
Resisting Tracker Attacks By Query Terms Analysis 

Xiaoqi Ma 
School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham 

NG11 8NS, England, UK 

xiaoqi.ma@ntu.ac.uk 

Keywords: Database security, tracker attacks. 

Abstract. Tracker attacks pose a serious threat to databases, especially those used in manufactory 
and management in industry. These attacks can be used to infer sensitive information in databases 
and they are difficult to detect. This paper proposes a new approach to dealing with such attacks by 
analysing each disjunctive term in every query statement. Potential tracker attacks will be detected 
and then suppressed to avoid any further real attacks. A sample database table and a sample attack 
are given and analysed to show the effectiveness of the new approach. 

Introduction 

Database technology is more and more heavily used in manufactory and management in industry. 
While this technology greatly improves the performance and reliability of manufactory and 
management, it also faces severe risks, which, if not dealt with properly, will bring catastrophe and 
result in big loss. 

Many databases used in industry are statistical databases, which are designed to allow query 
access to aggregate data. Such databases are subject to various attacks, among which tracker attack 
is one of the most powerful and dangerous attacks. With trackers, attackers can employ statistical 
queries to deduce sensitive information from database, while each query is legal and the result is 
safe, but the combination of them will cause leak of secrets. 

A lot of research work has been conducted on this problem and a number of useful solutions 
have been proposed. One of the earliest solutions is Stonebraker's query modification method [1,2]. 
Stonebraker's work used old fashioned QUEL query language and only had limited support to 
joined queries. Denning et al. thoroughly described the tracker attacks in [3]. Simpson et al. used 
query modification to fight against tracker attacks [4]. Dob kin et al. were among the earliest 
researchers working on secure databases against malicious users' inference. A precise model about 
how attackers combined queries to infer sensitive information from database was presented in [5], 
although no complete countermeasure was proposed. A remarkable model called dynamic 
disclosure monitor was described by Toland et al. in [6]. This model maintained a history database 
and formed an index on it to store users' knowledge and therefore to resist inference attacks. The 
model was "sound and complete" but it "unnecessarily examined the entire history database in 
computing inferences" [6]. Byun proposed a secure anonymisation technique dealing with data 
anonymisation of incremental dataset [7]. This technique involves some kind of information loss or 
data distortion, therefore not suitable for manufactory and management in industrial context. The 
data sanitisation process is discussed in [8]. In this process, a hybrid approach is recommended by 
Amiri. This approach is effective "in terms of data utility at the expense of computational speed" 
[8]. Due to its heuristic nature, this approach is not as efficient as many other methods such as query 
modification, and the database owners are suggested to sanitise their database by themselves, 
making this method difficult to use. Also this approach still results in some data distortion although 
the author claims to have kept the distortion to a very low level, which is still not acceptable to 
some key industrial and business applications, as the precision and usability of data cannot be 
guaranteed. 

mailto:xiaoqi.ma@ntu.ac.uk


A new approach is proposed in this paper. This approach involves checking each query by 
analysing its all disjunctive terms. If any disjunctive term identifies a single tuple in the database 
table, it will be regarded as a potential tracker and will be marked. Any further queries containing 
this disjunctive will be either suppressed or modified. A concrete example is given to illustrate this 
new approach. This example shows how tracker attacks can be eliminated from a real industry 
database. 

Tracker Attacks 

Data in statistical database can be retrieved without explicit access to them. Access to sensitive 
information in database in this way without the awareness of the database owner or administrator is 
dangerous and unacceptable. There are many different ways to conduct such kind of attack, some of 
which can be successfully detected and resisted. However, there is still no perfect solution to deal 
with tracker attacks [3,9]. 

A tracker is a predicate which can be used to infer or track down information about a tuple in a 
database. A general tracker is such a tracker which can be used to infer information of any tuples, 
especially those secret and inadmissible ones [3]. 

For example, Table 1 shows a database table about IT devices sales information. Suppose the 
columns Units and Price/Unit are individually sensitive and direct access to these individual items 
are not permitted, while statistical queries to the database are allowed. 

