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Large-scale GWAS identifies multiple loci for hand
grip strength providing biological insights into
muscular fitness
Sara M. Willems et al.#

Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and

predictor of a range of morbidities and all-cause mortality. To investigate the genetic deter-

minants of variation in grip strength, we perform a large-scale genetic discovery analysis in a

combined sample of 195,180 individuals and identify 16 loci associated with grip strength

(Po5� 10� 8) in combined analyses. A number of these loci contain genes implicated in

structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal

transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psycho-

motor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are

consistent with a causal effect of higher genetically predicted grip strength on lower fracture

risk. In conclusion, our findings provide new biological insight into the mechanistic under-

pinnings of grip strength and the causal role of muscular strength in age-related morbidities

and mortality.
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M
uscle strength, measured by isometric hand grip
strength, is an accessible and widely used proxy of
muscular fitness. Lower grip strength is associated with

impaired quality of life in older adults, and is an established
marker of frailty, predicting physical decline and functional
limitation in daily living1–3. The value of grip strength as a
clinical predictor of fracture risk has been demonstrated in
different populations4,5, and higher grip strength has been found
to be prognostic of walking recovery after hip fracture surgery in
later life6. Grip strength has also been shown to predict
cardiovascular disease (CVD) and all-cause mortality over
many years of follow-up7–9. Whilst it remains unclear whether
these prospective associations with fracture risk, CVD and
mortality are causal—or reflect early manifestation of
underlying disease processes—the role of muscular strength as a
predictor of functional capacity highlights the importance of
understanding its aetiology.

Grip strength is highly heritable (h2¼ 30–65%)10–12. Whilst
candidate gene approaches have implicated multiple loci in this
phenotype, including thermogenic and myogenic factors13,14,
there remain few robustly replicated associations. Two genome-
wide association studies in up to 27,000 individuals have been
reported to date15,16, yielding one intergenic genome-wide
significant association16.

Here, in a combined sample size of 195,180 individuals,
including 142,035 individuals from the UK Biobank (UKB)
cohort17, we identified 16 genome-wide significant loci associated
with grip strength. We also performed Mendelian randomization
(MR) analyses, which showed no evidence for causality in
the associations of grip strength with CVD or all-cause mortality,
but were suggestive of a causal effect of muscular strength on
fracture risk.

Results
Multiple novel loci are associated with grip strength. In stage
one analyses, we tested the association of 417 million variants
(minor allele frequency (MAF)40.1%, imputation quality 40.4),
in 142,035 white European individuals from UK Biobank
(Supplementary Table 1) with maximal grip strength. Genome-wide
single-nucleotide variant (SNV) heritability was estimated at 23.9%

(SE 2.7%). Twenty-one loci showed genome-wide significant asso-
ciations (Po5� 10� 8) in stage one (Supplementary Fig. 1), and
were subsequently followed up in stage two analyses of up to 53,145
individuals from 8 additional studies (Supplementary Table 1;
Supplementary Note) including the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) consortium16.
Twelve loci were independently replicated (directional consistency
with stage one, Po0.05) in stage two cohorts (Supplementary
Table 2A) and 16 loci contained genome-wide significant
associations (Po5� 10� 8) in combined analyses. Effect sizes on
grip strength ranged from 0.14 to 0.42 kg per allele under an
additive model (Table 1; Supplementary Fig. 1; Supplementary
Table 2A and B). Given the discordance in sample size between
stage one and two analyses, and in the interests of maximizing
power, we considered there to be evidence of association at any
locus reaching genome-wide significance in combined analyses, and
pursued all 16 in downstream analyses. Lead SNVs at the 16 grip
strength-associated loci included common variants (MAFZ5%) in
or near POLD3, TGFA, ERP27, HOXB3, GLIS1, PEX14, MGMT,
LRPPRC, SYT1, GBF1, KANSL1, SLC8A1, IGSF9B, ACTG1, a low-
frequency variant (MAF 3%) in DEC1, and a further common
variant falling within the human leukocyte antigen (HLA) region
(Table 1; Supplementary Fig. 2). Approximate conditional analyses
identified no additional signals at genome-wide significance at these
16 loci after conditioning on their respective lead SNVs. At two loci,
we saw evidence for a departure from additivity (Po3.13� 10� 3

under a dominance deviation model (see Methods)); at the GBF1
locus, we saw evidence for a dominant effect of the grip strength-
raising A allele (Pdomdev¼ 2.3� 10� 3; Supplementary Fig. 3A), and
at the SYT1 locus, we saw evidence for a recessive effect of the grip
strength-raising A allele (Pdomdev¼ 3.0� 10� 3; Supplementary
Fig. 3B). No individual variants showed significant effect
modification by age or sex (Supplementary Table 2C and D). The
association of the 16 SNV genetic score (modelled as the sum
of the grip strength-increasing allele dosage at each SNV per
individual) showed no interaction with age (Pinteraction¼ 0.30),
but was stronger in men than in women (men: b¼ 0.20 kg per
grip strength-increasing allele, P¼ 2.38� 10� 48; women:
b¼ 0.13 kg per grip strength-increasing allele, P¼ 3.61� 10� 43;
Pinteraction¼ 1.56� 10� 5; Fig. 1; Supplementary Table 2C and D).
Age at recruitment was independent of strength-increasing allele

Table 1 | Association of the sixteen loci reaching genome-wide significance in combined analyses.

Stage one (UKB)w Stage two cohorts Combined

rsID Gene* All. EAF Effectz S.E. P-value Effectz S.E. P-value Effectz S.E. P-value N

