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ABSTRACT 

Phosphorus plays an important role in bone development and mineralisation, but 

approximately two-thirds of the phosphorus contained within the plant-based ingredients of 

poultry feed occurs in the form of phytate which is poorly available to poultry. Consequently, 

the low availability of phytate phosphorus necessitates the inclusion of supplementary dietary 

phytase enzyme or inorganic phosphorus (a finite global resource). However, inorganic 

phosphorus is often added at levels that exceed requirement to ensure dietary sufficiency, as 

there are concerns that the current phosphorus requirement guidelines (NRC, 1994) may not 

accurately reflect the current physiological needs of the modern broiler strain. To this end, 

the accurate evaluation of the effect of dietary phosphorus supply on the skeleton of modern 

broilers is required. The overarching aim of this project was twofold: to characterise the bone 

and whole body phosphorus content of commercial broilers, and to examine possible 

approaches for improving phosphorus utilisation in broilers. 

Before accurate evaluation of broiler phosphorus requirements or response to interventions 

could be assessed, it was necessary to establish the optimum method for determining bone 

ash content. Four investigations, conducted using two bird trials were initially carried out to 

examine the effect of four common divergences in the bone ash methodology: the effect of 

fat extraction, the inclusion of cartilage caps, the minimum fat extraction time required and 

the effect of autoclaving prior to fat extraction. Sensitivity in elucidating differences in 

treatment means improved for tibia ash % when fat was extracted, and when cartilage caps 

were removed from the bones prior to ash determination. However, increase in ash % have 

been reported when cartilage caps are affected by disease, and it may be advantageous to 

include the cartilage caps for better comparison of data, particularly when the health status of 

a bird flock is unknown. A minimum fat extraction time of 6h using the Soxhlet procedure 
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was adequate in extracting fat from bones while autoclaving the bones prior to fat extraction 

did not have any significant effect on bone ash or ash %.  

There is a current lack of bone ash and phosphorus content reference dataset for commercial 

broilers. A normal range of age and sex-related normal bone morphology and mineralisation 

values of healthy commercial broilers were sequentially sampled across 6 commercial farms 

from 24 flocks of birds and data presented. The whole body phosphorus content determined 

showed that, despite the improvements in growth rate and muscle mass observed in modern 

broiler strains, when broilers are fed nutritionally adequate diets whole body phosphorus 

content retained (5g/kg) has remained constant. The partitioning of calcium in relation to 

phosphorus in the whole body of broilers has also remained the same. 

A 4-day transient reduction in available dietary phosphorus during early life not only 

confirmed previous findings that nutritional imprinting improves phosphorus utilisation in 

later life, but also leads to improved bone strength. The nutritionally imprinted group of birds 

had significantly stronger bones (P < 0.012) than the control group of birds.  

Finally, the potential use of a high phytase wheat (HIGHPHY) variety with high purple acid 

phosphatases content was examined in this project by feeding broilers with standard wheat 

diets, which were replaced with graded levels of HIGHPHY (33%, 67% and 100%). A 100% 

substitution of standard wheat with HIGHPHY resulted in the best ileal digestibility 

coefficients for P and Ca (34.6% and 22.9 % greater than control respectively). This project 

demonstrates that HIGHPHY has a promising potential for improving phosphorus 

digestibility in animal feed, and provides fundamental initial data into the use of acid 

phosphatase phytase in broilers through plant breeding to improve the phytase activity of 

grains.  
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To conclude, a minimum Soxhlet fat extraction time of 6h with cartilage caps included is 

proposed to be adopted by researchers in order to improve accuracy when comparing bone 

ash data from unrelated studies. The dataset of bone measurements reported in this thesis 

provides a significant contribution to the knowledge gap of the current range of bone data 

applicable to commercial broiler production. Nutritional imprinting for better phosphorus 

utilisation and the use of high phytase wheat varieties are useful techniques that can be 

employed to improve phosphorus utilisation in broilers. 
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CHAPTER 1: LITERATURE REVIEW 

1.1. Introduction 

The world population currently estimated at 7.3 billion is predicted to increase by a third to 

9.7 billion in 2050 (UN, 2015). Based on the projected growth in income and changes in food 

consumption pattern, this will require increasing the overall food production by 70% and this 

includes a projected increase in the annual meat production from 200 million tonnes to 470 

million tonnes (FAO, 2009). 

Poultry production plays an important part in the food chain. It accounted for 36.2% of the 

total 320.7 million tonnes of meat produced in 2016 (Poultry Trends, 2016). Broiler 

production is the fastest growing (Cherian, 2013) and most successful animal industry (Leeson, 

2008) and accounts for about 85% of t h e  total poultry meat p r o d u c e d  worldwide 

(Huyghebaert et al., 2009). According to the poultry production farm survey report of Hoyle 

et al. (2016), 125 million birds accounted for the total English poultry flock in 2015, and of 

these, 83 million were broilers. Broilers accounted for 84% of the 1.67 million tonnes of 

poultry meat produced. 

The increase in demand for poultry meat has stimulated the growth of the industry towards 

industrial farming, characterised by concentrated poultry operations (FAO, 2007). However, 

the generation of large quantities of poultry manure, often in quantities which exceeds the 

producing farm’s capacity to use it as a nutrient source for crops (Foy et al., 2014), is a direct 

consequence of increased poultry production (Vadas et al., 2004). Despite the benefits of 

manure as a soil amendment, and as a potential source of animal feed and fuel highlighted in 

the review of Bolan et al. (2010), the responsible land application of the poultry litter has been 

of concern (Miles et al., 2003). Its disposal is one of the challenges faced by the poultry industry 

(Leeson, 2008).  
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Phosphorus naturally contained within the plant-based ingredients of poultry feed occurs in 

the form of phytate. This molecule renders the phosphorus contained in phytate poorly 

available to poultry (Simons et al., 1990) as chickens lack sufficient endogenous phytase 

(myoinositol 1, 2, 3, 4, 5, 6,-hexakisphosphate phosphohydrolase), the enzyme required to 

break the covalent molecular bonds and release phosphorus for absorption from phytate 

(Sebastian et al., 1998; Waldroup et al., 2000; Applegate et al., 2003). Hence, poultry diets often 

contain highly available mineral forms of phosphorus in addition to the phytate phosphorus. 

Typically, less than one- third of plant-derived feed phosphorus is utilised by poultry, and the 

remainder excreted and applied on land as manure (Patterson et al., 2005).  

Poultry manure is a potential source of water contamination (Chapman, 1996). Poultry 

contributes around 16% of the total phosphorus in livestock manure in the EU (IFP, 2009), 

and there are environmental concerns that excreted phosphorus accumulates in the soil, leaches 

to water bodies thereby causing wide spread eutrophication (Schindler, 1977; Carpenter et al., 

1998; Bennett et al., 2001). Improving phosphorus utilisation in poultry through its efficient 

use will not only help minimise wastage and reduce the negative effect on the environment 

but will also help in preserving the world phosphorus reserves. 

This literature review considers the role of phosphorus in poultry nutrition, and the 

importance of preserving the dwindling global phosphate reserves through improved 

utilisation and management practices. 
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1.2. Phosphorus 

1.2.1. Phosphorus: an essential nutrient 

Phosphorus is an essential element required by all living organisms. It plays a crucial role in 

maintaining cellular osmotic pressure and acid balance, energy metabolism and transfer 

through the activity of adenosine triphosphate (ATP) and creatine phosphate, and a variety of 

other major physiological functions including the transfer of genetic information and protein 

regulation via deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). 

In plants, it is required for seed germination and growth (Tirado and Allsop, 2012), and it is 

routinely added in cropping systems where soils are naturally low in phosphorus to maximise 

crop yield. Although phosphorus is naturally found in soils, it is often found in a form 

unavailable for immediate uptake by plants, necessitating the need for land application of 

phosphate fertilisers derived from phosphate rocks to support high yields in non-organic 

agriculture. 

In animals, phosphorus is the second most abundant element in the body next to calcium, and 

plays a major role in bone development and mineralisation (Veum, 2010).  It is mainly stored 

in the skeleton where it combines with calcium to form hydroxyapatite [(Ca10(PO4)6(OH)2)]. 

The skeleton of growing birds contains about 80% of the total phosphorus found in the body 

(De Groote and Huyghebaret, 1997), and the rest is present in body fluids and soft tissues 

(Underwood and Suttle, 1999). Phosphorus is also important for improved feed utilisation 

and feed conversion efficiency. Significant health and welfare issues such as poor growth, poor 

bone mineralisation and leg problems such as lameness and tibia dyschondroplasia have been 

reported when phosphorus deficient diets are fed to broilers. Despite the relatively high cost 

(Singh, 2008), supplementation with inorganic phosphorus is considered necessary to meet 

the requirements of growing poultry (Beck et al., 2014).  
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1.2.2. Phosphorus in agriculture: current reserves, global supply and demand  

Historically, plant production was supported by the addition of organic matter such as manure 

and human excreta (Matsui, 1977). By the middle of the 19th century, guano (bird droppings) 

deposited from previous millennia discovered on the islands off the Peruvian coasts and the 

South Pacific were mined to replace the use of organic matter. This was in response to an 

increase in the demand for food due to rapid population growth (Cordell et al., 2009). 

However, the decline in the world trade of guano led to the growth of mined mineral fertilisers 

from phosphate rocks, which was then viewed as an unlimited source of phosphorus. 

According to the United States Geological Survey, the current estimates of the world reserves 

of phosphate rock is 68 billion tonnes (USGS, 2017). This refers to the resources of rock 

phosphates, which are easily accessible and can be economically mined. In 2016, China, 

Morocco and Western Sahara, and the United States accounted for over two-thirds of the 

total 261 million tonnes mined globally (53%, 11.5%, and 10.7 % respectively). 80% of the 

global rock phosphate mined is used for the manufacture of agricultural fertiliser, 15% for 

industrial applications including detergents and metal treatment, and 5% for animal feed (Smit 

et al., 2009).  

