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Abstract Many research findings in the gambling studies field rely on self-report data. A

very small body of empirical research also suggests that when using self-report, players

report their gambling losses inaccurately. The aim of the present study was to evaluate the

differences between objective and subjective gambling spent data by comparing gambler’s

actual behavioral tracking data with their self-report data over a 1-month period. A total of

17,742 Norwegian online gamblers were asked to participate in an online survey. Of those

surveyed, 1335 gamblers answered questions relating to gambling expenditure that could

be compared with their actual gambling behavior. The study found that the estimated loss

self-reported by gamblers was correlated with the actual objective loss and that players

with higher losses tended to have more difficulty estimating their gambling expenditure

(i.e., players who spent more money gambling also appeared to have more trouble esti-

mating their expenses accurately). Overall, the findings demonstrate that caution is war-

ranted when using self-report data relating to amount of money spent gambling in any

studies that are totally reliant on self-report data.
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Introduction

Many research findings in the gambling studies field—including research into online

gambling—rely on self-report data. In a systematic review of online gambling studies,

Shaffer et al. (2010) reported that out of 30 papers investigating internet gambling (ex-

cluding their own studies), none of them included studies concerning actual online gam-

bling behavior. In recent years, a number of research teams in the gambling studies field

have been given access to behavioral tracking data provided by online gambling operators

and which have formed the basis of various published studies (e.g., Broda et al. 2008;

Focal Research Consultants 2007; Afifi et al. 2014; Auer and Griffiths 2013, 2014, 2015).

However, most studies still rely on data collected via self-recollected information (e.g.,

Wardle et al. 2011; Elton-Marshall et al. 2016) or experiments conducted in laboratory

settings (e.g., Montes and Weatherly 2016).

The comparison between industry-reported data and player-reported data led Volberg

et al. (2001) to conclude that players report their gambling losses inaccurately. The basis

for their conclusion was the comparison of average self-reported past year losses with

industry wide data of the same time period. Blaszczynski et al. (1997) studied the inter-

pretation of seemingly straightforward survey items such as ‘‘how much do you spend

gambling?’’ They found that only two-thirds or less of their participants calculated the

figure to be the difference between the initial amount risked and the residual amount of

money at the conclusion of the session. This led to the conclusion that more attention

should be given to providing clear instructions in surveys. Wood and Williams (2007)

asked about past month gambling expenditure in 12 different ways to a random sample of

2424 Ontario adult gamblers. The relative validity of each question format was subse-

quently established by the correspondence of reported gambling expenditures with actual

Ontario gambling revenue, as well as with amounts obtained by prospective diaries. They

found that slight variations in question wording resulted in significant variation in reported

expenditure amounts.

Using any kind of aggregated data (e.g., self-reported information or industry data), it is

impossible to investigate systematic biases about player spending. For instance, some

players might overestimate their losses whereas others might underestimate their losses.

Furthermore, such estimation biases may be associated with specific demographic vari-

ables such as age, gender, and/or the level of education. Various researchers (e.g.,

Blaszczynski et al. 2008; Williams and Wood 2004) have compared self-reported infor-

mation of gambling expenditure with objective information. However, the comparisons

were not made on an individual-player level (i.e., they reported pool spending outcomes).

For instance, Williams and Wood (2004) received a complete month of self-recollected

gambling expenditure from 344 study participants in Ontario, Canada. From this infor-

mation, they projected the yearly spending of all Ontario residents. They compared this

number with the objectively reported expenditure by the Ontario Lottery and Gaming

Corporation (OLGC) and found reasonable support for the contention that subjective

information is an accurate reflection of true expenditures. However, each single partici-

pant’s actual gambling expenditure was unknown.

To date, there has been only one study that has collected and compared self-reported

gambling spend data with actual spend data (i.e., Braverman et al. 2014). Braverman et al.

(2014) compared the accuracy of self-reported losses with actual loss information from a

sample of 2259 bwin online players. They compared the accuracy of self-reported losses

over a 3-month period and a 12-month period and found that players were more accurate
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when estimating their short-term losses. The estimation bias was also larger for players

with gambling-related problems. However, no consistent pattern regarding overestimation

and underestimation was determined.

