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Abstract:

Monoamine oxidases (MAOs) are mitochondrial enzymes which control the levels of 

neurotransmitters in the brain and dietary amines in peripheral tissues via oxidative 

deamination. MAO has also been implicated in cell signalling. In this study we describe 

the MAO-A isoform as functional in apoptosis induced by staurosporine (STS) in human 

dopaminergic neuroblastoma cells (SH-SY5Y). Increased levels of MAO-A activity were 

induced by STS, accompanied by increased MAO-A protein and activation of the 

initiator of the intrinsic pathway, caspase-9, and the executioner caspase-3. MAO-A 

mRNA levels were unaffected by STS, suggesting that changes in MAO-A protein are 

due to post-transcriptional events. Two unrelated MAO-A inhibitors reduced caspase 

activation. STS treatment resulted in sustained activation of the MAPK pathway 

enzymes extracellular regulated kinase, c-jun terminal kinase and p38, and depletion of 

the anti-apoptotic protein Bcl-2. These changes were significantly reversed by MAO 

inhibition. Production of reactive oxygen species (ROS) was increased following STS 

exposure, which was blocked by both MAO inhibition and the antioxidant N-

acetylcysteine. Therefore our data provide evidence that MAO-A, through its production 

of ROS as a by-product of its catalytic activity on the mitochondrial surface, is recruited 

by the cell to enhance apoptotic signalling. 

 

Key words: Monoamine oxidase-A; apoptosis; SH-SY5Y; staurosporine; caspase; 

Reactive oxygen species. 

 

Running title: Monoamine oxidase A in neuronal apoptosis 
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INTRODUCTION

Monoamine oxidase (MAO. EC 1.4.3.4) is a flavoenzyme tightly associated with the outer 

mitochondrial membrane. There are two forms (MAO-A and MAO-B) with 70% amino acid 

homology, coded for by two separate genes on the X chromosome (Bach et al. 1988). 

Monoamine oxidases metabolise amines to their corresponding aldehydes, with hydrogen 

peroxide (H2O2) and ammonia as by-products. MAO controls neurotransmitter levels and 

intracellular amine stores. The two isoforms have distinct substrate and inhibitor specificities, 

with MAO-A, for example, preferentially deaminating 5-hydroxytryptamine (serotonin, 5-HT) 

and inhibited by low concentrations of clorgyline (Fowler and Tipton, 1984). The MAO isoforms 

are differentially expressed in the CNS and peripheral tissues (reviewed by Billett, 2004). In 

human brain MAO-A is highly expressed in catecholaminergic neurons, including the 

dopaminergic neurons of the substantia nigra pars compacta (SNpc). In contrast, MAO-B is 

found in serotonergic neurons and astrocytes. It has been suggested that age-related increases in 

glial MAO-B expression may contribute to the aetiology of Parkinson’s disease (PD) (Kumar et 

al. 2003) whilst MAO-A deficiency leads to aggressive behaviour in mice and humans (Shih et 

al. 1999).

Oxidative stress results from an imbalance of antioxidant defence mechanisms and generation of 

reactive oxygen species (ROS). ROS are important mediators in an array of biological processes, 

including cell growth (Yoon et al. 2002), cell signalling and apoptosis (Finkel, 1998).  ROS have 

been implicated in various forms of cell death (Tatton and Olanow, 1999), and a range of 

pathological conditions including neurodegeneration (Schulz et al. 2000). Oxidative stress has 

particular relevance to PD, a disorder that causes damage to nigrostriatal dopaminergic neurons, 
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because dopamine itself can undergo autooxidation which can result in structural modification of 

proteins (Stokes et al. 1999) and have deleterious effects on cellular respiration (Berman and 

Hastings, 1999). Vulnerability of neurons to attack by free radicals is heightened by their low 

glutathione content, which in PD is further reduced (Riederer et al. 1989). 

A major source of ROS in the cell is the mitochondrial generation of superoxide anion due to 

respiration (Abou-Sleiman et al. 2006). In addition, oxidative deamination of biogenic amines by 

MAO is a key contributor to increased steady state concentrations of ROS (Cadenas and Davies, 

2000). In dopaminergic neurons extravesicular dopamine is metabolised by MAO to produce 

H2O2, which is further converted to hydroxyl radicals. Metabolism of amines by MAO causes 

oxidative damage to mitochondrial DNA (Hauptmann et al. 1996) and directly damages the 

electron transport system and affects antioxidant defence systems (Cohen and Kesler, 1999).

Additionally, subtle increases in H2O2 production caused by up-regulation of MAO-B in the rat 

neuroblastoma cell line PC12 decreased mitochondrial complex I activity (Kumar et al. 2003). 

The role of MAO-A in dopaminergic cell death has been the focus of recent publications. It was 

reported that induction of apoptosis by nerve growth factor deprivation in rat PC12 cells was 

paralleled by an increase in MAO-A expression (DeZutter and Davis, 2001). This regulatory 

process involved the p38 MAPK signal transduction pathway. On the contrary, MAO-A has been 

found to be a target of a dopaminergic neurotoxin, N-methyl-R-salsolinol, and that in this case 

inhibition of MAO led to apoptosis in the human neuroblastoma SH-SY5Y cell line (Yi et al.

