-4-phenyl-1-

methylpiperidinol (compound 1, Figure 2) by high-throughput

screen (HTS) methods using pure recombinant NAT enzymes

[22,31]. In this study, the mechanism of NAT inhibition by this

class using a selected panel of piperidinol analogues is investigated.

A novel mechanism of NAT inhibition by the piperidinols is

proposed. This class of inhibitors constitutes an attractive starting

point for further drug development efforts against TB.

Results and Discussion

Evaluation of compounds for NAT inhibition and
antimycobacterial activity

Compound 1, a piperidinol derivative (Figure 2), was identified

through high throughput screening against a panel of multiple

pure recombinant NATs including mycobacterial, bacterial and

eukaryotic isoenzymes [22,31]. In order to confirm selectivity, the

compound was re-evaluated against an extended panel of enzymes

(Figure 2). Compound 1 shows high selectivity for bacterial and

mycobacterial NATs over the eukaryotic enzymes, thereby

satisfying the strict selection criteria considered in the original

screening programme [22,31]. The compound was in fact

reported over 50 years ago for its antimycobacterial activity with

a minimum inhibitory concentration (MIC) against M. tuberculosis

of less than 5 mg/mL (,17 mM) [32]. To explore the antimyco-

bacterial potential and the NAT inhibition of the piperidinol class,

four analogues (2–5; Table S1) with different aryl and N-

functionality patterns were evaluated for their inhibitory activity

against MMNAT and TBNAT, as shown in Table 1. All five

compounds showed potent inhibition of both TBNAT and

MMNAT (Table 1).

Figure 1. The gene cluster that encodes for the nat gene in M. tuberculosis and M. bovis BCG and its relation to cholesterol
catabolism. The accession numbers, detailed at http://genolist.pasteur.fr/TubercuList/, for these genes in M. tuberculosis H37Rv are as follows:
Rv3570c (hsaA), Rv3569c (hsaD), Rv3568c (hsaC), Rv3567c (hsaB), Rv3566A (possible pseudogene) and Rv3566c (nat). The gene cluster is virtually
identical in M. tuberculosis and M. bovis BCG.
doi:10.1371/journal.pone.0052790.g001
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The compounds were also assessed for in vitro anti-mycobacterial

activity against M. bovis BCG and the M. tuberculosis H37Rv

(Table 1). All the tested compounds showed promising antimyco-

bacterial activity against M. tuberculosis H37Rv with a MIC below

17 mM (Table 1). The compounds were also tested in vitro for their

cytotoxic effect on RAW 264.7 cells, and no cytotoxicity was

observed at up to 150 mM inhibitor concentration. Cytotoxicity

results from tests with the same inhbitors in the U937 human cell

line gave similar data.

Irreversible NAT inhibition by the piperidinols
It was noted in the studies of inhibition of enzyme activity that

the piperidinol compounds exhibited a time-dependent inhibition,

which markedly increased with the time of incubation of NAT

with the inhibitor (Figure S1). This type of inhibition is usually

observed as a result of tight binding of the inhibitor to the enzyme,

irrespective of whether this binding involves the formation of a

covalent adduct with reactive residues in the protein [33].

Extensive dialysis of the enzyme after incubation with compound

1 was completely ineffective in restoring the activity of the enzyme,

supporting the proposal of tight irreversible binding of 1 to the

NAT enzyme (Figure 3). These data showed the same pattern for

both MMNAT and TBNAT.

The time course of the inhibition of NAT by the piperidinols

was evaluated according to the Kitz and Wilson model [34].

Irreversible inhibition, progressive with time, was measured for the

piperidinol inhibitors (1–5) by the protocol described in Figure S2,

and the values of the apparent first order constant (kobs) were

determined (Table 1). Dilution rather than dialysis was used in this

protocol due to the likely loss of activity upon dialysis (Figure 3).

The piperidinols exhibited similar inhibition against TBNAT

although higher concentrations of the inhibitor were required

Figure 2. Specificity of compound 1 for prokaryotic NAT enzymes. Compound 1 was tested at 30 mM against pure recombinant NAT
enzymes from M. smegmatis (MSNAT), P. aeruginosa (PANAT), S. typhimurium (STNAT), MMNAT and TBNAT, and also against two eukaryotic enzymes,
hamster NAT2 (shNAT2) and human NAT1. The results are shown as the mean 6 S.D. of triplicate determinations of the percentage inhibition of
hydrolysis of Ac-CoA in the presence of 5-aminosalicylic acid (5ASA) and against TBNAT using hydralazine as a substrate. The inhibition is represented
as a percentage compared to an uninhibited control from triplicate measurements. The structure of compound 1 is shown and the piperidinol
nucleus is highlighted by the shaded area.
doi:10.1371/journal.pone.0052790.g002

Table 1. The inhibitory activity of compound 1 and its analogues.a

Code TBNAT MMNAT MIC (mM)b

% Inhibition IC50 (mM) % Inhibition IC50 (mM) kobs (1023 min21) t1/2 (min) M. bovis BCG M. tuberculosis