Braverman et al. (2014) also studied the effect of gambling experience. The number of

days within the time period when gamblers placed at least one bet was used as a proxy for

gambling experience. In their view, the more often gamblers placed bets, the more

experienced they were. The results showed that more experienced sports bettors and casino

players reported more inaccurate estimates of gambling outcomes than less experienced

gamblers. In order to determine whether the gamblers utilized fixed odds, live odds, or

casino games, Braverman et al. (2014) relied upon player self-report. However, in reality,

gamblers often engage in many different types of gambling games with varying intensity

(Auer and Griffiths 2013). Despite these limitations, this study is the only one to date that

has directly compared self-report spending data with objective (i.e., actual) data on an

individual player level.

In specific circumstances, gambling behavior can be objectively measured, most notably

in online gambling or in land-based gambling when gamblers use player cards and/or

loyalty cards. In fact, gambling is one of the few consumptive (and potentially addictive)

behaviors that can be objectively tracked. Such behavioral tracking is not possible in the

areas of cigarette smoking or alcohol consumption and, therefore, has to rely on self-report

data. However, there are areas where both self-report information and objective data have

been subject to research (e.g., research examining physical activity). This is due to new

technologies (e.g., smart watches) that can track bodily functions such as pulse rate and/or

the number of steps walked or ran. Findings from areas outside of the gambling studies

field (i.e., physical activity, obesity, sexual behavior) have shown that there is a mismatch

between objective and subjective data when they are collected from the same person

(Prince et al. 2008). The one study published in the gambling studies field (i.e., Braverman

et al. 2014) only compared the objective and subjective data at an aggregated (rather than

an individual) level. The present study collected subjective self-report gambling data (i.e.,

money individuals claimed they had spent gambling) and compared it to objective data

(i.e., actual money spent gambling) from the same individual. The relationship between

objective and subjective data was also examined across different demographic and

behavioral characteristics. Consequently, the aim of the present study was to evaluate the

differences between objective and subjective gambling expenditure in the same individ-

uals. Furthermore, it was hypothesized that players who engaged in high event frequency

games (e.g., casino-type games) would be less accurate in estimating their losses compared

to those players who engaged in low event frequency games (e.g., lottery games) because

the latter usually spend smaller amounts gambling.

Method

Participants and Procedure

At the beginning of June 2015, a sample of 17,742 online gamblers from the Norwegian

online gambling site of the state-owned gambling operator Norsk Tipping were asked to

participate in an online survey. Active players in the present study had to have played at

least one online casino game in May 2015 in order to be included in the subsequent data

analysis. Additionally, high spending gamblers were oversampled (therefore the 17,742
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gamblers were not representative of the whole population of Norsk Tipping online gam-

blers). This is because the research team wanted to examine the differences between high

and low intensity gamblers. A representative sample would have contained relatively few

high spending gamblers. The survey was administered online via the Norsk Tipping

gambling site and players were notified about the study in their online gambling account

message inbox. In the present paper, only responses relating to gambling expenditure and

awareness are reported. For instance, one survey item asked gamblers to estimate their

overall loss or win during a 1-month period immediately prior to the survey. This was an

open question in which participants could enter any amount of money. Out of the 17,742

gamblers who were surveyed, 1335 of them answered this question (7.5 %). As all gam-

blers playing Norsk Tipping games require a player card to participate, all games played

and amount of money spent (both online and offline) can be assigned to a specific indi-

vidual player. This means that each player’s gambling expenditure online as well as land-

based gambling was known for the 1335 players that provided a subjective estimate for

how much they won or lost gambling.

Data Analysis

Given that the primary aim of the present study was to evaluate the differences between

objective and subjective gambling expenditure, correlations between self-report and

objective information were calculated. Given that correlations only assess the strength of a

relation between two variables, not the agreement between them, Bland–Altman plots were

also used to more accurately analyze the agreement between subjective and objective

gambling expenditure. Calculations of the loss estimation bias between subjective and

objective information were also made in relation to player-specific attributes such as

gender, age, and gambling-type. Due to the skewed and non-normal distribution of the

variables, non-parametric statistics such as the median and the quantiles were used to

analyze gambling expenditure.