2006). Most recently, Ou and co-workers (Ou et al. 2006) have reported that growth factor 

deprivation via serum withdrawal led to a concomitant reduction in the transcription repressor 
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R1 (RAM2/CDCA7L/JPO2), increase in MAO-A expression (and activity) in SH-SY5Y cells, 

and that inhibition of MAO activity prevented loss of cell viability.

In order to explore whether MAO-A is a key player in neuronal apoptosis we tested its impact in 

another well established apoptotic model (staurosporine treated SH-SY5Y cells; Lopez and 

Ferrer, 2000). Staurosporine is an unspecific protein kinase inhibitor which has frequently been 

used as an inducer of the mitochondrial apoptotic pathway (Lopez and Ferrer, 2000). In this 

study we monitored apoptosis via analysis of caspase activation and explored whether apoptosis 

was linked to changes in MAO expression and activity, and how ROS and the MAPK pathways 

were contributing to apoptotic cell signalling. 

MATERIALS AND METHODS

Materials 

SH-SY5Y neuroblastoma cells were obtained from the European Collection of Animal 

Cell Cultures (Salisbury, UK). Staurosporine (STS), Acetyl-Asp-Glu-Val-Asp-7-

amidomethylcoumarin (caspase-3 fluorogenic substrate), 14-C-labelled tyramine hydrochloride, 

clorgyline, deprenyl, tranylcypromine, N-acetylcysteine (NAC), Dulbecco’s Modified Eagles 

Medium (DMEM) HAM’s-F12 (1:1), Hank’s Buffered Salt Solution, 3,3’ diaminobenzidine, 

anti-Bcl-2 monoclonal antibody, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

and ascorbic acid (vitamin C) were purchased from Sigma Aldrich (Dorset, U.K). 2`, 7`-

Dichlorodihydrofluorecein diacetate (DCDHF) was obtained from Alexis Biochemicals 

(Nottingham, UK). Anti-active caspase-8 and anti-active caspase-9 antibodies were purchased 

from Upstate Biotechnology (Hampshire, UK).  Anti-phosphorylated ERK, total ERK and anti-
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phosphorylated JNK antibodies were purchased from Santa Cruz Biotechnology (Wiltshire, UK).  

Anti-phosphorylated p38 and total JNK antibodies were from Cell Signalling Technology 

(Hertfordshire, UK). Total p38 antibody was purchased from New England Biolabs (MA, 

U.S.A). Anti-MAO-A (6G11-E1) and anti-MAO-B (3F12-G10-2E3) monoclonal antibodies 

were made in our laboratory. Secondary antibodies were purchased from DakoCytomation 

(Cambridgeshire, UK). Oligonucleotides were obtained from Biotez (Berlin, Germany).

Cultures 

Human neuroblastoma SH-SY5Y cells were seeded at a density of approximately 4×104

cells/cm2 on plastic culture plates, flasks (Starsted, Nümbrecht, Germany) or Lab-Tek® chamber 

slides (NUNC, Roskilde, Denmark) and grown to 75-80 % confluence in DMEM HAM’s-F12 

medium containing 10 % (v/v) foetal bovine serum, 2 mM L-glutamine, 1 % (v/v) non-essential 

amino acid solution, 100 units ml-1 penicillin and 100 µg ml-1 streptomycin at 37°C in a 5% CO2

humidified atmosphere.

Fluorogenic caspase-3 activation assay 

Caspase activity was monitored using a fluorogenic based assay with Acetyl-Asp-Glu-

Val-Asp-7-amidomethylcoumarin (Ac-DEVD-AMC) as substrate. Briefly, 500,000 cells were 

seeded into 25cm3 flasks. On reaching 70-80% confluence the cells were pre-incubated for 2 h

with the required inhibitor then treated for 0-8 h with STS. After treatment both adherent and 

floating cells were harvested by centrifugation at 300×g for 5 min. The pellet was washed twice 

with DMEM, resuspended in 200-300 µl lysis buffer (50 mM HEPES, 5 mM CHAPS, 5 mM 

DTT, pH 7.4) and incubated on ice for 20 min. The lysates were centrifuged at 200×g at 4°C for 
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5 min to remove cell debris. The assay was prepared in triplicate. Cell lysates were transferred to 

black 96-well plates and made up to 80 µl with assay buffer (20 mM HEPES pH 7.4, 0.1 % [w/v] 

CHAPS, 5 mM dithiothreitol, 2 mM EDTA). Reactions were initiated by the addition of AC-

DEVD-AMC to a final concentration of 200 µM in a total reaction volume of 100 µl. 

Fluorescence was measured (excitation 450 nm, emission 360 nm) every 20 min for 4 h at 37°C. 

Data were normalised for protein content, which was determined by the Lowry method (Lowry 

et al. 1951) and expressed as ∆ fluorescence units/min/µg protein.

MTT reduction assay

SH-SY5Y cells were plated in 96-well plates at a density of ~ 20,000 cells/well and 

grown to ~70-80 % confluence. Cell viability was determined by the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Briefly, following pre-treatment for 

2 h with the required inhibitors, the cells were treated with 1µM STS in the presence and absence 

of the MAO inhibitors.  MTT stock solution in phosphate-buffered saline was added to each well 

at a final concentration of 0.5 mg/ml and incubated for 30 min. The dark blue formazan crystals 

formed in intact cells were solubilised in 100 µl of dimethylsulfoxide and the absorbance 

measured at 595 nm with a microtitre plate reader (Bio-Rad model 680, California, U.S.A). 