1 10161 7.760.9 10561 1.360.0 962 81.5 21.3–42.3 3.4–16.9

2 9861 1.660.1 10362 0.1660.01 11062 6.3 17.3–34.3 2.7–13.7

3 72660 4.460.1 10361 ND 573618 1.2 17.3–34.4 2.8–13.8

4 6764 1.160.3 10062 2.760.4 5866115 1.2 14.8–29.3 2.3–11.7

5 10162 1.260.1 10162 0.1460.02 3462 20.4 21.3–42.3 3.4–16.9

aThe NAT activity was measured by the NAT-inhibition assay using 150 mM HLZ and 120 mM Ac-CoA as substrates. The level of enzyme inhibition was measured in the
presence of 50 mM inhibitor and compared to the un-inhibited control. The antimycobacterial activity against M. bovis BCG and M. tuberculosis were determined.
Inhibition curves were obtained by non-linear fitting of the % inhibition and the inhibitor concentration (mM) using the Log(inhibitor) vs. response module of GraphPad
Prism 5.0. The time-dependent assay kobs values were obtained from the slope of the semilogarithmic plots of the residual activity vs incubation time at 11.9 mM, except
for 3 (5.9 mM). The results are presented as the mean 6 S.D. of triplicate measurements at 24uC. t1/2 is the apparent inactivation half-life calculated from kobs (t1/

2 = 0.693/kobs). ND is not determined.
bSee Methods for further experimental details.
doi:10.1371/journal.pone.0052790.t001
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compared to those which inhibited MMNAT. Examples of the

curves obtained for enzyme activity against incubation time upon

inhibition of MMNAT and TBNAT by the piperidinols are shown

in Figure 4.

Covalent adduct formation as the mechanism of NAT
inhibition

The ability of the piperidinols to form a covalent adduct with

MMNAT was initially investigated by mass spectroscopic (MS)

analysis of the protein-ligand complex at a molar ratio of 1:1 using

compounds 1–5 (Table 2, Figure 5). The mass differences (Dm)

between the enzyme-inhibitor complexes and the enzyme alone

are shown in Table 2 (upper section). A single additional peak

which corresponds to a new species of higher molecular mass was

observed for each of the protein-inhibitor complexes. These results

confirm covalent adduct formation with each of the different

piperidinols tested. Interestingly, all compounds with unsubstituted

aryl groups (1, 3, 4 and 5) resulted in a protein adduct with an

increase of the average molecular mass of 132 Da regardless of the

N-substituents in these compounds (Table 2 and Figure 5).

Compound 2 (the p-chloroaryl derivative of 1) showed a mass of

164 Da compared with the other inhibitors (132 Da): however,

this mass difference (i.e. 164 Da) from the native is approximately

equivalent to an additional chlorine atom (35.5 Da) added to the

132 Da-fragment. These findings support the postulate that all

inhibitors inactivate the enzyme by a general mechanism, which

involves the formation of a reactive aryl compound that can react

covalently with the enzyme. A proposed mechanism for the

formation of the reactive intermediate is illustrated in Figure 6.

The change in molecular mass expected from the addition of a 3-

phenyl-3-oxopropyl moiety to the protein (C9H8O) is 132.07 Da,

whilst the addition of a 3-(4-chlorophenyl)-3-oxopropyl moiety

(C9H7ClO) is 166.03 Da (Figure 6A). These values are in

agreement with the mass difference observed upon incubating

the enzyme with an equimolar amount of each piperidinol (Table 2

and Figure 5). Furthermore, treatment of MMNAT and TBNAT

with phenyl vinyl ketone (PVK) resulted in a mass difference of

132, in agreement with the proposed mechanism of activation.

PVK showed 100% inhibition of the NAT activity within

10 minutes even at less than 1 mM concentration level.

The activity of the acyclic bis-Mannich base 5 supported the

hypothesis that the action of the piperidinols was mediated by

conversion to the corresponding bis-Mannich base. Despite the

high activity of compound 5, the fact that it has been reported to

exhibit greater toxicity compared to the cyclic piperidinol [35]

made it less favoured for further investigation as an antimyco-

bacterial compound.

Elimination of the hydroxyl group from compound 1 (com-

pound 6) resulted in 30% inhibition of the MMNAT at 50 mM

inhibitor concentration (Figure 7). However, the inhibition of the

enzyme with compound 6 was reversible, unlike the situation with

compound 1 (Figure 7). Compound 6 has a similar 3-dimensional-

shape to that of compound 1 (Figure 7) but lacks the hydroxyl

Figure 3. Reversibility of the inhibition of TBNAT and MMNAT
by compound 1. Each enzyme (MMNAT, TBNAT, 0.07 mM, 50 mL) was
preincubated either alone or with 15-fold molar excess 1 at 24uC for 1 h.
Each sample was then dialysed against 1 L fresh assay buffer (20 mM
Tris-HCl pH 8) at 4uC for 16 h. The enzyme activities of the samples
were measured before dialysis and then measured after dialysis by
measuring the rate of Ac-CoA hydrolysis in the presence of HLZ as
described in Methods. The mean 6 S.D. of three measurements of the
activity is shown. Loss of enzyme activity upon dialysis is likely to be
due to the oxidation of the active site sulfhydryl group, especially since
dialysis was performed in the absence of dithiothreitol.
doi:10.1371/journal.pone.0052790.g003