Customer 

Alice 

Bob 

Catherine 

David 

Elizabeth 

Frank 

Gavin 

Helen 

Ian 

Gender 

F 

M 

F 

M 

F 

M 

M 

F 

M 

Products 

Laptop 

Scanner 

Scanner 

Printer 

Laptop 

Printer 

Scanner 

Laptop 

Scanner 

Units 

5 

8 

12 

7 

8 

9 

30 

10 

1 

Price/Unit 

625 

80 

77 

122 

510 

115 

69 

495 

105 

Table 1: An IT Sales Database Table 

Suppose standard security mechanisms have been used upon this database. For example, all 
queries resulting in less than 3 tuples or more than 7 tuples will be suppressed to make sure both 
resultant tuples and their complements are sufficiently large. Despite these mechanisms, the attacker 
can create a tracker to track down any sensitive information in the database table. For an individual 
item, suppose R is the predicate uniquely identifying the tuple in question, and the attacker can find 
a tracker T so that both predicates RvT and i?VNOT(7) are allowed. The target tuple is the only one 
existing in the results of both queries. 

For example, the attacker wants to know how many laptops Elizabeth has ordered. The predicate 
R uniquely identifying the tuple is customer = 'El izabeth ' , which is obviously not permitted in 
this example. The tracker Tcan be Products = 'scanner'. The query 

SELECT SUM(Units) FROM SALES 
WHERE Customer = 'Elizabeth' OR Products = 'Scanner' 

gives 59 and the query 
SELECT SUM(Units) 
WHERE Customer = 

FROM SALES 
'Elizabeth' OR NOT (Products 'Scanner' 

gives 39. It is easy to know that the total number of units in the table is 90. Therefore the attacker 
can infer the number of laptops Elizabeth has ordered by calculating 59+39-90=8, without direct 
access to Elizabeth's individual record. 



Resisting Tracker Attacks 

The main characteristic of tracker attacks is that the attacker makes use of two queries in forms of 
RvT and i?VNOT(7). Suppose the set of whole database table is D, and the result set of a query Q is 
denoted as Set(0, we always have Set(7) U Set(NOT(7)) =D, whatever Tis. Also, we have either 
Set(R) c Set(7) or Set(R) c Set(NOT(7)). As T can be regarded as NOT(NOT(7)), without losing 
generality, we always suppose Set(i?) £ Set(7). 

The database management system (DBMS) should be very alert on queries of the disjunctive 
form RvT where T itself can be a negative predicate. For each such query, tests will be conducted 
on each disjunctive term to see whether any individual row of database table can be identified by 
one of these disjunctive terms. If this is the case, the DBMS has three choices, one of which is reject 
the query and do not return any results. This is radical, as it turns down all potentially suspect 
queries, even though they are not necessarily malicious. This strategy may significantly affect the 
usability of database. An alternative is query modification [2,4,9]. This way, users make queries as 
if there is no restriction. The DBMS (or more precisely, the access control mechanism of the 
DBMS) modifies the queries so that only permissible data will be returned as query results to the 
users. Then the D B A or the designer of the access control mechanism has the full control over the 
returned results. The third solution is to maintain an indicator for each tuple of the database table. If 
a query of the disjunctive form RvT is made, and R is detected to be able to identify a single tuple t 
in the database table for the first time, the indicator of tuple t should be turned on, and this query 
will be allowed as normal. If some time later R appears in another query RvT', this new query 
should be either rejected or modified, depending on the application. This strategy might look too 
strict, as in the latter query we do not necessarily have T'=NOT(T), and then the attacker cannot use 
RvT' (together with RvT) to infer sensitive information of tuple t. But consider an example. The 
attacker queries RvT, where T is a tracker and gets the correct result. Then the attacker queries 
RvT\ where T'=NOT(T)VX, and X is another predicate intended to make T'jNOT(T). If the second 
query is accepted, the attack will then query RvT", where r"=NOT(7)VNOT(JQ. Similar to the 
second query, this time the attacker will also be accepted and get the correct data returned to him. 
Then the attacker can combine the results of last two queries and have (RvT')V(RvT") = RvTVT" 
= i?V(NOT(7)VX)V(NOT(7)VNOT(X)) = i?VNOT(7). It can be seen that accepting the second query 
takes the risk of potential trackers. In implementation, the indicators can be stored in a file, in an 
internal data structure, or in an additional field to the original table. 