Results are expressed as mean percent MTT reduction of the relevant control.

MAO activity assay 

MAO activity was monitored using a radiometric assay with 14C-labelled tyramine 

hydrochloride as substrate, based on the method of Russell and Mayer (Russell and Mayer, 1983)

with modifications. Treated cells were harvested as previously described and resuspended in 200

µl potassium phosphate buffer (20 mM K2HPO4, 20 mM KH2PO4, pH 7.4) and 30 µl aliquots 
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transferred to scintillation vials, in triplicate. Samples were made up to 200 µl with potassium 

phosphate buffer and then incubated at 37°C for 5 min. Sample blanks were prepared in parallel 

containing, in addition, 200 µl 0.5 M HCl. To each sample 20 µl 1 mM 14C-labelled tyramine 

hydrochloride (1 mCi/mmol) was added and incubated for 1 h at 37°C. The reaction was stopped 

by the addition of 200 µl 0.5 M HCl. Finally, 3 ml scintillant (1:1 Ethyl acetate: toluene, 1 % 

[w/v] PPO) was added to each vial, and a sample of the organic phase containing the product 

transferred into a scintillation vial. MAO activity was measured in a liquid scintillation counter 

(Cambera-Packard, Schwadorf, Germany). Preliminary assays were undertaken to ensure that 

MAO activity was linear beyond the 1 h time point. Data were normalised for protein content, 

which was determined by the Lowry method (Lowry et al. 1951) and rates expressed as 

pmoles/min/mg protein.

Gel Electrophoresis and Western blotting 

Cells exposed to STS in the presence and absence of inhibitors were extracted into 

extraction buffer (50 mM Tris, 5 mM EDTA, 150 mM NaCl, 1 mM sodium orthovanadate, 2 

mM PMSF, 1 % [w/v] SDS, and 0.2 % [v/v] protease inhibitor cocktail) and immediately boiled 

for 5 min. Equal protein aliquots (100 µg for analysis of MAPK proteins and 20 µg for all others) 

per sample were subjected to electrophoresis on a 12 % (v/v) SDS-polyacrylamide gel. Separated 

proteins were transferred onto a nitrocellulose membrane and equal protein loading assessed by 

staining with 0.05 % (w/v) copper phthalocyanine in 12 mM HCl, checked by immunodetection 

of tERK, tJNK or tP38. Blotted membranes were blocked for 1 h in either 3 % (w/v) BSA (for 

detection of phosphorylated proteins) or 3 % (w/v) dried skimmed milk (for other proteins) in 

TBS containing 0.1 % (v/v) Tween-20 and incubated overnight at 4°C with primary antibodies. 

Membranes were washed and incubated for 2 h at room temperature with peroxidase-conjugated 
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anti-mouse or anti-rabbit immunoglobulin G (dilution 1:1000). Antibody binding was revealed 

with the ECL Western blotting detection reagent (Pierce, Rockford, Illinois, and U.S.A). Digital 

images were captured using a LAS-3000 image-analyser (Fuji Film Co. Ltd., Tokyo, Japan), and 

band intensity quantified using Aida software (Raytest GmbH, Straubenhardt, Germany).

Dot blotting

Treated cells were harvested, as previously described, and resuspended in 150 µl MAO 

extraction buffer (50 mM Tris, 150 mM NaCl, 5 mM EDTA, 1 mM Na orthovanadate, 0.5 % 

[w/v] Triton X-100, 2 mM PMSF and 0.2 % [v/v] protease inhibitor cocktail) and incubated on 

ice for 20 min. Samples were centrifuged for 10 min at 300×g at 4°C. The supernatants were 

sonicated (3× 3 second pulses at 60 Hz). Equal protein samples, in triplicate, were loaded onto a 

Dot blot manifold and bound to a nitrocellulose membrane filter. Membranes were blocked for 1 

h in 3 % (w/v) dried skimmed milk in TBS containing 0.1 % Tween-20 and incubated overnight 

in monoclonal antibody anti-MAO-A 6G11-E1 (tissue culture supernatant) at 4°C. Membranes 

were washed and incubated for 2 at room temperature with phosphatase-conjugated anti-mouse 

immunoglobulin G (dilution 1:1000). Antibody binding was revealed in substrate buffer (0.75 M 

Tris, pH 9.5) containing 0.13 mM nitroblue tetrazolium and 0.29 mM bromochloroindolyl 

phosphate. Digital images were captured using a LAS-3000 image-analyser (Fuji Film Co. Ltd., 

Tokyo, Japan), and band intensity quantified using Aida software (Raytest GmbH, 

Straubenhardt, Germany).

Detection of Reactive Oxygen Species (ROS) 

Cells were grown to ~70-80 % confluence on Lab-Tek (NUNC, Rosklide, Denmark) 

chamber slides prior to pre-treatment for 2 h with either serum free medium, 1 mM N-
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acetylcysteine (NAC) or 1 mM Vitamin C. Medium was removed and replaced with Hanks 

Buffered Salt Solution (HBSS) containing 100 µM DCDHF and incubated at 37°C for 50 min. 

Following incubation the dye was replaced with either HBSS media alone (control), 500 µM 

H2O2 (positive control) or 1 µM STS in the presence or absence of 1 mM NAC or 1 mM Vitamin 

C for 1.5 h. The concentration of anti-oxidants used was based on viability assays (using the 

MTT assay, data not shown) and information from previously published work (Spina et al.