Figure 4. The time-dependent inhibition of the MMNAT and TBNAT by the piperidinols. Semi-logarithmic plots showing the time-
dependent inactivation of (A) MMNAT by various concentrations of 1 and (B) TBNAT by compound 3 at 23.8 mM. The enzyme activity was measured
using the protocol described in Figure S1. The results are presented as the mean 6 S.D. of triplicate measurements. The residual activity is shown as a
percentage of a control prepared as described in Figure S1. The data were fitted against the incubation-time using the Semilog line (X is linear, Y is
Log) module of GraphPad Prism 5.0. The slope of each line is equivalent to (2kobs/2.303) at each inhibitor concentration. The error bars are within the
symbols.
doi:10.1371/journal.pone.0052790.g004
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group. Therefore, it is not expected to undergo the activation

mechanism described in Figure 6.

In contrast, when MMNAT was incubated with a 15-fold molar

excess of piperidinols 1 and 2, the formation of multiple protein

adducts was observed after MS analysis (Table 2, lower section).

Compound 1 and MMNAT formed three distinct adducts, the

mass of each of which matches the mono, di or tri derivatives of

the 132 Da-fragment (Table 2; lower section). For compound 2,

three adducts were also observed corresponding to the mass of

mono, di or tri derivatives of the 166 Da-fragment. The increase

in molecular mass is depicted in Table 2 (lower section). MMNAT

has three cysteine residues, and these results can be explained by

the reaction of each of the piperidinols with each of the free

sulfhydryl groups in MMNAT. Whilst this does not prove that the

reaction has occurred with cysteine residues in MMNAT at 15:1

molar ratio of piperidinol to MMNAT, it is indicative that this is

very likely to be the case.

To investigate further the reaction of compound 1 with cysteine,

a sample of the amino acid alone was reacted with the compound

under conditions similar to those used in the protein experiment

for Electrospray ionisation mass spectrometry (ESI-MS) analysis in

parallel with untreated samples of both cysteine and compound 1.

The samples were treated with 6-aminoquinolyl-n-hydroxysucci-

nimidyl carbamate after reaction with the piperidinol and prior to

liquid chromatography (LC) and MS analysis to facilitate

separation and identification.

The chromatogram of cysteine alone solution showed a major

peak corresponding to the mass of the aminoquinolyl carbamate

derivative of cysteine (m/z = 291 Da, peak i Figure 8) and a small

peak corresponding to cystine, the disulphide dimer of cysteine

(m/z = 290.9, peak iii Figure 8). When cysteine was incubated with

compound 1, the peak corresponding to cysteine (peak i, m/

z = 291 Da) was absent from the chromatogram and an increase in

the cystine peak (iii, Figure 8) was observed. In addition, there was

a unique peak in the reaction of cysteine with compound 1. This

peak (viii in Figure 8) had a molecular mass of 423.9 Da. The

difference between the mass of cysteine and that of the new entity

(peak viii, Figure 8) was 132 Da, which is in agreement with the

molecular mass difference observed upon the reaction of

compound 1 with MMNAT. When compound 1 was treated

alone in the same way, it gave multiple peaks, which were present

in the same relative amounts as in the chromatogram obtained

from the mixture of cysteine and compound 1. The formation of

an adduct with piperidinol compounds has been reported in the

alkylation of cellular glutathione in human T cells [35]. The

mechanism proposed for the formation of the resultant reactive

PVK is similar to that shown in Figure 6B, proceeding through

hydrolysis to the corresponding bis-Mannich base, followed by a

b-elimination reaction of the secondary amine.

These results show that the piperidinols interact with cysteine.

The observations suggest that in the presence of a 15-fold molar

excess of inhibitor, the modification occurred indiscriminately with

all three cysteine residues in the MMNAT sequence. However,

when the molar ratio is 1:1, only one inhibitor molecule is bound.

Therefore, we propose that in the presence of an equimolar

amount of the inhibitor, the active site cysteine Cys70 is the

residue which is modified. The occurrence of Cys70 within a Cys-

His-Asp triad affords activation of the cysteine sulfhydryl group

[36]. However, the accessibility of compound 1 to the active site

cysteine also appears to contribute to the modification, since

compound 1 did not show significant inhibition of the eukaryotic

NATs despite the presence of cysteine within the same active triad

(Figure 2). Mycobacterial NAT enzymes have a CoA binding

pocket which is distinct from that of eukaryotic enzymes [23].

In order to carry out MS analysis, the piperidinol was reacted

with MMNAT in the native state, but prior to the MS

measurements, acetonitrile denaturation was performed. Thus,

in the presence of excess inhibitor, the excess piperidinol is likely to

Table 2. Mass spectrometric analysis results for MMNAT and TBNAT after incubation with the piperidinol inhibitors.