rs958685 TGFA A/C 0.52 0.154 0.026 2.8� 10�9 0.164 0.04 3.8� 10� 5 0.157 0.022 4.8� 10� 13 191,754
rs72979233 POLD3 A/G 0.76 0.210 0.03 3.7� 10� 12 0.112 0.041 5.8� 10� 3 0.175 0.024 5.0� 10� 13 192,490
rs11614333 ERP27 C/T 0.62 0.181 0.027 5.0� 10� 11 0.117 0.04 3.5� 10� 3 0.16 0.023 1.6� 10� 12 195,154
rs2288278 HOXB3 A/G 0.66 0.162 0.027 3.0� 10�9 0.147 0.04 2.8� 10�4 0.157 0.023 3.8� 10� 12 195,133
rs4926611 GLIS1 C/T 0.64 0.173 0.027 1.3� 10� 10 0.115 0.041 5.1� 10� 3 0.156 0.023 4.8� 10� 12 192,964
rs6687430 PEX14 G/A 0.46 0.15 0.026 7.6� 10�9 0.124 0.04 1.7� 10� 3 0.142 0.022 5.6� 10� 11 195,176
rs10186876 LRPPRC A/G 0.36 0.162 0.027 2.7� 10�9 0.113 0.041 6.2� 10� 3 0.147 0.023 9.8� 10� 11 192,490
rs374532236 MGMT T/C 0.38 0.157 0.027 5.5� 10�9 0.121 0.042 4.2� 10� 3 0.147 0.023 1.1� 10� 10 189,701
rs10861798 SYT1 A/G 0.43 0.145 0.026 4.3� 10�8 0.159 0.047 7.4� 10�4 0.148 0.023 1.3� 10� 10 189,160
rs78325334 HLA T/C 0.84 0.228 0.038 2.4� 10� 9 0.113 0.05 0.024 0.186 0.03 9.6� 10� 10 193,127
rs2273555 GBF1 A/G 0.61 0.153 0.027 9.1� 10� 9 0.096 0.041 0.019 0.136 0.022 1.1� 10� 9 191,754
rs80103986 KANSL1 A/T 0.81 0.201 0.033 1.8� 10� 9 0.098 0.052 0.059 0.171 0.028 1.2� 10�9 193,090
rs2110927 SLC8A1 C/T 0.27 0.161 0.029 4.4� 10�8 0.098 0.045 0.029 0.142 0.025 7.7� 10� 9 192,490
rs6565586 ACTG1 A/T 0.25 0.169 0.03 2.2� 10�8 0.096 0.064 0.14 0.156 0.027 1.2� 10�8 187,072
rs72762373 DEC1 A/G 0.03 0.424 0.078 4.9� 10�8 0.359 0.255 0.16 0.418 0.074 1.8� 10�8 152,162
rs34845616 IGSF9B A/G 0.25 0.168 0.03 1.7� 10� 8 0.07 0.049 0.15 0.141 0.025 2.7� 10� 8 189,666

All, alleles (effect/other); EAF, effect allele frequency; HLA, HLA region; N, sample size; UKB, UK Biobank.
Results are sorted by combined stage oneþ stage two P-value.
*Nearest gene to the lead SNP.
wStage one analyses include 142,035 participants.
zEffect estimates are in kg per allele and correspond to the first allele shown.
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dosage at each of the 16 SNVs from combined analyses. Equally,
allele frequency at each SNP was not predicted by age, suggesting
that there is no selection of alleles by age at these loci18. We did not
replicate the previously-reported association at rs752045 with grip
strength16 (b per minor allele (95% confidence interval (CI))¼ 0.01
(� 0.06, 0.08), P¼ 0.75).

A number of associated loci contained genes with biologically
plausible roles in strength and neuromuscular fitness, through
effects on the structure and function of skeletal muscle (ACTG1),
excitation-contraction coupling (SLC8A1), evidence for neuro-
trophic roles (TGFA), or involvement in the regulation of
neurotransmission (SYT1). ACTG1 (Actin, g1A) encodes a key
component of the costamere—a protein complex localized to the
Z-disc of skeletal muscle which physically tethers myofibrils to the
cell membrane and transmits contractile force generated at the
sarcomere to the extracellular matrix via the dystrophin glycopro-
tein complex (DGC)19,20. Monogenic loss of elements of the DGC
results in muscular dystrophies21, whilst Actg1 knockout mice
display overt muscle weakness, progressive myopathy and
decreased isometric twitch force22. SLC8A1 encodes a
transmembrane Naþ /Ca2þ exchanger which is vital to restoring
Ca2þ concentration to pre-excitation levels in excitable cells.
Muscle-specific overexpression of SLC8A1 has been shown to
induce dystrophy-like skeletal muscle pathology23. Synaptotagmin-
1, encoded by SYT1, is an integral synaptic membrane protein
which regulates Ca2þ -dependent neurotransmitter release at the
presynaptic terminal24, and is implicated in development of
neuromuscular junction pathology in rodent models of spinal
muscular atrophy25. TGFA encodes transforming growth factor
alpha, a well-characterized growth factor which plays a key
neurotrophic role in the central and peripheral nervous
systems26, and is upregulated during the acute injury response of
motor neurons, promoting neuronal survival27,28.

Three lead variants for grip strength map in or near genes
implicated in monogenic syndromes characterized by neurological
and/or psychomotor impairment (Table 1; Supplementary Fig. 2).
rs10186876 (Pcombined¼ 9.75� 10� 11) lies 15 kb upstream of
LRPPRC (leucine-rich pentacotripeptide-containing), which has
been implicated in the French-Canadian variant of Leigh Syndrome
(MIM: 220111), a cytochrome C oxidase deficiency with features
including developmental delay, hypotonia and weakness29.
Mutations in PEX14 (Peroxisomal Biogenesis Factor 14) (intronic
lead variant rs6687430) underlie certain forms of Zellweger
Spectrum Peroxisomal Biogenesis Disorder (MIM: 614887), a
syndrome characterized by absence of functional peroxisomes
and systemic neurological impairment30. Finally, rs80103986 is

intronic in KANSL1, which has been implicated in the complex
impaired-psychomotor phenotype of Koolen-de Vries syndrome
(MIM: 610443)31. Further, the signal at KANSL1 is in a large
linkage disequilibrium (LD) block also containing MAPT
(rs754512, Pdiscovery¼ 3.7� 10� 8), which encodes the
microtubule-associated tau protein. MAPT has been implicated in
a suite of so-called tauopathies characterized by progressive
neurological deficit, and is also a risk locus for Parkinson’s
disease32. 17q21.31 has a complex haplotype structure comprising
an inversion and three structural copy number variants arising
from duplication events, which has previously been shown to be of
relevance to health33. After imputing the nine common structural
haplotypes at this locus33–35, haplotype was significantly associated
with grip strength. In particular, the inverted haplotype was
associated with lower strength (b¼ � 0.17 kg, P¼ 3.85� 10� 6),
independent of age, sex, height and BMI (Supplementary
Table 3A). This association appeared to be driven by the inverted
a2.g2 structural variant (b¼ � 0.18 kg, P¼ 1.24� 10� 5).

