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Abstract Studies using tests such as digit span and nonword
repetition have implicated short-term memory across a range
of developmental domains. Such tests ostensibly assess spe-
cialized processes for the short-term manipulation and main-
tenance of information that are often argued to enable long-
term learning. However, there is considerable evidence for an
influence of long-term linguistic learning on performance in
short-termmemory tasks that brings into question the role of a
specialized short-term memory system separate from long-
term knowledge. Using natural language corpora, we show
experimentally and computationally that performance on three
widely used measures of short-term memory (digit span, non-
word repetition, and sentence recall) can be predicted from
simple associative learning operating on the linguistic envi-
ronment to which a typical child may have been exposed. The
findings support the broad view that short-term verbal mem-
ory performance reflects the application of long-term lan-
guage knowledge to the experimental setting.

Keywords Short-termmemory . Associative learning . Digit
span . Nonword repetition . CLASSIC

Tests that assess the ability to process verbal information in the
short term hold a central place in the investigation of the con-
stituent processes that underlie the range of broader linguistic
skills. These tests, such as digit span, nonword repetition, and

sentence recall—what we might broadly refer to as verbal
short-termmemory (vSTM) tests—are routinely used not only
as tools for investigating putative vSTM processes in them-
selves but also as tools for the investigation of linguistic and
other higher level cognitive skills. On the basis of these tests,
several decades of research has shown relationships involving
vSTM across a wide range of domains in typical and atypical
development, from reading and vocabulary to reasoning and
problem solving (e.g., Albert & Steinberg, 2011; Doebel,
Rowell, & Koenig, 2016; Gathercole, 2006; Rispens &
Baker, 2012). Not only does the precise nature of these rela-
tionships remain controversial but there are also different
views about what sort of constituent processes are actually
being assessed in vSTM tasks.

One broad view is that the development of certain skills
depends on the operation of systems that enable the short-term
maintenance and manipulation of information in order to en-
able long-term learning (e.g., Baddeley, Gathercole, &
Papagno, 1998; Page & Norris, 2009). Another approach sees
performance on vSTM tasks being an outcome, rather than a
cause, of other aspects of language development (e.g.,
MacDonald & Christiansen, 2002; Melby-Lervåg, Lyster,
Klem, Hagtvet, & Hulme, 2012). For example, increases in
vocabulary and its concomitant expansion of lexical phonol-
ogy enables more ready processing of the novel phonological
strings presented in nonword repetition tasks (G. Jones, 2016;
Melby-Lervåg et al., 2012; Messer, Verhagen, Boom, Mayo,
& Leseman, 2015).

We present an alternative view that accords with the view
of vSTM being an outcome rather than a cause of language
development. However, rather than being domain-specific, we
argue that performance in vSTM measures primarily reflects
domain-general associative learning operating on the linguis-
tic experience of the rememberer. Associative learning has
provided explanations for effects seen across a number of
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domains. For example, object labelling in infancy based on
specific features (Rakison, Lupyan, Oakes, & Walker-
Andrews, 2008) and on the basis of solid versus nonsolid
characteristics (Colunga & Smith, 2005); the development of
visual representations of scenes (Fiser & Aslin, 2002) and the
development of imitation (Catmur, Walsh, & Heyes, 2009);
the infant’s ability to segment continuous sound sequences
into words (Aslin, Saffran, & Newport, 1998) and to subse-
quently link those sounds to meanings (Hay, Pelucchi, Estes,
& Saffran, 2011); discovering patterns within visual stimuli
(Kirkham, Slemmer, & Johnson, 2002); and discovering
word-referent mappings (Smith & Yu, 2008). Clearly, our as-
sociative learning approach is not novel; yet it is one that has
received little consideration within the vSTM literature, de-
spite potentially being able to provide a parsimonious expla-
nation for the effects seen in vSTM tasks.

Associative learning focuses on experience that relates to
the task at hand, which for vSTM tasks equates to linguistic
experience. There is now a considerable body of evidence
implicating long-term language knowledge in performance
in the short-term setting. This knowledge may relate to seman-
tic properties of verbal material (e.g., Allen & Hulme, 2006;
Walker & Hulme, 1999), the lexicality and frequency of oc-
currence of verbal items (e.g., Hulme, Maughan & Brown,
1991; Hulme et al., 1997), and the correspondence between
the phonological structure of the items and that of participants’
native language (e.g., Gathercole, Frankish, Pickering, &
Peaker, 1999; G. Jones, Tamburelli, Watson, Gobet, & Pine,
2010). While explanations of such effects typically invoke
mechanisms for the more robust encoding or retrieval of the
nominal items, as a function of how closely they correspond to
the long-term linguistic repertoire of the participant, there is
also evidence showing an influence of sequence-level factors
that transcend the properties of the individual items them-
selves. For example, short-term serial recall performance is
facilitated when item sequences are such that their
coarticulatory transitions are relatively fluent or familiar than
when they are not, even when the items making up those
sequences are equivalently familiar (Murray & Jones, 2002;
Woodward, Macken, & Jones, 2008). Prior, passive exposure
to varying interitem transitional probabilities also leads to
subsequent superior serial recall performance for sequences
more closely matching those preexposed transitional probabil-
ities (e.g., M. Botvinick, 2005;M. Botvinick &Bylsma, 2005;
Majerus, Perez, & Oberauer, 2012), reflecting the impact of
implicit learning of statistical regularities within sound se-
quences (e.g., Aslin et al., 1998) on performance in the
short-term memory setting.