Results

Table 1 shows the distribution of both the total sample of 17,742 players and the 1335

players that answered the survey question relating to how much money they had won or

lost during May 2015. Table 1 shows that compared to the total sample, players who

reported their subjective gambling spend were significantly (1) older (45 vs. 41 years), (2)

Table 1 Key variables comparison of survey responders who provided estimates to how much they spent
gambling (n = 1335) with the total sample of online gamblers (n = 17,742)

Total sample (n = 17,742) Responders (n = 1335) p

Mean Median SD Mean Median SD

Age (years) 41 39 13 45 45 13 \0.001

% Female 31 0 46 27 0 44 \0.001

GGR (NOK) 1563 701 14,148 2027 1027 6878 \0.001

Amount bet 12,143 1220 37,220 13,554 1941 38,960 \0.001

Customer tenure (months) 94 107 38 107 112 35 \0.001
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less likely to be female (27 vs. 31 %), and (3) more likely to have been registered with

Norsk Tipping longer (107 vs. 94 months). The median gross gaming revenue (GGR)

which is the difference between the amount of money bet minus the amount of money won

was larger among those that reported their subjective gambling spend compared to the total

sample (1027 [Norwegian Krone] NOK. vs. 702 NOK). This means that 50 % of the

players who reported their subjective gambling spend said they lost more than 1027 NOK

in May 2015 and 50 % lost less. The same pattern was observed for the amount of money

bet (1941 NOK vs. 1220 NOK). The distribution of the variables were non-normally

distributed. The skewness can easily be determined via the large ratio between the standard

deviation and the mean (see Table 1). The 1335 gamblers who reported their subjective

gambling expenditure were significantly different with respect to all variables (see

Table 1).

In addition to being asked about their total gambling expenditure, players were asked

whether they thought they had won or lost across all Norsk Tipping games played during

May 2015 (both online and land-based). Out of the 1335 players, 50 players said that

overall they had won (3.7 %). In actuality, 71 players won more money overall in May

2015 (5.3 %). Table 2 reports the comparison between subjective information (columns)

and the objective data (rows). The numbers in brackets report the expected frequency given

that there is no correlation. Out of the 71 players who actually won more than they lost

during May 2015, only 18 of them (subjectively) said they actually won more than they

lost. However, overall, there was an association between the subjective and objective data

(X2 = 97, df = 1, p\ 0.001). (i.e., players were aware to some extent of their overall

outcome of whether they won or lost money overall). This corresponds to an effect size

measured via Cramer’s V of 0.27. Values between 0.1 and 0.3 are regarded as small.

Players were also asked to estimate specifically how much money they had won or lost

overall during May 2015. Table 3 shows the differences between the objective and sub-

jective data. In all subsequent analysis, negative estimated values indicate a win and

positive estimated values indicate a loss from the players’ perspective. It is clearly visible

that some players reported extremely high values. The biggest estimated win was reported

to be 10,000,000 NOK and the largest estimated loss was reported to be 1000,000,000

NOK.

These extreme values are highly unlikely to be true and can obviously be regarded as

outliers. However, the question remains concerning how to deal with these extreme values.

Consequently, it was decided to replace all subjective values that were larger than the

largest actual value, and all subjective values that were smaller than the smallest actual

value with the minimum actual (-123,000 NOK) and maximum actual value (160,000

NOK) respectively. The actual value (GGR) is the amount lost or won that players were

supposed to estimate. In reality, no player won more than 123,000 NOK or lost more than

Table 2 Comparison between
subjective and objective gam-
bling expenditure related to
overall win or loss during a one-
month period by players
(n = 1335)

Subjective

Won Lost Total

Objective

Won 18 (3) 53 (68) 71

Lost 32 (47) 1210 (1195) 1242

No Activity 0 (1) 22 (21) 22

Total 50 1285 1335
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160,000 NOK in the month of May across all game-types. The present authors thought that

these were reasonable values to impute for the most extreme subjective values. The third

column (Table 3) reports the distribution of the estimated value after data cleaning. Only

the cleaned self-reported gambling expenditure was used for further analysis. Non-para-

metric statistics were used due to the highly skewed distributions. The median estimated

gambling expenditure amounts to 1000 NOK and is similar to the median actual expen-

diture that amounts to 1027 NOK. Also the 25 % percentile (Q1) and the 75 % percentile

(Q3) are also similar. This means, that on average, players reported losing about 1000

NOK in the month of May 2015 whereas in reality they lost a bit more (1027 NOK).

However, one has to be careful when interpreting averages across the player base and not

on an individual player-level.