In sensitivity analyses, we re-tested associations of the 16 grip
strength variants in UKB after exclusion of up to 8,676
individuals with type 1 diabetes, cancer, or other prevalent
disease with potential to influence muscle strength. No loci
showed significant attenuation of effect relative to overall analyses
(Supplementary Table 3B and C).

Signals are enriched for biologically relevant tissues. To identify
enrichment of association signals across different tissues and
identify likely effector tissues, we performed cell type-specific
partitioned heritability36 analyses on genome-wide association
results from the discovery phase. After adjustment for multiple
testing across nine distinct tissue types (Po0.0056), we observed
significant enrichments of associations with grip strength in
tissue-specific regulatory regions for a number of tissues,
including bone/connective tissue (P¼ 2.03� 10� 10), skeletal
muscle (P¼ 1.88� 10� 9) and the CNS (P¼ 7.37� 10� 8).
Enrichments at weaker levels of statistical significance were also
observed in cardiovascular and gastrointestinal tissue, as well as
the adrenal/pancreas axis, and ‘other’ tissues (Supplementary
Fig. 4).

Integration of gene expression data. Guided by tissue-specific
enrichments, we sought to identify putative effector transcripts
underlying these associations by investigating associations of
lead SNVs or their proxies (r240.8) with transcript levels in brain,
tibial nerve and skeletal muscle in GTEx (Supplementary Table 4).
The grip strength-increasing allele at ACTG1 (rs6565586) was

Strata n
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23,991

Beta (95% CI) P-value

4.00 × 10–24

1.91 × 10–24
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Figure 1 | Association of the 16 SNV grip strength score with grip strength by age and sex strata. Association of the grip strength-increasing genetic

score showed no interaction with observed grip strength by age (pinteraction¼0.30) but was stronger in men than in women (Pinteraction¼ 1.56� 10� 5) in a

subset of 111,860 unrelated UK Biobank participants from stage one analyses. Associations shown are from linear regression.
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associated with lower expression of ACTG1 in skeletal muscle
(PEXP-Lead¼ 3.81� 10� 13, PEXP-Best eQTL¼ 2.64� 10� 13, r2¼ 0.85),
counter to directions suggested by actg1 knockout in mouse. At
LRPPRC (rs10186876), the strength-increasing allele was associated
with higher LRPPRC expression levels in cerebellum
(PEXP-Lead¼ 6.35� 10� 7, PEXP-Best eQTL¼ 9.35� 10� 8, r2¼ 0.93)
and cerebellar hemisphere (PEXP-Lead¼ 1.29� 10� 6,
PEXP-Best eQTL¼ 3.62� 10� 8, r2¼ 1.00), which appears directionally
concordant with previously characterized loss of function and
otherwise damaging mutations associated with the disease phenotype
of French-Canadian Leigh Syndrome37. At rs1161433 (ERP27 locus),
the grip strength-increasing allele was associated with higher levels of
MGP expression in tibial nerve (PEXP-Lead¼ 5.90� 10� 10,
PEXP-Best eQTL¼ 2.19� 10� 12, r2¼ 0.84). MGP (Matrix Gla
Protein) is a well-characterized inhibitor of vascular tissue and

cartilage calcification, and consequently acts as a key regulator of
bone formation38.

We also performed integrated transcriptome-wide analyses using
recently-described MetaXcan39 and SMR approaches40.
Accounting for 5973 independent expression probes (Bonferroni-
corrected Pr8.37� 10� 6 for ar0.05), and potential coincidental
overlap of eQTL signals with GWAS loci, SMR analyses using
whole blood transcriptome data41 suggested correlation between
higher grip strength and lower expression levels of ERP27
(PSMR¼ 2.50� 10� 9) and KANSL1 (PSMR¼ 3.05� 10� 7), both
of which are implicated genes from our GWAS analysis.

MetaXcan analysis identified 25 protein-coding transcripts
implicated in grip strength at Bonferroni-corrected significance in
at least one of twelve biologically relevant tissues from the GTEx
resource (neuronal, muscle, connective, androgenic tissues and
whole blood; Supplementary Table 5). Transcripts showed
concordantly altered expression across a number of these
candidate tissue types (Fig. 2). For LRPPRC, for example, we
observed association of higher expression levels across a number
of brain tissue types, tibial nerve, whole blood and testis, with
higher grip strength. Higher MAPT expression in multiple
brain regions known to be implicated in motor coordination
(cortex, cerebellum and cerebellar hemisphere) was also
associated with higher grip strength.

Pathways underlying variation in grip strength. Hypothesis-free
gene set enrichment analysis (GSEA) based on gene-sets of
common functional annotation, or belonging to pre-defined
canonical pathways (Supplementary Table 6A and B), indicated
five-fold enrichment of association in/near genes implicated in
‘positive regulation of protein catabolic process’ (gene ontology
(GO): 1903364, false discovery rate (FDR)¼ 0.026), and
nominal enrichment of associations near genes implicated in
‘dual excision repair in global genomic nucleotide excision repair’
(Reactome: R-HSA-5696400, FDR¼ 0.047). Given the identifi-
cation of established psychomotor disease loci amongst index
variants for grip strength, we additionally interrogated our
association results for enrichment of genes known to be
implicated in monogenic myopathies and dystrophies (Suppleme-
ntary Table 6B). Grip strength associations were nominally
enriched in the myopathy-linked gene set (P¼ 0.017), but not at
loci implicated in dystrophic conditions (P¼ 0.47).

Insights into overlap with pro-atrophic signalling. Myokine
signalling via activin type II receptors (ActRII) has been
recognized as a key pathway by which muscle mass might be
preserved in many clinical contexts42,43; yet, we saw no evidence
for enrichment of associations around genes in a custom-defined
pathway of myostatin/activin signalling through ActRII (ref. 42;
Supplementary Table 6A and B; described in more detail in the
methods section). We also performed gene-based association
analyses using VEGAS44 for genes encoding receptors and ligands
in the ActRII signalling pathway, as well as known atrophy
effectors (Supplementary Table 7). Two genes (ACVR2B and
FBXO32) showed a significant association with grip strength
(Po0.0071, accounting for seven gene-based tests; Suppleme-
ntary Table 7). ACVR2B, for which we found the strongest
evidence for gene-based association (P¼ 0.0002), encodes the
principal transmembrane receptor of myostatin: the target of
BYM338, a monoclonal antibody-based inhibitor of ActRIIB,
which has shown early promise in reversing muscle atrophy and
promoting hypertrophy in phase I trials45,46. FBXO32 encodes
the E3 ubiquitin ligase Atrogin-1/MAFbx, which is recognized
as fundamental effector of atrophy42.
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Figure 2 | MetaXcan-predicted association of predicted gene transcript

levels with grip strength across biologically relevant tissues in GTEx.

