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Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied
or removed electric field
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We consider, both theoretically and experimentally, a thin sessile drop of conductive liquid that rests on the
lower plate of a parallel-plate capacitor. We derive analytical expressions for both the initial deformation and the
relaxation dynamics of the drop as the electric field is either abruptly applied or abruptly removed, as functions
of the geometrical, electrical, and material parameters, and investigate the ranges of validity of these expressions
by comparison with full numerical simulations. These expressions provide a reasonable description of the
experimentally measured dynamic response of a drop of conductive ionic liquid 1-butyl-3-methyl imidazolium
tetrafluoroborate.
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I. INTRODUCTION

The deformation of films and drops of liquid due to an
externally applied electric field is both a scientifically interest-
ing and a practically important problem that has been studied
both experimentally and theoretically for well over a century.
Examples of this literature include the pioneering work by
Swan [1], in which the surface of a resin film was destabilized
by an electric field, the work on drops by Cheng and Miksis
[2], Basaran and Scriven [3], Wohlhuter and Basaran [4],
Berge and Peseux [5], Quilliet and Berge [6], Reznik et al.
[7], Mugele and Baret [8], Chen and Bonaccurso [9], Corson
et al. [10], Tsakonas et al. [11], and the references therein,
and Sec. III.C of the review article by Craster and Matar [12].
The resulting deformation and changes in morphology of the
liquid are of interest both because they can give insight into the
fundamentals of wetting and de-wetting phenomena and be-
cause of their importance in a number of practical engineering
applications. In particular, a parallel-plate capacitor geometry
consisting of two parallel charged conducting plates with an
air gap between them has been widely used to manipulate both
films and drops of liquid. For example, Schaffer et al. [13,14],
Morariu et al. [15], Klingner et al. [16,17], Pease and Russel
[18], Craster and Matar [19], Merkt et al. [20], Verma et al.
[21], Wu et al. [22], Tseluiko et al. [23], Yeoh et al. [24],
Manigandan et al. [25], Berendsen et al. [26], Ramkrishnan
and Kumar [27], and Corbett and Kumar [28] used electric
fields to study the stability of and pattern formation in liquid
films on uniform substrates and/or to generate prescribed
patterns on nonuniform substrates. The latter is of particular
interest as it enables manufacturers to replicate small-scale
electrode patterns in a liquid film (which can then be “frozen
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in” by solidifying the film, i.e., electrostatic lithography). In
addition, Yeo et al. [29] studied the manipulation and “surgery”
of a thin drop using a nonuniform electric field.

In the present work we consider a thin sessile drop of
conductive liquid that rests on the lower plate of a parallel-plate
capacitor. This lower capacitor plate consists of an electrode
whose upper surface is coated with a surface-treatment agent
to achieve a low contact angle with contact-line pinning, which
will be termed the substrate. The upper capacitor plate consists
of an uncoated electrode, which will be termed the upper
electrode. The liquid forms a thin drop partially coating the
substrate. In this work, the dynamic response of the drop to
the application or removal of a DC voltage difference across
the capacitor, in particular, the dependence of the response
on the geometrical, electrical, and material parameters, is
considered both theoretically and experimentally. A theoretical
description of the experiment is given in Sec. II, with the details
of the experimental procedure given in Sec. III.

II. THEORETICAL MODEL

To complement the experimental investigations described
in Sec. III, we consider a theoretical model of the system in
order to understand better both its static and its dynamic behav-
ior. The geometry of the system is shown in Fig. 1. We assume
that the drop is rotationally symmetric about the vertical axis
and hence has a circular contact line with the substrate. We also
assume that the liquid is incompressible and perfectly conduc-
tive and that the region above the drop inside the capacitor
is filled with air, which we take to be a perfectly insulating
fluid. Based on the experimental observations we assume that
the contact line is pinned so that, for any applied electric field
and for all time, the base radius of the drop remains constant,
and is denoted by R. We use cylindrical polar coordinates with
origin on the substrate at the center of the base of the drop and
z axis along the normal to the capacitor plates, as shown in
Fig. 1(a). The dependent variables in this model are, therefore,
the position of the drop free surface (the liquid-air interface),
which here we specify by its height above the substrate,
z = h(r, t), the liquid pressure p(r, z, t) and velocity u(r, z, t),
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FIG. 1. The geometry of a sessile drop resting on the lower plate of a parallel-plate capacitor. (All labels are described in Sec. II.) (a)
Definition of the cylindrical polar coordinates r and z and the dependent variables used in the model. (b) Drop with no electric field applied.
(c) Drop deformed by the application of a DC voltage across the capacitor.

and the electric potential U (r, z, t) in the drop and the air gap.
In this model we assume that the air is a passive gas with zero
density, so that the pressure in the air is equal to the constant
atmospheric pressure pa, and that the velocity of the air is zero.

In equilibrium and with no applied electric field the shape
of the drop free surface is determined by a static balance
between surface tension and gravity, the latter of which acts
in the negative z direction, denoted by −k. For this zero-field
equilibrium situation we denote the height of the drop apex
above the substrate by H , and the contact angle by θ0,
as shown in Fig. 1(b). The electrodes of the capacitor are
separated by a constant distance D. At the lower electrode
the electric potential is held at zero for all time, and an
electric field is applied across the capacitor by imposing a
time-dependent voltage at the upper electrode, denoted by
V (t). The application of the electric field causes a transient
deformation of the drop, resulting in a time-dependent apex
height of h(0, t) = H + �H (t) and a time-dependent contact
angle of θ (t) = θ0 + �θ (t), as shown in Fig. 1(c).

A. Governing equations

In both equilibrium and during the transient deformation
of the drop, the dependent variables will be governed by
the Gauss and Faraday laws for electrostatics, flow equations
representing the conservation of mass and the balance of linear
momentum, and boundary conditions that couple the variables
through the stress balance and kinematic conditions at the drop
free surface.