Here, we adopt a corpus-based approach in order to exam-
ine the way in which vSTM tasks that are typically used in
developmental settings can be seen as reflecting long-term
associative learning processes operating on the linguistic en-
vironment of the child. We do this by computationally

modeling the linguistic knowledge that a typical child can be
expected to have gained. Since vSTM tasks are typically con-
cernedwith themaintenance and/or reproduction of sequences
of verbal information, the key associative learning aspect of
linguistic knowledge that should apply relates to just such
sequential knowledge. Our model therefore focuses on asso-
ciative learning operating on the sequential properties of the
linguistic input. Specifically, we use a set of corpora of child-
directed language as a proxy for the linguistic experience of 6-
year-old children and show how basic associative (sequential)
learning operating on that experience predicts the pattern of
performance on versions of digit span, nonword repetition,
and sentence recall tasks. We begin by outlining a computa-
tional model of associative (sequential) learning as applied to
the linguistic setting. Our broad theoretical orientation here is
that performance in the vSTM setting is governed by domain-
general associative (sequential) learning that enables the ap-
plication of long-term linguistic knowledge and skill to the
verbal material presented to the participant in that vSTM set-
ting (D. M. Jones, Macken, & Nicholls, 2004; B. Macken,
Taylor, & Jones, 2014;W. J. Macken& Jones, 2003). In broad
terms, this means that the closer the vSTM material corre-
sponds to the linguistic knowledge and experience of the re-
memberer, the better performance in the vSTM task will be.

Importantly, although the sequences presented to partici-
pants in vSTM settings are by design novel (i.e., obviously
familiar sequences such as runs or acronyms are excluded),
this Bnovelty^ is always a matter of degree: some novel se-
quences will more closely match the linguistic experience of
the rememberer than others. We show that this grading of
novelty is at play within our computational model of associa-
tive learning within those vSTM tasks typically used in the
developmental setting. We then show in two behavioral ex-
periments that the efficiency which the model processes the
types of material presented to children in vSTM tasks predicts
how children perform in those settings, and we go on to dis-
cuss theoretical and methodological implications of these
findings as they relate to the investigation of short-term mem-
ory and to domain-general mechanisms on the part of the
rememberer.

CLASSIC: a computational model of associative
(sequence) learning

CLASSIC (Chunking Lexical and Sublexical Sequences In
Children) is a computational model of sequence learning (G.
Jones, 2016; G. Jones, Gobet, Freudenthal, Watson, & Pine,
2014; G. Jones &Macken, 2015) whereby incrementally larg-
er chunks of information are learned based on the model’s
increased exposure to sequential input. Since the language
domain offers the opportunity to estimate the type of sequence
knowledge that one may experience (e.g., via child-directed
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speech samples), CLASSIC has focused on the language do-
main in investigations of how domain-general mechanisms
influence task performance. CLASSIC is therefore presented
with naturalistic word-delimited child-directed speech con-
verted into phonemes and learns sequences from the input in
a bottom-up fashion.

The learning mechanism is simple: From a given utterance,
recode the utterance into as few meaningful units (chunks) as
possible, based on existing chunked knowledge, then learn a
new chunk for each adjacent pair of chunks in the recoded
utterance. While we refer to Bchunks^ in relation to the
model’s learning, CLASSIC is serving as a proxy to the type
of associative learning that may take place for a given input
and the results from themodel will therefore indicate the effect
that associative learning may have on task performance. In
this context associative learning might include increased per-
ceptual sensitivity to sequences of sounds and words that ap-
pear often in the input and/or the improvement in articulatory
motor coordination that arises from practice in producing
those sound sequences.

CLASSIC begins with knowledge of the basic phonemes
in standard British English (one chunk for each phoneme).
Given this basic starting knowledge, the first phonemic utter-
ance presented to CLASSIC will therefore be converted into
individual phoneme chunks (e.g., the utterance BDaddy’s
ball^, d æ d i z / b l, would be recoded into eight chunks:
d, æ, d, i , z, b, , l). Learning will then create a new chunk for
each pair of adjacent chunks without crossing word bound-
aries unless the chunks themselves are words or multiword
sequences (dæ, æd, di , i z / b , l for the example utterance).
Should the same utterance be repeated, CLASSIC would now
use the newly learned chunks to recode the utterance using
fewer chunks than were required on first presentation (i.e., dæ,
di , z / b , l). Learning would create new chunks for each of
the adjacent recoded chunks (i.e., dædi , di z / b l). Table 1
gives an example of how learning would progress when the
same utterance exists four times in succession in the child-
directed speech.

CLASSIC’s learning mechanism potentially means acquir-
ing a great deal of knowledge on every presentation of an
input utterance; however, in order that the model does not

learn spurious sequences, the learning rate is set to .50 such
that any sequence must be encountered twice on average in
order to be learnt as a new chunk (n.b. previous work using
CLASSIC set the learning rate to 1.00 because less input was
used).

Input to the model

Input to CLASSIC is a combination of maternal utterances
directed at 2-year-old to 3-year-old children from the
Manchester corpus (Theakston, Lieven, Pine, & Rowland,
2001) and similar input directed at 4-year-olds to 5-year-olds
that is available on CHILDES (MacWhinney, 2000). As the
children in our behavioral studies are 6 years of age, the input
was supplemented by story books aimed at 4-year-old to 6-
year-old children (e.g., Alice in Wonderland). The Byounger^
(2-year-old to 3-year-old) input contained more than 300,000
utterances across 12 different mothers, whereas the Bolder^ (4-
year-old to 6-year-old) input contained 75,981 utterances in
total. A random sample of 75,981 utterances was therefore
taken from the younger input to match the older input.
CLASSIC was therefore presented with a total of 2 × 75,981
= 151,962 utterances, intended to be representative of the type
of input that children receive up to the age of 6 years. Each
utterance is presented to the model in full; for each utterance,
CLASSIC will recode the utterance into as few chunks as
possible given the chunks that are known thus far. Learning
will then create a new chunk for each adjacent pair of chunks,
assuming the word boundary and learning rate constraints are
fulfilled.

Parameters and assumptions in CLASSIC

CLASSIC is an intentionally parsimonious computational
model that we use to illustrate how a simple associative
(sequential) learning mechanism operating on the linguistic
environment is able to predict human performance in
language-related tasks. The model is no more complex than
that described above because its goal is simply to provide an
estimate of the sequential knowledge of language that a typi-
cal participant might be expected to have gained, in order to
use that to predict STM performance with different types of
verbal material. However, since there are certain assumptions
and parameters that may influence performance of the model,
we describe them here.