Data are shown for all genes at which altered transcription was significantly

associated with grip strength in at least one biologically relevant tissue,

after accounting for multiple testing. Data are z-scores of transcript level

association with higher handgrip strength, clustered by tissue. Direction of

z-score indicates whether higher or lower gene expression is associated

with higher grip strength. Absolute z-score41.96 indicates nominal

significance at Pr0.05, and Z4.94 indicates significance after adjustment

for multiple testing (Pr7.91� 10� 7). NAcc, nucleus accumbens.
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Implication of loci in elite athletic performance. Whilst poor
grip strength is normally considered a marker of frailty, we also
investigated the role of grip strength-associated SNVs in the
opposite extreme of physiology: elite athlete status. We examined
the association of grip strength-associated SNVs with odds
of being an elite sprint/power athlete in a meta-analysis of
four studies of sprint and power athletes (Nathletes¼ 616,
Ncontrols¼ 1,610; see Methods and Supplementary Note for
further details of methods and participants). Among the 14
available SNVs, we saw no evidence of association with elite
athlete status (Supplementary Table 8). Previously, a nonsense
mutation (R577X) in ACTN3, which encodes the actin-binding
protein a-actinin 3 in skeletal muscle, has been associated
with elite athlete status47. We found a nominally significant
association of the stop-gain variant (T allele) with lower grip
strength (additive: b¼ � 0.062 kg, P¼ 0.018) (Supplementary
Table 9) although we found no evidence for any departure
from an additive genetic model at this locus (Pdomdev¼ 0.72;
Supplementary Fig. 5).

Variant association with muscle histology. We also examined
whether the lead SNVs at grip strength-associated loci were
associated with inverse-normalized muscle fibre type and capil-
lary density in a small sample in which muscle fibre type his-
tology and genome-wide genotyping were available (13 of 16
SNVs were available; Supplementary Table 10). Allowing for 13
tests (Po3.8� 10� 3), the grip strength-raising allele at TGFA
was associated with a lower proportion of type I (slow-twitch
oxidative) muscle fibres (b¼ � 0.16, P¼ 3.3� 10� 3), and a
tendency towards higher proportion of type IIB (fast-twitch
glycolytic) muscle fibres (b¼ 0.16, P¼ 5.5� 10� 3) (Supplemen-
tary Table 10). We acknowledge limited power in this small

sample to identify modest effect sizes. Given a minor allele fre-
quency of 0.1 and a sample size of 656 individuals, we estimated
80% power to detect an effect size of B0.35 SDs.

MR of intermediate phenotypes on muscle strength. Given the
roles of sex- and growth hormones and related phenotypes in
muscle growth and development48–50, we performed summary
statistic MR51,52 to test whether genetically-determined sex
hormone binding globulin (SHBG), dehydroepiandrosterone
sulphate (DHEA-S), insulin and insulin-like growth factor-I
(IGF-I) levels were associated with grip strength. Using genome-
wide significantly associated SNVs for SHBG (ref. 53), DHEA-S
(ref. 54) and IGF-1 levels55, we saw no evidence for a causal
association with grip strength (Supplementary Table 11). We saw
some indication of causality of insulin resistance and fasting
insulin levels in grip strength (Supplementary Table 11) in
inverse-variance and median-weighted analyses, although the
considerable heterogeneity in inverse-variance weighted results
warrants a cautious interpretation (Supplementary Table 11;
Supplementary Fig. 6).

Muscle strength as a possible causal exposure. Using a MR
approach, we investigated the potentially causal role of muscular
strength in both mortality and disease outcomes, utilizing the 16
replicated loci as an instrumental variable to model genetically
determined grip strength as a proxy of wider muscular strength.

Mortality: We found no evidence for a causal relationship
between muscular strength and all-cause mortality in 21,043
participants (5,699 deaths) drawn from the EPIC-Norfolk cohort
(hazard ratio (HR) per kg higher grip strength (95% CI): 0.96
(0.91, 1.03), P¼ 0.265) (Fig. 3a). However, given wide CIs we also
sought to improve power using a recently published approach
leveraging data on parental lifespan56. Using this approach in
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Figure 3 | Mendelian randomization estimates of the association of grip strength with mortality and morbidity outcomes. (a) Mortality and parental

lifespan in UKB and EPIC-Norfolk; (b) forearm bone mineral density (BMD), lumbar spine BMD and femoral neck BMD in GEFOS; (c) coronary heart

disease and myocardial infarction in CARDIoGRAMplusC4D, and fracture risk in GEFOSþ EPIC-Norfolk; (d) lean mass index and fat mass index in the

Fenland Studyþ EPIC-Norfolk (n¼ 12,851). Error bars reflect 95% CI.
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UKB (102,072 paternal deaths, 83,315 maternal deaths), we
again found no evidence for causality, with greater precision
(HR (95% CI): 1.00 (0.98, 1.03), P¼ 0.739) (Fig. 3a).

Coronary heart disease. We next investigated a causal role for
grip strength in cardiovascular disease using genome-wide
association results for coronary heart disease (CHD; 60,801 cases,
123,504 controls) and myocardial infarction (MI; 43,677 cases,
128,199 controls) from the CARDIoGRAMplusC4D Consor-
tium57 (Fig. 3c). We found no evidence for a causal relationship
between grip strength and CHD (odds ratio (OR) per genetically
predicted kg higher grip strength (95% CI): 0.99 (0.94, 1.03),
P¼ 0.631) or MI (OR (95% CI): 0.98 (0.93, –1.03), P¼ 0.433)
(Supplementary Table 12). This result was further supported by
cross-trait LD Score regression results showing no significant
genetic correlation between grip strength and CHD (rg¼ � 0.045,
P¼ 0.362; Supplementary Table 13).