The bias reports the deviation between the estimated value and the actual value (esti-

mated value minus the actual value). In case of a reported as well as an actual loss, a

positive bias corresponds to an overestimation of the amount lost. In case of a reported and

actual win, a positive bias corresponds to an underestimation of the amount won. A

negative bias indicates the underestimation of the loss in the case of a reported loss as well

as an actual loss. A negative bias can also indicate the overestimation of the win in case of

a reported win as well as an actual win. The median bias was -105 NOK and as most

players actually lost, this means that they underestimated their losses. Therefore, half of the

players underestimated their losses by at least by 105 NOK. It is difficult to determine what

magnitude of the bias is significant. A bias of 10 NOK might mean something different for

a player who spends 100 NOK monthly compared to a player who spends 1000 NOK

monthly. For that reason, another metric was calculated where the bias was divided by the

average GGR from the previous three months gambling. This resulting metric reports the

bias in average spending units and is also reported in Table 2. The median value of -0.15

means that on average, players underestimate their losses by 15 % of their average loss.

Again, the mean values cannot be interpreted due to the skewed nature of the distributions.

The most natural way of determining whether the metrics are related is the correlation

coefficient. The linear (Pearson) correlation between the actual expenditure and the self-

reported expenditure was 0.35 that corresponds to an explained variance of 12 %. The

Spearman correlation that uses ranks (rather than the actual values) was 0.61. Correlation

quantifies the degree to which two variables are related. But a high correlation does not

automatically imply that there is good agreement between two variables. The correlation

coefficient can be misleading when assessing agreement, because it evaluates only the

linear association of two sets of observations (Giavarina 2015). The Pearson correlation

assesses the strength of a relation between two variables, not the agreement between them.

Table 3 Comparison between subjective and objective gambling expenditure (NOK) by players
(n = 1335)

Estimated
value

Actual value
(GGR)

Estimated value
(cleaned)

Bias Bias/average.
GGR

Min. -10,000,000 -122,737 -123,000 -123,400 -200.00

Q1 400 448 400 -725 -0.58

Median 1000 1027 1000 -105 -0.15

Mean 761,900 2027 2952 925 0.43

Q3 2000 2461 2000 400 0.39

Max 1,000,000,000 159,845 160,000 159,100 209.20
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Similarly, r-square only tells us the proportion of variance that the two variables have in

common. Altman and Bland (1983) introduced a plot to more accurately describe the

agreement between two variables. This plot helps to identify patterns and whether there is a

systematic bias in the agreement of two variables. The resulting graph is a scatterplot in

which the difference between two variables on the Y-axis is plotted against the average of

the two variables on the X-axis.

The Bland–Altman plot of the subjective data and the objective data can be seen in

Fig. 1. Each of the dots represents one of the 1335 players where the difference between

the two metrics is on the Y-axis and the mean for the two values is on the X-axis. If there is

no systematic estimation bias all the dots would scatter randomly across the average bias

which is depicted by the dotted line (925). It is difficult to determine whether there is a

systematic estimation bias as the metric is highly skewed and most dots are compressed in

a narrow range. What can be determined is that the bias is very high in the area of large

values. Most of the values in the right half of Fig. 2 are outside of the confidence interval

depicted by the dashed lines. This suggests that players with higher losses tend to have

more difficulty estimating their gambling expenditure.

For that reason, it is helpful to restrict the range of the values. Figure 2 reduces the

range of the Y-axis and the X-axis at the 5th and 95th percentile. This means that the 10 %

most extreme players are omitted from the analysis. It is clearly visible that the variance of

the bias (Y-axis) increases as the mean between the subjective and objective metric

increases. As already assumed from Fig. 1, the estimation bias increases with the intensity

of gambling. Players who spend more money gambling also appear to have more trouble

estimating their gambling expenditure accurately.

Another important question is whether the estimation bias is associated with other

variables such as the game type preference, age, and/or gender. Table 4 reports the bias in

GGR units for groups of players with different game type preferences. Therefore, the bias

Fig. 1 Bland Altman plot of the subjective data and objective data of players (n = 1335)
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between the subjective and objective money spent information has been being divided by

the average GGR over the past 3 months. This can be regarded as a form of normalization.

A player’s corresponding value thus reports the bias as a percentage of this player’s

average expense. The median value of the bias in average GGR units is -0.15 and was

reported in Table 3. Consequently, on average, players are underestimating their losses by

15 % of their average GGR. Table 4 reports that casino players underestimate their losses

by 27 % of the average GGR and was statistically significant. All other types of players do

not deviate significantly from the average player.