Parameter 1: learning rate of 0.50 Previous versions of
CLASSIC (e.g., G. Jones, 2016) have used a learning rate of
1.00 to show how the model is able to simulate children’s
performance when using a smaller input set than that outlined
above. This was because the input to the model was trivial
compared to the developing child, who hears up to half a
million utterances in a 3-week period (Swingley, 2007). We

Table 1 Demonstration of how CLASSIC’s learning progresses when
the utterance BNot that big^ appears four times in the input. The examples
show learning occurring at every opportunity (i.e., a learning rate of 1.00)
whereas in reality the learning rate is set to .50

Utterance Recoded utterance Chunks learned

n ɒ t / ð æ t / b g n, ɒ, t / ð, æ, t / b, , g nɒ, ɒt / ðæ, æt / b , g

n ɒ t / ð æ t / b g nɒ, t / ðæ, t / b , g nɒt / ðæt / b g

n ɒ t / ð æ t / b g nɒt / ðæt / b g nɒt ðæt, ðæt b g

n ɒ t / ð æ t / b g nɒt ðæt, b g nɒt ðæt b g
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compensate for the increase in input here by reducing the
learning rate to 0.50.

Parameter 2: input to the model The only other parameter
relating to the current model is the input received, which is
outside of the model’s architecture. Larger amounts of input
lead to greater learning in the model. This has overwhelming
support from language literature where a robust finding is for
greater exposure to language resulting in larger vocabularies
(e.g., Hoff & Naigles, 2002; Huttenlocher, Haight, Bryk,
Seltzer & Lyons, 1991). Clearly, the language input is inextri-
cably linked to the learning rate parameter; the number of
chunks learned may be equivalent for a model having a large
input with a small learning rate versus a small input with a
large learning rate. Our goal in this regard is to show how
associative learning operating on the linguistic environment
is able to predict short-termmemory performance, and for this
we use a realistic learning rate given the paucity of language
input.

Assumption 1: associative (sequential) learning mecha-
nism There is substantial support for the simple learning
mechanism invoked in CLASSIC, from the recoding of famil-
iar item sequences into larger units (e.g.., Miller, 1956) to
word segmentation on the basis of statistical regularities in
the input (e.g., Saffran, 2001). Within the model, every chunk
learned is available to recode any subsequent utterance. No
limit is placed on the learning mechanism, but since the input
is one utterance at a time, the largest chunk that can be learned
relates to one whole utterance (assuming sufficient exposure
to that utterance). Within the memory literature, much larger
feats are possible (e.g., Ericsson, Chase, & Faloon, 1980).

Assumption 2: word-delimited input Themodel begins with
only the phonemes of standard British English because we do
not wish to impart any further linguistic knowledge within the
model that may influence results. However, we assume that
the child already knows how to segment words within contin-
uous speech because children are already capable of determin-
ing word boundaries via a range of phonetic, phonological,
and distributional cues by their first birthday (see Rowland,
2014, for a review).

Assumption 3: phonetic input For the present purposes, the
issue of whether phonemes are the correct basic unit (as op-
posed to, e.g., onsets, rimes, syllables) is not critical, since the
same basic learning processes will still be at play and lead to
qualitatively similar outcomes.

Performing span and repetition tests

As discussed in the Introduction, the broad hypothesis is that
performance in the vSTM setting is a function of the extent to

which the material presented in that setting corresponds to the
long-term linguistic knowledge of the rememberer. In opera-
tional terms here, this corresponds to the number of chunks
needed to recode the test sequence: The greater the correspon-
dence between test stimulus and long-term knowledge, the
fewer chunks are required. Span and repetition test materials
can therefore be presented as input to the model, and after
learning we can determine how many chunks are required to
recode the input, which can then be used to compare (for
example) span lists involving digits versus words or nonword
sets that are wordlike versus those that are not wordlike.

There is a caveat to the modeling work in that (as noted
earlier) the language input is a limited reflection of the sheer
amount of input that children receive. Ultimately this may
have little bearing on nonword repetition results because, by
definition, these are constructed from units that will only have
been encountered sublexically, and exposure to the 151,962
utterances used as input means that the model is exposed to
well over 2 million biphone sequences. However, the input
will not reflect all of the possible digit sequences and word
sequences to which the child is exposed, and, therefore, esti-
mates involving these tests are likely to underrepresent the
involvement of associative learning.

Modeling predictions for digit span, nonword
repetition, and sentence recall

Stimuli

Measurement of digit span use is dominated by the Wechsler
intelligence scales and therefore the digit span test from the
Wechsler Preschool and Primary Scale of Intelligence–Third
Edition, UK version (WPPSI; Wechsler, 2004) was used be-
cause the child studies involve 6-year-olds. This scale in-
volves lists containing two to nine items, with two different
digit lists at each length. Further lists were created based on
the procedure used by G. Jones and Macken (2015), who
investigated associative learning by comparing digit span,
word span, and mixed lists that contained both digits and
words. Digit lists and word lists are compared because there
is substantial evidence that both children and adults are more
able to recall lists containing random sequences of digits than
lists containing random sequences of words (see Dempster,
1981, for a meta-analysis across child studies, and also G.
Jones & Macken, 2015, for a detailed analysis concerning
adults). In the current study, only nouns were considered for
word lists. Each digit was matched for syllabic length and,
when possible, phonemic length; however, frequency took
precedence whereby nouns were selected having frequencies
far greater than digits to rule out any effects that could be
attributed to higher frequency for digits since they may appear
as both words and numerals (see Table 2). Word lists were
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produced by substituting each digit in the digit span lists for its
corresponding noun. Mixed lists were produced by (a)
substituting each odd-numbered digit with its corresponding
noun, and (b) substituting each even-numbered digit for its
corresponding noun (see Table 3 for examples). The compar-
ison of coding for matched word and digit lists in the model
will allow us to examine if superior recall for digit lists over
word lists can be explained by associative (sequential) learn-
ing.1 The mixed lists allow us to more directly examine the
extent to which any differences between digits and words are
due to the learning of sequential associations based on lan-
guage exposure, rather than inherent characteristics of the
items themselves by comparing digit recall when a digit is
neither preceded nor succeeded by another digit (an Bisolated^
digit) versus the same for words, and digit sequence recall
when a list contains a digit sequence versus a word sequence.