Fracture risk and bone mineral density: We performed
MR analyses of fracture risk using a meta-analysis of 1)
summary statistic MR results for fracture risk from the Genetic
Factors for Osteoporosis (GEFOS) consortium (n cases¼ 20,439;
n controls¼ 78,843) (Supplementary Note; Supplementary
Table 12), and 2) logistic regression results from association of
the weighted grip strength genetic score with fracture risk in the
EPIC-Norfolk study (1,002 cases, 20,042 controls). Meta-analysis
results suggested a potential causal association of genetically-
predicted higher grip strength with lower risk of fracture (OR per
genetically predicted kg higher grip strength (95% CI): 0.95 (0.90–
0.99), P¼ 0.02; Fig. 3b). Summary statistic MR of genetically
determined grip strength on publicly available bone mineral
density (BMD) GWAS results58 did not show significant
associations between grip strength and BMD (Fig. 3c;
Supplementary Table 12). However, we did find genome-wide
genetic correlations of bone mineral density with grip strength
(femoral neck BMD: rg¼ 0.123, P¼ 9.5� 10� 3; lumbar spine
BMD: rg¼ 0.156, P¼ 6� 10� 4) (Supplementary Table 13),
supportive of a role for genetically predicted grip strength in
fracture risk.

Similar to the BMD results, MR analyses of genetically-
determined grip strength on meta-analysed GWAS results
comprising 12,851 participants from the Fenland and EPIC-
Norfolk cohorts did not show significant associations between grip
strength and lean mass index (LMI) or fat mass index (FMI) (LMI:
b¼ 0.072 kg m� 2, P¼ 0.074; FMI: b¼ 0.013 kg m� 2, P¼ 0.878)
(Fig. 3d; Supplementary Table 12). A significant genetic correlation
was observed between grip strength and LMI (rg¼ 0.258, P¼ 2.8
� 10� 5), but not FMI (Supplementary Table 13).

Discussion
We have identified 16 loci associated with maximal hand grip
strength at genome-wide significance. A number of the lead
variants were located within or close to genes implicated in
structure and function of skeletal muscle fibres, neuronal
maintenance and signal transduction in the central and
peripheral nervous systems. Partitioned heritability analyses
indicated significant tissue-specific enrichment of skeletal muscle,
CNS, connective tissue and bone in the genome-wide grip
strength results. We observed evidence of shared genetic aetiology
between lean mass and grip strength, while pathway analyses
indicated a role for genes involved in regulation of protein
catabolism in the aetiology of grip strength.

Due to the well-established observational associations of grip
strength with mortality and incident CHD it has been hypothesized
that improvement of muscle strength might increase longevity and
reduce risk of adverse cardiovascular events7. Our MR analyses do
not find evidence supportive of a causal role of muscular strength in

mortality risk, nor in risk of cardiovascular events (CHD and MI),
leaving open the possibility that these observational associations
may be attributable to confounding and/or reverse causality.
Regardless, this does not negate the importance of maintaining
strength and muscle mass during ageing as a strategy to maintain
physical function59, and we acknowledge the potential limitations of
our MR. For example, the limited variance in intermediate traits
explained by genetic variants leaves uncertainty over the presence of
a small causal effect. Thus, expanded genetic discovery efforts and
greater availability of large-scale studies of disease outcomes will
improve the precision of MR analyses in future. We saw evidence
for shared genetic aetiology of bone mineral density and lean mass
with grip strength, and MR results suggested a causal role for higher
muscular strength in lower risk of fracture. Collectively, these
results suggest that the determinants of muscular strength are
shared with the determinants of fracture risk and are consistent
with findings from intervention studies to increase muscle strength,
which have been shown to improve functional capacity and reduce
the rate of falls59, as well as attenuating the rate of functional decline
and increased frailty which often follows major fracture among the
elderly60. Despite the established decline in grip strength with
increasing age, we did not observe heterogeneity in the effect of grip
strength-associated variants with grip strength by age. However, we
did observe that the cumulative effect of the genetic score was
greater in men than women.

We saw evidence of enrichment of associations with grip
strength around genes implicated in myopathies. We also noted
three loci with genome-wide significant associations containing
genes (KANSL1, PEX14 and LRPPRC) implicated in rare, severe
clinical syndromes characterized by phenotypes of progressive
psychomotor impairment, muscle hypotonia and neuropa-
thy29,31. Within the UKB discovery cohort, the association of
all three loci with grip strength persisted at genome-wide
significance even after sensitivity analyses restricted to
participants without any form of self-reported condition which
might affect muscle mass or function. Whilst these clinical
conditions represent the extreme phenotype of highly deleterious
rare mutations in these genes, we demonstrate that proximal
common variants are likely to underpin more subtle population-
level variation in strength in healthy populations.

Finally, we found that common variation at ACVR2B, the
principal receptor of myostatin and activin in skeletal muscle, is
associated with population-level variation in grip strength. Ongoing
clinical trials and development of pharmaceutical agents targeting
this pathway have demonstrated their potential to reverse atrophy
and improve physical functioning46, and our findings provide some
level of genetic support for a role in muscular strength.

In conclusion, we identified 16 loci robustly implicated in grip
strength and provide insight into the underlying biology of this
important, widely studied, yet poorly characterized trait. MR
analyses suggest no causal role for muscular strength in mortality,
but do provide evidence for a causal role in fracture risk,
highlighting the importance of interventions to improve muscle
strength as a means to reduce fracture risk and resultant
morbidities. Further genetic and functional work to characterize
these loci will elucidate new pathways involved in the regulation
of muscle strength and inform the development of drugs to tackle
muscle wasting and weakness.

Methods
Study cohorts. Stage one (discovery) analyses comprised participants drawn from
the UK Biobank (UKB) study17, a large population-based cohort of middle and
older-aged (40–69 years) British residents recruited from UK National Health
Service (NHS) primary care registers between 2006 and 2010. In total, 503,325
participants were enrolled, and attended an initial assessment visit at one of
22 study centres located throughout England, Scotland and Wales, during which a
comprehensive catalogue of anthropometric, lifestyle and behavioural exposures

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16015

6 NATURE COMMUNICATIONS | 8:16015 | DOI: 10.1038/ncomms16015 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


were assessed, and biological samples were attained. All participants provided
informed consent. UKB gained ethical approval from the National Research Ethics
Committee (North West) and was conducted in full compliance with principles of
the World Medical Association Declaration of Helsinki.