Braverman et al. (2014) suggested classifying an estimation as correct if the bias

between the subjective and objective value was in the range of the average GGR. This

means that the aforementioned metric bias/average (GGR) is classified as correct if it is

between -1 and ?1. If it is smaller than 1 it is classified as unfavorable (underestimation

of losses or overestimation of wins), and if it is larger than 1 it is classified as favorable

(overestimation of losses or underestimation of wins). Only 70 out of 1242 players actually

won in reality. If a player loses 100 NOK and estimates the loss to be 80 NOK and has lost

110 NOK on average over the last 3 months, than the estimate can be regarded as correct

Fig. 2 Bland Altman plot of the subjective data and objective data of players (n = 1335) with a limited
range of the x-axis metric and the y-axis metric

Table 4 Distribution of the
normalized bias (bias divided by
average GGR) for each game
type preferences category among
players (n = 1335)

Median p value (%)

Lottery -0.16 63

Casino -0.27 2

Scratchcards -0.01 8

Sports betting -0.20 61

VLTs -0.16 90
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because the bias/average (GGR) (-20/110) is within the range of -1 and ?1. Table 5

reports the percentage of correct, unfavorable, and favorable estimates across the different

game preferences.

The last row reports the percentages across all players. In total, 74 % players estimated

their expense within the defined range (average GGR). A total of 9 % of the players

underestimated their losses or overestimated their wins, and 17 % of the players overes-

timated their losses or underestimated their wins. Lottery players have the highest per-

centage of correct estimates, whereas scratchcard players and sports bettors have the

lowest. Scratchcard players have the highest percentage of favorable bias and sports bettors

have the highest percentage of unfavorable bias. Only the distribution among video lottery

terminal (VLT) players is not significant.

Tables 4 and 5 report different metrics. Whereas Table 4 reports the bias in average

GGR units, Table 5 reports the categorized value. Table 4 reports the ratio of the bias

(objective vs. subjective loss) and the average GGR for each game-type preference. This is

a normalized bias that is independent of the level of play expressed in average GGR units.

Whereas all types of gambler underestimated their losses, only casino players significantly

deviated from the overall distribution. Table 5 categorizes the normalized bias for each

player. If the bias is within the average GGR, then a player’s estimation is categorized as

‘‘correct’’, otherwise it is either an ‘‘underestimation’’ or ‘‘overestimation’’. Apart from

VLT players, all types of players deviated significantly from the overall distribution.

Casino players and sports bettors showed the largest percentage of unfavorable estimation

(i.e., they underestimated the amount of money they had actually spent gambling).

The survey also included the question ‘‘How aware are you of your own gambling?’’

and a total of 458 gamblers responded (131 answered ‘‘yes’’, 302 answered ‘‘no’’ and 25

answered ‘‘I don’t know’’). Due to the non-normal distribution of the bias, a Kruskal–

Wallis test was performed. The estimation bias was not significantly different across the

three categories (X2 = 0.088, df = 2, p = 0.96).

Finally, a multiple regression with loss, game type preference, gender, and age as

independent variables, and bias as the dependent variable was performed. The amount lost

as well as the amount of money gambled in sports betting and VLTs was significant and

12 % of the variance was explained. This is in line with the results from the Bland–Altman

analysis that also showed that estimation bias increases as a function of increased losses.

However, gender and age were not significant. A multiple regression with the estimation

bias in average GGR units only yielded an explained variance of 0.3 % and the only

significant variable was the amount of money lost on VLTs. This means that the estimation

bias is almost exclusively a function of the money spent. It appears that there is little

correlation with any other type of behavior, apart from monetary gambling intensity.

Table 5 Bias classification across game-preferences among players (n = 1335)

Unfavorable (%) Correct (%) Favorable (%) p

Lottery 7 81 12 0.001

Casino 13 71 16 0.045

Scratchcards 10 64 26 0.009

Sports betting 16 63 21 0.03

VLTs 11 74 15 0.35

Total 9 74 17
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Discussion

The present study is one of only two studies that have directly compared objective versus

subjective data in relation to gambling spend (the other being Braverman et al. 2014). The

main findings were that the estimated loss self-reported by gamblers was correlated with

the actual objective loss. The results also showed that players (to some extent) appeared to

be able to estimate whether they had won or lost overall during the month’s playing period.