Sample Deconvoluted mass (Da) Dm (Da) DDm/mpvk Molar ratio (Inhibior/protein) Cys

Enzyme-to-inhibitor ratio of 1:1

MMNAT-1 31047.6 132.6 0.9 1 3

MMNAT-2 31085.3 164.3 1 1 3

MMNAT-3 31046.5 131.5 1 1 3

MMNAT-4 31045.5 130.5 1 1 3

MMNAT-5 31050.6 129.7 1 1 3

MMNAT-PVK 31056.0 132 1 1 3

Enzyme-to-inhibitor ratio of 1:15

MMNAT-1 31185.9 255.9 1.9 2 3

31062.6 132.6 1 1 3

31324.1 394.1 3 3 3

MMNAT-2 31424.1 494.1 3 3 3

31254.5 324.5 2 2 3

31089.3 159.3 1 1 3

TBNAT-1 31450.9 134.1 1 1 2

31583.4 266.6 2 2 2

For the ESI-MS studies, samples of each enzyme (0.07 mM in 20 mM Tris-HCl, pH 8.0 and 5–10% (v/v) DMSO) were incubated with the different inhibitors at an enzyme-
to-inhibitor molar ratio of either 1:1 or 1:15 at 24uC for 30–60 min. Confidence intervals are 68–12 Da. Samples of each enzyme alone (in the same buffer) were
analysed in the same way as the controls and used to calculate the mass difference upon incubation with the inhibitor (Dm values). mpvk is the mass of the expected
phenyl-oxopropyl fragments of 132 Da for 1, 3, 4 and 5, or 166 Da for 2 and identifies the number of modifications. The Molar ratio refers to the proposed number of
inhibition species bound per protein molecule. Cys refers to the number of cysteine residues in the sequence. See Methods for further experimental details.
doi:10.1371/journal.pone.0052790.t002
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react with the cysteine residues exposed by the acetonitrile

treatment and subsequent denaturation process.

The treatment of TBNAT with 15-fold excess of compound 1
resulted in two species the mass of each of which corresponds to

the mass of mono and di derivatives of the 132 Da-fragment

(Table 2). There are two cysteine residues in TBNAT, which

further supports the interpretation of a reaction with the cysteine

residues exposed during denaturation in the presence of excess

piperidinol. The cysteine residues following denaturation become

equivalent to those in glutathione and cysteine itself.

It is also interesting to note that the free cysteine can to react

with these compounds, although it does require a long incubation

time. This demonstrates that activation of these compounds to

form reactive PVK in the presence of the enzyme is compatible

with reaction through the active site cysteine.

Structural studies on MMNAT-inhibitor complexes
To validate the observations obtained using MS, the 3D-

structure of MMNAT was determined in complex with compound

1, the parent piperidinol identified from the HTS.

The crystallographic structure determination was performed by

incubating MMNAT with 1 in solution (15:1 inhibitor to protein

ratio in the native form) and then to crystallise it (co-crystallisa-

tion). According to the proposed mechanism of inhibition, this

method is expected to allow time for the ligand to mature into the

covalent modification of the active site cysteine with the 3-phenyl-

3-oxopropyl moiety (POP). The crystals diffracted to 2.7 Å and

data were processed as described in Methods and in Table S2.

Upon refinement of the co-crystallised complex MMNAT-POP, a

continuous excess electron density connected to the active site

Cys70 was observed, consistent with the proposed 3-phenyl-3-

oxopropyl modification (Figure 9). No electron density was

observed in proximity to any of the other cysteine residues

(Cys120 and Cys274; Figure 9) or any other residues, confirming

the selectivity of the inhibitors to the active site cysteine. The

binding site of the fragment which was observed attached to the

active site cysteine was accommodated by the fragment predicted

from the MS studies using a 1:1 ratio of compound 1 to MMNAT.

These data are entirely compatible with the MS data obtained

using the same compound to MMNAT ratio, since the protein

remains in the native state throughout the crystallisation and

excess inhibitor was removed by buffer exchange prior to

crystallisation as described in Methods.

Conclusions

The search for novel drug targets against M. tuberculosis has been

escalated recently under the pressure of the emergence of

extensively drug resistant strains [37]. Arylamine N-acetyltrans-

ferase is one of the novel targets that plays an important role in cell

wall synthesis and intracellular survival of mycobacteria within the

macrophage [19]. From a previous HTS [22], the piperidinol

scaffold was identified as a selective prokaryotic NAT inhibitor

that shows good antimycobacterial activity. In order to explore this

scaffold as a possible lead for anti-tubercular therapies, a series of

inhibitors was tested for their activity against TBNAT and

MMNAT and for their antimycobacterial activity. In addition to

inhibiting NAT activity, the compounds were potent against M.

tuberculosis with an MIC below 17 mM. The data do not preclude

the presence of additional targets within M. tuberculosis. However,

the concept of poly-pharmacy in which one drug has multiple

targets is an extremely useful asset in drug design, particularly for

antimicrobials where resistance is a major consideration [38].

A novel mechanism of NAT inhibition by the piperidinols was

revealed by MS-analysis, and from the 3D-structure of the

MMNAT-1 complex. The mechanism of inactivation of NAT

involves the formation of PVKs that form an adduct with the

active site cysteine. This mechanism was also observed with acyclic

Mannich bases considered for the drug design of antimalarial

agents [39].

Drug leads that exhibit activation followed by covalent

modification of targets have been proposed to be beneficial in

developing new TB therapies [27,40]. This approach has indeed

been historically successful with the front-line anti-tubercular drug

isoniazid and the related drug ethionamide both retrospectively

shown to be prodrugs that require activation to inhibit mycolic

acid synthesis. The activated intermediates for those agents form a

covalent adduct with the biological molecule NAD [41].