Independent lead variants from stage one were followed-up (stage two analyses)
in an independent sample of up to 53,145 white European individuals drawn from
the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)
consortium16 and an additional seven collaborating studies, which had assessed
maximal isometric hand grip strength by dynamometry. Details of all stage two
cohorts (including the constituent cohorts of CHARGE) are provided in the
Supplementary Note. Further descriptive details of the seven additional cohorts are
provided in Supplementary Table 1. Descriptive details of CHARGE Cohorts have
been published in detail elsewhere16.

Assessment of grip strength and covariates. Hand grip strength at baseline in
UKB was measured isometrically using a calibrated Jamar J00105 hydraulic
hand dynamometer (Lafayette Instrument Company, IN, USA) adjusted to the
individual’s hand size. With the participant seated, one measurement was taken
per hand, and maximal grip strength taken as the higher of the two readings.
Body mass was assessed using a BC418MA Body Composition Analyser
(Tanita Europe BV, Amsterdam, The Netherlands), with the participant dressed
in light clothing. Standing height was measured on a rigid stadiometer
(Seca, Birmingham, UK). Phenotyping details for each of the stage two cohorts
are detailed in Supplementary Table 1.

Genotyping and imputation. Our stage one analyses use data from UKB’s
imputed interim genotyping release (May 2015), restricted to biallelic SNVs with
MAF Z0.1%. Genotyping and imputation were conducted by UKB using a
centralized pipeline, for which detailed protocols are available (see URLs). Briefly,
UKB extracted DNA from EDTA buffy coat, before shipping to Affymetrix
(Santa Clara, CA, USA) for centralized genotyping. Samples were genotyped
at 4800,000 loci on two custom-designed arrays with 95% common content,
designed to optimize quality and quantity of genome-wide imputation: the UK
Biobank Axiom array, and the UK BiLEVE Axiom Array. After restriction to
biallelic SNVs with MAFZ1% and additional sample genotyping QC, a subset of
641,081 autosomal SNVs from 152,256 samples were available for imputation.
SNVs were pre-phased using SHAPEIT3 software and imputed (using a modified
version of IMPUTE2 software) to a merged reference panel containing haplotypes
from the UK10K Consortium combined with the 1000 Genomes Project reference
(see URLs). This approach has previously been shown to provide a high-quality
imputation reference in populations of mixed ancestry61. Genotyping and
imputation details of stage two cohorts are detailed in Supplementary Table 1.

17q21.31 Haplotype imputation and analyses. Nine structural haplotypes
previously reported at 17q21.31 were imputed according to previous work33–35.
Imputation was based on a haplotype reference panel34, which uniquely coded each
structural haplotype using a combination of twelve surrogate, virtual binary
markers. In addition, the file contained 6,302 flanking variant haplotypes. IMPUTE
v2.3.2 was used to impute the genotypes of the surrogate markers against the
reference panel. The panel contained 284 genotyped variants within the reference
region, pre-phased with SHAPEIT v2.837. Variants within the copy-number
variable region, or with MAFo0.01/Hardy-Weinberg Equilibrium Po1� 10� 6

were excluded. Surrogate markers were subsequently decoded into the
corresponding nine structural haplotypes for analysis. Association of haplotypes
(inverted versus non-inverted, continuous structural variant [a/b/g] copy number,
and 9 common haplotypes as a categorical exposure) with grip strength was
modelled using linear regression adjusted for age, sex, height (m), BMI (kg m� 2)
and UKB genotype chip in up to 111,860 unrelated genetic white Europeans
defined centrally by UKB (see URLs).

Heritability estimation. In UKB, variance component analyses were performed in
the subset of individuals of ‘white British’ genetic ancestry using Restricted Esti-
mate Maximum Likelihood (REML) models in BOLT-LMM software (v2.2)62.
Genetic variance was calculated on all quality controlled genotyped autosomal
SNVs, adjusting for genotyping array and the top five genetically-determined
principal components.

Genome-wide association analyses of grip strength. 142,035 UKB participants
had imputed genetic data, grip strength and full covariate availability for
genome-wide association analyses; all were of self-identified white ancestry, with
the majority (94.6%) reporting as white British. Discovery analyses for maximal
grip strength (n¼ 142,035) were run using a Bayesian linear mixed model (LMM)
adjusted for age (years), sex, height (m) and BMI (kg m� 2), implemented in
BOLT-LMM software (v2.2)62. Primary analyses assumed additive (per-allele)
effect. Analyses were restricted to biallelic variants with MAFZ0.1% which had
been directly typed, or imputed with imputation quality (IMPUTE2 info)Z0.4.
LMMs offer a robust solution to handle unknown confounding (particularly
that arising from sub-ethnic population stratification and cryptic relatedness)
in genome-wide association studies, and confer increased power in large
population-based cohorts62.

Independent loci from genome-wide discovery were defined as the 500 kb
region flanking each lead variant reaching genome wide significance
(Pr5� 10� 8). Independent lead variants (n¼ 21) were followed-up in up to
53,145 individuals. In cases where an index variant was not typed or imputed at
sufficient quality, appropriate proxies were defined as the variant with the
next-lowest P-value within 500 kb of the index (Supplementary Table 15). Each
stage two cohort accounted for population structure according to its usual practice.
Full details of the analytical approach and model specification of each replication
cohort are summarized in Supplementary Table 1. Stage one and stage two results
for each of the 21 variants were combined by inverse variance-weighted fixed-effect
meta-analysis using METAL. Sixteen loci reached Pr5� 10� 8 in combined
meta-analysis and were considered to be associated with grip strength.

To examine local linkage disequilibrium structure of replicated loci, regional
plots for each of the 16 replicated loci were generated in LocusZoom using LD
reference values from the CEU panel of 1000G Phase I. To investigate possible
independent signals at each of the 16 replicated loci, approximate conditional
analyses were undertaken using Genome-Wide Complex Trait Analysis software
(GCTA, Version 1.25.2).

LD score regression. Using genome-wide summary statistics from our UKB phase
one analyses, the recently-described LD Score Regression method described by
Bulik-Sullivan and colleagues63 (implemented in LDSC software, v1.0.0) was used
to (i) estimate genetic correlation between grip strength and other phenotypes, and
(ii) derive tissue-specific partitioned heritability of grip strength, based on
pre-calculated European LD Scores. To avoid confounding by imputation quality,
all analyses were restricted to variants available in HapMap Phase III.