1992). Changes in DCDHF fluorescence were monitored using a Leica CLSM inverted confocal 

laser scanning microscope. Increase in cytosolic dichloro-fluorescein (DCF) fluorescence 

reflected elevated intracellular ROS production. All images were taken using the same laser 

power, gain and objective.

Immunohistochemistry 

Human liver sections (4 µm) fixed in 2 % (v/v) para-formaldehyde in PBS for 4 h, cryo-

protected in 15 % sucrose solution for 72 h, or SH-SY5Y cells fixed in 90 % (v/v) ice cold 

methanol in TBS and incubated at -20ºC for 20 min, were permeabilised with 0.5 % (v/v) Triton 

X-100 in PBS for 5 min at room temperature then washed in PBS. Slides were blocked for 20 

min with 20 % (v/v) normal swine serum in PBS and then incubated overnight in monoclonal 

antibody, anti-MAO-A (6G11-E1) or anti-MAO-B (3F12-G10-2E3) (tissue culture supernatants), 

or PBS as a negative control at room temperature. The slide was washed in PBS and then 

incubated with secondary antibody; horseradish peroxidase conjugated anti-mouse 

immunoglobulin G (dilution 1:100) in 5 % v/v normal swine serum in PBS for 30 min at room 

temperature. The slide was washed in PBS and antibody binding revealed by incubation in DAB 

substrate for 40 min and stopped with excessive washing in cold water. 
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Quantitative and conventional RT-PCR 

Total RNA was isolated from SH-SY5Y cells using the RNeasy Mini Kit (Qiagen, 

Hilden, Germany) and was reversely transcribed into the corresponding cDNA using oligo d(T)18

and Superscript II reverse transcriptase (Invitrogen, Karlsruhe, Germany) according to the 

vendors instructions. Quantitative PCR was carried out with a Bio-Rad iCycler system, using the 

iQ SYBR Green Supermix kit from Bio-Rad (Bio-Rad, California, U.S.A). The following 

primers were used: MAO A, 5’-GCC CTG TGG TTC TTG TGG TAT GT-3’, 5’-TGC TCC 

TCA CAC CAG TTC TTC TC-3’ and GAPDH, 5’-CCA TCA CCA TCT TCC AGG AGC GA-

3’, 5’-GGA TGA CCT TGC CCA CAG CCT TG-3’ and the following PCR protocol applied: 3 

min initial denaturation and activation of the iTaq DNA polymerase at 95°C, followed by 45 

cycles of denaturation (20 s at 95°C), annealing (30 s at 65°C) and elongation (30 s at 72°C). 

After that melting curve analysis was performed in order to confirm the homogeneity of the PCR 

product by continuous measuring and slowly decreasing the temperature from 95°C to 60°C. For 

exact quantification standard curves were generated for each target gene used as external 

standards. Specific amplicons of each target gene were cloned into the vector pCR2.1 

(Invitrogen, Karlsruhe, Germany) following the vendors instruction, sequenced and serial 

dilutions (1 x 106 – 1 x 102 single stranded DNA molecules) were prepared and used as template 

applying the above quantitative PCR approach. GAPDH mRNA was used as internal standard to 

normalize MAO-A mRNA. Each sample was run in duplicate and the results represent the mean 

of three independent sets of experiments.

Conventional PCR was performed with a TECHNE TC-412 thermal cycler, using the Advantage 

2 Polymerase Mix (Takara Bio Europe, France) according to the vendor’s instructions. After 32 
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PCR cycles PCR products were separated on a 2% agarose gel in 1×TAE buffer (40 mM Tris-

HCl, pH 8.1; 0.2 mM EDTA; 20 mM acetic acid) in the presence of ethidium bromide (0.2 

µg/ml). The gel was visualised with the GENE Genius Imaging System, using the GeneSnap 

software (version 5, SynGene, United Kingdom).

Statistical Analysis 

All data shown are mean corrected values ±SEM and statistical analysis was performed

using the Student’s unpaired t-test to identify significant data, where confidence values (p

values) of <0.05, <0.01, and <0.001 are marked by *, ** and *** respectively. 

RESULTS

The MAO-A isoform is predominant in SH-SY5Y cells

Dopaminergic SH-SY5Y cells have previously been reported to contain both MAO 

isoforms (Song and Ehrich, 1998); whilst others (Yi et al. 2006) have suggested the presence of 

only MAO-A in these cells. This prompted us to initially characterise the expression of MAO 

isoforms in our cell model. MAO activity was measured in vitro in SH-SY5Y cell homogenates 

following titration with specific and irreversible inhibitors of MAO-A (clorgyline) and MAO-B 

(deprenyl) (Fig. 1A). Complete inhibition of MAO activity was achieved with 10-8 M clorgyline, 

whereas 10-5 M deprenyl was required to inhibit MAO (Fig. 1A), suggesting MAO-A prevalence 

in this cell line. Clorgyline has previously been shown to inhibit MAO-A activity in in situ

experiments using SH-SY5Y cells at a concentration of 10-6 M (Yi et al. 2006). To support our 

activity assays, expression of the MAO isoforms was investigated at the protein and messenger 
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level. Analysis of MAO-A protein involved the use of a MAO-A specific monoclonal antibody, 

previously characterised and shown to be useful for both immunohistochemistry (Church et al.