Since the drop is assumed to be of a perfectly conductive
liquid, the electric potential inside the drop is uniform. In the
air gap we assume that there is no induced magnetic field, so

that Faraday’s law for the electric field E becomes ∇ × E = 0
and we may therefore define the electric potential U according
to E = −∇U . We also assume that there are no free charges
in the air, so that Gauss’s law is

−∇ · E = ∇2U = 0. (1)

Since the drop is in contact with the substrate, which is at zero
potential, the electric potential within the drop is therefore
equal to zero.

The electric potential in the air, which is governed by
Eq. (1), is subject to boundary conditions at the upper surface
of the substrate, at the upper electrode, and at the drop free
surface, namely

U (r,0,t) = 0, (2)

U (r,D,t) = V (t), (3)

U (r,h,t) = 0. (4)

The velocity inside the drop, i.e., for 0 < z < h(r, t),
denoted by u = (u(r, z, t), 0, w(r, z, t)), where u(r, z, t) and
w(r, z, t) are the velocity components in the r and z directions,
respectively, and the pressure p(r, z, t) are governed by the
mass and momentum balances

∇ · u = 0, (5)

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + μ∇2u − ρgk, (6)

where μ is the constant liquid dynamic viscosity, ρ is
the constant liquid density, and g is the magnitude of the
acceleration due to gravity.
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As well as the flow equations for the velocity and pressure
in the bulk of the drop, boundary conditions must also be
specified at z = 0 and z = h(r, t). At the lower boundary of the
drop, i.e., z = 0 for 0 � r � R, a no-slip and no-penetration
condition ensures the velocity is zero, u(r, 0, t) = 0, and at the
drop free surface (i.e., z = h for 0 � r � R) the appropriate
conditions are balances of normal and tangential stresses. In
general, the stress tensor τ has contributions due to pressure,
viscous effects and dielectric effects. However, viscous effects
are present only in the drop, and dielectric effects are present
only in the air, so that the ij th component of the stress tensor
is given by

τij = −pδij + μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (7)

τij = −paδij + ε0εa

(
EiEj − 1

2
|E|2δij

)
, (8)

inside and outside the drop, respectively. Here δij is the Kro-
necker delta and ε0 = 8.854 × 10−12 Fm−1 is the permittivity
of free space. The permittivity of air is sufficiently close to that
of free space that we can reasonably assume that the relative
permittivity εa = 1, although we will retain the more general
expression for the stress tensor in the air so that the model may
also be applied to other systems in which the passive gas has
εa �= 1. Using these forms of the stress tensor we may then
balance the difference in normal stress across the drop free
surface with the capillary pressure to obtain

[n · τ · n]2
1 = σ∇ · n, (9)

where we have used the notation [·]2
1 for the difference in a

quantity across the interface, with 1 and 2 denoting the drop
and air regions, respectively, σ is the constant surface tension,
and ∇ · n is twice the mean curvature of the drop free surface,
for which the outward unit normal is

n = −
[

∂h/∂r√
1 + (∂h/∂r)2

]
r +

[
1√

1 + (∂h/∂r)2

]
k, (10)

where r is the unit vector in the radial direction. Additionally,
the balance of tangential stress at the drop free surface requires
that

[n · τ · t]2
1 = 0. (11)

In addition to these conditions on the stress tensor at
the drop free surface, the kinematic condition at the free
surface, conditions of a fixed contact line at r = R, and
appropriate symmetry and smoothness conditions at r = 0
must be satisfied:

∂h

∂t
+ u(r,h,t)

∂h

∂r
− w(r,h,t) = 0, (12)

h(R,t) = 0,
∂h

∂r
(0,t) = 0,

∂3h

∂r3
(0,t) = 0. (13)

The final constraint on the system is that the volume of the
drop, given by

2π

∫ R

0
rh(r,t)dr, (14)

remains constant for all time.

The type of model described by the differential equations
(1, 5, 6, 12), with boundary conditions (2, 3, 4, 9, 11, 13)
and volume constraint (14), is a relatively standard one for
electric-field-induced drop deformation and flow. For example,
a similar model was used by Craster and Matar [19], although
they neglected gravity (because their typical film thicknesses
are much smaller than we consider in the present work), treated
infinite layers rather than a finite radius drop, and considered
the case of a leaky dielectric layer, where ionic charge
accumulates at the interface. As we will demonstrate below,
gravity is not negligible in the present experiments because of
the relatively large size of the drops considered; moreover, a
perfectly conductive liquid model, with no interfacial charge
accumulation, provides a reasonable description of the present
experimental results.

B. Nondimensionalization

Our model contains three independent variables, namely the
coordinates r and z and time t , and five dependent variables,
namely the velocities u(r, z, t) and w(r, z, t), the pressure
p(r, z, t), the electric potential U (r, z, t), and the drop height
h(r, t). There are also the geometrical parameters d, D, H , and
R, the material parameters εa, μ, ρ, and σ , and the additional
parameters associated with the applied voltage V (t), gravity
g, atmospheric pressure pa, and the permittivity of free space
ε0. However, as usual, the number of independent parameters
in the model can be reduced through nondimensionalization of
the governing equations and boundary conditions. By rescaling
horizontal lengths with the radius R, vertical lengths with the
zero-field drop apex height H , the contact angle with the
zero-field drop aspect ratio H/R, time with the timescale
associated with the classical surface-tension-driven leveling
of a viscous film, namely μR4/σH 3, liquid velocities with
the appropriate speeds for this timescale, the pressure with the
appropriate pressure due to surface tension, and the electric
potentials with a typical applied voltage Vm, we write

r = Rr∗, z = Hz∗, t = μR4

σH 3
t∗,

h = Hh∗, θ = H

R
θ∗,

(15)

u = σH 3

μR3
u∗, w = σH 4

μR4
w∗, p = σH

R2
p∗,

U = VmU ∗, V = VmV ∗.