Since young children may only be expected to recall lists
containing relatively few items, two lists were changed prior
to producing the mixed lists (one at List Length 3 and one at
List Length 4) to ensure that all mixed lists at lengths 3 and 4
contained at least one isolated digit/word and at least one digit/
word sequence. The benefit of producing two types of mixed
list (one that substitutes odd numbers and one that substitutes
even numbers) is that it allows direct comparison of individual
digits versus individual words, and digit sequences versus
word sequences, without being confounded by the serial po-
sition of the item(s) within list (see Table 3).

Two nonword repetition tests were used. The first was the
Children’s Test of Nonword Repetition (CNRep; Gathercole,
Willis, Baddeley, & Emslie, 1994), which uses nonwords that

have been split into those that are wordlike and those that are
not wordlike based on subjective ratings (Gathercole, 1995),
each group containing 15 nonwords, five of each with two,
three, and four syllables. However, some nonwords in both
groups bear strong similarity to actual lexical items (e.g.,
trumpetine) or contain morphemes (e.g., tafflest; e.g., Graf
Estes, Evans, & Else-Quest, 2007). We therefore added a sec-
ond test from G. Jones et al. (2010), where nonwords contain
no lexical items or morphemes but are split into two groups,
one each having six of two, three, and four syllable nonwords
containing biphones of a relatively high frequency in standard
British English and the other with matched characteristics but
containing significantly lower frequency biphones.

The sentence recall test was taken from the Clinical
Evaluation of Language Fundamentals–Preschool–Second
Edition UK (CELF-2-Preschool; Wiig, Secord, & Semel,
2006). Up to 13 sentences are read aloud by the experimenter
with the child’s task being to repeat the sentences accurately.
Sentences gradually increase in length from three words to 13
words.

For all stimuli, the relevant item or list was presented to the
model and was recoded in as few chunks as possible, with the
number of chunks being recorded. For example, a list of digits
would be given as input to the model, and the number of
chunks required to recode the list would be recorded.

Model predictions

Note that for all of the modeling results, there is no variability
in the model’s performance—all figures represent the actual
number of chunks required to recode the respective lists, and
therefore any differences are real differences in the model’s
performance. Number of chunks, therefore, provides a simple
estimate of processing efficiency due to prior learning (e.g.,
Ericsson et al., 1980; Miller, 1956).

Digit span, word span, and mixed span

We first examine the number of chunks required to recode
digit lists and word lists, shown in Fig. 1. At all list lengths,
fewer chunks are required to recode lists containing digits than
lists containing words, suggesting that an associative learning
account operating on language exposure predicts superior

1 Note that we do not consider the possibility that known digit pairs may
interfere with to-be-remembered digit pairs. This is because children’s learning
of frequently encountered word combinations only serve to facilitate perfor-
mance on language-related tasks (e.g., Bannard & Matthews, 2008), with no
evidence to suggest that known word combinations interfere with that
performance.

Table 2 Digit and word characteristics (frequencies taken from the
Children’s Printed Word Database, Masterson, Stuart, Dixon &
Lovejoy, 2010)

Digit Phonemes/ frequency Word match Phonemes/ frequency

One 3/3069 House 3/1880

Two 2/1114 Water 4/1525

Three 3/706 Door 3/857

Four 3/276 School 4/1393

Five 3/173 Tree 3/995

Six 4/103 Bed 3/771

Seven 4/70 Car 2/714

Eight 2/41 Boat 3/563

Nine 3/38 Cup 3/216

M = 3.0/621.1 M = 3.1/990.4

Table 3 Examples of mixed lists when odd-numbered digits are
substituted for words (middle column) and when even-numbered digits
are substituted for words (right column)

Example digit
list

Mixed list (odd
numbers substituted)

Mixed list (even
numbers substituted)

Five, two, six Tree, two, six Five, water, bed

Six, two, nine, four Six, two, cup, four Bed, water, nine, school
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performance for digit span over word span. For mixed lists,
we separately examine all lists and lists up to a length of six
items, on the assumption that 6-year-old children are unlikely
to proceed further than six items on such a test. Figure 2 shows
the number of chunks that are required to recode isolated
digits, isolated words, digit sequences, and word sequences.
When considering all lists, there is no difference in the number
of chunks used to recode isolated digits and isolated words,
but a marked difference appears when considering sequences
where digit sequences are recoded into fewer chunks than
word sequences. When considering list lengths up to six
items, a similar pattern appears, though there are marginally
fewer chunks required to recode isolated words (this is be-
cause on occasion a digit-word or word-digit sequence forms
a phonetic chunk, e.g., to bed [two-bed]). Based on associative
learning, one may expect children to recall digit sequences
more accurately than word sequences but perform similarly
for isolated digits and words.

Nonword repetition

The model is exposed to well over 2 million biphone se-
quences and only requires two occurrences of a sequence to
learn it. For nonwords, this presents a stiff test of associative
learning by acting against our hypothesis because it means
that even low-frequency biphone sequences may be learnt
quickly, potentially limiting any difference between low-
frequency and high-frequency sequences. Table 4 shows the
number of chunks required to recode wordlike versus
nonwordlike nonwords and low versus high phonotactic prob-
ability nonwords. Wordlike nonwords are consistently
recoded using fewer chunks than nonwordlike nonwords for
all nonword lengths, despite wordlike nonwords being phone-
mically longer items than nonwordlike nonwords and despite
the model learning at every other opportunity (i.e., a learning
rate of .50). Similarly, high phonotactic probability nonwords
are recoded using fewer chunks than low phonotactic
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probability nonwords. An associative learning account there-
fore suggests that repetition differences will arise across non-
word sets purely on the basis of the child’s experience of the
sequences that comprise the nonwords. Furthermore, it is no-
table that even low phonotactic probability nonwords that do
not contain any morphemes benefit substantially from asso-
ciative learning, with the effective length (i.e., number of
chunks required to recode nonwords) being reduced by more
than 38%.

Sentence recall

The average length (in words) of the sentences used for sen-
tence recall is 8.54. These sentences are recoded using an
average of 5.96 chunks, suggesting that sentence recall is sup-
ported by associative learning of the word sequences in-
volved. One can also examine the possibility of differences
in associative learning capability by altering the learning rate
from .50 to .10 (i.e., requiring on average 10 instances of a
sequence in order to learn it). This increases the average num-
ber of recoded chunks to 7.38, suggesting that differences in
the amount of language knowledge learned (arising from dif-
ferences in associative learning) are likely to cause significant
differences in sentence recall ability. This is something we will
return to when examining the sentence recall data from the
behavioral studies.