1994; Rodriguez et al. 2000) and quantitative immunoassays (Sivasubramaniam et al. 2002),

whilst MAO-B protein was detected using a MAO-B-specific antibody (Billett and Mayer, 

1986). MAO-A but not MAO-B protein was detected in SH-SY5Y cells (Fig. 1B) using 

immunohistochemical analysis with specific anti-MAO-A and MAO-B monoclonal antibodies. 

In contrast, control human liver sections exhibited positive staining for MAO-A and -B (Fig. 

1B). Semi-quantitative reverse transcription-polymerase chain reactions (RT-PCR) revealed an 

intense signal for MAO-A indicating strong expression of the MAO-A messenger (Fig. 1C). In 

contrast, no signal was observed for MAO-B messenger. Finally, using the more sensitive 

approach of quantitative RT-PCR (qRT-PCR), average MAO-A mRNA expression of 2.58±1.00 

molecules/1000 molecules GAPDH was measured, whereas MAO-B mRNA levels were hardly 

detectable (0.0006±0.0005 molecules/1000 molecules GAPDH, data not shown).

STS induces an increase in MAO-A catalytic activity and protein levels prior to activation 

of caspase 3

In order to establish a model of neuronal apoptosis, SH-SY5Y cells were induced to 

undergo apoptotic cell death via the addition of staurosporine (STS). Initial titration studies 

established that 1 µM STS produced apoptotic cell morphologies (cellular blebbing etc.), but the 

cells were still viable after 6 h (MTT reduction assay, data not shown). Treatment with 1 µM 

STS consistently resulted in caspase-3 activation (approximately 7 fold of control levels at 3-6 h, 

Fig. 2). In addition, caspase-3 activation was preceded by a significant (2-3 fold) increase in 

MAO catalytic activity, suggesting that increased MAO activity could play a role in early 
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apoptotic events. Increased MAO activity was associated with a significant but transient increase 

in MAO-A protein (2-3 fold, Fig. 3A). 

MAO-A mRNA expression is not changed in STS-induced apoptosis 

Quantitative reverse transcription-polymerase chain reactions (qRT-PCR) were 

performed to determine whether increases in MAO-A protein and activity were a result of 

increased MAO-A mRNA expression. No significant changes in MAO-A mRNA steady state 

levels were detected following 1 µM STS treatment over a three-h apoptotic time course (Fig.

3B). 

The intrinsic but not the extrinsic pathway is active in STS-induced Apoptosis 

To investigate the upstream initiators of caspase-3, activation of caspase-8 and caspase-9 

was monitored by Western blotting using specific antibodies directed against both the pro- and 

active-forms of caspases-8 and -9. Caspase-9 was activated, one h following STS exposure and 

remained active for the following 5 h (Data not shown; see Fig. 4 for 3 h time point). However, 

no activation of caspase-8 was detected, despite the presence of caspase 8 protein and caspase-8 

mRNA as detected by Western blot and qRT-PCR respectively (data not shown).

Inhibition of MAO-A protects cells from STS-induced apoptosis

The MAO inhibitors clorgyline and tranylcypromine both inhibit in situ MAO activity in 

SH-SY5Y cells in the presence and absence of STS during a 4 h time period (Fig. 4A). Caspase-

3 activity was measured following inhibition of MAO-A in this apoptotic model to investigate

the relevance of MAO in the apoptotic cascade. Both clorgyline and tranylcypromine 
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significantly reduced caspase-3 activation by 50 % and 35 % respectively (Fig. 4B). Activation 

of the upstream initiator Caspase-9 during STS-induced apoptosis was significantly reduced to 

~50 % by clorgyline, compared to STS treated cells alone (Fig. 4C).

Inhibition of MAO-A also improves the viability of STS treated cells. Cell viability, 

measured using the MTT reduction assay, was reduced by 10% over a 3-h exposure to STS.  The 

MAO inhibitors clorgyline and tranylcypromine reduced this effect, which was significant after 1 

h (supplementary data, Figure S1A). Morphological observations also demonstrated that 

inhibition of MAO-A improved viability. Figure S1B shows that after 3-h exposure, STS 

treatment results in a typical apoptotic phenotype, with cells being shrunk and rounded (compare 

panels a and d). The addition of clorgyline and tranylcypromine at the same time as STS 

significantly improved the condition of the cells, with axonal outgrowths being evident (compare 

panels b and c with respectively panels e and f).

Involvement of MAPK signalling pathways in MAO-enhanced apoptosis 

MAPK phosphorylation cascades are activated following oxidative stress (Finkel, 1998), 

are involved in the activation of MAO-B expression (Wong et al. 2002) and in pro-apoptotic 

MAO-A expression (DeZutter and Davis, 2001). To examine the potential involvement of 

MAPK signalling in MAO-enhanced apoptosis, we investigated the levels of phosphorylated 

(activated) protein kinases ERK, JNK and p38 during STS induced apoptosis. As shown in 

Figure 5A, STS resulted in sustained increases in the levels of phosphorylated ERK, JNK and 

p38 compared to controls, starting at approximately the same time as MAO activation (Figure 2). 

Inhibition of MAO-A with clorgyline attenuated these effects, reducing the levels of 
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phosphorylated p38, JNK and ERK back to control levels. These data suggest that MAPK 

signalling pathways are likely to be important in MAO-mediated apoptosis.