This nondimensionalization reduces the number of indepen-
dent parameters in the model to just four: an appropriate
nondimensional electric Bond number, B, measuring the
relative size of the electric field and surface-tension effects
at the drop free surface, a gravitational Bond number, G,
measuring the relative size of gravity and surface-tension
effects, a scaled cell gap d, and a drop aspect ratio δ, given by

B = ε0εaV
2

mR2

σHD2
, G = ρgR2

σ
, d = D

H
, δ = H

R
, (16)

respectively. In the present experiments the contact angle and
the aspect ratio δ were small in equilibrium and remained
small for all values of the applied voltage. An appropriate
additional simplification of this model is therefore to consider
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the classical thin-film approximation, expanding all dependent
variables in powers of δ2 � 1 and retaining only leading order
terms. Note, however, that for the present experiments, the
scaled cell gap is not small and so we assume that d = O(1).

Because of the nondimensionalization we have employed,
the inertial terms in the balance-of-momentum equations are
multiplied by a reduced Reynolds number, δ4σρH/μ2. Hence
assuming that δ4σρH/μ2 � 1 we may neglect inertial effects
at leading order, and the Reynolds number does not enter the
present model. With this approach the leading order terms in
the mass and momentum balance equations (5) and (6) are,
with the stars dropped for clarity,

1

r

∂

∂r
(ru) + ∂w

∂z
= 0, (17)

∂p

∂r
− ∂2u

∂z2
= 0, (18)

∂p

∂z
+ G = 0, (19)

and from Gauss’s law (1) the electric potential U must satisfy

∂2U

∂z2
= 0. (20)

These equations are to be solved subject to the boundary
conditions

u(r,0,t) = 0, w(r,0,t) = 0, (21)

∂h

∂t
+ u(r,h,t)

∂h

∂r
− w(r,h,t) = 0, (22)

U (r,0,t) = 0, U (r,h(r,t),t) = 0, U (r,d,t) = V (t), (23)

p(r,h(r,t),t) − pa + Bd2

2

(
∂U

∂z
(r,h(r,t),t)

)2

= −1

r

∂

∂r

(
r
∂h

∂r

)
, (24)

∂u

∂z
(r,h(r,t),t) = 0, (25)

h(1,t) = 0,
∂h

∂r
(0,t) = 0,

∂3h

∂r3
(0,t) = 0. (26)

In the special case of a drop in equilibrium (u ≡ 0, w ≡ 0)
with no electric field (V ≡ 0, U ≡ 0) the governing equations
reduce to a balance between gravity and surface-tension
effects, namely

d

dr

[
1

r

d

dr

(
r
dh

dr

)]
− G

dh

dr
= 0. (27)

The solution of this equation subject to the boundary condi-
tions (26) is

h(r) = I0(
√

G) − I0(
√

G r)

I0(
√

G) − 1
, (28)

where I0(·) is the modified Bessel function of the first kind of
order zero, corresponding to a drop with apex height h(0) = 1,

contact angle θ0, where

θ0 =
√

GI1(
√

G)

I0(
√

G) − 1
, (29)

and volume

√
GI0(

√
G) − 2 I1(

√
G)

2
√

G(I0(
√

G) − 1)
, (30)

where I1(·) is the modified Bessel function of the first kind of
order one.

C. Evolution equation

In this section we show that Eqs. (17)–(26) and (30) can be
reduced to a single partial differential equation governing the
evolution of the drop height h(r, t) together with the boundary
conditions (26) and the volume constraint

∫ 1

0
rh(r,t)dr =

√
GI0(

√
G) − 2 I1(

√
G)

2
√

G(I0(
√

G) − 1)
. (31)

Equation (19) gives p(r, z, t) = pa − Gz + P (r, t), where
P (r, t) is called the modified pressure. With this solution for
p, integration of Eq. (18) subject to Eq. (25) and the first of
Eq. (21) then leads to the horizontal velocity:

u = ∂P

∂r

(
z2

2
− hz

)
. (32)

Using this solution for u, integrating Eq. (17) and using the
second of Eq. (21) provides the vertical velocity:

w = 1

6r

∂

∂r

[
rz2(z − 3h)

∂P

∂r

]
, (33)

and then Eq. (22) becomes

∂h

∂t
− 1

r

∂

∂r

[
rh3

3

(
∂P

∂r

)]
= 0. (34)

Integration of Eq. (20) subject to the boundary condition
(23) gives a linear electric potential within the air gap:

U = V ×

⎧⎪⎨
⎪⎩

z − h

d − h
for |r| � R,

z

d
for |r| > R,

(35)

so that imposing the normal stress balance (24) leads to the
solution for the modified pressure:

P = Gh − B
V 2d2

2(d − h)2
− 1

r

∂

∂r

(
r
∂h

∂r

)
. (36)

Substituting this solution for P into Eq. (34) leads to the
partial differential equation for the evolution of the drop free
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surface, namely,

∂h

∂t
+ 1

r

∂

∂r

(
rh3

3

{
∂

∂r

[
1

r

∂

∂r

(
r
∂h

∂r

)]

−G
∂h

∂r
+ B

V (t)2d2

(d − h)3

∂h

∂r

})
= 0, (37)

subject to the boundary conditions (26) and the volume
constraint (31).

In the present work we will consider both static and dynamic
solutions of Eq. (37) subject to Eqs. (26) and (31) using
both numerical and approximate analytical methods. We will
then compare these theoretical predictions with experimental
measurements of the drop deformation and of the dynamics
using the drop apex height difference as a measure. The
(nondimensional) drop apex height difference is the difference
between the deformed drop apex height and the zero-field
equilibrium drop apex height at r = 0, given by

�H (t) = h(0,t) − 1. (38)

When comparing different theoretical approaches we will also
consider the corresponding difference in the contact angle,
given by

�θ (t) = − ∂h

∂r

∣∣∣∣
r=1

− θ0, (39)

where the zero-field equilibrium contact angle θ0 is given by
Eq. (29).