Genetic correlations. Using cross-trait LD Score regression, genome-wide genetic
correlations of grip strength were calculated with CHD risk, lean mass index (LMI),
fat mass index (FMI) and bone mineral density (BMD) measured at the forearm,
femoral neck or lumbar spine. For CHD and BMD we used publicly available GWAS
summary statistics form the CARDIoGRAMplusC4D57 and GEFOS58 consortia,
respectively. To obtain genome-wide summary statistics for LMI and FMI, we
conducted GWAS in up to 12 851 individuals drawn from the Fenland Study and
EPIC-Norfolk. Details of these cohorts are provided in the Supplementary Note, and
Supplementary Table 14. LMI and FMI (kg m� 2) were defined as dual x-ray
absorptiometry (DXA)-derived lean mass or fat mass, respectively, divided by the
square of DXA-derived height (GE Lunar Prodigy processed using Lunar EnCORE
v14.1, GE Healthcare). GWAS were conducted separately in each cohort running a
linear mixed model using BOLT-LMM62. FMI analyses were adjusted for age and sex.
Because of the sex specific distribution of the phenotype, LMI analyses were run sex
stratified and adjusted for age. Results from both cohorts were combined by fixed-
effect inverse variance-weighted meta-analysis using METAL.

Tissue-specific partitioned heritability: Partitioned heritability by LD Score
Regression can identify whether certain cell types are enriched for functional gene
categories which disproportionately contribute to the heritability of a phenotype36.
In this way, over-represented effector tissues important in the aetiology of the
phenotype can be identified. Partitioned heritability was run individually for each
of the eight curated tissue classes distributed with LDSC, adjusting in each case for
heritability explained by each functional category of variants across the genome
(that is, in a non-tissue-specific manner). A Bonferroni-corrected log10 P-value
accounting for eight tests was taken as indicative of statistical significance.

Expression analyses. To explore the potential functional significance of grip
strength variants in gene expression, and to prioritize functional genes falling
within identified loci, we undertook a number of expression-based analyses.
Initially, a look-up of all 16 replicated grip strength variants or their best proxy
(r240.8) was conducted in skeletal muscle, transformed fibroblasts, nervous
system and brain regions in the GTEx resource to identify eQTL associations
(see URLs). Variants passing GTEx criteria for tissue-specific eQTL association,
and in high LD (r2

Z0.8) with the best eQTL for the transcript in question in the
tissue of interest were considered significant eQTLs.

To supplement this variant-centric approach, we additionally took advantage of
two new methods for integrating genome wide GWAS summary statistics with
expression associations from independent studies: SMR40 and MetaXcan39. By
utilizing established eQTL data sets as reference, these approaches are able to
effectively model expected variation in the transcriptome of the GWAS sample
based on variation in autosomal SNVs across the genome, and then test for
independent associations between imputed transcript levels and the phenotype of
interest. To test for associations of transcript abundance with grip strength in
whole blood, we implemented SMR software using published whole blood eQTL
data from Westra and colleagues41 as the reference panel. MetaXcan—an extension
of the PrediXcan approach modified to use summary-level association statistics as
input—analyses were used to explore further tissue-specific associations between
modelled gene expression and grip strength. Tissue-specific expression prediction
models generated from GTEx were downloaded from the PredictDB resource
(see URLs) as transcriptome reference. We conservatively considered
predicted expression of a gene to be associated with grip strength at a MetaXcan
P-valuer2.52� 10� 7, taking each gene association in each tissue as an
independent test for the purposes of Bonferroni correction.
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Gene set enrichment analyses. Genome-wide discovery results from the UKB
cohort were tested for enrichment of pre-specified gene sets based on common
functional annotation or known biological pathways in MAGENTA (v2.4)64.
Enrichment was assessed in a hypothesis-free manner across gene sets drawn from
six public databases of gene ontology, functional annotation and canonical/curated
pathways: GO Terms, the Protein Analysis through Evolutionary Relationships
(PANTHER) database, Ingenuity, the Kyoto Encyclopaedia of Genes and Genomes
(KEGG), Biocarta and Reactome pathways (downloaded via the Molecular
Signatures Database, MSigDB [see URLs], July 2011). Analyses were restricted to
3,216 gene sets with an effective size of Z10 genes after filtering of proximal genes
and genes not containing variants for analysis. Custom sets were also defined from
literature review, incorporating genes with known function in pathways or
processes relevant to muscle development and maintenance. Genes involved in
signal transduction of myostatin/activin signalling via Activin A type II receptors
(ACVR2A and ACVR2B) were defined from Han et al.42. Monogenic genes
implicated in muscular dystrophies and myopathies were based on Kaplan
& Hamroun (2014)65 with additional manual curation to include collagen
IV-opathies, congenital myopathies and glycogen storage diseases which may
present with a similar pattern of limb-girdle muscle weakness.

Gene-based association tests. Genes involved in myostatin/activin signalling via
activin type II receptors (FST, MSTN, ACVR2A, ACVR2B) and known atrophy
effectors TRIM63 and FBXO32 were identified from literature42,43 and defined as
candidate genes for grip strength based on their biological prior for an involvement
in skeletal muscle trophism. Gene-based association tests were performed for each
candidate using the Versatile Gene-based Association Study (VEGAS) algorithm44,
calculating LD from HapMap Europeans. VEGAS was applied to the grip strength
discovery-phase association results across the whole genome, restricting to directly
typed and well-imputed variants (IMPUTE info40.8).

Muscle histology lookup. To identify whether grip strength variants were
associated with elements of muscle histology, we looked-up each of the 16
replicated loci from combined analyses in a pre-existing GWAS of muscle histology
parameters in a sample of 656 men from three independent cohorts of Swedish
ancestry (see Supplementary Note for cohort details). Specifically, we investigated
the linear (additive) association of each of the 16 lead SNVs with percentage of
(i) type I fibres, (ii) type IIA fibres and (iii) type IIB fibres from muscle biopsy, as
well as capillary density (calculated as the number of capillaries divided by the
total number of fibres). Phenotypes were inverse-normalized prior to analysis. To
better quantify power in this sample, formal power calculations were performed
using Quanto (see URLs).