Inhibition of MAO-A prevents Bcl-2 depletion during STS-Induced apoptosis 

The Bcl-2 family of proteins are critical in apoptotic signalling because of their anti- and 

pro-apoptotic effects at the mitochondrial surface. As seen in Figure 5B, STS induced depletion 

of Bcl-2 levels and clorgyline alone had no effect on Bcl-2 levels. When the cells were exposed 

to clorgyline and STS together, Bcl-2 protein expression was maintained at the control level (Fig. 

5B).

Inhibition of MAO-A and addition of antioxidants has a similar effect on ROS formation 

and caspase-3 activation

MAO-A produces H2O2 as a by-product of its enzymatic action. We hypothesised that 

MAO-A derived ROS might contribute to apoptotic signalling in our cell model. Hence 

antioxidants should mimic the effect of MAO-A inhibition in apoptotic signalling. Exposure of 

SH-SY5Y cells to 1 µM STS resulted in the production of high levels of ROS. This effect was

lessened by concomitant treatment with 1 µM clorgyline or the anti-oxidant N-acetyl cysteine 

(NAC, 1 mM). However, 1 mM vitamin C was less effective (Fig. 6A). NAC but not vitamin C 

significantly protected cells from caspase-3 activation (Fig. 6B). These data indicate that MAO-

generated oxidative stress is involved in apoptotic signalling.
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DISCUSSION

In SH-SY5Y cells staurosporine activates caspase-9 and -3 and thus initiates the intrinsic 

apoptotic pathway. In contrast, the extrinsic route, which depends on agonist binding to cell 

surface death receptors, remained unaffected, despite the cells containing caspase 8 protein and 

also caspase 8 mRNA (data not shown). These data are consistent with previously reported 

results obtained in a similar cellular model (Lopez and Ferrer, 2000). The activation of the 

mitochondrial apoptotic pathway in this model is of special interest considering the intracellular 

localisation of MAO in the outer mitochondrial membrane.

Our studies demonstrated that MAO-A activity was increased prior to caspase-3 activation and 

that inhibition of MAO activity significantly reduced caspase activation and loss in cell viability.

To improve the reliability of our experimental data we used two independent MAO inhibitors 

with different modes of action. Clorgyline preferentially inhibits MAO-A, but is structurally 

related to the MAO-B inhibitor deprenyl and other propargyl deprenyl analogues such as N-

propargyl-1(R)-aminoindan (rasagiline) and the compound CGP3466 (now in clinical trials for 

PD). The propargylamine-containing deprenyl analogues have been reported to posses 

neuroprotective and anti-apoptotic properties (Holt et al. 2004; Akao et al. 2002; Tatton et al.

1994). These neuroprotective properties, rather than being a result of MAO inhibition, are 

thought to be due, at least partly, to the inhibition of pro-apoptotic translational machinery 

(Kragten et al. 1998; Berry and Boulton, 2000), and induction of anti-apoptotic Bcl-2 family 

proteins (Kragten et al. 1998). Clorgyline has previously been shown to protect against apoptosis

(DeZutter and Davis, 2001), serum withdrawal-induced loss in cell viability (Ou et al. 2006) and 

MPTP induced neurotoxicity (DeGirolamo et al. 2001). Whether or not the protective effects are 

Page 17 of 32 Journal of Neurochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

18

due solely to MAO inhibition has not been investigated. Indeed in our system clorgyline had no 

effect on Bcl-2 levels, at least in control cells. To confirm that the effects of clorgyline were a 

result of MAO inhibition, tranylcypromine was used as a second MAO inhibitor since it contains 

no propargyl moiety, but interacts irreversibly with the flavin group. Tranylcypromine inhibits 

both MAO-A and MAO-B but, because of the lack of MAO-B expression in our cell model, the 

protection of the cells from apoptosis can be attributed to its inhibition of MAO-A. This confirms 

that MAO-A is functional in neuronal cell apoptosis. Although a link between MAO and

mitochondrial damage is well established (Berman and Hastings, 1999; Cohen and Kesler, 1999)

and mitochondria are vital players in apoptotic signalling, a direct role for MAO-A in apoptosis 

has only been claimed by De Zutter and Davis (2001) and, very recently, by Ou (Ou et al. 2006).

However, these authors did not attempt to link the apoptotic effects to ROS production by MAO-

A activity.

ROS formation was substantially increased following STS treatment and inhibition of MAO by 

clorgyline and treatment with the antioxidant N-acetyl cysteine (NAC, a precursor of glutathione 

and an anti-oxidant in its own right) reduced ROS to a similar extent. The fact that both 

clorgyline and NAC also reduced caspase-3 activation indicates that ROS are the result of MAO 

activity. The anti-oxidant vitamin C was also used but was less effective than NAC or clorgyline 

in reducing both ROS production and caspase-3 activation. The reason for this is not clear but it 

may be related to the fact that vitamin C, although a potent anti-oxidant, is considered to be toxic 

in some circumstances, especially in the presence of metal ions and H2O2 (reviewed by 

Halliwell, 1999). 
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MAO may be important in the early phase of apoptosis, before the execution of downstream 

processes, since peak MAO activity and ROS production occur prior to peak caspase-3 activity. 