Specific covalent enzyme inactivators have gained recent

interest in drug design [42] as being usually associated with lower

doses and a longer duration of action, as well as avoiding

resistance [42]. The possible toxicity associated with such a

mechanism requires the careful design of highly selective agents. It

is especially important to improve the stability of these compounds

Figure 5. The ESI mass spectrum of MMNAT in the presence of
1, 3 and 4. MMNAT was mixed with an equimolar sample (1:1 ratio) of
each inhibitor (50 mM) in 20 mM Tris-HCl, pH 8, and 5% (v/v) DMSO, and
the ESI-MS was performed after 30 min of incubation. The masses
correspond to each peak according to MMNAT with compound 3
chromatogram are: a = 30915 (Dm = 0 Da), b = 30955.5 (Dm = 40 Da),
c = 31046.5 (Dm = 131.5 Da), and d = 31087.5 Da (Dm = 172.2 Da). The
mass corresponding to the addition of a 132 Da-fragment is marked
with a dashed line. Dm of +40 Da is likely to correspond to a potassium
ion (38 Da). A mass spectrum of the protein in the absence of any
inhibitor is shown as control in the top panel.
doi:10.1371/journal.pone.0052790.g005
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in relation to other cysteine or sulfhydryl bearing entities such as

glutathione and mycothiol in mycobacteria. However, as studies

on cytotoxicity and the effects on NAT enzymes suggest that these

reagents do have inbuilt specificities for certain NAT enzymes, this

does not preclude their activity against other mycobacterial

proteins.

The piperidinol group presented in this study provides a starting

point for novel anti-tubercular agents to add to a growing drug

development pipeline in the fight against TB [43,44].

Materials and Methods

All chemicals and reagents were purchased from Sigma Aldrich

(Poole, Dorset, UK), unless otherwise stated. U937 cells were

obtained from the cell bank of the Sir William Dunn School of

Pathology, South Parks Road, Oxford [45].

Range of inhibitors
Compound 1, which was identified from a previous high-

throughput screen was synthesized ab initio to confirm its identity

and activities as previously described [46]. It has been established

previously that during the cyclisation only the diastereoisomer 1

Figure 7. A comparison of the 3D-shape of compounds 1 and 6 and their inhibition activity. (A) The 3D-shape of compounds 1 and 6 are
shown in a mesh view of the Van der Waals surface. Overlapping 3D-shapes of 1 (in white) and 6 are also shown. Energy minimisation of compounds
1 and 6 was performed using Grade (http://grade.globalphasing.org). The structure of 6 is shown. (B) The activity of MMNAT in the presence of
50 mM compound 1 or 6. The activity of MMNAT was measured after incubation with 50 mM of each inhibitor for 20 min before and after a 200-fold
dilution. The NAT activity was measured by the NAT-inhibition assay using 150 mM of HLZ and 120 mM Ac-CoA. The percentage of enzyme activity
was measured in the presence of 50 mM inhibitor and compared to the un-inhibited control. The results are presented as the mean 6 S.D. from
triplicate measurements at 24uC.
doi:10.1371/journal.pone.0052790.g007

Figure 6. The chemical transformation of 1 to the corresponding phenyl vinyl ketone (PVK) and the subsequent modification of a
thiol containing residue by the PVK. (A) A proposed pathway of the formation of bis-Mannich bases from the rigid cyclic piperidinol. The bis-
Mannich base can undergo a b-elimination of the amino group forming a reactive phenyl vinyl ketone (PVK). (B) The PVK reaction with thiols resulted
in the addition of a 3-phenyl-3-oxopropyl moiety (POP) (when R1 is H) or a 3-(4-chlorophenyl)-3-oxopropyl moiety (when R1 is Cl). The expected Dm
values of the added fragments are +132.07 Da and +166 Da, respectively. The shaded areas highlight the Michael acceptor moiety. Since the PVK
binding species is transient, the second order rate constant cannot be determined without major assumptions being made.
doi:10.1371/journal.pone.0052790.g006
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Figure 8. LC/MS analysis of the reaction of compound 1 with free cysteine. (A) The total ion current chromatogram (from liquid
chromatography LC) of 100 mM cysteine, 100 mM compound 1 and 100 mM cysteine: 1 (1:1 mixture) in 20 mM MOPS buffer, pH 8 after 16 h
incubation at 24uC. All samples were treated with 6-aminoquinolyl-n-hydroxysuccinimidyl carbamate before analysis. (B) The ESI-MS spectra of
fractions collected from the peaks in the chromatogram (in A) corresponding to i: cysteine (m/z = 291.9 Da), iii: cystine (m/z = 290.9) and viii: the
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depicted in Figure 10 is formed [46]. The compound was obtained

at a 79% yield, with greater than 99.5% purity as determined by

reversed phase high performance liquid chromatography (RP-

HPLC).