Between 2002 and 2009, India and China showed a strong increase in phosphate fertiliser 

usage (80% and 28% respectively), while a reduction in usage was observed in Europe and 

America (29% and 10% respectively) due to market price increases and environmental 

restrictions (Tirado and Allsopp, 2012). Globally, an increase in the demand for phosphate 

fertilisers is expected, considering growth forecasts in population, increased preference for 

diets rich with meat, and demand for alternative energy sources such as ethanol which has 

stimulated growth for bioenergy crops (Tirado and Allsopp, 2012; Smit et al., 2009). In 2014, 

India, America, and China consumed about 73% of the global phosphate fertiliser 

(FAOSTAT, 2017). The world consumption of phosphate (P2O5) contained in fertilisers and 



 

26 
 

industrial uses was projected to increase from 44.5 million tonnes in 2015 to 48.9 million 

tonnes in 2020 (USGS, 2017). 

1.2.3. Phosphorus: a finite resource 

The increasing scarcity of mineral forms of phosphorus is of concern to global food security 

(Tirado and Allsopp, 2012). It has been reported that phosphorus obtained from phosphate 

rock is being mined faster than it is being discovered, and is therefore subject to eventual 

depletion (Vaccari and Strigul, 2011). The report of Cordell et al. (2009) which predicted a 

global peak in phosphorus production by 2030, published in the wake of a 700% increase in 

the price of phosphate rock between 2007 - 2008 led to increased work in estimating how 

much phosphorus is left (Elser and Bennett, 2011). The price increase was attributed to 

China’s decision to impose a 135% export tax on its rock phosphates, and an anticipated 

increase in global demand with a concomitant decrease in supply (Ulrich et al., 2009). This was 

further exacerbated by increases in the price of oil, which increased the costs of the energy 

required for mining phosphorus (Tomlinson, 2010).  

Van Kauwenbergh (2010) in a report issued by the International Fertilizer Development 

Centre reassessed the world phosphorus reserves by incorporating previously overlooked 

geological reports and refuted the claim that phosphorus would peak by 2030. That report 

estimated the global phosphate rock concentrate reserves would be available for 300 – 400 

years based on an estimate of 60 million tonnes of global phosphate reserves, and 290 – 460 

billion tonnes of global phosphate resources. This consequently led the US Geological Survey 

to review its global phosphate reserve from 15 million tonnes to 65 million tonnes (Elser and 

Bennett, 2011).  Cordell et al. (2011) reanalysed peak phosphorus using Bayesian statistical 

methods and predicted it would occur between 2051 and 2092. Despite the wide range (100 - 

300 years) of the current estimate of the remaining phosphate reserve, it is accepted that peak 
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phosphorus is imminent and that phosphate rocks are becoming scarcer and more expensive 

to mine (Tirado and Allsopp, 2012; Childers et al., 2011).   

1.2.4. Environmental effect of phosphorus contained in poultry manure 

Eutrophication of water bodies has been directly linked to over-enrichment with phosphorus 

from surface water derived from the over application of poultry manure (Bougouin et al., 

2014). The water-soluble fraction of manure (Maguire et al., 2005), which is the form most 

available to aquatic life (Moore et al., 1999) constitutes the greatest eutrophication threat to 

waterways. In order to understand this better, an understanding of the phosphorus cycle, 

which involves complex chemical and microbiological processes is required. 

Phosphorus is deposited in soils through the weathering of minerals and additions from 

applied fertilisers and organic residues. It reacts with iron and aluminium to form insoluble 

iron and aluminium phosphates in acidic soils; or with calcium to form insoluble calcium 

phosphates in alkaline soils. Phosphorus is then released in soils as the minerals dissociates 

and as soil organic matter decomposes. Phosphorus is subsequently removed from soils 

through plant uptake, water runoff and erosion, and leaching. The phosphorus absorbed by 

plants is transformed into organic compounds. When animals consume these plants, it is either 

incorporated into their tissues or excreted. In a series of processes which involves the use of 

intrinsic enzyme complexes, microbes act on excreta, dead plants, and animals by 

decomposing them and releasing phosphorus back into the soil in the soluble or particulate 

form.  

Poultry litter contains about 3% P2O5 (Spiehs, 2005) but the actual concentration may vary 

with age of birds, diet, management, and type of manure storage. It has a beneficial use as 

plant fertiliser, particularly when applied to phosphorus deficient soils. However, the continual 

long-term application of poultry manure results in the accumulation of soil phosphorus 

content (Sharpley, 1999; Sims et al., 2000) which increases the risk of phosphorus runoff into 
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water bodies. Phosphorus runoffs have been linked to harmful incidences of algal blooms and 

production of trihalomethane in drinking waters (Sharpley and Moyer, 2000).  

1.3. Phosphorus requirement in poultry 

Phosphorus derived from plant materials is mainly obtained from phytic acid (myoinositol 

1,2,3,4,5,6, -hexakis (dihydrogen phosphate) or InsP6 (Sandberg, 2002; Zeller et al., 2015a). It 

is also referred to as phytate when it is mineral-bound within a seed. The dissociation of 

protons from the phytic acid molecule during intestinal transit leaves it with several negative 

charges. This renders it highly susceptible to chelation with multivalent cations such as 

calcium, iron, zinc, and magnesium (Morris, 1986), and proteins depending on the prevailing 

pH and concentration (Adeola and Sand, 2003). The resulting mineral-phytate complexes 

formed have been associated with reduced mineral bioavailability and absorption (Maenz et 

al., 1999; Selle et al., 2000). Phytate has also been shown to reduce amino acid digestibility 

(Cowieson et al., 2006; Onyango et al., 2009).  

The current non-phytate phosphorus (nPP) recommendations for broilers stipulated by the 

National Research Council (NRC, 1994) are 0.45% (0-3 weeks), 0.35% (3-6 weeks) and 0.30% 

(6-8 weeks). These are based on peer-reviewed research published between 1952 and 1983. 

However, it has been reported that the current fast growing strains of broilers are more 

efficient in utilising nutrients due to genetic selection (Havenstein et al., 2003a,b) and this 

continues to influence the use of nutrients. Consequently, these levels of dietary supply have 

been questioned due to major concerns over the cost of inorganic forms of phosphorus and 

the potential for environmental pollution when phosphorus is oversupplied to poultry (Rama 

Rao et al., 1999).  

The urgent need to review the current phosphorus requirements in broilers has been 

highlighted (Adedokun and Adeola, 2013; Applegate and Angel, 2014) because of recent 

changes in the physiology of current bird strains used, and earlier concerns over whether the 
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NRC phosphorus recommendations (NRC, 1994) represent optimum levels. Nonetheless, 

supplemental inorganic phosphorus is still often added in excessive amounts to poultry diets 

to provide a safety margin (Waldroup et al., 2000), as the consequences of phosphorus 

deficiency in broilers are profound (Leske and Coon, 2002; Dhandu and Angel, 2003). 

1.3.1. Definition of terms 

There is a lack of consistency in the terms used in defining phosphorus availability in poultry 

(Rama Rao et al., 1999). Various terms have been used to describe phosphorus requirement 

and availability in poultry, posing a potential source of confusion (Applegate and Angel, 2008; 

Mutucumarana et al., 2014). The definition of phosphorus availability and response criteria 

used in evaluating phosphorus availability varies across evaluation systems and research 

groups (Shastak and Rodehutscord, 2013). For example, Coon et al. (2002) observed that non-

phytate phosphorus and available phosphorus are erroneously used to mean the same thing. 

This is partly related to the historical assumption that chicks are unable to utilise phytate-

bound phosphorus, and that all other animal and inorganic phosphorus sources, including 

remaining plant phosphorus, are available (Waldroup, 1999). However, the report of Coon et 

al. (2002), and more recently Morgan et al. (2015) shows that non-phytate phosphorus is not 

100% available, and that broilers are probably able to utilise some phytate-bound phosphorus.   

Total phosphorus refers to the total amount of phosphorus present in a material, whether or 

not it is bound to other compounds or available for absorption by the animal. Phytate 

phosphorus describes the portion of phosphorus that is bound to the phytate mineral complex 

and is largely unavailable due to lack of effective endogenous phytase in poultry. It accounts 

for 60% and 72% of the total phosphorus found in soybean meal and corn respectively 

(Ravindran et al., 1995).   

Non-phytate phosphorus (nPP) is that portion of phosphorus that is not bound to phytate 

molecules within a feed material.  
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Available phosphorus (avP) was originally defined as the portion of phosphorus in a diet or 

ingredient that can be absorbed from the intestine (distal ileum) when ingested (Weremko et 

al., 1997). Confusingly, more recently Rodehutscord (2009) defined available phosphorus as 

the portion of total dietary phosphorus at marginal levels of phosphorus supply, which can 

be utilised to cover the phosphorus requirements of an animal.  

Retainable phosphorus refers to the phosphorus that is retained by the body after correcting 

for what is lost in excreta and urine, i.e. feed phosphorus minus excreta and urinary 

phosphorus at a particular phosphorus intake and stage of bird development (Leske and Coon, 

2002).  

1.3.2. Phytases and phosphorus utilisation 

Phytases (myoinositol hexakisphosphate phosphohydrolases) are enzymes that catalyse the 

hydrolytic cleavage of phosphate groups from phytic acid via several phosphorylated 

intermediary products (myoinositol pentakis-, tetrakis-, tris-, bis- and monophosphate) up to 

myoinositol (Zeller et al., 2015a). Phytases are produced from either microorganisms (e.g. 

fungi, yeast, and bacteria) or plants (e.g. wheat, rye and barley). They are identified by the 

initial site of removal of the phosphate group on the inositol ring during de-phosphorylation 

(Selle and Ravindran, 2007). 3- phytases, for example, are groups of phytases whose site of 

initial de-phosphorylation of the phosphate group occurs at the C3 position of the inositol 

ring. 

3 classes of phytases have been identified by the International Union of Pure and Applied 

Chemistry, and International Union of Biochemistry: 3-phytases (EC 3.1.3.8), 4-/6-phytases 

(EC 3.1.3.26) and 5-phytases (EC 3.1.3.72). Commercial phytases derived from 

microorganisms are commonly 3-phytases with the exception of some phytases such as the 

fungal Basidiomycete (Lassen et al., 2001) and bacterial Escherichia coli (Greiner et al., 1993) which 
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are classed as 6-phytases. Plant-derived phytases on the other hand are classed as 6-phytases 

(Schlemmer et al., 2001).  

Plant-derived phytases have traditionally been shown not to be as effective as microbial-

derived phytases as they lack the key characteristics required for efficiently releasing phytate 

phosphorus in pig or poultry. These include stability under acidic conditions, an acidic pH 

optimum, and resistance to pepsin activity (Greiner and Koinetzny, 2006). This was 

demonstrated in the study of Rapp et al. (2001) who reported a 17% higher phytic acid 

hydrolysis in diets supplemented with microbial phytases (Aspergillus niger) compared with 

intrinsic plant (wheat) phytase.  