III. EXPERIMENTAL PROCEDURE

Achieving the experimental geometry outlined in Sec. II
and illustrated in Fig. 1 was challenging because of the
necessity simultaneously to ensure a low contact angle drop
with a pinned and circular contact line, and to maintain
sufficient parallelism between the substrate and the upper
electrode to maintain a cylindrically symmetric drop when
the voltage was applied.

The capacitor plates consisted of two soda lime glass slides
with continuous layers of the transparent conductor indium tin
oxide (100 Ohm/square, 25 nm thickness, Praezisions Glas
and Optik GmbH, Iserlohn, Germany) on their inner surfaces
to form the capacitor electrodes. This allowed simultaneous
optical imaging of the drop both from the side and from above
(i.e., through the upper capacitor plate) during the course of
the experiment. The electrode on the lower capacitor plate
was coated with a surface-treatment agent, namely polyvinyl
alcohol (PVA, molecular weight of 77 000–79 000 atomic
mass units), to achieve a low contact angle with contact-line
pinning. This coating was produced by spin-coating (at 3000
revolutions per minute) from a 0.5 wt% solution of the PVA
in deionized water, allowing the plate to dry under a nitrogen
gas flow, and then treating it in a UV ozone box (Bioforce
Nanosciences, 185 nm and 254 nm spectral lines, 4.6 mW/cm2

at 254 nm and 5 cm lamp-to-substrate distance) for 3 s.
A sessile drop of the conductive ionic liquid 1-butyl-3-

methyl imidazolium tetrafluoroborate ([Bmim][BF4], Sigma-
Aldrich) was dispensed onto the substrate. The PVA coating
(which was significantly less than 100 nm thick and was not
continuous, with a significant density of pinholes as a result

of the processing conditions) provided a low-energy surface
for the substrate on which the circular contact line spreads to
form the drop. It is likely that the roughness of the indium
tin oxide layer (which was not significantly smoothed by
the PVA coating in our experiments) in combination with
inhomogeneities introduced by the PVA coating itself and
the subsequent UV ozone treatment all played a role in the
subsequent pinning of the contact line observed throughout the
present experiments. In order to reduce differences between
experimental runs, the same drop was used for all of the
equilibrium and dynamic measurements. The equilibrium
height, radius, and contact angle values of the drop used in
the present experiment were Hexp = (0.141 ± 0.01) × 10−3 m,
Rexp = (1.815 ± 0.004) × 10−3 m, and θexp = (9.2 ± 0.4)o,
respectively. Experimental images of the drop with no applied
voltage and with an applied voltage of 865 V are shown on
Figs. 2(a) and 2(b), respectively.

The upper plate was moved into position on an XYZ
translation stage to give a maximum air gap between the upper
electrode and the substrate of D = (0.544 ± 0.006) × 10−3

m. An additional two-axis translation and rotation stage for
the substrate was used to ensure that the plates were parallel.
DC voltage pulses were applied to the upper electrode using
a waveform generator (TGA1244, Aim & Thurlby Thandar
Instruments) connected to a high-slew-rate voltage amplifier
(PZD700A, Trek Inc.). The drop was illuminated by an ultra-
high-brightness single white LED source. Images of the drop
were recorded using a high-speed camera (HHC X4, Mega
Speed Corp.) at 2009 frames per second. Using a Simulation
Program with Integrated Circuit Emphasis (SPICE) model we
have confirmed that the RC transients in our experiment are
several orders of magnitude smaller than the time resolution
used. Using a ×5 objective lens with a 25 mm lens extension
tube allowed images of the whole drop (and, in particular, the
drop diameter) to be recorded with a resolution of (3.84 ±
0.02) × 10−6 m per pixel in the image. A 200 mm extension
tube was used to record higher-magnification time-dependent
images with resolution of (1.11 ± 0.03) × 10−6 m per image
pixel of the drop apex as it moved in response to the voltage
pulse. The camera was focused on the apex of the drop
so that very small changes in the height could be detected.
In order to optimize the accuracy of the high resolution
experimental data obtained, the apparatus was mounted on a
vibration isolation sheet, and translation and mounting stages
were firmly anchored and weighted to dampen vibrations.
Despite these measures, some frame-rate-dependent aliasing
effects from vibrations from the camera fan were unavoidable,
particularly for small height changes at lower voltages, in
addition to some inevitable scatter and pixel-discretization
noise. To ameliorate these effects the drop height was tracked
using image enhancement alongside polynomial fitting of the
drop apex shape, and an 80-point rolling time average was
used to smooth the data.

The conductive liquid used, namely [Bmim][BF4], has a
low vapour pressure and so shows negligible evaporation dur-
ing the experiments [30–32], consistent with the assumption of
constant volume used in Sec. II A. Since the density, viscosity,
and conductivity of imidazolium-based ionic liquids depend
on hydration as well as temperature [33–35], the experiments
were performed in a temperature-controlled environment at
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(a)

(b)

FIG. 2. Experimental images of the thin [Bmim][BF4] drop with (a) no applied voltage and (b) an applied voltage of 865 V, also showing
its reflection in the substrate on which it rests within the parallel-plate capacitor.