Preparation of (4-hydroxy-1-methyl-4-phenylpiperidin-3-
yl)(phenyl)methanone 1

Compound 1 was prepared as described in Figure 10. Amine

hydrochloride (0.25 eq) was added to a stirred solution of aryl

methyl ketone (1 eq) and paraformaldehyde (1 eq) in acetonitrile,

and the mixture was heated at reflux (82uC) for 20 hours in the

presence of a catalytic amount of hydrochloric acid. The reaction

mixture was allowed to cool to room temperature, and concen-

trated in vacuo. The resulting solid was dissolved in CH2Cl2,

washed with sat. aq. NaHCO3 solution, water and brine, dried,

filtered and concentrated in vacuo. Following this, acetophenone

(2.00 g, 16 mmol), paraformaldehyde (0.49 g, 16 mmol) and

methylamine hydrochloride (0.28 g, 4 mmol) were reacted to give

a crude product which after purification by column chromatog-

raphy (diethyl ether, triethyl amine (1%)), furnished 1 (0.93 g,

79%) as a white solid: mp 137–139uC (lit.,2 138–140uC). dH

(400 MHz, CDCl3) 1.80–1.88 (1H, m), 2.02–2.19 (1H, m), 2.43

(3H, s), 2.65–2.89 (3H, m), 2.94–2.97 (1H, m), 4.46 (1H, br s),

5.13–5.17 (1H, m), 7.16–7.89 (10H, m).

Dehydration of compound 1
Dehydration of compound 1 in the presence of acetic anhydride

was performed as described previously and as shown in Figure 11

[47]. Compound 1 (100 mg, 0.34 mmol) was suspended in acetic

anhydride (1.0 mL) and treated with concentrated H2SO4 (1

drop). The mixture was heated to 100uC for 2 h then carefully

added to NaHCO3 solution (70 mL sat. aq.). Solid NaHCO3 was

added until the mixture was made basic and the aqueous phase

extracted with ethylacetate (EtOAc) (3620 mL). The combined

organic extracts were dried over MgSO4 and concentrated in vacuo.

The residue was purified by flash chromatography (40–50%

EtOAc/Petrol+0.1% triethylamine (Et3N)) to give 1-methyl-3-

benzoly-4-phenyl-1,2,5,6-tetrahydropyridine (6) as an orange oil

(67 mg, 71% yield): nmax (neat)/cm21 2939 (CH), 2785 (CH),

1685 (C = O), 1447, 1027, 693; dH (400 MHz, CDCl3) 2.34 (3H, s,

NMe), 2.89 (1H, dd, J 11.5, 5.4, 2-HH), 2.96 (1H, dd, J 11.5, 5.4,

2-HH), 3.09 (1H, app. dt, J 17.0, 2.9, 6-HH), 3.36 (1H, ddd, J

17.0, 2.9, 2.1, 6-HH), 4.86 (1H, m, 3-H), 6.32 (1H app. td, J 2.9,

0.7, 5-H), 7.17 (1H, app. tt, J 7.4, 1.4, 40-H), 7.23 (2H, app. t, J

7.4, 30-H), 7.29 (2H, app. dd, J 7.4, 1.4, 20-H), 7.48 (2H, app. t, J

7.5, 49-H), 7.58 (1H, app. tt, J 7.5, 1.5, 59-H), 8.01 (2H, app. dd, J

7.5, 1.5, 59-H); dC (75 MHz, CDCl3) 45.6 (NMe), 46.9 (C-3), 54.9

(C-6), 55.8 (C-2), 125.3 (C-20), 125.7 (C-5), 127.0 (C-40), 128.4 (C-

30), 128.5 (C-39), 128.7 (C-49), 133.0 (C-59), 134.0 (C-4), 136.1 (C-

29), 140.1 (C-10), 199.0 (C-19); m/z (ESI) 300 ([MNa]+ 25), 278

([MH]+, 83).

product of the reaction of cysteine with 1 (m/z = 423.9 Da). The chemical structures of the compounds corresponding to each peak are shown. The
round symbol represents the aminoquinolyl carbamate moiety.
doi:10.1371/journal.pone.0052790.g008

Figure 9. The active site electron density observed in the MMNAT-POP complex. The crystal structure of MMNAT after reaction with
compound 1 showed excess electron density connected to Cys70, into which a 3-phenyl-3-oxopropyl (POP) modification was modelled with full
occupancy. All three cysteine residues in the MMNAT structure and the covalent modification (in pink) are shown with the electron density shown
using blue 2Fo–Fc electron density contoured at 1 s. This observation is compatible with the MS data, since the excess inhibitor was washed out
prior to crystallisation and the native state of the protein was preserved throughout the structure determination process. The figures were prepared
using PyMOL [67].
doi:10.1371/journal.pone.0052790.g009
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The phenyl vinyl ketone was synthesised as described previously

[48]. The corresponding NMR spectra are shown in the

Supporting Information S1.

Commercially available compounds
Compound 2 was used as a representative of a halide

substitution at the benzene ring. To investigate the structural

influence of the nitrogen atom functionality over both NAT

inhibition and the antimycobacterial activity, two commercially

available compounds (3 and 4, Cheshire Biosciences, UK) with

different substitutions at the piperidinol nitrogen were selected for

testing. The synthetic intermediate bis-Mannich base of 1 was also

purchased and tested (5). The purchased compounds were

provided at .95% purity and were used as supplied from the

vendors without further characterization or purification. The stock

solutions of the test compounds were prepared in dimethyl

sulphoxide (DMSO) and stored at 220uC.