We should note that altering the learning rate also changes
the performance of the model for other stimuli. For example,
the chunks needed to recode high phonotactic probability non-
words increase from an average of 3.33 to an average of 3.93,
while those required to recode low phonotactic nonwords in-
crease from 4.33 to 5.33. Although not the focus of this article,
this does show how individual differences can be captured
within CLASSIC, in this case, showing how reductions in
learning rate have more impact on low phonotactic probability
nonwords as opposed to high phonotactic probability non-
words (the same effects are seen when comparing typically

developing children and children with specific language
impairment; G. Jones et al., 2010).

Modeling summary

For every test presented, a simple associative learning account
has indicated that substantial enhancements in the coding of
novel sequences is possible due to the sequential characteris-
tics of the information within the tests, combined with the
content of the natural linguistic environment of the child. We
now turn to behavioral studies involving 6-year-old children
to determine whether these predictions correspond to chil-
dren’s performance.

Behavioral experiments: overview

We measured the performance of two groups of 6-year-old
children on the same stimuli presented for encoding to the
model. Experiment 1 tested recall of digit and word lists,
and Experiment 2 tested nonword repetition and sentence re-
call. In addition, in Experiment 2, we assessed individual par-
ticipant’s language knowledge using the core language sub-
tests in the CELF-2-Preschool in order to examine the rela-
tionship between language knowledge and performance on
the repetition tasks on an individual differences basis. The
broad objective of the behavioral studies was to examine the
extent to which encoding efficiency (i.e., number of chunks
required to recode input), attributable solely to domain-
general associative learning processes operating on the child’s
linguistic environment, could predict the pattern of vSTM
performance seen in our sample of children. While the issues
addressed in Experiment 2 are not completely novel (e.g.,
effects of wordlikeness have already been shown for non-
words), we include this study because the model predictions
are based on specific nonword sets and a specific sentence
recall test, and therefore Experiment 2 will allow a test of
the model on specific sets of stimuli rather than merely ones
defined by broad linguistic characteristics.

Experiment 1: children’s digit span, word span,
and mixed span

Design

For digit and word lists, the independent variable was stimulus
type (digits or words), and the dependent variable was the
number of lists correctly recalled. For mixed lists, since se-
quences could involve more than two items (e.g., three-eight-
two), each paired sequence was examined (i.e., 1 point for
correct recall of three-eight and 1 point for eight-two). The
independent variables were therefore stimulus type (digits or

Table 4 Average number of chunks required to recode wordlike (WL),
nonwordlike (NWL), high phonotactic probability (HPP), and low
phonotactic probability (LPP) nonwords at each syllabic length

2 syllable 3 syllable 4 syllable

WL, phonemic length 5.60 7.80 10.30

WL, recoded chunks 2.20 2.80 3.80

NWL, phonemic length 5.00 7.00 9.00

NWL, recoded chunks 2.83 3.83 4.83

HPP, phonemic length 5.00 7.00 9.00

HPP, recoded chunks 2.33 3.33 4.33

LPP, phonemic length 5.00 7.00 9.00

LPP, recoded chunks 3.33 4.33 5.33
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words) and sequence type (isolated item or item pair), with the
dependent variable being the number of correct recalls of the
relevant item (e.g., digit pair).

Participants

Thirty 6-year-olds (M = 75.33 months, SD = 3.69, range: 70–
81 months, 14 female) were recruited from schools within the
Nottinghamshire, UK, area. All children spoke English as
their first language. As with all experiments reported here,
participants were treated in accordance with British
Psychological Society ethical principles, and the research re-
ceived ethical approval from the Nottingham Trent University
Social Sciences ethics committee.

Materials

The digit span, word span, and mixed lists outlined in the
model predictions section were used as stimuli. Each item
was recorded individually using Audacity (e.g., the spoken
form of the digits 1 through 9 were recorded individually).
Digit lists, word lists, and mixed lists were then created as
MP3 files by constructing an individual sound file for each
list, with each successive item being separated from its prede-
cessor by .7 seconds of silence.

Procedure

Each child was tested outside of the class environment and in a
quiet area of the school. For all types of lists, testing began at
the shortest list length. Both lists at a particular list length were
presented using a Sony ICD-MX20 digital voice recorder,
with list length increasing only when at least one of the lists
was accurately recalled (this is the test method for digit span
within the WPPSI). The child’s task was to verbally recall
each list immediately after presentation of the list. List presen-
tation was counterbalanced, and testing sessions normally
lasted approximately 10 minutes. The same researcher carried
out all testing.

Results

The number of digit lists correctly recalled was 6.23 (CI 5.73,
6.74) and the number of word lists accurately recalled was
4.97 (CI = 4.38, 5.55). As expected from the associative learn-
ing account described, there were significantly more digit lists
recalled than word lists, t(29) = 6.24, p < .001, Cohen’s d =
.86. Table 5 shows the data for the mixed lists. There was a
significant effect of sequence type, with isolated items being
recalled more accurately than item pairs, F(1, 29) = 224.06, p
< .001, ηp

2 = .89, but no effect of stimulus type, F(1, 29) =
1.13, p = .297, ηp

2 = .04. However, there was an interaction
between sequence type and stimulus type, F(1, 29) = 13.10, p

= .001, ηp
2 = .31, illustrating that isolated words were recalled

more accurately than isolated digits, yet digit pairs were
recalled more accurately than word pairs, with Bonferroni
adjustment, t(29) = 3.27, p = .006, Cohen’s d = .23 for isolated
items; t(29) = 2.89, p = .014, Cohen’s d = .53, for item pairs.
The model showed a slight advantage for isolated words over
isolated digits only for lists of six items or fewer (see Fig. 2).
Nevertheless, the superior recall of isolated words over digits
in the child data supports our general hypothesis that superior
performance for digit lists over word lists arises due to the
greater experience with digit sequences, rather than being
due to any inherent characteristics of digits as items, because
in isolation they do not support superior short-term memory.
The effect of associative learning across digit sequences must
be considerable because it reverses the pattern of performance
found here when memory for individual items is assessed,
leading to the typical finding of superior recall for digit lists
over word lists.