20oC with the relative humidity in the narrow range between
50% and 55%. When initially dispensed, [Bmim][BF4] is
hygroscopic, and so the drop was left for over a week to
reach equilibrium hydration before the experiments began.
The key physical properties of the liquid, measured under
the ambient conditions of the experiment, were as follows:
surface tension σexp = (40.9 ± 0.5) × 10−3 N m−1, obtained
using the pendant drop method [36] with Drop Shape
Analysis (A. Krüss Optronic GmbH, Hamburg, Germany);
viscosity μexp = (58 ± 3) × 10−3 Pa s, obtained using a CSL2
TA Instruments rheometer; and density ρexp = 1200 ± 10
kg m−3, obtained by comparing the weight of a capillary
tube filled with [Bmim][BF4] with the same tube filled with
distilled water. The nondimensional parameters are there-
fore Bexp = 0.1710 × 10−4V 2

m, Gexp = 0.9472, dexp = 3.857,
δexp = 0.0777, and one unit of nondimensional time is equal
to 5.490 s. In the present experiment voltages between zero
and 907 V were used, corresponding to electric Bond numbers
from zero to 14.0673.

IV. COMPARISONS BETWEEN EXPERIMENT
AND THEORY

In this section we present comparisons between the ex-
perimental measurements and numerical and approximate
analytical solutions for both the equilibrium value and the
dynamic behavior of the drop apex height difference �H .
We consider the equilibrium drop apex height difference as
a function of the applied DC voltage, demonstrating that the
approximations and assumptions used in the model are valid
for sufficiently small values of the electric Bond number B.
We then consider the dynamic drop apex height difference,
comparing experimental results and numerical solutions in
the case when the applied voltage changes abruptly. By
appropriately linearizing the evolution equation for the drop
apex height we are then able to derive analytical expressions
for the timescales of the evolution of the drop shortly after the
voltage is either abruptly switched on or abruptly switched off.

A. Equilibrium solutions

When, with a DC electric field applied so that V (t) ≡ 1,
sufficient time is allowed for the drop to reach equilibrium, the
present model simplifies and the drop free surface is governed

by the static version of Eq. (37), namely

d

dr

(
rh3

s

3

{
d

dr

[
1

r

d

dr

(
r
dhs

dr

)]
− G

dhs

dr
+ B

d2

(d − hs)3

dhs

dr

})
= 0, (40)

subject to the boundary conditions (26) and the volume
constraint (31). Here, we have used hs(r) to denote the
equilibrium solution for the drop free surface shape and will
use θs to denote its contact angle.

For the case of zero field, B = 0, the solution for hs(r),
which we denote as hs0(r), has already been given in Eq. (28).

For the case of nonzero field, B �= 0, we may solve Eq. (40)
numerically, but no analytical progress has been made without
assuming that the electric Bond number is small, B � 1, and
that gravity is negligible, G = 0. If we make these assumptions
then we can expand the solution of Eq. (40) for hs(r) in powers
of B:

hs(r) |G=0 = 1 − r2 + B hs1(r) |G=0 + O(B2), (41)

where the parabolic leading order term is simply the G = 0
version of Eq. (28). Substitution of this expansion into Eq. (40)
and solving the equation that arises at first order leads to the
solution for hs1(r)|G=0, namely

hs1(r)|G=0 = d2

8(d − 1)

{
ln

(
d

r2 − 1 + d

)

+ 2(r2 − 1)

[
1 − (d − 1) ln

(
d

d − 1

)]}
, (42)

and so to O(B) the equilibrium drop apex height difference
when G = 0 is given by

�Hs|G=0 = Bd2

8(d − 1)

[
(2d − 1) ln

(
d

d − 1

)
− 2

]
, (43)

and the corresponding equilibrium contact angle difference is

�θs|G=0 = − Bd

4(d −1)

[
(2d−1) − 2d(d − 1) ln

(
d

d − 1

)]
.

(44)

Although the assumptions used to obtain Eqs. (43) and (44),
namely that B � 1 and G = 0, are questionable given the
experimental value of G = 0.9457 and values of B up to B =
14.0673, these expressions are still useful since they reveal the
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FIG. 3. The nondimensional equilibrium drop apex height dif-
ference �Hs plotted as a function of the electric Bond number
B, obtained experimentally (shown with stars) with error bars
corresponding to a 95% confidence interval using one pixel as
the standard error, using the approximate analytical solution valid
for B � 1 and G = 0 given by Eq. (49) (shown with a dotted
line), obtained numerically from the model using the thin-film
approximation (shown with a dashed line), and obtained numerically
from the full model without using the thin-film approximation (shown
with a solid line).

asymptotic dependencies of the solution on d. Specifically,
they show that

�Hs|G=0 = −B

8

ln(d − 1)

(d − 1)
+ O

(
1

d − 1

)
as d → 1+,

(45)

�Hs|G=0 = B

48d
+ O

(
1

d2

)
as d → ∞, (46)

�θs|G=0 = −B

4

[
1

d − 1
+ 2 ln(d−1)

]
+ O(1) as d → 1+,

(47)

�θs|G=0 = − B

12d
+ O

(
1

d2

)
as d → ∞, (48)

demonstrating a strengthening of the effect of the electric field
as the upper electrode nears the apex of the drop, d → 1+,
and a corresponding weakening of the effect as the plate
separation increases, d → ∞. For the present experimental
values, namely dexp = 3.857 and δexp = 0.0777, from Eqs. (43)
and (44) we obtain

�Hs|G=0 = 0.00976B and �θs|G=0 = −0.0337B.

(49)

Figure 3 shows the equilibrium drop apex height difference
�Hs|G=0 plotted as a function of B together with the
corresponding experimental measurements. The experimental
measurements were calculated by averaging the drop apex
height difference over a 1s time period, starting when the

voltage had been applied for 2 s, which corresponds to aver-
aging between t = 0.364 and t = 0.546 in nondimensional
time units. Because of the potential errors in measuring
heights from pixellated images we have included error bars
on the experimental data corresponding to a 95% confidence
interval using one pixel as the standard error. We observe
good agreement between the approximate analytical result (49)
shown with a dotted line and the experimental results shown
with stars for B � 6.4, which is surprisingly good in light of
the approximations made, and corresponds to an approximate
range of validity of Vm � 610 V.