Details of source and purity are shown in Table S1.

Protein production
The NAT enzymes from M. smegmatis [49], S. typhimurium [21],

P. aeruginosa [50], M. marinum [23], M. tuberculosis [51], hamster

NAT2 [52] and human NAT1 [53] were produced as recombi-

nant proteins and purified as previously described.

NAT inhibition assay
An assay for measuring the formation of CoA was used to

determine the activity of the enzyme in the presence of potential

inhibitors [54]. All the tested compounds were dissolved in

dimethylsulphoxide (DMSO) and all reactions were carried out in

the presence of 5% (v/v) DMSO. The enzyme (100–150 ng) was

mixed with the inhibitors 1–5 (5 mL at a final concentration of 0–

250 mM) and incubated for 15 min at 24uC prior to starting the

reaction by adding 15 mL hydralazine and 12 mL Ac-CoA at final

concentrations of 150 mM and 120 mM respectively, in a final total

volume of 100 mL of 20 mM Tris-HCl pH 8. The assay was

performed as an end-point read out measurement by stopping the

reaction after 10 min at 24uC using 25 mL Ellman’s reagent

(5 mM 5,59-dithiobis-(2-nitrobenzoate) solution in 6.4 M guani-

dine-HCl and 100 mM Tris-HCl, pH 7.3). The absorbance was

measured at a wavelength of 405 nm within 2 min (Tecan Sunrise

Plate Reader). The assays were repeated using a 10-fold enzyme

concentration to exclude promiscuous non-specific inhibitors [55].

The activity of the enzyme in the presence of 5% (v/v) DMSO was

measured as a control. Inhibition values were determined as the

ratio of the enzyme activity (expressed as the rate of CoA

formation per microgram protein (mM/min.mg)) with the requisite

compound, to the activity of the control without inhibitor. IC50

values were determined from the inhibition curves which were

obtained by non-linear fitting of the % inhibition and the inhibitor

concentration (mM) using the Log(inhibitor) vs. response module of

GraphPad Prism 5.0.

For the reversibility studies, excess inhibitor was measured by

dialysis. Each enzyme (0.07 mM MMNAT or TBNAT in 20 mM

Tris-HCl pH 8 and 5% (v/v) DMSO) was preincubated either

alone or with 15-fold molar excess of compound 1 in a final

volume of 50 mL at 24uC for 1 h. Each sample was then dialysed

against 1 L fresh assay buffer (20 mM Tris-HCl pH 8) at 4uC for

16 h. The enzyme activities of the samples were measured before

dialysis and then measured after dialysis by measuring the rate of

Ac-CoA (120 mM) hydrolysis in the presence of 150 mM HLZ.

For the determination of the time dependence of interaction

between enzymes and inhibitors, the inhibitor was diluted to less

than 1% concentration. Incubation mixtures (20 mL) contained

0.06 mM MMNAT or TBNAT in 20 mM Tris-HCl, pH 8 and

5% (v/v) DMSO and variable concentrations of the inhibitors (0–

50 mM) were prepared using the protocol described in Figure S1.

Aliquots of 1 mL were removed from the reaction mixture at

different time points (incubation-time) and diluted to 100 mL using

the assay buffer containing HLZ and Ac-CoA to the final

concentrations of 150 mM and 120 mM, respectively. The rate of

Ac-CoA hydrolysis was measured over a three-minute time period.

The reaction was stopped with 25 mL Ellman’s reagent in 6.4 M

guanidine and the absorbance was measured at a wavelength of

405 nm. The residual activity was measured as a percentage of a

control prepared as described in Figure S1 and plotted against the

incubation-time. The data were fitted using the Semilog line (X is

linear, Y is Log) module of GraphPad Prism 5.0. The slope of each

line is equivalent to (2kobs/2.303) at each inhibitor concentra-

tion.The controls in which no enzyme was present using CoA and

Ellman’s reagent gave the same results whether compound 1 was

present or not.

Mycobacterial growth inhibition in vitro
Mycobacteria (M. bovis BCG and M. tuberculosis H37Rv) were

grown as spot cultures in 6-well plates on solid medium

(Middlebrook 7H10 medium supplemented with 10% (v/v) oleic

acid-albumin-dextrosecatalase (OADC)) as previously described

[19], with test compounds at the concentrations indicated in the

text. Test compounds were added to the melted, partially cooled

7H10-OADC agar medium as solutions in DMSO, and the final

concentration of DMSO in each well was 0.1% (v/v). The MIC is

defined as the concentration of an inhibitor at which no growth of

mycobacteria was detected after a period of 2 weeks.

Cytotoxicity
The mouse macrophage cell-line RAW 264.7 (ATCC no. TIB

71) were grown as a monolayer for 48 h in RPMI 1640-FBS

complete medium either in presence of 0.1% (v/v) DMSO alone

or in presence of the piperidinol derivative as well as its four
Figure 11. The chemical dehydration of compound 1.
doi:10.1371/journal.pone.0052790.g011

Figure 10. Reagents and conditions: (i) MeNH2.HCl, parafor-
maldehyde, MeCN, cat. HCl, D, 16 h.
doi:10.1371/journal.pone.0052790.g010
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analogues (1–5) dissolved in 0.1% (v/v) DMSO or isoniazid as

control. The percentage viable RAW cells was determined

following detachment of the cells with lidocaine/EDTA as

described previously [56] by Trypan blue exclusion. The

percentage viability was determined in triplicate from counting

at least 200 cells per field. as described previously [56]. Human

U937 [45] cells were also tested with compounds following growth

in suspension culture as described previously [45].