Experiment 2: children’s nonword repetition
and sentence recall

Although linguistic influences on nonword repetition and sen-
tence recall have previously been shown (e.g., Archibald &
Joanisse, 2009; G. Jones et al., 2010), Experiment 2 enables us
to examine whether the predictions of the model hold for the
specific stimuli that were applied to the modeling
environment.

Design

For wordlikeness effects in nonword repetition, the indepen-
dent variables were nonword type (wordlike or nonwordlike)
and nonword length (two, three, or four syllables). For pho-
notactic probability effects, the independent variables were
nonword type (high phonotactic probability or low phonotac-
tic probability) and nonword length (two, three, or four sylla-
bles). In both cases, the dependent variable was the number of
nonwords accurately repeated. For sentence recall, the inde-
pendent variable was language ability (low or high) and the
dependent variable was a score based on the CELF-2-
Preschool scoring procedure: A score of 3 is given when a

Table 5 Means and confidence intervals (in parentheses) for the
different conditions of the mixed list stimuli

Sequence type Stimulus type

Digits Words

Isolated item 6.40 (5.82–6.98) 6.77 (6.16–7.38)

Item pair 4.63 (4.26–5.01) 4.07 (3.65–4.48)
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sentence is repeated accurately, a score of 2 is given when one
morpheme is omitted, a score of 1 is given when two or three
morphemes are omitted, and a score of 0 is given otherwise.
The minimum score on this test is therefore 0, with a maxi-
mum score of 39.

Participants

Thirty-four 6-year-olds (M = 73.06 months, SD = 5.74, range:
62–85 months, 16 female) were recruited from schools within
the Nottinghamshire area. Note these children were not the
same as those used in Experiment 1. All children spoke
English as their first language.

Materials

The nonword repetition tests were the same as those used in
the model simulation and were recorded onto a Sony ICD-
MX20 digital voice recorder. Due to their length, the tests
were split into smaller lists, with presentation order
counterbalanced. Sentence recall was administered from the
sentence recall task of the CELF-2-Preschool, along with the
three core tests of language ability (sentence structure, word
structure, and expressive vocabulary) from the same test so
that we had a measure of the general language ability of each
child (this was not done in Experiment 1).

Procedure

Each child was tested outside of the class environment and in a
quiet area of the school. Repetition tests were administered
along with sentence recall and the three core language tests.
Testing was normally spread across three testing sessions,
with presentation order of the experimental materials and stan-
dardized tests being counterbalanced and each testing session
lasting approximately 10 to 15 minutes. The same researcher
carried out all testing.

Results

Table 6 shows the nonword repetition results for both non-
word tests. For wordlikeness, there was a significant effect of
nonword type, F(1, 33) = 7.82, p = .009, ηp

2 = .19, with
repetition accuracy being greater for wordlike than for
nonwordlike nonwords. There was an effect of nonword
length, F(2, 66) = 204.88, p < .001, ηp

2 = .86, indicating that
short nonwords were repeated more accurately than long non-
words. There was no interaction between nonword type and
nonword length, F(2, 66) = 1.75, p = .182, ηp

2 = .05. The
phonotactic probability manipulation follows the same pat-
tern, with effects of nonword type, F(1, 33) = 6.49, p = .016,
ηp

2 = .16, indicating superior repetition accuracy for high over
low phonotactic probability nonwords; and nonword length

F(2, 66) = 95.76, p < .001, ηp
2 = .74, indicating a decline in

repetition accuracy as length increases. There was no interac-
tion between the two, F(2, 66) = .09, p = .913, ηp

2 = .01. On
the one hand, these results are not surprising, because
wordlikeness and phonotactic probability effects have previ-
ously been demonstrated for these tests (e.g., G. Jones et al.,
2010). However, because the model simulation presented
above shows exactly the same pattern based solely on asso-
ciative (sequential) learning processes operating on the lin-
guistic environment, the need to invoke specific short-term
memory processes to account for the different performance
with different types of verbal material and to account for the
developmental changes in that performance is obviated.
Moreover, associative learning accounts not only for differ-
ences across nonword sets but also for performance differ-
ences across nonword lengths. This indicates that differences
in performance in the vSTM setting may be accounted for by
reference to the extent to which the linguistic repertoire of the
participant corresponds to the type of material presented in
that short-term setting without having to invoke a limited ca-
pacity STM system per se. A key aspect of that repertoire
depends on domain-general associative learning processes op-
erating on the linguistic environment.

To further investigate the role of associative learning, we
examined repetition performance on a nonword-by-nonword
basis, analyzing the relationship between children’s perfor-
mance for individual nonwords and the number of chunks
required to recode those same nonwords. There was a signif-
icant correlation between the two, r(64) = -.63, p < .001. This
was also the case when examining by nonword set, r(28) =
−.55, p = .002, and r(34) = −.72, p < .001, for the wordlikeness
and phonotactic probability sets respectively).

To examine the relationship between language function
and sentence recall, a median split was carried out on the
CELF core language scores that combine the sentence struc-
ture, word structure, and expressive vocabulary subtests in
order to separate children into groups: those with a large
amount of language knowledge (CELF scores > 96) versus
those with a relatively small amount of language knowledge
(CELF scores <= 96). The rationale here is that the CELF

Table 6 Means and confidence intervals (in parentheses) for wordlike
(WL), nonwordlike (NWL), high phonotactic probability (HPP), and low
phonotactic probability (LPP) repetition tests

Nonword length

2 syllable 3 syllable 4 syllable

WL 62.06 (56.51–67.61) 41.76 (36.95–46.58) 25.88 (19.74–32.02)

NWL 54.17 (46.32–62.02) 37.75 (28.91–46.58) 13.73 (8.42–19.03)

HPP 57.84 (48.43–67.26) 40.69 (30.96–50.42) 16.18 (9.70–22.66)

LPP 50.49 (41.05–59.93) 34.80 (25.16–44.44) 11.27 (5.60–16.95)
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scores provide an indication of linguistic knowledge and ex-
perience at the level of the individual (in the model, we ma-
nipulated language experience by altering the learning rate).
Perhaps unsurprisingly, though nonetheless in line with the
model’s predictions, sentence recall was significantly better
for the children having high CELF scores (29.87) than it
was for the children having low CELF scores (18.75), t(29)
= 5.28, p < .001, Cohen’s d = .69.