Take the above IT sales database table as an instance. Just as before, the predicate R uniquely 
identifying the Elizabeth's tuple is customer = 'El izabeth ' . The first query 

SELECT SUM(Units) FROM SALES 
WHERE Customer = 'Elizabeth' OR Products = 'Scanner' 

gives 59 again. Al l the following queries containing customer = 'El izabeth ' as a disjunctive 
term should be rejected or modified even though it does not look like a tracker. Otherwise the 
attacker can query 

SELECT SUM(Units) FROM SALES 
WHERE Customer = 'Elizabeth' OR Products = 'Laptop' 

This query seems to be all right as Products = 'Laptop' does not equal to NOT (Products = 
'scanner'). So the attacker will get the result 31 on this query. However, if the second query is 
accepted, the attacker can continue to query 

SELECT SUM(Units) FROM SALES 
WHERE Customer = 'Elizabeth' OR Products = 'Pr i n t e r ' 

and get 16, as this query does not seem to be a tracker either. However, the attacker has already 
collected enough information to infer the number of units Elizabeth has ordered, which is 
(59+31+16-90)/2=8. The reason is that the attacker divides the predicate NOT (Products = 
'Scanner ') into two parts, namely Products = 'Laptop ' and Products = 'Lap top ' , and they 
seems not to relate to NOT (Products = 'scanner'). To avoid such kind of attacks, the second 
and the third queries should not be allowed, as they contain the predicate customer = 
' E l i z a b e t h ' . 



The disjunctive query can be a bit tricky, as both R and T do not have to be atomic; they can be 
compound formulas. It is not a problem for R. Suppose R=Ri\/R2, and R corresponds to a single 
tuple of the database table, we must have R=R\=R2, since Set(i?i) £ Set(i?) and Set(i?2) ^ Set(R). 
Therefore we can easily detect disjunctive terms corresponding to single rows. If R=R\AR2, we can 
easily recognise this by considering conjunction as multiplication and disjunction as addition in 
ordinary arithmetic. For any conjunctive term producing a query which results in a single tuple, this 
term should be recognised as R. It is not a problem for T either, as we only need to detect R. 

The mechanism has very low complexity. The time complexity is 0(Nt), where Nt is the number 
of terms appearing in the query. The space complexity is 0(Nr), where Nr is the number of rows in 
the database table. 

Summary 

In this paper, a new approach is proposed to resist tracker attacks. To conduct a tracker attack, the 
attacker needs to make two queries in disjunctive forms, and one disjunctive term of each query 
condition can identify a single tuple in the target database table. Therefore, every disjunctive term 
in each query statement should be analysed to see whether it can track down a row. If so, there are 
three choices: (1) reject the query; (2) modify the query; (3) mark the row, allow the query, and in 
the future if any query containing such term is detected again, the new query will be either rejected 
or modified. The third choice is recommended. Although this method seems to be too strict, an 
example shows the necessity of it. The tricky situation of disjunctive query is also discussed. An 
example shows that tracker attacks can be resisted by this method while others may have problems. 

References 

[1] M . Stonebraker and E. Wong: Access Control in a Relational Data Base Management System 
by Query Modification. ACM/CSC-ER Proceedings of the 1974 Annual Conference (1974) 

[2] M . Stonebraker: Implementation of Integrity Constraints and Views by Query Modification. 
Proceedings of the 1975 A C M SIGMOD International Conference on Management of Data, 
San Jose, California, USA (1975) 

[3] D. E. Denning, P. J. Denning and M . D. Schwartz: The Tracker: A Threat to Statistical 
Database Security. A C M Transactions on Database Systems, 4(l):76-96 (1979) 

[4] A. C. Simpson, D. J. Power and M . Slaymaker: On Tracker Attacks in Health Grids. 
Proceedings of the 2006 A C M Symposium on Applied Computing, pages 209-216, Dijon, 
France(2006) 

[5] D. Dobkin, A. K. Jones and R. J. Lipton: Secure Databases: Protection Against User Influence. 
A C M Transactions on Database Security, 4(1):97-106 (1979) 

[6] T. S. Toland, C. Farcas, C. M . Eastman: Dynamic Disclosure Monitor (D2Mon): An Improved 
Query Processing Solution. Secure Data Management - SDM2005, volume 3674 of Lecture 
Notes in Computer Science, pages 124-142 (2005) 

[7] J.-W. Byun, Y . Sohn, E. Bertino and N . L i : Secure Anonymization for Incremental Datasets. 
Secure Data Management - SDM2006, volume 4165 of Lecture Notes in Computer Science, 
pages 48-63 (2006) 

[8] A. Amiri: Dare to Share: Protecting Sensitive Knowledge with Data Sanitization. Decision 
Support Systems, 43(1): 181-191 (2007) 

[9] D. Power, M . Slaymaker, E. Politou and A. Simpson: Protecting Sensitive Patient Data via 
Query Modification. Proceedings of the 2005 A C M Symposium on Applied Computing, pages 
224-230, Santa Fe, New Mexico, USA (2005) 