If we do not assume that either B � 1 or G = 0, but
continue to use the thin-film approximation, then we can solve
the system using the finite element method package COMSOL
[37] using a sufficiently fine mesh to ensure that the numerical
error is two orders of magnitude smaller than the experimental
errors. Equilibrium solutions are found by solving the partial
differential equation (37) numerically with a constant applied
voltage until equilibrium is reached (which we take to be the
time at which the change in the drop apex height difference is
at least two orders of magnitude smaller than the experimental
error). The results obtained using this numerical method are
shown in Fig. 3 using a dashed line. Again, good agreement
is found between the experimental results and the predictions
of the thin-film model, with agreement for a slightly larger
range of B than the approximate analytical solution (49). In
particular, the thin-film solution lies within the experimental
error bars for B � 8.6, corresponding to an approximate range
of validity of Vm � 710 V.

In equilibrium we can also use the numerical method
developed by Corson et al. [10] to solve the full model without
using the thin-film approximation, without any restrictions on
the values of B and G, i.e., solving the equations for the
electric potential in the air gap (1) subject to the boundary
conditions (2)–(4), the normal stress balance (9), the boundary
conditions for the drop free surface (13), and the volume
constraint (14). Full details of this numerical method are
provided in Ref. [10], but, essentially, the method iteratively
solves the electric potential equation for a fixed drop free
surface shape and then updates the drop free surface shape by
solving the normal stress balance using the calculated electric
potential, the process being repeated until convergence. Using
this method the drop apex height difference was calculated as
a function of B and is shown in Fig. 3 using a solid line. Very
good agreement is obtained between the experimental results
and these numerical results, indicating that the model is a very
good representation of the experiments, at least for the range
of voltages considered here.

B. Dynamic solutions

In the remainder of the present work we consider the
dynamic response of the drop as the electric field is either
abruptly applied or abruptly removed. Figure 4 shows the
experimentally measured drop apex height difference �H

(shown with circles) plotted as a function of time t for four
voltage pulses of different amplitudes Vm but a constant pulse
duration of T = 1.82 nondimensional time units, equivalent
to 10 s. Mathematically we model this form of the nondi-
mensionalized applied voltage using V (t) = H (t)H (T − t),
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FIG. 4. The experimentally measured nondimensional drop apex height difference �H (shown with circles) plotted as a function of
nondimensional time t for voltage pulses with four different electric Bond numbers B = 0.86, 1.08, 1.50, 2.73, but a constant nondimensional
pulse duration of T = 1.82, along with the corresponding numerical solution of the thin-film equation (37) (shown with solid lines). For clarity,
the experimental data is plotted using average values over 500 experimental times steps, although all of the analysis of the experimental data
uses the complete data set.

where H (·) is the Heaviside function. The dynamic numerical
solution of the thin-film equation (37) is shown with solid lines
in Fig. 4. As previously shown in Fig. 3, Fig. 4 confirms that
the equilibrium drop apex heights are captured reasonably well
by the thin-film equation, certainly for small electric Bond
numbers, but there is also evidence of some slow upwards
drift in the experimental results when the voltage was applied.
The cause of this slow drift in the drop apex height may
be linked to aspects of the experimental geometry that were
difficult to maintain, notably a pinned and circular contact
line, and sufficient parallelism between the substrate and the
upper electrode when the voltage was applied. We have used a
voltage pulse duration that ensures that the change in �H due
to this drift is always less than 10%. It is also apparent from
Fig. 4 that the transient behavior is captured reasonably well
during both the switch-on and the switch-off phases.

In order to investigate further the transient behavior of the
drop we now consider approximate solutions valid for short
times after an abrupt change in the applied voltage.

Assuming that the system is in equilibrium with h = hs(r)
for t � t0, an abrupt change in the applied voltage at time t = t0
from V0 to V1 (where t0 = 0, V0 = 0 and V1 = Vm for switch
on, and t0 = T , V0 = Vm, and V1 = 0 for switch off) can be
modeled as a corresponding abrupt change in the electric Bond

number from B0 to B1, with a resulting change to the drop free
surface profile h(r,t) for t > t0. For short times after t = t0 the
drop free surface profile can be written as

h(r,t) = hs(r) + (t − t0)h1(r) + O((t − t0)2), (50)

and the solution for h1(r) can be found by expanding Eq. (40)
in powers of t − t0 � 1 to give

h1(r) = −(B1 − B0)
1

r

d

dr

[
rd2h3

s

3(d − hs)3

dhs

dr

]
. (51)

The practical value of this equation depends on our ability to
obtain hs(r) from Eq. (40) and thus to determine h1(r) from
Eq. (51). The drop apex height difference is then given by

�H (t) = �Hs + (t − t0)h1(0) + O((t − t0)2), (52)

where �Hs = hs(0) − 1 is the equilibrium drop apex height
difference derived from the solution to Eq. (40). We now
discuss a number of situations in which further analytical
progress is possible.

1. Switch on

The simplest case is that of switch on, in which the initial
state is the zero-field solution, so that the electric Bond number
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changes abruptly from B0 = 0 to B1 = B �= 0 at time t = 0.
In this case the initial drop shape is given by Eq. (28), so that
�Hs = 0, and using Eq. (51) we find the drop apex height
difference to be

�H (t) = BGd2

3(d − 1)3(I0(
√

G) − 1)
t + O(t2). (53)

Using the values of the physical properties of [Bmim][BF4]
and the physical dimensions of the experimental system
described in Sec. III, we obtain the theoretical prediction
�H (t) = 0.802B t + O(t2).

In some instances gravitational effects can be small and it
is therefore useful to consider the expansion of Eq. (53) for
small values of G, namely

�H (t)= 4Bd2

3(d−1)3

(
1− 1

16
G+ 5

2304
G2 + · · · + cnG

n + · · ·
)

t

+O(t2). (54)

The coefficients of Gn in the bracketed expansion, denoted by
cn, are calculated using the recursion relation

c0 = 1, cn = −
n−1∑
k=0

ck

4n−k[(n − k + 1)!]2
, (55)

which was derived from Eq. (53) using the small argument
expansion of the modified Bessel function [38, identity 9.6.12
on page 375], and using the Cauchy product for infinite series
to determine the reciprocal of the series representation of the
modified Bessel function.