If, as we are arguing, the pattern of performance for non-
word repetition and sentence recall is attributable to long-term
learning operating on the linguistic environment of the child
rather than being driven by the development of basic, bespoke
short-term memory systems, then we would predict that the
child’s level of linguistic knowledge will show a stronger re-
lationship to repetition abilities than maturational factors, such
as age, that are often linked to increases in vSTM capacity
(e.g., Baddeley et al., 1998). Table 7 shows correlations across
age, CELF scores, the two repetition tests, and sentence re-
call.2 As the table demonstrates, age has little relation to rep-
etition ability, whereas language ability is strongly related to
all aspects of repetition.

Child-model summary

The model suggests that associative learning plays a role in
children’s performance on digit span, nonword repetition, and
sentence recall by increasing the efficiency with which the
child processes the verbal strings presented to them in
vSTM tasks due to their linguistic experience. Table 8 shows
the relative difference in recoded chunks across the different
conditions within the vSTM tasks, together with the relative
difference in children’s performance on the same tasks. The
size of the influence of experience is clearly similar in both the
model and the children for all but the sentence recall task,
where linguistically experienced children show substantially
greater improvement than that shown in the model. This is
perhaps unsurprising, given that the model only learns
pairwise associations, while sentence recall in children is like-
ly to reflect more than simple sequence learning (e.g., aspects
of knowledge such as semantic and syntactic transitional prob-
abilities). We return to this issue in the General Discussion.

Overall, the pattern of performance of 6-year-olds in the
range of vSTM tasks assessed here mirrors that of the model
simulation of the amount of sequential associative learning
that may take place due to exposure to the linguistic environ-
ment of the child. At both the level of different types of test
stimuli (digit and word lists, nonwords, sentences) and indi-
vidual items (nonwords), vSTM performance in the children

corresponded to the efficiency with which the model encoded
those stimuli. Furthermore, while the relationship between the
child’s age and his or her performance on the repetition tasks
was weak and nonsignificant, that performance was positively
related to language proficiency, as measured by CELF scores.

General discussion

We set out to examine whether patterns of vSTM performance
in children found with different types of verbal material could
be accounted for by reference to simple domain-general asso-
ciative processes operating on the linguistic experience of the
child. CLASSIC used a simple sequential learning procedure
to estimate the kind of associative learning that may take place
for linguistic stimuli. Our model simulation began with a rep-
ertoire whose units were restricted to basic British English
phonemes and was then presented with corpora representing
the linguistic experience of a 6-year-old. Word-delimited ut-
terances in the corpora were encoded using the fewest possible
units in the available repertoire, and learning took place via the
formation of new units (chunks) for pairs of adjacent units in
the input. After training on the corpora, the model was then
tested with the types of stimuli typically used in tests of vSTM
in children, revealing increased efficiency (fewer chunks) in
the encoding of digits versus word sequences, of wordlike and
phonotact ical ly regular versus nonwordl ike and
phonotactically irregular nonwords, as well as showing
experience-based improvements in encoding of novel
sentences. The performance of 6-year-old children for tests
relating to digit span, word span, mixed span, and nonword
repetition in Experiments 1 and 2 mirrored these processing
efficiencies, down to the level of short-term recall of individ-
ual nonwords, as well as revealing a relationship between
linguistic experience and sentence recall in both model and
child. Furthermore, the magnitude of performance differences
across different stimuli sets was similar between model and
child for all stimuli except sentence recall. The pattern of
performance, then, implicates basic associative learning

2 Although we cannot rule out the possibility that the failure to find significant
correlations with age may be due to insufficient power, it is nonetheless clear
that there is sufficient power with N = 34 to detect the other correlations, and it
can at least be concluded that the role of age is considerably less than that of the
other factors.

Table 7 Correlations between age, CELF, wordlikeness (WL), and
phonotactic probability (PP) manipulations of nonword repetition test,
and sentence recall

CELF WL
nonwords

NWL
nonwords

Sentence
recall

Age .27 .24 .22 .00

CELF .42* .50** .67**

WL
nonwords

.50** .45**

PP
nonwords

.56**

*p < .05. **p < .01
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processes operating on the child’s experiencewith language as
underpinning his or her performance in the typical short-term
memory tasks used in developmental studies seeking to deter-
mine the role of basic short-term memory processes in the
development of higher level cognitive functions. This work
shows that performance on widely used short-term memory
tasks can be predicted by reference to associative learning
mechanisms that are known to be involved even in infancy
(e.g., Saffran, 2001). In short, our computational model of
associative learning provides a parsimonious explanation of
performance in vSTM tasks without the need for additional
bespoke processes such as a short-term memory system.
Rather than being viewed as a specific processing system,
we suggest that vSTM be viewed as a particular setting in
which the participant applies his or her language knowledge
to the task at hand.

It is worth noting that the model presented here successful-
ly predicts the short-termmemory performance of the children
while implementing a very limited (unrealistically so) set of
constraints with respect to its knowledge base and the type of
learning that occurs. So, the linguistic repertoire used to en-
code the input is the inventory of English phonemes, while,
for any given point on the developmental trajectory, a more
realistic representation would plausibly include some combi-
nation of subphonemic knowledge (such as acoustic/
articulatory features, as well as larger units, such as onsets,
rimes, syllables, and even longermultisegment strings, knowl-
edge of which may precede knowledge of smaller segments,
e.g., Bybee, 2010; Vihman, 2014). Similarly, while the model
only builds up knowledge based on adjacent pairwise co-
occurrences in the input, longer range dependencies and pre-
dictive relationships are also a critical aspect of natural lan-
guage learning, and so a more realistic reflection of the learn-
ing that can be accomplished from the input would also have
to incorporate such processes. We suggest that the limited
nature of the learning that takes place in the model underlies
its lesser ability to capture performance on sentence recall—a
task likely to benefit more from just such longer range seman-
tic and syntactic learning—compared to the other vSTM tasks.
However, given that the rarefied implementation presented
here nonetheless is able to mirror children’s performance on

vSTM tasks, it is not unreasonable to suggest that a more
realistic implementation, containing a more refined and elab-
orate set of knowledge units and associative learning process-
es, would likely provide a more powerful model of perfor-
mance on short-term memory tests, without having to invoke
short-term memory processes per se. Also, our findings are
not restricted to the particular stimuli presented in the vSTM
measures used. Similar effects occur when different sets of
word span lists are used to compare digit span in adults (G.
Jones & Macken, 2015), the number of chunks required to
recode an array of nonword lists correspond to children’s rep-
etition performance for the same nonwords (G. Jones, 2016),
and sentence recall is influenced by associative learning for
200 novel sentences (G. Jones & Rowland, 2017).