Ravindran (2013) reported an average pH of 5.5 (for the crop) and 2.5 - 3.5 (for the gizzard 

and proventriculus) in broilers, and this corroborates the previous finding of Jiménez-Moreno 

et al. (2009) who reported a similar range of digesta pH. These organs have been reported to 

be the major activity sites for microbial phytase digestion, unlike the lower gastrointestinal 

tract where microbial phytases are more susceptible to proteolysis (Simon and Igbasan, 2002). 

Plant-derived phytases have been reported to have a narrower optimum pH range of 5 - 6 

compared to a much wider optimum pH range of 2.5 – 6.5 for microbial derived phytases 

(Woyengo and Nyachoti, 2011); which is much closer to the physiological range of pH 2 -5 in 

the proventriculus and ventriculus in poultry (Simon and Igbasan, 2002). Microbial-derived 

phytases are thus able to work over a broad pH range with some being active and stable below 

pH of 3.5 (Greiner and Koinetzny, 2006).  

It has been noted that the ideal phytase incorporated in poultry feed should be cost-effective, 

tolerant to high feed pelleting temperatures (65 - 80oC), and resistant to low pH and protease 

enzymes in order to avoid degradation in the digestive tract (Woyengo and Nyachoti, 2011). 

However, these attributes are difficult to achieve with native microbial phytases (Lei and 

Stahal, 2001) and therefore techniques such as genetic transformation and thermo-protective 
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coating have been employed to enhance these qualities in microbial phytases (Garrett et al., 

2004). 

1.4. Evaluating phosphorus requirements and availability 

A list of the calcium and phosphorus content of commonly used plant feedstuff is presented 

in Table 1.1. There is a growing scientific interest in the evaluation of phosphorus availability, 

and the determination of optimal dietary inclusions in poultry diets. This is due to the effect 

on performance and welfare when inadequate levels are supplied, the high cost of inorganic 

phosphates, and the detrimental effect on the environment when phosphorus is oversupplied.   

The mineral content of a feed ingredient or diet has little significance to an animal unless its 

biological availability is quantified (Peeler, 1972). Consequently, the variability of the phytate 

content of feed materials alongside intrinsic phytase activity (Eeckhout and de Paepe, 1994); 

and variability in non-phytate phosphorus concentration (Shastak and Rodehutscord, 2013) is 

known to affect the phosphorus availability of a feed material. Other known factors include 

the phosphorus source, dietary levels of other nutrients (e.g. calcium and vitamin D) and their 

relationship with phosphorus. The effects of the environment, age, sex, strain, and health 

status of the animal have also been identified as factors that can affect phosphorus availability 

of a feed material (Applegate and Angel, 2008). 

Shastak and Rodehutscord (2013) recently published a comprehensive review of the historical 

development of estimating phosphorus availability, and outlined the following types of 

measurements groups:  

I. Qualitative measurements 

II. Quantitative measurements 

III. In vitro measurements
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Table 1.1. Calcium and phosphorus content of common plant feedstuffs (NRC, 1994) 
 

Feedstuff 
Calcium 

content (%) 

Total 
phosphorus 
content (%) 

Non-phytate 
phosphorus 
content (%) 

Non-phytate 
phosphorus 
(% of total 

phosphorus) 
Lucerne meal, 17% CP 1.44 0.22 0.22            100.0 
Barley 0.03 0.36 0.17 47.2 
Buckwheat 0.09 0.32 0.12 37.5 
Canola meal, 38% CP 0.68 1.17 0.30 25.6 
Maize gluten meal, 60% CP - 0.50 0.14 28.0 
Maize, grain 0.02 0.28 0.08 28.5 
Cottonseed meal, 41% CP 0.15 0.97 0.22 22.6 
Distillers dried grains 0.10 0.40 0.39 97.5 
Distillers dried solubles 0.35 1.27 1.17 92.1 
Oat, grain 0.06 0.27 0.05 18.5 
Groundnut meal 0.20 0.63 0.13 20.6 
Pearl millet 0.05 0.32 0.12 37.5 
Rice bran 0.07 1.50 0.22 14.7 
Rice polishings 0.05 1.31 0.14 10.7 
Rye, grain 0.06 0.32 0.06 18.8 
Safflower meal, 43% CP 0.35 1.29 0.39 30.2 
Sesame meal, 43% CP 1.99 1.37 0.34 24.8 
Soybean meal, 44% CP 0.29 0.65 0.27 41.5 
Soybean meal, 48% CP 0.27 0.62 0.22 35.4 
Soy protein concentrate 0.02 0.80 0.32 40.0 
Sunflower meal, 45% CP 0.37 1.00 0.16 16.0 
Wheat bran 0.14 1.15 0.20 17.4 
Wheat middlings 0.12 0.85 0.30 35.3 
Wheat, hard winter 0.05 0.37 0.13 32.0 
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1.4.1. Qualitative measurements 

Qualitative measurements are based on methods that determine the biological value of a 

phosphorus source. These are usually determined by feeding chicks varying amounts of test 

phosphates in a phosphorus deficient bioassay diet for 2-3 weeks (Coon et al., 2007); although 

a range of experimental period (10 - 28 days) have been reported by other investigators 

(Shastak and Rodehutscord, 2013). Usually, maize - soybean meal diets, which are known to 

have low phosphorus availability and intrinsic phytase activity, are used (Kornegay et al., 1996). 

Dietary phosphorus concentration could be further reduced by using feed ingredients with 

low phosphorus content, e.g. potato protein (Rodehutscord and Dieckmann, 2005).  

Qualitative measurements are conducted within a set of pre-qualifying conditions listed in the 

report of Nelson and Peeler (1961): a sensitive bird response criterion is measured using a 

suitable phosphate standard to compare the dose response of the test phosphate in animals 

fed a phosphorus deficient diet, and ensuring the added levels of phosphorus does not exceed 

the phosphorus requirement. A reference phosphate standard (e.g. from any of the phosphate 

sources I – III listed in Table 1.2) is assigned a biological value of 100, i.e. 100% available. 

Based on the response to growth performance parameters or body measurements (e.g. FCR, 

body weight gain or bone ash), the test phosphate is assigned a biological value relative to the 

standard phosphate. Phosphorus availability is then calculated by difference or regression. 

Phosphorus bioavailability assays thus measures the chosen response criteria specific to a 

chosen phosphorus standard. It is a relative value and does not provide actual phosphorus 

availability. This was further buttressed in the review of Sullivan and Douglas (1990) who 

identified various factors affecting phosphorus bioavailability assays: selection of response 

criteria, a reference standard of phosphate selected, diet composition, calcium and phosphorus 

nutrient ratio, animal species type and length of the bioassay.   
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Table 1.2. Common sources of calcium and phosphorus (Waldroup, 1996) 
 

Source  % Ca % P 

Limestone 
Oyster shell 

 38 
38 

    - 
    - 

I Calcium phosphate A. Natural or unprocessed 38     - 
 Low fluorine rock phosphate 32 - 35 12 - 15 
 Curacao phosphate (guano) 36 13 - 15 
 Colloidal phosphate (soft phosphate) 18 - 20   9 - 10 
 Bone meal, steamed 23 - 26   8 - 18 
 B. Chemically processed   
 1. Dicalcium phosphates   
 Di/mono calcium phosphates 15 - 23 18 - 23 
 Mono/dicalcium phosphates 15 - 18 20 - 21 
 Precipitated dicalcium phosphates 24 - 26 18 - 22 
 2. Defluorinated phosphates 30 - 36 14 - 18 
    
II Sodium phosphates    
 Monosodium phosphate     - 25 
 Disodium phosphate     - 21 
 Sodium tripolyphosphate     - 25 
III Ammonium 
phosphates 

Monoammonium phosphate     - 24 

 Diammonium phosphate     - 20 
IV Phosphoric acid   23 - 24 
Fish meals  2 - 14   2 - 7 
Meat and bone meals  4 - 14   2 - 10 
Poultry by-product meals  2 - 10   2 - 8 

 
 
 

Although the slope-ratio assay is a common procedure for evaluating the bioavailability of 

phosphorus sources (Muir et al., 1990), analysis of linear slopes may not be appropriate. 

Potchanakorn and Potter (1987) evaluated the biological values of various phosphorus sources 

in young turkeys, found exponential increases rather than linear responses and therefore 

adapted the nonlinear regression model to estimate phosphorus biological value. The use of 

non-linear regression models was proposed by Potter et al. (1995) in order to overcome the 

assumption of linearity when a wide range of phosphorus levels are tested. 
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1.4.1.1. Bone measurements 

 

The bone plays a functional role in poultry by providing the framework needed to support 

muscle mass, and to protect vital organs (Korver et al., 2004). It accounts for 80% the total 

phosphorus contained in the bones of growing birds, and thus its evaluation is considered an 

important criterion for estimating phosphorus availability (De Groote and Huyghebaert, 

1997). In poultry, it has also been demonstrated that the calcium and phosphorus content in 

the bone increases in response to increases in dietary phosphorus content (Venäläinen et al., 

2006); and that tibia ash percentage is reduced when dietary phosphorus is reduced (Watson 

et al., 2006). Also, significant health and welfare issues have been reported when phosphorus 

deficient diets were fed to broilers demonstrated by poor bone mineralisation, considerable 

leg deformities and lameness, and a high incidence of broken bones after processing (Driver 

et al., 2006a).  

The various bone parameters that have been used for evaluating phosphorus availability 

include bone mineral content (Shang et al., 2015); bone ash concentration (Cheng and Coon, 

1990); bone densitometry (Shastak et al., 2012a); bone breaking strength (Kim et al., 2004; 

Shaw et al., 2010); and bone ash (Atteh and Leeson, 1983; Hall et al., 2003). According to the 

review of Shastak and Rodehutscord (2013), bone ash, bone phosphorus content, bone 

strength and bone mineral density are the most useful bone criteria used in poultry to assess 

phosphorus supply. 