Defining λ to be the coefficient of B t in the short-time
expansion of the drop apex height difference (53), so that
�H (t) = λB t + O(t2), Fig. 5 is a plot of λ versus G using
the forms of λ derived from Eq. (53) (shown with a solid line),
the two-term truncation of Eq. (54) (shown with a dashed line)
and the three-term truncation of Eq. (54) (shown with a dotted
line). Figure 5 shows that the two-term expansion is reasonably
accurate up to G ≈ 2, and that the three-term expansion is
reasonably accurate up to G ≈ 6. In fact, as Fig. 5 shows,
even though the experimental value of G in the present work,
Gexp = 0.9472, is not particularly small, the truncated forms
of Eq. (54) are still remarkably accurate. In particular, using
the two-term truncation yields the approximate expression λ ≈
0.800, which agrees very well with the exact expression ob-
tained from Eq. (53), namely λ = 0.802. Consideration of the
two- and three-term truncations to higher values of G than Gexp

corresponds to systems with larger density and/or drop radius
and/or smaller surface tension than in the present experiments.

We may also compute the dynamic numerical solution of
the thin-film equation (37). Using an expression for the drop
apex height difference of the form �H (t) ≈ λB t and fitting
the numerical data for a sufficiently short period of time after
t = 0 we recover the appropriate value of λ, namely λ = 0.802.

Guided by the form of the short-time expansion (53) we
model the short-time experimental data by assuming that the
drop apex height difference is of the form �H (t) ≈ �H0 +
λB t . Here we have allowed for the possibility of an initial
offset �H0 �= 0 in the experimental results, in order to account
for the possibility of any offsetting in the experimental data due
to errors in the camera position and inaccuracies of measuring

gravitational Bond number, G
0 2 864 10

λ

0

0.2

0.4

0.6

0.8

Gexp

FIG. 5. Plot of λ, the coefficient of B t in the short-time expansion
of the nondimensional drop apex height difference �H = λB t +
O(t2) during switch on from B0 = 0 to B1 = B at time t = 0,
as a function of the gravitational Bond number G. The solid line
represents the solution (53) and the dashed and dotted lines represent
the two-term and three-term truncations of Eq. (54), respectively.
The experimental value of G in the present work, Gexp = 0.9472, is
indicated with the vertical dashed line.

the equilibrium drop apex height. Then, for each voltage pulse,
we fit the experimental data for a short period of time after
t = 0 to obtain the experimental value of λ. Figure 6(a) shows
the experimental data for the drop apex height difference �H

for short times after switch on plotted as a function of time.
For clarity, the experimental data is plotted in Fig. 6(a) using
average values over five experimental time steps and for only
eleven voltages, corresponding to electric Bond numbers B =
2.73, 3.22, 4.29, 5.39, 6.42, 7.57, 8.63, 10.79, 11.87, 12.92,
14.04, although all of the analysis of the experimental data uses
the complete data set. The experimental values of λ calculated
from the experimental data are plotted as a function of B in
Fig. 6(b), with the error bars corresponding to 95% confidence
intervals. Figure 6(b) also shows the average value of λ using
all of the experimental data (shown with a solid line), namely
λ = 0.471 ± 0.087 (95% confidence interval). It is clear from
Fig. 6(b) that there is significant uncertainty and scatter in the
experimental values of λ for low voltages. The average value of
λ using only the experimental data for values of B satisfying
B � 4.29 (shown with a dashed line) is somewhat higher,
namely λ = 0.586 ± 0.011 (95% confidence interval). Given
the challenging nature of the experiment, the approximations
used in the theory, and the fact that we have not used any
fitting parameters in our comparison of data with theory, this
latter average value is in reasonably good agreement with the
theoretical prediction of λ = 0.802 obtained from Eq. (53).

2. Switch off

We now consider the case of switch off, in which the electric
Bond number changes abruptly from the nonzero value B0 =
B �= 0 to B1 = 0 at time t0 = T . As we have seen in Sec. IV A,
analytical progress in determining the equilibrium solution for
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FIG. 6. Extraction of the switch-on timescale from the experimental data: (a) data for �H for short times after switch on, with larger
electric Bond numbers B corresponding to larger values of �H , plotted as a function of time t . For clarity, the experimental data is plotted using
average values over five experimental time steps and for only 11 voltages, corresponding to B = 2.73, 3.22, 4.29, 5.39, 6.42, 7.57, 8.63, 10.79,
11.87, 12.92, 14.04, although all of the analysis of the experimental data uses the complete data set; (b) experimental values of λ assuming that
�H (t) ≈ �H0 + λB t plotted as a function of B, together with the average value of λ using all of the experimental data, namely λ = 0.471
(shown with a solid line), and the average value of λ using only the experimental data for values of B satisfying B � 4.29, namely λ = 0.586
(shown with a dashed line). The error bars on the values of λ correspond to 95% confidence intervals.

the nonzero field case is possible only if B � 1 and G = 0.
We therefore consider the equilibrium drop free surface profile
associated with these approximations given by Eqs. (41) and
(42), so that the equilibrium drop apex height difference �Hs

is given by Eq. (43). For t > T the solution for h1(r) can be
found from Eq. (51). Setting r = 0 in this solution then allows
the expression for the dynamic drop apex height difference
when G = 0 to be found, namely

�H (t)|G=0 = Bd2

8(d − 1)

[
(2d − 1) ln

(
d

d − 1

)
− 2

]

− 4Bd2

3(d − 1)3

{
1 + Bd2

8(d − 1)2

[
(8d2 − 7d + 2) ln

(
d

d − 1

)
− 8d + 3

]}
(t − T ) − O[(t − T )2]. (56)