Apoptosis is highly regulated, the mechanisms of which are still not fully understood, not only 

because there is a wide range of cell death types ranging between classical apoptosis to classical 

necrosis, but also because of variation depending on the nature of the inducer. However it is 

thought that apoptosis is the predominant form of neuronal cell death in chronic 

neurodegenerative diseases (Emerit et al. 2004). Thus the fact that MAO has an active role in 

this process is of high significance. 

We also demonstrate that MAO protein levels are increased, albeit transiently, and without a 

concomitant increase in MAO-A mRNA levels. This implies that in our apoptotic model, 

increases in MAO protein are due to post-transcriptional events. This could include a decrease in 

MAO protein degradation or an increase in mRNA translation. However little is known about 

these processes. In contrast, transcriptional activation of the MAO-A gene was seen following 

withdrawal of nerve growth factor in rat PC12 cells (DeZutter and Davis, 2001, which has been 

related to pro-apoptotic signalling) and in SH-SY5Y cells (Fitzgerald et al, 2007). In addition, 

Ou and co-workers (2006) recently found that MAO-A mRNA expression is also induced 

following serum starvation, mediated by a reduction in the expression of the transcriptional 

repressor R1. These different findings suggest that there are various regulatory mechanisms of 

cell death that could regulate MAO-A expression at different levels of gene expression. 

Bcl-2 is an anti-apoptotic protein that plays a central role in mitochondrially mediated-apoptosis 

and survival due to its strong influence on the balance of pro- and anti-apoptotic proteins that 
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also reside on the mitochondrial surface. Depletion of Bcl-2 is thought to be one of the first 

initiators of the apoptotic cascade, since this shifts the balance of Bcl-2 family proteins in favour 

of apoptosis, triggering the release of cytochrome c from the mitochondria (Hengartner, 2000).

STS exposure resulted in depletion of Bcl-2 levels in our model and was prevented by clorgyline, 

suggesting that MAO is acting upstream of Bcl-2. This is contrary to the situation in serum 

withdrawal, where MAO appears to act downstream of Bcl-2 (Ou et al. 2006). However, these 

differences may reflect the different apoptotic inducers used and further work needs to be carried 

out to clarify this.

The highly conserved mitogen-activated protein kinase (MAPK) cascades (Robinson and Cobb, 

1997) are among the pathways often used to transduce mammalian stress signals. They have 

been extensively described as crucial in regulating stress/survival responses and hence play an 

important and universal role in mechanisms of cell death. Following STS-induced apoptosis the 

extracellular regulated kinase (ERK), thought to be activated by mitotic stimuli was activated, 

co-inciding with increases in MAO-A activity (Figures 2 and 5). Activation of p38 and c-jun N-

terminal kinase (JNK) generally activated by pro-inflammatory or stressful stimuli, also occurred 

at the same time as ERK. MAO inhibition by clorgyline attenuated the activation of these 

pathways to control levels. Thus MAPK signalling modules are involved in STS induced 

apoptosis and ROS generated by MAO are involved in initiating these pathways (since MAO 

inhibition reduced MAPK activation). Indeed H2O2 (a product of a MAO catalysed reaction) has 

previously been shown to activate MAPK proteins (Guyton et al. 1996). Whether or not the 

MAO gene is also a target of the MAPK pathways as described by DeZutter and Davis (2001)

and Wong (Wong et al. 2002) was not addressed in the present paper, but would seem unlikely 
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given that MAO mRNA levels were unchanged following STS treatment. However, in our model 

it is clear that MAPK signalling is recruited to transmit pro-apoptotic stress signals following

STS exposure.

In conclusion, data in this report suggest a dynamic role for MAO-A in STS-induced neuronal 

apoptosis, driven by the ability of MAO to generate oxidative stress in its prime position on the 

mitochondrial surface. Our data support the supposition that MAO plays a key role in the 

modulation of apoptotic signalling in response to biological stressors. These findings may have 

wider implications for the therapeutic use of the dopamine precursor, levodopa, in PD and pre-

disposition to neurodegenerative diseases.
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Fig. 1. MAO-A is predominant in SH-SY5Y human neuroblastoma cells (A) MAO Activity - 
activity was measured following addition of 0, 10-9, 10-8, 10-7, 10-6, 10-5 M clorgyline or 

deprenyl to SH-SY5Y cells in vitro via a radiometric method using 14C-Tyramine as a 
substrate. Changes in MAO activity were determined in the presence or absence of the 

inhibitors and expressed % residual activity. (B) Immunohistochemistry - SH-SY5Y cells 
and human liver sections were stained with MAO-A (6G11-E1) and MAO-B 

(3F12/G10/2E3) specific antibodies and revealed using 3,3'-Diaminobenzidine. Control 
sections were incubated in the absence of MAO-specific antibodies but revealed under the 

same conditions. MAO specific immunoreactivity is represented by dark brown/red 
staining revealing the presence of MAO-A only in SH-SY5Y cells, but both MAO-A and 

MAO-B in human liver (control). The images shown are from a representative experiment. 
Scale bar represents 20 m. (C) RT-PCR - Agarose gel showing positive PCR controls 

(lanes 1,4 and 7), SH-SY5Y samples (lanes 2, 5 and 8) and negative PCR controls (lanes 
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3, 6 and 9) for GAPDH, MAO-A and MAO-B gene expression.  
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Fig. 2. Changes in MAO catalytic activity following STS treatment. Following addition of 1 
M STS, MAO activity was measured in SH-SY5Y via a radiometric method, using 14C-