1.4.1.1.1. Bone ash  

Bone ash content has been widely used to evaluate the skeletal status of poultry (Kim et al., 

2004; Park et al., 2003), and it is the preferred criterion for estimating phosphorus availability 

due to its simplicity (Sullivan and Douglas, 1990). The ash content of various poultry bones 

that have been evaluated include the femur (Dickey et al., 2012; Hemme et al., 2005), tibia 

(Onyango et al., 2003, Coon et al., 2007; Olukosi and Fru-Nji, 2014), feet (Garcia and Dale, 
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2006; Shastak et al., 2012a) and toe (Yan et al., 2005a; Karimi et al., 2013). The use of the middle 

toe was proposed as an alternative assay (Baird and MacMillan; 1942) as it eliminates the time 

and labour required in traditional bone ash methods. It was used in some early phosphorus 

bioavailability studies, which also concluded that toe ash was as sensitive as tibia ash (Fritz et 

al., 1969; Potter, 1988). However Shastak et al. (2012a) observed it is not always clear from 

published literature which particular toe or joint the toes were removed when evaluating 

phosphorus availability, leading to ambiguity in interpreting results. The authors proposed this 

limitation could be avoided by using the whole foot, which provides a larger sample volume 

with similar ease of processing compared to the toe. The whole foot ash assay has been 

investigated as an alternative to toe or tibia ash (Yan et al., 2005a; Garcia and Dale, 2006) and 

has been shown to be equally reliable in assessing phosphorus availability. Nonetheless, the 

tibia ash assay is the most commonly used in evaluating bone mineralisation in poultry 

research (Hall et al., 2003). Despite their long and well-established use (Gillis et al., 1954; 

Nelson and Walker, 1964), the use of bones in phosphorus availability assays has been 

criticised due to the lengthy and laborious preparation processes required prior to ash 

determination. 

A review of the available literature (Table 1.3.) shows common divergences in processing 

methods employed in the tibia bone ash methodology. Variations in processing methods may 

affect results (Orban et al., 1993) and may have significant consequences, especially when 

comparing bone ash methods from different studies.  
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Table 1.3. A review of methodologies used in determining bone ash content in broilers 
 

Sex and strain 
 Orientation 
 (left or right) 

Storage 
temperature 
(°C ) Tissue removal 

Drying 
preparation Ash preparation  

Sampling 
age (day) Reference 

Unsexed Ross 
broiler chicks 

 Right tibia and 
right foot 

-20 Manually and 
enzymatically 
removed 

30oC for 48h then 
105°C for 24h 

Ashed at 600°C for 24h 11 and 25 Shastak et al., 
2012a 

Ross 708 male 
broiler chicks 

Left tibia -20 1NS 100°C for 24h Defatted in petroleum ether. Ashed 
at 600°C overnight 

21 Walk et al., 
2012 

Ross 308 broiler 
chicks 

Toes and left 
tibia 

-20 Manually 
removed 

100°C for 24h Defatted in petroleum ether for 
20h. Ashed at 600°C for 24h 

21 Tang et al., 
2012 

Cobb 500 breeder 
pullets 

Tibia bones  -20 1NS  Cut length-wise 
and oven dried 

Ashed at 600°C for  16h 315 Ekmay et al., 
2012 

Lohmann pink-shell 
hens 

Left tibia 1NS Manually 
removed 

Determined on a 
moisture-free, fat-
free basis 

Ashed at 600°C for 24h 17 and 20 Lei et al., 2011 

Unsexed Hubbard 
chicks 

Toe and tibia ash 1NS 1NS  Dried to a 
constant weight at 
100oC  

Ashed in a muffle furnace at 600°C 
for 6h 

42 Khan et al., 
2010 

Cobb male broiler 
chicks 

Left tibia 1NS Manually 
removed, 
including 
cartilage caps 

55°C for 72h Ashed at 550°C for 3h 42 Barreiro et al., 
2009 

Vencob  female 
broiler chicks 

Tibia bones  1NS Manually 
removed 

100°C for 3h Bones were soaked in petroleum 
ether for 48h and ashed at 600°C 
for 2h 

17 and 35 Rama Rao et al., 
2006 

1Not stated.
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1.4.1.1.2 Bone breaking strength 

Rath et al. (2000) defined bone strength as the ability to endure mechanical stress. The degree 

to which a bone mineralises is known to affect its strength (Reichmann and Connor, 1977; 

Boivin and Meunier, 2002). Increase in bone mineralisation is associated with an increase in 

bone strength and conversely decrease in bone mineralisation is associated with a decrease in 

bone strength (Shim et al., 2012a). 

Breaking strength is the load at break, and it is defined as the total of all forces and moments 

applied to a bone (Nigg and Grimstone, 1994). It is related to the ultimate load or stress at 

which bone will break. Rowland et al. (1967) examined the relationship between bone breaking 

strength and dietary calcium and phosphorus content and found a 0.98 correlation coefficient 

between average tibia ash and average bone breaking strength, leading the authors to conclude 

that bone breaking strength was as good as tibia ash in indicating phosphorus availability. 

Bone breaking strength has since been used by various researchers as an indicator of 

phosphorus availability in poultry with good reliability (Ruff and Hughes, 1985; Sohail and 

Roland 1999; Coon et al., 2007; Rousseau et al., 2012). This however is in contrast to the 

findings of other investigators (Onyango et al., 2003; Ravindran et al., 1995; Shastak et al., 

2012a) who reported that bone breaking strength was not a sensitive assay. Furthermore, 

Korver et al. (2004) reported bone breaking strength measurements ex vivo may not accurately 

reflect resistance to fracture in vivo. Different assay preparation procedures and instruments 

are known to affect results (Orban et al., 1993) and may explain the differences reported in the 

literature.  

Species differences in bone strength have been reported (Rowland et al., 1972), while other 

authors (Merkley, 1981; Knowles and Broom, 1990; Fleming et al., 1994) reported significantly 
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weaker bones in caged birds compared with floor-reared birds suggesting husbandry has an 

additional influence on bone strength. Knowles et al. (1993) found that bone strength 

increased with bird weight, but the tendency of being broken during transportation and 

handling also increased with weight, leading the authors to conclude that the increase in bone 

strength due to weight was not sufficient enough to prevent additional damage suffered by 

heavier birds.  

Poor bone mineralisation can increase the incidence of bone deformity and fractures thereby 

affecting bird welfare. This comes at a cost as fragile bones are correlated with bone fragments 

in meat products and discoloured meat which is less appealing to consumers (Rath et al., 2000). 

The importance of maximising bone mineralisation for improved bone strength and a 

reduction in leg problems was noted in the study of Cheng and Coon (1990). Factors affecting 

bone strength in poultry include inherited genetic traits, infectious disease, ingestion of toxins, 

growth rate, gender, nutrition, physical activity (influenced by housing) and hormonal 

function, and are further elaborated in the report of Rath et al. (2000). 

1.4.1.1.3 Bone densitometry 

The use of invasive techniques for assessing nutrient bioavailability (e.g. bone ash and 

strength) requires that animals are sacrificed before such assays are performed. On the other 

hand, the use of non-invasive techniques allows for the repeated measurements of bone 

mineralisation in vivo over an extended period without necessarily sacrificing animals. This is 

particularly useful in studies aimed at age-related investigation of bone development, and in 

breeding programmes for the identification of genetic traits linked to leg health in live birds. 
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The improved method of measuring mineral content of bones in humans in vivo by direct 

photon absorption techniques (Cameron and Sorenson, 1963) was adapted to measure bone 

mineral content in chickens (Babcock et al., 1965). Using this technique, bone mineral content 

is evaluated by measuring the transmission of a mono-energetic photon through a bone; and 

has subsequently been used in both in vitro (Cantor et al. 1980) and in vivo studies (Akpe et al., 

1987). 

A more developed technique, the dual-energy X-ray absorptiometry, has also been used to 

measure bone mineral density in poultry (Hester et al., 2004; Shang et al., 2015). Using this 

technique, Onyango et al. (2003) fed broilers varying dietary calcium and phosphorus content 

and reported a high correlation coefficient between bone ash, and bone mineral content or 

bone mineral density (0.92 and 0.93 respectively). The authors concluded it was faster than 

the bone ash methodology. A limitation of the dual-energy X-ray absorptiometry method 

however is that bone mineral density is determined in 2 dimensions (g/cm2).  

Quantitative computer tomography, which measures bone density per unit volume (g/cm3), 

has also been used in the study of bone mineral density in poultry (Jendral et al., 2008; 

Silversides et al., 2012). It provides more precise details on bone mineral density and cross-

sectional image compared to dual-energy X-ray absorptiometry measures (Kim et al., 2011). 

Shastak et al. (2012a) used the quantitative computer tomography technique in broilers and 

reported tibia ash was well correlated with total bone mineral density in 3-week old but not in 

5-week old broilers (r2 = 0.78 and 0.39 respectively), and alluded the observed differences to 

the higher fat content of bones in the 5-week old broilers. 
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1.4.1.2. Blood parameters 

 

It has been demonstrated that the plasma concentration of phosphorus in broilers is related 

to dietary phosphorus concentration (Miles et al., 1982). Linear increases in plasma 

phosphorus concentration as a result of increases in dietary phosphorus have also been 

reported (Hurwitz, 1964; Williams et al., 2000a). Shafey and McDonald (1991) reported that 

high dietary calcium reduced plasma phosphorus but increased total plasma calcium; while 

Perney et al. (1993) and Sebastian et al. (1996a) reported an increase in dietary phytase resulted 

in increased plasma phosphorus concentration. This was corroborated by the findings of 

Viveros et al. (2002) who also reported that increasing phytase supplementation increased 

plasma phosphorus concentration. Although it has been suggested that plasma phosphorus is 

a useful measure of relative phosphorus availability (Hurwitz, 1964), Shastak et al. (2012a) 

evaluated phosphorus availability from 2 phosphate sources and reported serum phosphorus 

was not sensitive in differentiating the phosphate sources compared to the bone ash assay. 

The authors concluded the blood assay was not very useful for evaluating phosphorus 

availability due to the complex mechanism involved in the regulation of plasma concentration.  

1.4.1.3. Feed utilisation and growth rate 

 

Feeding broilers below their dietary phosphorus requirement negatively impacts on body 

weight gain and feed utilisation (Fritz et al., 1969; Moran and Todd, 1994). Subsequently, body 

weight gain and feed efficiency have been used for evaluating the relative availability of 

phosphorus sources (Sullivan and Douglas, 1990). Potter et al. (1995) examined the 

bioavailability of various phosphorus sources and reported body weight gain and toe ash 

provide were equally sensitive in assessing phosphorus availability in broilers. This was 

corroborated by the report of Ravindran et al. (1995) who also evaluated various response 
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criteria used in assessing phosphorus availability in broilers and found body weight gain and 

toe ash to be equal to, or more sensitive than tibia ash in assessing phosphorus availability. 