We note that the leading (but not higher) order terms in the
switch-on and switch-off expressions, given by Eqs. (54) and
(56), respectively, are the same. For the present experimental
values, Eq. (56) leads to the theoretical prediction

�H (t)|G=0 = 0.00976B − (0.851 + 0.0695B)B(t − T )

+O((t − T )2). (57)

In a similar way to in the switch-on case, we can compute
the dynamic numerical solution of the thin-film equation (37)
when the voltage is abruptly switched off at time t = T , and
then fit the numerical data to an expression for the drop apex
height difference of the form �H (t) ≈ �Hs + λB (t − T )
for a sufficiently short period of time after t = T . In the
case G = 0 we recover the appropriate value of λ, namely
λ = −(0.851 + 0.0695B). Figure 7 shows the numerically
determined value of λ as a function of B for different values
of G, and shows that for increasing values of G the value
of |λ| decreases, so that the decay of �H (t) is slower. This
result, namely that a stronger gravitational effect leads to a
slower relaxation to the zero-field equilibrium state, may at
first seem surprising. However, for an increased value of G

the equilibrium value of the non-zero field drop apex height
difference �Hs is reduced, leading to a slower relaxation to

�H = 0 when the voltage was switched off. Figure 7 also
shows that the variation of λ with B (i.e., the gradient dλ/dB)
remains approximately constant.

In a similar way to in the switch-on case, we also
consider an expression for the experimental data for the drop
apex height difference for the switch-off case of the form
�H (t) ≈ �Hs + �H0 + λB (t − T ), where �Hs is the value
of the equilibrium drop apex height difference obtained
experimentally previously shown in Fig. 3 (shown with stars),
and we have again allowed for the possibility of an offset
�H0 �= 0 from the equilibrium drop apex height difference
when the voltage was switched off at t = T .

Figure 8(a) shows the experimental data for the drop apex
height difference �H for short times after switch off plotted
as a function of time. Figure 8(b) shows the experimental
values of λ, calculated from the best fit for the experimental
data assuming it to be of the form �H (t) ≈ �Hs + �H0 +
λB (t − T ), for all of the experimental values of B. Figure 8(b)
also shows the best linear fit for λ as a function of B

(shown with a solid line), namely λ = −(0.378 + 0.090B) ±
(0.081 + 0.0000160B) (95% confidence interval).

For the experimental value of G, namely Gexp = 0.9472,
our numerically determined expression for the dependence
of λ on B is λ = −(0.732 + 0.052B). The leading term in
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FIG. 7. Plot of λ, the coefficient of B t in the short-time expansion
of the nondimensional drop apex height difference �H = �Hs +
λB (t − T ) + O((t − T )2) during switch off from B0 = B to B1 = 0
at time t = T , as a function of the electric Bond number B, determined
from the dynamic numerical solution of the thin-film equation (37),
and for values of the gravitational Bond number G from zero to the
experimental value Gexp = 0.9472.

this expression is almost a factor of two larger than the
experimentally determined expression for λ, namely λ =
−0.378, but, as in the switch-on case, given the challenging
nature of the experiment, the approximations used in our
theory, and the fact that we have not used any fitting parameters
in our comparison of data with theory, this is still quite an
encouraging level of agreement.

V. CONCLUSIONS

In the present work we considered the dynamic response
of a thin sessile drop of conductive liquid lying within a
parallel-plate capacitor. In the static case, we found very
good agreement between the numerical solution of the full
theoretical model and experimental results when a DC voltage
is applied. When a thin-film approximation is employed,
the numerical solution of the simplified model agrees with
experimental results for a restricted range of electric Bond
numbers B. A further simplification of the model, namely
that B � 1 and G = 0, leads to analytical results that are
valid for a slightly smaller range of B, which reveal the
asymptotic dependencies of the solution on the separation
of the capacitor plates. In the case of the dynamic response
to either the abrupt application or the abrupt removal of the
electric field, the numerical and analytical approaches give
reasonably good agreement for switch-on behavior and less
good, but still encouraging, agreement for switch-off behavior.
Further experiments, and possibly an appropriately refined
theoretical model, are required to understand better the effects
of charge redistribution and lack of rotational symmetry on the
behavior of the drop.

The reasonable agreement between the experimental results
and the analytical results lead us to suggest that the expressions
for the drop free surface and drop apex height difference may
be used predictively in other situations. In the equilibrium
case, the drop free surface and the drop apex height difference
are predicted to obey Eqs. (42) and (43), respectively. In the
switch-on case, the dynamic drop apex height difference is
predicted to obey Eq. (53), with the two-term truncation of
Eq. (54) providing a simpler form. In the switch-off case,
the dynamic drop apex height difference is predicted to obey
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FIG. 8. Extraction of the switch-off timescale from the experimental data: (a) data for �H for short times after switch off, with
larger electric Bond numbers B corresponding to larger values of �H , plotted as a function of time t . For clarity, the experimental
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5.39, 6.42, 7.57, 8.63, 10.79, 11.87, 12.92, 14.04, although all of the analysis of the experimental data uses the complete data set;
(b) experimental values of λ assuming that �H ≈ �Hs + �H0 + λB (t − T ) plotted as a function of B, together with the best linear fit for λ

as a function of B, namely λ = −(0.378 + 0.090B) (shown with a solid line). The error bars on the values of λ correspond to 95% confidence
intervals.
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Eq. (56). These analytical expressions can be used with some
confidence to predict the behavior for different geometrical
parameters and/or for liquids with different properties from
those used in the experimental results presented in this
paper, i.e., for drops of different size, for different capacitor
air-gap sizes, and for fluids (either the drop liquid or the
passive gas) with different densities, surface tensions or
permittivities.

Research data associated with this paper is available
through Ref. [39].
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