In addition, the estimation bias increased with the intensity of play and the types of games

played are predictive of the magnitude of the estimation bias. Put more simply, these

findings suggest that players with higher losses tend to have more difficulty estimating

their gambling expenditure (i.e., players who spend more money gambling also appear to

have more trouble estimating their expenses accurately). This finding was also reported in

the study by Braverman et al. (2014). The hypothesis that players who engaged in high

event frequency games (e.g., casino-type games) would be less accurate in estimating their

losses compared to those players who engaged in low event frequency games (e.g., lottery

games) was confirmed. Players’ subjective awareness of their own gambling did not seem

to be associated with the ability to estimate their personal gambling expenditure. The

present study also found that those providing subjective estimates of their gambling

expenditure played more intensely, were older, and less likely to be female compared to

those who did not.

The correlation between the subjective and objective information was 0.35 and means

that players who reported large losses also tended to lose more, and players who reported

small losses also lost less. The Bland and Altman analysis reported that players who lost

more in actuality also had more trouble estimating their monetary losses accurately. The

Bland–Altman analysis does not contradict this and simply examines the data in a different

way. These two findings are not contradictory. They are just the consequence from the

application of two different statistical methods and both hold true. However, the latter

insight cannot be made using a correlation analysis.

In the study by Braverman et al. (2014), bwin online players estimated their 3-month

losses and 12-month losses, respectively. They concluded that players were more accurate

when asked about their short-term losses (3 months) compared to long-term losses

(12 months). In the present study, players were asked about their most recent (1-month)

losses or wins. Based on Braverman et al.’s (2014) findings, the percentage of correct

estimates should be much larger in the present study. This is indeed the case because

Braverman et al. (2014) reported that 49 % of players who estimated their 3-month losses

were unfavorably biased which is in stark contrast to the numbers in the present study,

which are much lower. They also reported that 23–48 % of players overestimated their

wins or underestimated their losses, which is also much higher than the numbers reported

in the present study.

The correlation between the actual expenditure and the self-reported expenditure was

0.35 (explaining 12 % of the variance). Unfortunately, there is no comparative value from

any gambling research study. However, Hagstromer et al. (2010) reported that the corre-

lations between self-reported physical activity and objective measurements range from

0.07 to 0.36. The present study’s correlation coefficient of 0.35 is thus in the upper range,

meaning that players are at least as good in estimating their expenditure as people are

estimating their physical activity. The Spearman correlation that uses ranks (rather than the

actual values) was 0.61. The fact that the Spearman correlation is larger than the Pearson
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correlation demonstrates that the correlation between the self-reported expenditure and the

objective expenditure is not linear in nature.

Players systematically underestimate their losses or overestimate their wins. The degree

of bias between the estimate and the actual value is mostly a function of monetary gam-

bling intensity. Analysis also showed that the game preference is correlated with the degree

of bias. However, due to the nature of the games, sports betting, playing lottery games, and

casino gambling are quite different with respect to the average expenditure. Variables such

as age and gender do not appear to be associated with estimation bias. Players who claim to

be aware of their own gambling do not estimate their expenditure more accurately than

players who claim not to be aware of their own gambling. These results raise the question

how studies that make assumptions about playing behavior based on self-recollected

information should be interpreted (e.g., Gainsbury et al. 2014).

The present study is not without its limitations. The data were collected from only one

online gambling operator (i.e., Norsk Tipping) and from one country (i.e., Norway) and

may not be representative of gamblers from other countries or those that gamble with other

operators. Furthermore, those that responded to the expenditure questions (only 7.5 % of

the total sample surveyed) were not representative of the total sample. More specifically,

the present study found that there were differences between those that provided subjective

data on their gambling expenditure compared to the objective data of the whole sample.

However, the fact that those who provided subjective estimates of their gambling

expenditure played more intensely, were older, and less likely to be female is likely to be

due to the fact that players who frequent the site more often are more likely to engage with

any kind of feature on the gambling website. Put simply, more intense players were more

likely to notice the request to participate in the study. Additionally, players were not aware

of the survey questions prior to viewing them. This means that players did not decide to not

participate because of the nature of the survey questions. In sum, the findings demonstrate

that caution is warranted when using self-report data relating to amount of money spent

gambling in studies that only use self-report data (even in large-scale nationally repre-

sentative epidemiological studies).
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