This is however in contrast with the findings of other authors.  

Nelson and Walker (1964) in a meta-analysis of 82 experiments concluded growth was less 

sensitive than tibia ash for evaluating phosphates, and even less accurate at levels near 

requirement. In agreement, Huyghebaert et al. (1980) concluded that neither body weight gain 

nor feed conversion could be used as indicators of phosphorus availability. Similarly, Shastak 

et al. (2012b) reported that no significant differences in feed intake or growth were found in 3 

and 5 weeks old broilers given graded levels of two phosphate mineral sources: anhydrous 

monosodium phosphate and anhydrous dibasic calcium phosphate. The reports from these 

authors suggest growth performance alone is not sufficiently sensitive to accurately assess 

phosphorus requirements. 

1.4.2. Quantitative measurements: retained and digestible phosphorus 

Peeler (1972) identified that the bone, blood and growth criteria used for measuring 

phosphorus availability were merely qualitative, as values are relative to the criteria chosen. 

Coon et al. (2002) and Leske and Coon (2002) further elaborated that although relative 

bioavailability assays provide comparison data specific to various standards, they are of limited 

value as they fail to determine the amount of phosphorus retained, and therefore do not 

properly account for the phosphorus excreted. The three quantitative assay types commonly 

used in quantifying phosphorus availability in poultry are comparative whole body phosphorus 

analysis, phosphorus retention studies and prececal digestibility. 
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1.4.2.1. Whole body phosphorus analysis 

Phosphorus retention, determined by measuring the phosphorus content in the whole body 

has been examined by different investigators (Nieß et al., 2005; Shastak et al., 2012c; Van 

Krimpen et al., 2013). This is done by determining the phosphorus concentration in 

homogenised samples of the whole body, and calculating the difference between the start and 

the end of a feeding period. It is a process thought to be precise and has the advantage of not 

requiring a metabolic cage, although the laboratory efforts for getting representative samples 

are high (Rodehutscord, 2009).  

1.4.2.2. Retained phosphorus  

Leske and Coon (2002) used acid insoluble ash as an indigestible marker in a 5-day bioassay 

and proposed the use of retained phosphorus assay which quantifies ingested and excreted 

phosphorus. They suggested phosphorus retention values would account for phosphorus 

derived from phytate sources as well as non-phytate phosphorus sources, and would provide 

precise information on the amount of phosphorus retained irrespective of the source material. 

According to their report, retainable phosphorus was defined as the difference between the 

amount of phosphorus ingested and the total voided from the gastrointestinal and urinary 

tracts at a particular phosphorus intake and stage in bird development with the following 

equation: 

Total phosphorus retained = non-phytate phosphorus retained + phytate phosphorus 
                                              retained 
 
 

Phosphorus retention (%) = (TPI – TPE) x 100 
                                                   TPI 
 
Where: 
TPI = total phosphorus ingested  
TPE = total phosphorus excreted 
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Although the retained phosphorus assay has been used extensively to evaluate phosphorus 

availability in poultry (Rodehutscord and Dieckmann, 2005; Manangi and Coon, 2008), a 

major drawback is that it is dependent on measuring the phosphorus content in the excreta. 

This requires considerable experimental effort (Rodehutscord, 2009), prompting Shastak and 

Rodehutscord (2013) to propose the use of the prececal digestibility assay. 

1.4.2.3. Prececal digestible phosphorus 

The prececal digestibility assay which is an established method for evaluating protein quality 

in poultry (Ravindran et al., 1999) has also been used to evaluate phosphorus availability in 

poultry (Van der Klis et al., 1997). This assay is thought to have an advantage over the retained 

phosphorus assay due to its simplicity of not requiring a metabolic cage. Also values are not 

affected by post-ileal microbial activity (Rodehutscord, 2009). It involves feeding birds graded 

levels of phosphorus formulated below requirement and with an indigestible marker included, 

and collecting digesta from birds post-mortem. The section between Meckel's diverticulum 

and 2 cm prior to the ileo-caeco-colonic-junction is used and digesta collected at the terminal 

two-thirds. The collected digesta is frozen, dried, ground and analysed for nutrient according 

to standard official methods. 

Prececal digestibility (%) is calculated according to the following equation: 

 100 – 100 x  [(TiO2Diet x PDigesta)/(TiO2Digesta x PDiet)],  

where: 

TiO2Diet and TiO2Digesta =  the analysed concentration of TiO2 in the diet or excreta (g/kg). 

PDiet and PDigesta = the analysed concentration of phosphorus in the diet or digesta (g/kg). 
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Shastak and Rodehutscord (2015) recently investigated if previously published phosphorus 

availability data based bone criteria and relative bioavailability could be recalculated to produce 

a single phosphorus availability table of values. This was however not successful as published 

quantitative data had a wider range of phosphorus availability compared with the recalculated 

relative bioavailability values.  

1.4.2.4. WPSA standard protocol for determining available phosphorus in broilers 

The lack of consensus on a standardised methodology for determining phosphorus 

availability prompted the Working Group 2 on Nutrition of the European Federation of 

branches of the World Poultry Science Association to propose a standard assay protocol for 

determining available phosphorus in broilers. The prececal phosphorus digestibility assay was 

recommended, and a standard protocol produced (WPSA, 2013). The compilation of a feed 

table based on the preceal phosphorus digestibility assay was also proposed by the Working 

Group. 

1.4.3. In vitro measurements 

The use of in vitro tests was explored with the aim of obtaining results based on methods which 

were quicker and not as expensive as the standard bioassays (Shastak and Rodehutscord, 

2013). 

1.4.3.1. Solubility tests 

The evaluation of phosphorus availability by testing the solubility of phosphate sources in 

various solvents such as hydrochloric acid, citric acid, neutral ammonium citrate has its 

historical background (Hill et al., 1945). Day et al. (1973) however, found acid solubility was 

not well correlated with biological availability, and concluded it could not be used to predict 

bioavailability. A low correlation between water solubility and relative bioavailability of feed 
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phosphates was also reported in the study of Sullivan et al. (1992). Waldroup et al. (1999) who 

cited the work of other investigators (Sullivan et al., 1992; Coffey et al., 1994) related solubility 

tests with bioavailability values and concluded results were not consistent. This is in agreement 

with the review of Shastak and Rodehutscord (2013) who concluded that the solubility of 

phosphate sources in vitro solubility is not representative of availability in vivo. 

1.4.3.2. Near-infrared reflectance spectroscopy  

Near-infrared reflectance spectroscopy (NIRS) which works based on the principle of 

selective absorption of electromagnetic radiation (from 800 – 2500 nm) in accordance with 

the characteristic vibration frequencies of functional groups has been used to evaluate the 

nutrients of feed ingredients and nutrient analysis of mixed feed. Its potential for analysing 

agricultural commodities was first described by Bengera (1968) and has for long been used to 

evaluate nutritional values of animal feed (Hymowitz et al., 1974; Miller et al., 1978, Delwiche 

et al., 2006). It has the advantage of providing quick estimates of the nutritional values of feed 

ingredients, and has been proven to be economical without reliance on chemical analysis 

unlike traditional time consuming wet chemistry laboratory assays. It also serves as a quality 

control tool in high paced feed manufacturing plants where results are needed quickly before 

dispatch. 

The potential for using NIRS to measure total phosphorus and phytate phosphorus in wheat 

by-products and corn gluten feed was demonstrated in the study of DeBoever et al. (1994). 

Smith et al. (2001) determined the phosphorus content in poultry excreta and found strong 

coefficients of determination between chemical assays and NIRS for total phosphorus and 

phytate phosphorus (0.91 and 0.86 respectively). However, the wide range of relatedness 

between total phosphorus and phytate phosphorus NIRS values for different feed ingredients 
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(Tahir et al., 2012) and poultry manure (Reeves, 2001) raises the question about the reliability 

of using such values for practical feed formulation.  

Williams (1975) elaborated on the factors which affect the accuracy of NIRS assay in 

determining the chemical content of cereal and feed grains. These include mean particle size 

and particle size distribution (affected by processes involved in grinding and mixing), the 

nature of ingredient analysed, and the seasonal effect in which they are grown. Valdes et al. 

(1985) elaborated on the difficulty in determining the chemical analysis of mixed feed using 

NIRS due to the complex chemical and physical properties of feed which may affect 

reflectance. The authors emphasised the importance of accurate standards which depends on 

the accuracy of wet chemistry procedures and concluded NIRS could be a useful tool provided 

precautions are taken with sample preparation and calibration using wet chemistry analysis.  

1.5. Phosphorus metabolism  

A variety of factors affecting phosphorus and calcium absorption have been extensively 

reviewed (Shafey, 1993; Bar et al., 2003). These include the physical and chemical form and 

concentration of calcium and phosphorus in diets, viscosity of digesta, passage rate of feed, 

gastrointestinal pH, chelating agents and mineral interactions. The variability in the 

phosphorus content of feed ingredients, and poor digestibility of plant phytate phosphorus 

by poultry (Bedford, 2000; Adeola and Cowieson, 2011) are other important factors affecting 

the metabolism of phosphorus. Sodium-dependent phosphate transporter IIb (NaPi-IIb) 

protein also plays an important role in intestinal phosphorus absorption in poultry, regulated 

by vitamin D3 and dietary phosphorus (Murer et al., 2004). Furthermore, phosphorus 

availability required to meet metabolic function depends on the efficiencies of other 

physiological processes such as intestinal absorption, glomerular filtration, renal tubular 
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reabsorption, the rate of transfer from blood to bone, and intestinal endogenous losses.  These 

are modulated by several hormones, mainly the parathyroid hormone and the hormonal form 

of vitamin D3 (Li et al., 2016a; Figure 1.1). 