Electrospary ionization mass spectrometry (ESI-MS)
ESI-MS was performed as described previously [57]. A sample

of 2.5 mg/mL (80 mM) MMNAT was analyzed on a Micromass

LCT mass spectrometer. The samples were pretreated with

DMSO or 0.08–1.2 mM inhibitor dissolved in DMSO to a final

percentage of 5% (v/v) DMSO and incubated for 30–60 min

before analysis. ESI-MS analysis was performed in positive ion

mode after denaturation in 50% v/v acetonitrile in water with an

accuracy of 60.1%. The sample was run over a desalting column

prior to MS analysis.

Liquid chromatography-mass spectrometry (LC/MS)
For the LC/MS measurements, samples of cysteine, compound

1, and a 1:1-mixture of both were used in 100 mM solutions in

MOPS buffer pH 8.0. After 16 h incubation, all samples were

mixed with 5 mL of the primary amine derivatization reagent

AccQ-Tag Ultra, WatersH (6-aminoquinolyl-N-hydroxysuccinimi-

dyl carbamate) and injected onto a reverse phase Acquity C18

column (2.16100 mm, 1.7 mm particles) equilibrated with 5%

AccQ Tag Ultra Eluent A on an Acquity Ultra Performance

Liquid Chromatography system. Derivitized substrate and prod-

ucts were resolved using a gradient of increasing AccQ Tag Ultra

Eluent B solution, detected by absorbance at 260 nm [58].

Co-crystallisation of MMNAT-1 complex
Protein crystallisation was performed using the sitting- drop

vapour-diffusion technique. Sitting crystallisation drops were set

up in 96-well plates containing commercially available sparse

matrix and systematic grid screen conditions.

For co-crystallisation of MMNAT with compound 1, the

protein (10 mg/mL) was incubated with 5 mM compound 1 in

20 mM Tris-HCl pH 8.0 containing 5% (v/v) DMSO for 1 h at

24uC. The protein was buffer exchanged with fresh Tris-HCl

buffer (20 mM Tris-HCl pH 8.0) to remove the excess inhibitor

and re-concentrated to 10 mg/mL. Initial high-throughput

screens to identify crystallization conditions were performed using

a Tecan Genesis Pro Team 150 Robot (Tecan). Equal volumes

(100 nL) of mother-liquor and protein were set up as sitting drops

using a Mosquito crystallisation robot (TTP Labtech). A prelim-

inary screen for suitable crystallisation conditions at 19uC was

carried out using the JCSG-plus, PACT and Morpheus sparse-

matrix screens (288 conditions). Crystals of the MMNAT-POP

complex grew in condition E2 of the JCSG-plus screen (0.2 M

NaCl, 0.1 M Na-cacodylate pH 6.5 and 2.0 M (NH4)2SO4). For

cryo-protection, crystals were briefly (10–30 s) washed with a 7 M

sodium formate solution, and were then flash cryo-cooled into

liquid nitrogen.

Native data were collected at 100 K at Diamond Light Source

beamline I04. The data were integrated and scaled using XDS

[59] and SCALA [60] within the CCP4 program suite (Collab-

oration Computational Project, Number 4, 2011) [61]. The crystal

structure was solved by molecular replacement (MR) using the

program PHASER MR [62] using a previously determined native

MMNAT crystal structure, stripped of heteroatoms, as a search

model (PDB code: 3LTW, 2.1 Å). Rigid body refinement of the

MR solution and the remaining cycles of restrained refinement

were carried out with REFMAC5 [63] and autoBUSTER [64].

Molecular models of the substrate were constructed using Grade

[64], while model building was performed using COOT [65]. The

stereochemical properties and quality of the final model were

assessed with the program MOLPROBITY [66]. Structural

figures and graphical renderings were made with either PYMOL

[67] or Discovery Studio (DS) Visualizer 3.1 [68].

The coordinates have been deposited in the Protein Data Bank,

disposition code 4B55.

Supporting Information

Figure S1 The time-dependent inhibition of TBNAT and
MMNAT by compound 1.

(TIF)

Figure S2 Flow chart outlining both the substrate-
protection protocol and the time-dependent inhibition
protocol. Measurements were performed using 0.06 mM

MMNAT or TBNAT in buffer A. [E] represents the enzyme

concentration required for initial linear kinetics. [I] is the stated

inhibitor concentration. Buffer A consisted of 20 mM Tris-HCl,

pH 8 and 5% DMSO.

(TIF)

Supporting Information S1 NMR spectra for compounds
1, 6 and PVK.

(PDF)

Table S1 The chemical structure of compound 1 and its
analogues.

(DOCX)

Table S2 Data collection, processing and refinement
statistics for the MMNAT-POP complex structure deter-
mination.

(DOCX)
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