Our findings contribute to a growing body of evidence
that implicates domain-general long-term learning processes
in performance on vSTM tasks, something that in itself is
not novel (e.g., Botvinick, 2005; Botvinick & Plaut, 2006;
Majerus et al., 2012), although its theoretical consequences
remain controversial. The close correspondence between
performance in the vSTM setting and the participant’s lin-
guistic skill and knowledge (see, e.g., G. Jones & Macken,
2015, and B. Macken et al., 2014, for discussion) points, we
suggest, to a view of vSTM not as a set of systems or
processes in itself but rather as a setting within which the
participant must flexibly bring to bear his or her knowledge
and skill in order to accomplish the goals in what is, by
design, a (relatively) novel task involving a (relatively) nov-
el set of materials. For vSTM, this means that the task dif-
fers only in operational terms from other types of novel
verbal settings, such as those examined in typical psycholin-
guistic experiments where people are required to deal with,
for example, complex syntactic structures (e.g., Farmer,
Fine, Misyak, & Christiansen, 2016) or find productive
ways of dealing with lexically novel items (e.g., Bybee,
2010). Although the functioning of vSTM processes have
often been invoked to explain performance in such psycho-
linguistic settings, the weight of evidence here increasingly
points to the nature and extent of linguistic experience and
how closely it corresponds to the task setting (e.g., Farmer
et al., 2016; Frank, Tromenaars, & Vasishth, 2015).

Table 8 Performance differences across different stimuli sets, for the model and the children

Recoded chunks Chunk differential Children’s performance Performance differential

Digit span vs. word span 4.31 vs. 5.38 20% 6.23 vs. 4.97 20%

Isolated digits vs. isolated words 31.00 vs. 31.00 0% 6.40 vs. 6.77 5%

Digit sequences vs. word sequences 47.00 vs. 55.00 15% 4.63 vs. 4.07 12%

WL nonwords vs. NWL nonwords 2.93 vs. 3.83 23% 43.23 vs. 35.21 19%

HPP nonwords vs. LPP nonwords 3.33 vs. 4.33 23% 38.23 vs. 32.19 16%

Sentence recall, high CELF vs. low CELF 5.96 vs. 7.38 19% 29.87 vs. 18.75 37%

WL = wordlike; NWL = nonwordlike; HPP = high phonotactic probability; LPP = low phonotactic probability
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We have shown in principle that vSTM performance can be
modeled without invoking the type of capacity-limited pro-
cess that is assumed under most accounts of short-term mem-
ory (e.g., Baddeley et al., 1998; Jefferies, Frankish, & Noble,
2009). Instead, the limits to vSTM performance arise from
two broad principles, one being the opportunity for long-
term learning about the structure of language and the other
being the degree of correspondence between that long-term
knowledge and the particular task and set of materials present-
ed to the participant in the vSTM setting. What appears as
Bcapacity limitation^ in this setting is instead a specific per-
formance limitation arising from the mismatch between the
task setting and the actual environment from which the re-
memberer has acquired his or her linguistic knowledge (B.
Macken et al., 2016).

Although our approach does not invoke a capacity-limited
STM system to explain performance in the STM setting, nei-
ther does it require it to be a system for the initial learning of
language knowledge, as is often the case in theorizing about
the relationship between vSTM and language (Baddeley et al.,
1998; Page & Norris, 2009). The latter approach makes the
assumption that because relevant information exists at a short-
term temporal scale, there must be a short-term memory sys-
tem to enable learning about that (i.e., the classical view that
STM serves as a gateway to long-term learning; Atkinson &
Shiffrin, 1968). However, if we consider the knowledge pos-
sessed by a skilled user of language in the broadest sense (i.e.,
the ability to perceive and produce language), then it is clear
that relevant knowledge exists across a wide range of temporal
scales—from the simultaneous occurrence of formant rela-
tions, to the few milliseconds over which other phonetic con-
trasts are discriminated, to the tens and hundreds of millisec-
onds over which phonotactic, morphemic, syllabic, and lexi-
cal knowledge is represented, through the several seconds
over which syntactic and utterance-level information occurs,
through to the minutes and hours whereby the structure of
conversations may be discerned. Knowledge of language in-
volves learning about structure at all these scales, and it seems
to us implausible and unparsimonious to propose a bespoke
system for knowledge at one of these levels of scale (i.e.,
whatever scale might be conceived of as Bshort-term^), rather
than proposing that domain-general statistical learning pro-
cesses operate across time scales.

In eschewing the concept of short-term memory as a cog-
nitive system in itself, such an orientation raises the possibility
that questions about the variety of empirical relationships be-
tween short-term memory performance and higher cognitive
functions, particularly with respect to the development of
those functions, should be reframed. Indeed, the implication
is that short-term memory, rather than being a concept con-
noting a key component of cognitive processing, is a reifica-
tion of the particular types of task characteristics that are used
to measure performance, particularly those related to the

processing of material that is novel with respect to the remem-
berer’s experience. As we have shown here, this novelty is
always a matter of degree, and rather than seeking to partition
bespoke short-term memory processes from other, long-term
learning processes, our argument is that it is precisely these
long-term learning processes, and the ability to flexibly co-opt
the knowledge and skill so acquired, that are under investiga-
tion in the short-term memory setting. From this perspective,
rather than short-term memory playing a causal role in the
development of higher order cognitive functions, it is instead
an outcome of that development.
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