The regulation of plasma phosphorus homeostasis, which is traditionally thought to involve 

the parathyroid hormone and 1,25-dihydroxycholecalciferol (1,25-(OH)2D3), and more 

recently the fibroblast growth factor 23 (FGF23) is controlled by a counter-regulatory 

feedback mechanism involving the intestine, bone, kidney and parathyroid gland (Rao and 

Roland, 1990; Sapir-Koren and Livshits, 2011). High dietary phosphorus intake induces the 

expression of FGF23, which increases renal phosphorus excretion. Subsequently, increased 

FGF23 decreases the synthesis of 1,25-(OH)2D3 by the kidneys as well as the synthesis and 

secretion of parathyroid hormone which reduces intestinal absorption of phosphorus. In 

response to low dietary phosphorus leading to low plasma phosphorus, the thyroid gland is 

stimulated to produce parathyroid hormone which increases the synthesis of 1,25-(OH)2D3 by 

the kidneys, and triggers bone resorption and absorption of phosphorus and calcium from the 

intestines (Norman, 1987).  

In response to low dietary calcium, the parathyroid gland is stimulated to secrete parathyroid 

hormone which then stimulates the production of renal 1α-hydroxylase prompting the 

synthesis of 1,25(OH)2D3. This in turn regulates the DNA transcription of calcium-binding 

proteins which absorbs calcium from the intestines. 1,25(OH)2D3 is also known to increase 

phosphorus absorption from the intestines, and calcium and phosphorus reabsorption from 

the kidneys and bones (McDonald et al., 2011).  
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The described homeostatic response to calcium and phosphorus intake in the bird occurs as 

a result of the antagonising relationship between calcium and phosphorus concentrations in 

the intestine (Liu et al., 2013). The homeostatic control of phosphorus and calcium in poultry 

mediated through the action of the parathyroid hormone on 1,25-(OH)2D3, as affected by the 

dietary concentration of calcium and phosphorus, vitamin D and NaPi-IIb is further 

elaborated in the report of Proszkowiec-Weglarz and Angel (2013) and is discussed briefly.  

 

 

 

          

                             Figure 1.1. Phosphorus metabolism (Li et al., 2016a: p.3) 
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1.5.1. Calcium and phosphorus  

Calcium metabolism is affected by dietary levels of phosphorus (Edwards and Veltmann, 

1983). Calcium and phosphorus are liberated from the bone, particularly when birds are fed 

low calcium diets, and during egg production when there is an increased demand for calcium 

for shell formation. This process is controlled by the parathyroid hormone secreted by the 

parathyroid gland, which causes resorption of bone, thereby liberating calcium in order to 

meet requirement. As calcium is combined with phosphorus in bone in the form of 

hydroxyapatite, phosphorus is also liberated and excreted.  

A normal commercial chick diet has an approximate calcium:phosphorus ratio of 2:1, and it 

is important that this ratio is maintained as an abnormal ratio may be as harmful as a deficiency 

of either element in the diet (Waldenstedt, 2006). Calcium deficient diets, or high phosphorus 

diets have been linked to a high incidence of rickets and tibial dyschondroplasia (Long et al., 

1984; Riddell and Pass, 1987). The current calcium requirement for broilers (NRC, 1994) for 

the starter growth phase (0 - 21d), grower growth phase (21- 42d) and finisher growth phase 

(42 - 56d) are 1.00%, 0.90% and 0.80% respectively. 

The effect of calcium inclusion on phosphorus utilisation is well documented. Calcium readily 

precipitates phytate, forming a calcium-phytate complex which is insoluble in the intestine 

(Nelson and Kirby, 1987), thereby rendering calcium unavailable for absorption (Sebastian et 

al., 1996b). Increasing dietary calcium concentration decreases phytate phosphorus 

digestibility (Scheideler and Sell, 1987; Plumstead et al., 2008) with consequent negative effects 

on feed intake, weight gain, efficiency of feed utilisation and tibia ash concentration 

(Letourneau-Montminy et al., 2010). Similarly, feeding broilers highly soluble forms of dietary 

calcium have also been reported to have a negative impact on feed intake, body weight gain, 
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tibia ash and bone phosphorus concentration (Walk et al., 2012). In contrast, decreasing dietary 

calcium concentration increases phytate phosphorus digestibility in chicks (Mohammed et al., 

1991; Selle et al., 2009). Increasing dietary calcium, and widening calcium:phosphorus ratios 

decreases apparent phosphorus utilisation from dietary phytate in chicks (Hurwitz and Bar, 

1971; Qian et al., 1997).  

1.5.2. Vitamin D  

Vitamin D is involved in the absorption of calcium and phosphorus (Jande and Dickson, 1980) 

and its metabolism is a complex process involving several metabolites. Supplied through the 

feed, vitamins D2 (ergocalciferol) and D3 (cholecalciferol) are absorbed from the small 

intestines and are transported in the blood to the liver where they are converted into 

25(OH)D3 by 25-hydroxylase. 25(OH)D3 is then transported to the kidneys where it is 

converted by 1α-hydroxylase (Jones et al., 1998) into the most biologically active form of 

vitamin D3: 1,25-dihydroxycholecalciferol (1,25(OH)2D3). 1,25(OH)2D3 functions to control 

calcium and phosphorus homoeostasis by acting on the intestines and kidneys, and regulating 

the secretion of parathyroid hormone produced in the parathyroid gland (Pike et al., 2007). 

Once ingested, phosphorus homoeostasis is heavily regulated by the rate of intestinal 

absorption and renal excretion. It is absorbed across the brush border membranes in the small 

intestine and kidney (Renfro and Clark, 1984; Quamme, 1985) through a sodium-dependent 

process of 3 classes of sodium-phosphate (NaPi) cotransporters: the types I, II and III 

(Proszkowiec-Weglarz and Angel, 2013). These represent 15, 84 and 1% of the total mRNA 

expressed by these transporters respectively (Miyamoto et al., 1997; Tenenhouse et al., 1998). 

The NaPi-IIb accounts for over 90% of the sodium-dependent phosphate transport in 

mammals (Sabbagh, 2009). Adedokun et al. (2012) highlighted the importance of gut health in 
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the expression of the NaPi-IIb gene in orally gavaged broiler chickens treated with mild 

coccidial vaccines. Significantly higher NaPi-IIb gene expression was observed in the 

challenged group of birds despite having the same adequately balanced diets with the control 

(unvaccinated) birds. 

1.5.3. Sodium-phosphate cotransporters 

The type I NaPi cotransporter was first identified in the kidney cortex of the rabbit (Werner 

et al., 1991) and then other species including poultry (Werner and Kinne, 2001). It is not 

specific for sodium-dependent phosphate transport (Busch et al., 1996) and its precise 

physiological role in phosphate homoeostasis is not well defined (Zhao and Tenenhouse, 

2000). The characteristics of the type I NaPi cotransporter suggests it does not play a 

significant role in sodium-phosphate transport in the brush border membranes (Yan et al., 

2007). 

The roles of type III NaPi cotransporters are also not well defined in avian species 

(Proszkowiec-Weglarz and Angel, 2013) but have been identified in most mammalian tissues. 

They are further classified into two sub-groups: PiT1 found in the intestinal brush border 

membrane, and the PiT2 found in the renal brush border membrane (Breusegem et al., 2009; 

Villa-bellosta et al., 2009). 

The type II NaPi cotransporters (IIa, IIb and IIc) are the most abundant and their expression 

have been determined for all the three sub types in mammals and chicks (Custer et al., 1994; 

Hilfiker et al., 1998; Segawa et al., 2002). Of particular importance is the NaPi-IIb cotransporter 

due to its role in intestinal phosphorus absorption and phosphorus homoeostasis. The 

molecular basis of the NaPi-IIb was first identified in the mouse (Hilfiker et al., 1998) and 
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soon after in humans, rats and goats (Feild et al., 1999; Hashimoto et al., 2000; Huber et al., 

2000). Yan et al. (2007) cloned and characterised the chicken NaPi-IIb cotransporter 

homologue. In response to calcium/phosphorus restricted diets, the authors reported that the 

highest expression of the NaPi-IIb cotransporter mRNA was found in the duodenum 

followed by the jejunum and ileum.  

1.6. Phosphorus and skeletal health 

The majority of the phosphorus found in the body (about 80%) is stored in the bone, where 

it combines with calcium to form hydroxyapatite, the from which biological demands are met 

during bone turnover (Li et al., 2016a). Feeding inadequate dietary phosphorus has been 

directly related to poor bone mineralisation; and feeding adequate dietary phosphorus levels, 

as well as the use of feed additives such as of phytases and vitamin D known to improve 

phosphorus digestibility have been shown to improve bone mineralisation. Adeola and Walk 

(2013) demonstrated that increased phosphorus digestibility is directly related to improved 

bone mineralisation. However, the causes of leg disorders are complex and not usually 

attributed to a single factor (Butterworth, 1999).  

Skeletal diseases account for 2 - 8% mortality in fast-growing broilers (Thorp, 1994), and have 

been reported to cost the US broiler industry between $80 and $120 million annually (Sullivan, 

1994). They are of a serious welfare concern in broiler production (Venäläinen et al., 2006). 

Yogaratnam (1995) investigated the causes of carcass rejection in UK processing plants and 

found that 19.5% of rejected carcasses were related to leg health issues. In a moderately recent 

large scale UK study, 27.5% of broilers close to slaughter age showed poor locomotion, and 

3.3% were almost unable to walk (Knowles et al., 2008).  
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Leg disorders, deformity, lameness, leg weakness and leg health problems are terms which 

have been used synonymously to describe problems associated with the walking ability of 

birds (Whitehead, 1998; Butterworth, 1999; Dinev, 2012); and are considered a major welfare 

concern in broilers (Gentle, 2011). Yalçin et al. (1998) reported birds with poor walking ability 

have difficulties in reaching food and tend to have lower body weight when compared with 

birds with good walking ability. The UK Farm Animal Welfare Council requires animals to be 

free from discomfort under the Freedom framework for assessing welfare in animal 

production, but the pathology of leg disorders has been associated with pain (Brickett et al., 

2007a). Furthermore, the reports of McGeown et al. (1999) and Danbury et al. (2000) have 

shown that lame birds preferentially select diets containing analgesic compared to non-lame 

birds. 