Tyramine as a substrate. MAO catalytic activity was expressed as pmoles/min/mg 
protein. Caspase-3 activation was measured to monitor the apoptotic time course, using 

Acetyl-Asp-Glu-Val-Asp-7-Amido methylcoumarin as substrate and expressed as 
FU/min/ g protein. All data represent triplicate values from three independent 

experiments (n=3) and are expressed as mean S.D. Treated samples were statistically 
compared to untreated controls at time zero using the Student's t-test where * p<0.05, 

** p<0.01, *** p<0.001.  
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Fig. 3. MAO-A protein, but not MAO-A mRNA expression levels are induced by STS. (A) 
Left panel shows a dot blot of MAO-A protein levels following STS exposure. Equal protein 

homogenates were loaded on to a nitrocellulose membrane and probed with a MAO-A 
specific antibody. Mitochondrial outer membranes from human liver are the positive 

control and no primary antibody was the negative control. (A) Right panel. Quantification 
of blots in left panel. Blots were digitised and densitometry was performed to quantify 

relative MAO-A protein levels in all blots. These data represents values from four separate 
experiments (n=4) and expressed as mean arbitrary units (a.u.) S. D. Statistical 

analysis of treated cells in comparison to untreated controls was carried out using the 
Student's t test, where ** p<0.01, *** p<0.001. (B) MAO-A mRNA expression was 
measured by qRT-PCR following the addition of 1 M STS for 3 h. Data represent 

duplicate values from three independent experiments (n=3). Values are expressed as 
means (% cf. untreated time zero control) S.D. Statistical analysis of treated cells in 
comparison to untreated controls was performed using the Student's t-test, where no 

data was significant at p<0.05.  
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Fig. 4. Inhibition of MAO-A reduces caspase-3 activity and caspase-9 activation in STS-
induced apoptosis (A) MAO activity was measured in SH-SY5Y cells, 3 h following the 

addition of 1 M clorgyline (Clor), 1 M tranylcypromine (TCP), 1 M STS, 1 M STS 
+ 1 M clorgyline (S+C) or tranylcypromine (S+T), and in untreated cells, using 14C-
Tyramine as a substrate. Changes in MAO activity were determined and expressed as 

experimental mean pmoles/min/mg protein S.D. (B) Caspase-3 activity was measured 
in SH-SY5Y cells, 3 h following the addition of 1 M clor, 1 M TCP, 1 M STS, S+C, 

S+T and in untreated cells, using Acetyl-Asp-Glu-Val-Asp-7-Amido-methylcoumarin as a 
substrate. Caspase-3 activity was expressed as mean FU/min/ g protein S.D, 
where n=3. MAO/Caspase activities from clorgyline treated cells were compared to 

activities from cells exposed to STS alone using the Student's t-test, where ** p=0.01, 
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*** p=0.001. (C) Western blot - activation of caspase-9 (pro-form/active form) was 
assessed in extracts of SH-SY5Y cells exposed to 1 M STS in the presence or absence of 
1 M clorgyline following 3 h exposure. Equal protein aliquots (20 g) were separated 
on a 12 % (v/v) acrylamide SDS-PAGE gel prior to transfer to nitrocellulose filters. Blots 

were probed with anti-caspase-9 antibody (2 g/ml). Western blot shown is a 
representative blot of three independent experiments.  
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Fig. 5. STS induces changes in MAPK signalling and Bcl-2 levels, which are attenuated by 
clorgyline. Equal protein aliquots (80 g for MAPK proteins and 20 g for Bcl-2) of cells 
extracts from SH-SY5Y cells exposed to 1 M clorgyline, 1 M STS or 1 M STS + 1 
M clorgyline for a 3 h period were separated on a 12 % (v/v) acrylamide SDS-PAGE gel 

prior to transfer to nitrocellulose membranes. Blots were probed with antibodies directed 
to pERK (1:1000 dilution), pJNK (1:500 dilution) and pP38 (1:1000) (A) or by anti-bcl-2 

antibody (1:750) (B). Equal loading was checked by probing for total ERK (1:1000 
dilution), total JNK (1:750 dilution) and total p38 (1:1000 dilution). Blots shown are 

representative of three separate experiments.  

Page 33 of 32 Journal of Neurochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Fig. 6. Effect of clorgyline and antioxidants on ROS production in STS exposed SH-SY5Y 
cells. (A) Cells exposed to STS were treated with 1 M Clorgyline, 1 mM NAC or 1 mM 
Vitamin C for 4 h. DCDHF fluorescence was monitored over a 4 h period and visualised 

using a CLSM Leica microscope. Photomicrographs are shown at 1.5 h post-treatment and 
are representative of 3 independent experiments. Scale bar represents 20 m. (B) The 

effect of antioxidants NAC and vitamin C on caspase-3 activity were measured in SH-SY5Y 
cells following treatment (see above) for 2 h and measured using Acetyl-Asp-Glu-Val-

Asp-7-Amidomethylcoumarin as a substrate. Caspase 3 activity was expressed as mean 
FU/min/ g protein S.D, where n=3. Statistical analysis of antioxidant treatment in 
the presence of STS was compared to STS treatment alone using the Student's t-test 

where ** p<0.01. 
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