Mendelian randomization analyses. We performed summary statistic Mendelian
randomization (MR)51,52 to test whether genetically determined sex and growth
hormone-related phenotypes were causally associated with grip strength. As
primary analyses we performed inverse variance weighted summary statistics
MR52. In addition, as sensitivity analyses for robust causal inference we tested for
heterogeneity using Cochran’s Q test, ran MR-Egger66 to assess for pleiotropic
effect, and additionally used a weighted median estimator and penalized weighted
median estimator67. We used publicly available genome-wide association results for
sex hormone binding globulin (SHBG)53, dehydroepiandrosterone sulphate
(DHEA-S)54, fasting insulin68, insulin secretion69 and insulin-like growth factor-I
(IGF-I)55. The variants included in the MRs are listed in Supplementary Table 16.
Grip strength summary statistics were obtained from our stage one GWAS in UKB.

To infer causality in the association of grip strength with CHD, myocardial
infarction (MI), fracture risk, BMD (forearm, lumbar spine, femoral neck), LMI and
FMI, we ran summary statistic MR as described above using the 16 identified loci as
instrumental variable for genetically-determined grip strength. For CHD, BMD, LMI
and FMI we used the same GWAS summary statistics as we used to test genetic
correlations (see above). In addition, we used publicly available MI summary statistics
from the CARDIoGRAMplusC4D consortium57, fracture risk summary statistics
from an ongoing analysis by the GEFOS consortium (Supplementary Note), and
individual fracture risk data in EPIC-Norfolk. Where grip strength lead SNVs were
not available in the outcome phenotype summary statistics, proxies were defined as
the variant with the next-lowest P-value for association with grip strength within
500 kb of the index in stage one (UKB). All variants included in the analyses are
detailed in Supplementary Table 18. Because EPIC-Norfolk was included in the LMI
and FMI GWAS meta-analyses, and in the individual level data fracture risk analyses,
we used the grip strength effect sizes obtained after exclusion of the EPIC-Norfolk
study in the grip strength-LMI, grip strength-FMI and individual level grip strength-
fracture risk MR analyses (Supplementary Table 17). On the individual level fracture
risk data we ran a logistic regression model adjusted for age and sex. Summary
statistics and individual level fracture risk MR results from GEFOS and EPIC-Norfolk
were meta-analysed using fixed effects meta-analysis.

To test the causal relationship with all-cause mortality, we calculated a genetic
grip strength risk score per individual in the EPIC-Norfolk study (n total¼ 21,043,
n cases¼ 5,699 cases) based on the number of grip strength-increasing alleles
weighted by the effect size from the combined phase one and follow-up analyses.
We used effect sizes obtained by fixed-effect inverse variance-weighted
meta-analysis of the phase one and two results, excluding EPIC-Norfolk, to

generate weights that were independent of EPIC-Norfolk (Supplementary
Table 17). The genetic risk score to mortality association was tested under a Cox
proportional hazards model adjusted for age and sex. Proportional hazards were
confirmed using standard technique.

We also sought to improve power by using parental lifespans in UKB (paternal:
nTOTAL¼ 133,123, nDEATHS¼ 102,072; maternal: nTOTAL¼ 138,096,
nDEATHS¼ 83,315), in line with previous work56. Parental lifespans and alive/dead
status were regressed using Cox models on offspring genotype, in effect imputing
parent genotype from offspring. The effects observed thus reflect the effect of
offspring genotype on parental phenotype, and the expected allelic dosages in the
parental generation are half the measured dosages in offspring. Effect estimates per
parental allele are correspondingly twice that observed per offspring allele: results
shown are the effect of one allele in parents on parents’ lifespan.

Association of replicated loci with elite athletic status. Using data from four
multi-ethnic cohorts of elite athletes, including elite Japanese athletes and controls
(Nathletes¼ 54, Ncontrols¼ 406); elite African-American ((Nathletes¼ 79,
Ncontrols¼ 391) and Jamaican sprint/power athletes (Nathletes¼ 88, Ncontrols¼ 87),
and European athletes (Nathletes¼ 395, Ncontrols¼ 726) (Supplementary Note), we
assessed the association of the 16 replicated grip strength index variants with odds
of attaining elite athlete status, relative to age, sex and ethnically-matched controls,
using conditional logistic regression (additive model). Analyses were performed
separately in each cohort, and meta-analysed using METAL.

Tests of model fit. To test for departure from additivity, we used a test of
dominance deviation, including two terms for best guess genotypes: a term
encoding the major homozygotes, heterozygotes and minor allele homozygotes as
0,1,2 and another coding them as 0,1,0, which tests whether the heterozygotes have
mean trait values halfway between the homozygote groups and can detect a
departure from additivity.

Checks for allele selection by age. Given that observational grip strength is
strongly predictive of mortality8, we ran two complementary analyses in UKB to
ensure that strength-increasing alleles from combined stage oneþ two analyses
were not under selection by age. Modelling each SNV as strength-increasing allele
dosage, linear regression was used to assess the association of age with allele dosage
(age as dependent variable). We then performed the inverse of this regression to
gauge whether allele dosage was predicted by age (age as the independent variable).
This approach has recently been applied to test for selection of variants by age in
the Genetic Epidemiology Research on Aging (GERA) cohort18. Analyses were
restricted to 112,337 unrelated white Europeans defined centrally by UKB, and
adjusted for sex and genotyping chip.

URLs. UK Biobank Genotyping and QC Documentation http://biobank.ctsu.ox.-
ac.uk/crystal/docs/genotyping_qc.pdf; UK Biobank Phasing and Imputation Pro-
tocol; http://biobank.ctsu.ox.ac.uk/crystal/docs/impute_ukb_v1.pdf; MSigDB;
http://software.broadinstitute.org/gsea/msigdb; SMR; http://cnsgenomics.com/
software/smr; PredictDB Database; http://predictdb.hakyimlab.org; Quanto; http://
biostats.usc.edu/Quanto.html

Data availability. Stage one data are from UK Biobank, and can be obtained upon
application (ukbiobank.ac.uk). Access to underlying replication and follow-up data
including histology and elite athletic performance cohorts may be limited by
participant consent and data sharing agreements; requests should be directed in the
first instance via the corresponding authors. Pre-defined gene sets (MSigDB),
expression data (GTEx) and transcriptome models used by MetaXcan (PredictDB)
and SMR methods are available from the listed URLs.
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