1.7. Common causes of leg disorders in poultry 

There are many possible causes of leg disorders in poultry (Table 1.4) which makes it difficult 

to pinpoint causative factors, particularly as leg disorders may be of multi-factorial causes 

(Venäläinen et al., 2006). The causes may be of infectious or non-infectious origin, and have 

been reviewed by various authors in great detail (Leterrier and Nys, 1992; Thorp, 1994; Julian, 

1998; Butterworth, 1999; Dinev, 2012).  
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Table 1.4. Disorders affecting locomotion in broilers (Thorp, 1996) 
 

Clinical signs Histopathology  Likely cause  
Contributory 
factors  

 
Diagnosis 

Loss of motor 
function and upper 
motor neuron 
responses in the hind 
limbs 

Deformity of the 
thoracic spine 
causing spinal cord 
compression 
 
Infection of thoracic 
spine 

Spondylolisthesis 
Scoliosis 
 
 
 
 
Infectious 
spondylopathy 

Genetic  
 
 
 
 
Infection 
Staphylococci  
Fungi  

Histopathology of 
thoracic vertebrae 
and spinal cord  
 
 
 
Histopathology 
Bacteriology 
Mycology 

 
Loss of motor 
function and lower 
motor neuron 
responses in hind 
limbs.  

 
Demyelination of 
sciatic nerve  

 
Riboflavin deficiency 
Marek’s disease  

 
Dietary  

 
Histology of nerve 
Serology 
Virus isolation 

 
Severely lame. 
Difficulty in rising 
wing tips may be 
used for support  

 
Disintegration of 
proximal femur and 
tibia, confirmation by 
histology  

 
Femoral head 
necrosis, bacterial 
chondronecrosis 
(BCN) 

 
Infection 
Staphylococci E. coli, 
Salmonella, 
Chlamydia Reovirus? 
Adenovirus?  

 
Histopathology 
Bacteriology 
Virology 

 
Severely lame. Hot, 
swollen joints and/ 
or tendons  

 
Synovitis/ 
tenosynovitis 
Infected hocks  

 
Inflammation of 
tendon/ligament and 
sheaths  

 
Infection 
Staphylococci 
Reovirus 
Mycoplasma 
Adenovirus? 

 
Histology 
Bacteriology 
Virology Serology 

 
Bone deformity in 
the absence of 
growth plate 
thickening t 
displacement of 
gastrocnemius 
tendon  

 
Valgus (lateral) varus 
(medial) and/or 
torsional deformity, 
frequently of 
tibiotarsus or 
tarsometatarsus in 
the absence of 
growth plate 
abnormality  

 
Long bone deformity 

 
Genetic  
Exercise  
Diet  
Growth rate 
Unknown  

 
Measurement of 
bone torsion and 
angulation 

 
Bone deformity with 
thickened growth 
plates 

 
Thickening of 
growth plates in 
proximal tibiotarsus 
and/or 
tarsometatarsus as a 
result of 
accumulation of 
nonmineralized 
cartilage  

 
Dyschondroplasia  

 
Marginal 
hypocalcaemia 
Genetic 

 
Histopathology 

 
Long bone deformity 
with shortening and 
no thickening of 
growth plates  

 
Tibiotarsus and 
tarsometatarsus 
shortened. No effect 
on growth plate 
mineralisation 

 
Chondrodystrophy 

 
Dietary deficiency of 
manganese, 6choline, 
niacin, vitamin E, 
biotin, folic acid, or 
pyridoxine 
Mycoplasma Genetic 

 
Histopathology of 
growth plates and 
metaphyseal bone  
Undecalcified 
histology  
Bone ash analysis 
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1.7.1. Pathological factors  

Highlighting the impact of lameness on welfare, Butterworth (1999) gave a review of the 

pathologies of bacterial and viral infectious diseases known to cause lameness and highlighted 

the importance of understanding their pathologies in order to reduce the incidence of 

infection. The aetiology of common leg disorders is discussed briefly to better understand the 

possible causes of leg disorders in poultry. 

Bacterial chondronecrosis with osteomyelitis (previously known as femoral head necrosis and 

proximal femoral degeneration) has been identified as the most common cause of lameness 

in 25 - 45 day-old broilers in the UK (McNamee et al., 1998; McNamee and Smith, 2000). It 

occurs when Staphylococcus (usually S. aureus) overcomes the immune response and circulates 

through the blood, forming small abscesses and local metaphyseal bone necrosis (Reece, 

1992). It is characterised by lameness, lesions at the proximal end of the femur and tibiotarsus 

and mortality. As a result of rapid growth rate, the excessive stress exerted on the relatively 

immature epiphyseal and physeal cartilage of the affected bone creates clefts within the 

chondrocytes which are colonised by opportunistic bacteria (Wideman, 2016). An altered 

immune system as a result of viral infections, e.g. infectious bursal disease (Naqi et al., 1984) 

and pox virus (Schoemaker et al., 1998) have been reported as predisposing factors. Raising 

birds on wire flooring have been reported to give rise to incidences of bacterial 

chondronecrosis, particularly in males (Wideman, et al., 2013). Yogaratnam (1995) attributed 

a 0.5 - 0.7% loss to the total UK broiler production due to bacterial chondronecrosis, and this 

represents an annual loss of £4.7 million to the UK economy (Butterworth, 1999).  

Other infectious organisms identified as causative agents of lameness include those of 

bacterial origin: Escherichia (E.coli), Salmonella (S. enteritidis, S. typhimurium), Mycoplasma (M. 
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gallisepticum, M. synoviae); and those of viral origin, e.g. Reoviridae (genus Reovirus). These have 

been reported to cause one or more of the following conditions: bacterial chondronecrosis, 

arthritis, synovitis, tenosynovitis, chondordystophy and angular bone deformity (Gomis et al., 

1997; Morrow et al., 1997; Takase et al., 1987).  

1.7.2. Nutritional factors 

The role of nutrition in leg disorders in poultry has been widely researched over the years 

(Edwards, 1992; Whitehead, 1998; Edwards, 2000; Julian, 2005; Fleming, 2008) as an adequate 

dietary supply of nutrients is essential for proper bone formation.  The amount of important 

minerals and vitamins required for proper bone development (Table 1.5) stipulated by the 

National Research Council (NRC, 1994) was derived from a review of numerous experimental 

trials. 
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Table 1.5. Important minerals and vitamins required for bone formation (NRC, 1994) 
 

Nutrients1 0-3 weeks 
 
3-6 weeks 

Minerals   
Calcium (%) 1.00 0.90 
Non-phytate phosphorus 0.45 0.35 
Chlorine (%) 0.20 0.15 
Magnesium (mg)   600    600 
Potassium (%)  0.30 0.30 
Sodium (%)  0.20 0.12 
Zinc (mg)     40      40 
Manganese (mg)     60      60 
   
Fat soluble Vitamins2   
Vitamin A (IU) 1500   1500 
Vitamin D3 (IU)   200     200 
Vitamin E (IU)     10       10 
Vitamin K (mg)  0.50    0.50 
   
Water soluble vitamins   
Biotin (mg)  0.15    0.15 
Choline (mg) 1300   1000 
Folacin (mg)  0.55   0.55 
Niacin (mg)     35       30 
Pyridoxine (B6) (mg) 3.5 3.5 
Riboflavin (B2) (mg) 3.6 3.6 

1Expressed as % or as unit per kg diet; 90% dry mater. 
2IU Vitamin A = 0.3 µg retinal; IU Vitamin D3 = 0.025 µg cholecalciferol. 
 

1.7.2.1. The role of vitamins and minerals 

The role of various minerals and vitamins in proper bone development has for long been of 

interest to various researchers. Phosphorus plays an important role in proper bone 

development and mineralisation, and its deficiency is known to increase the incidence of 

mobility issues in birds (Proszkowiec-Weglarz and Angel, 2013). Calcium metabolism is 

affected by the dietary levels of phosphorus (Edwards and Veltmann, 1983). A deficiency of 

either calcium or phosphorus causes rickets; and high dietary concentration of either calcium 

or phosphorus which induces the deficiency of the other have been reported to cause tibial 
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dyschondroplasia in broilers (Riddell and Pass, 1987). The metabolism of phosphorus and its 

association with calcium has already been discussed in Sections 1.5 and 1.5.1. 

Vitamin A is involved in the continual renewal of light sensitivity of the retina, and plays a 

secondary role in the formation and protection of epithelial tissues and mucous membranes. 

Its deficiency has been reported to impair bone development and cause leg weakness in 

poultry (Lowe et al., 1957). The high dietary inclusion of vitamin A has been reported to induce 

growth depression with an increase in the incidence of gait abnormalities, impaired bone 

development and leg disorders (Tang et al., 1985). But reports are inconclusive on its effect on 

skeletal health. High inclusion of vitamin A was reported to increase the incidence of tibial 

dyschondroplasia (Veltmann and Jenson, 1986; Li et al., 2008) while other investigators 

(Ballard and Edwards, 1988; Whitehead et al., 2004) reported excessive dietary levels of vitamin 

A either reduced the incidence of tibial dyschondroplasia or had no effect.  

Vitamin E functions mainly as a biological antioxidant, protecting the cells against oxidative 

damage caused by free radicals but its deficiency leads to increased incidence of leg 

abnormalities (Summers et al., 1984) and muscular dystrophy resulting in poor mobility (Austic 

and Scott, 1991). Vitamin K is required for the post-transitional modification of osteocalcin, 

a protein associated with bone growth (Hauschka et al., 1989). Although deficiency of vitamin 

K does not impair initial bone development in growing chicks according to Lavelle et al. 

(1994), Fleming et al. (1998) reported its beneficial effect in improving cancellous bone volume 

at the proximal tarsometatarsus in 25-week old hens.   

According to the review of Bradshaw et al. (2002), the dietary deficiency of manganese, 

choline, vitamin E, folic acid, pyridoxine and zinc were reported to cause chondrodystrophy 

- a long bone deformity characterised by the shortening and thickening of growth plates. A 
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deficiency in vitamin B6 has been shown to cause stunted longitudinal bone growth (Masse et 

al., 1996); biotin deficiency has been associated with foot pad dermatitis (Harms et al., 1977); 

choline deficiency has been associated with tibial dyschondroplasia (Summers et al., 1984) and 

vitamin B2 deficiency linked to curled-toes paralysis (Jortner et al., 1987). 

The effect of electrolyte balance on skeletal health has also been reported by various authors 

and is thought to be due to the effect of dietary mineral concentration on the blood buffer 

capacity which impacts on bone mineralisation (Oviedo-Rondon et al., 2001). Sauveur and 

Mongin (1978) reported that excessive dietary chloride or ammonium chloride increased the 

occurrence of tibial dyschondroplasia; while sodium and potassium had an opposite effect. 

Replacing NaCl with NaHCO3 in the diet can reduce tibial dyschondroplasia (Julian, 1998). 

Halley et al. (1987) concluded high dietary anion relative to cation increased the incidence of 

tibial dyschondroplasia.  

1.7.2.2. Common skeletal disorders 

Rickets and tibial dyschondroplasia are two common skeletal disorders discussed as examples 

of nutritional disorders. Rickets is characterised by thickened and poorly mineralised growth 

plates and bones. Bones of affected birds are soft and break easily, leaving birds reluctant to 

move. Two forms of rickets have been reported. Hypocalcaemic rickets occurs due to calcium 

deficiency and it is characterised by the accumulation of proliferating chondrocytes (Jande and 

Dickson, 1980); while hypophosphataemic rickets occurs as a result of phosphorus deficiency 

and leads to the accumulation of hypertrophic chondrocytes with normal metaphyseal vessel 

invasion (Lacey and Huffer, 1982).  

Young broiler chicks are predisposed to the development of subclinical incidence of rickets 

due to their rate of skeletal growth and inadequate vitamin D3 metabolism (Bradshaw et al., 
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2002) which plays a role in the absorption of calcium and phosphorus (Jande and Dickson, 

1980). Vaiano et al. (1994) studied the age-related changes in blood concentration of 

1,25(OH)2D3 and reported chicks are not able to synthesise 1,25(OH)2D3 between 1-2 weeks 

of age. Bar et al. (1987) however suggested nutritionally inadequate diets may not always be a 

cause of rickets. For example, field rickets can occur when feed is contaminated with Fusarium 

spp, or through the ingestion of excess iron and aluminium which interferes with phosphorus 

utilisation (Edwards, 1992).  

Tibial dyschondroplasia usually occurs in the tibiotarsus and tarsometatarsus of fast growing 

birds. The effect of growth, electrolyte balance, dietary calcium and phosphorus ratio, 1,25, 

(OH)2D3, ascorbic acid and Fusarium spp have been cited as contributory factors to the 

incidence of tibial dyschondroplasia in poultry (Elliot and Edwards, 1994; Praul et al., 2000; 

Rennie et al., 1993; Wu et al., 1993). It is characterised by impaired endochondral ossification 

and the presence of a mass avascular hypertrophic cartilage in the posteromedial section of 

the tibial metaphysis of meat type poultry (Lowther et al., 1974). The large lesions associated 

with tibial dyschondroplasia can lead to a fracture in the growth plate, or more commonly the 

development of an abnormal tibial plateau angle causing deformity (Lynch et al., 1992). It is 

more prevalent in the first few weeks of young modern meat type broilers when the fast 

growth rate of bones exceeds other growth periods (Bond et al., 1991) and this coincides with 

when the bird cannot synthesise sufficient 1,25, (OH)2D3 required for calcium absorption 

(Abbas et al., 1985). Edwards and Veltmann (1983) reported an increase in the incidence of 

tibial dyschondroplasia when the calcium content of diets is decreased at constant 

phosphorus; or when phosphorus is increased at adequate dietary calcium concentration. 

However, tibial dyschondroplasia cannot be prevented by merely adjusting calcium-

phosphorus ratio in the diets (Riddell and Pass, 1987).  
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The dietary inclusion of D3 and its metabolites (1α hydroxycholecalciferol, 1,25-(OH)2D3 and 

25-(OH)D3) have been reported to decrease the incidence of tibial dyschondroplasia in 

controlled studies (Rennie et al., 1993; Whitehead, 1998; Edwards, 2000; Fritts and Waldroup, 

2003). Although 1,25-(OH)2D3, is not available for commercial use, its commercially available 

metabolite precursor 25-(OH)D3 has been shown to reduce the incidence of tibial 

dyschondroplasia in poultry, but it is not as effective than 1,25-(OH)2D3  according to the 

study of Rennie and Whitehead (1996). Roberson (1999) however reported 25-(OH)D3 did 

not prevent tibial dyschondroplasia in broilers. Traditionally vitamin D3 has not been 

associated with alleviation of tibial dyschondroplasia in broilers, however Whitehead et al. 

(2004) reported that a high inclusion (125µ/kg) reduced the incidence of tibial 

dyschondroplasia in 14 day broilers and suggested a review of the current NRC requirement 

of 5µ/kg (NRC, 1994). 

1.7.3. Rapid growth rate and genetics  

It has been widely suggested that fast growth rate is one of the major causes of leg health 

problems in poultry (Lilburn, 1994; Kestin et al., 2001; González-Cerón, 2015), particularly in 

broilers, which are selected for rapid growth and breast muscle deposition. This has resulted 

in poor walking ability, increased incidence of lameness and downgrades at processing plants 

(Venäläinen et al., 2006; Kestin et al., 1999) as the rapid growth puts a demand on poultry to 

have sufficiently mineralised strong bones. 

Lameness has been reported to be more prominent in male broilers which have a poorer 

walking ability compared to females (Brickett et al., 2007a). In a study comparing the effect of 

growth rate on leg health, Shim et al. (2012b) reported that the incidence of tibial 

dyschondroplasia was significantly higher in a fast growing breed compared to a slow growing 
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breed of chicken. Although increase in growth rates has been associated with an increase in 

the incidences of leg abnormalities, the correlation between growth and leg abnormalities is 

inconclusive. Cook et al. (1984) reported that the severity of leg deformity was independent of 

body weight, while other authors (Kuhlers and McDaniel, 1996; Rekaya et al., 2013) reported 

that the correlation between tibial dyschondroplasia and body weight was negligible. Although 

the strategy of reducing body weight is effective in reducing leg weakness, it comes at an 

economic cost (Venäläinen et al., 2006). Feed restriction also raises welfare concerns as birds 

placed on feed restriction show signs of hunger (D’Eath et al., 2009).   

The genetic predisposition of birds to leg disorders is well documented (Riddell, 1976; 

Sheridan et al., 1978; Hulan et al., 1980; Wong-Valle et al., 1993; Kapell et al., 2012; Rekaya et 

al., 2013). The potential for reducing lameness with the possible elimination of leg disorders 

through genetic selection in poultry breeding has been identified (Kestin et al., 1999). For 

example, the incidence of some leg disorders like valgus-varus deformity, rotated tibia, 

spondylolisthesis and tibial dyschondroplasia have been reduced in the UK through genetic 

selection (Pattison, 1992). Fleming et al. (2007a,b) compared 3 modern broiler lines with their 

unselected older control lines (2007 vs. 1972) and found that despite the modern lines were 

significantly heavier and had better FCR, they also had a higher percentage of good leg health.  

1.7.4. Diet and feeding regimes  

It is well established that increased nutrient density leads to better efficiency in feed conversion 

and improved body weight gain (Saleh et al., 2004). However, rapid growth is also known to 

impact on skeletal health. Lowering dietary energy and protein density, implementing early 

feed restriction, and offering various feeds forms are nutritional management strategies used 

in reducing growth rate (Brickett et al., 2007b). Restricting feed during growth has been directly 
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linked to the reduction of growth and the improvement of leg health (Riddell, 1983; Lee and 

Leeson, 2001). Classen and Riddell (1989) affirmed feed restriction remarkably reduced the 

incidence of angular deformity, dyschondroplasia and spondylolisthesis which jointly account 

for 65 - 80% of non-infectious causes of leg deformity and lameness in broilers.  

Su et al. (1999) investigated the effect of feeding pattern and early feed restriction on the 

prevalence of leg weakness in broilers. In a first experiment, broiler chicks were given access 

to feeders at allocated times of the day to test the effect of feeding pattern while a second 

experiment was conducted to examine bird response to various feed restriction programmes. 

They concluded meal feeding and early feed restriction were effective at reducing the 

prevalence of leg weakness as evidenced in better walking ability and fewer incidences of tibial 

dyschondroplasia, hock burn, and angulation of the hock joints.  

Although chickens tend to adjust feed intake to match energy requirements (Plavnik et al., 

1997), birds have difficulty in adjusting feed intake to meet energy requirement at low nutrient 

densities (Nielsen, 2004) thereby resulting in reduced growth rate. Jones and Wiseman (1985) 

reported a reduction in body weight of birds fed a low-energy starter diet ad libitum compared 

with those fed a more energy dense diet. Urdaneta-Rincon and Leeson (2002) examined the 

effect of feed form (pellets vs. mash diets) on growth characteristics in a broiler trial. Broilers 

fed mash had a lower body weight at 42 and 49 days. This is corroborated by the findings of 

Brickett et al. (2007b) who recorded lower final broiler weights of birds offered mash diets.  

Recent investigations into alternating high energy/low protein diets with low energy/high 

protein diets have also shown commercial promise. By sequentially feeding broilers 

13.39MJ/kg, 15% crude protein diets and alternating with 11.72MJ/kg, 23% crude protein 

diets, Leterrier et al. (2008) demonstrated this reduced the incidence of leg problems through 
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reduced early growth rates, without any compromise on expected final body weight targets 

typical of commercial production. 

1.7.5. Stocking density and level of activity  

High stocking density can increase the occurrence and severity of leg disorders. It has been 

reported to increase the incidence of footpad dermatitis (Martrenchar et al., 1997) and poor 

walking ability (Sørensen et al., 2000) in poultry. It has a negative effect on growth and 

slaughter quality (Cravener et al., 1992) and in the increase in the number of leg culls (Hall, 

2001). Buijs et al. (2012) evaluated the effect of stocking density on bone quality and found 

increased stocking density had a negative effect on tibia curvature and shear strength.  

Broilers reared in cages with limited space for activity have shown more incidence of skeletal 

problems compared with birds reared in group houses (Reece et al., 1971). Conversely, 

Veltmann and Jensen (1980;1981) reported a reduction in the incidence of tibial 

dyschondroplasia in birds reared in cages compared to those reared on the floor and 

speculated that a predisposing pathological agent or toxin susceptible to the varying 

environmental conditions of floor-reared broilers may have been involved in the aetiology of 

tibial dyschondroplasia.  

The incidence of leg abnormality is increased with lack of exercise (Haye and Simmons, 1978), 

a proposition supported by other investigators (Classen and Riddell, 1989; Renden et al., 1991) 

who also reported that by manipulating lighting schedules, birds were more active and this 

resulted in a lower incidence of twisted legs in broilers. On the contrary, Su et al. (2000) and 

Tablante et al. (2003) reported that providing perches to stimulate activity did not reduce the 

incidence of leg weakness in broiler chickens; although Ventura et al. (2010) reported it 

improved footpad health. 
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Adjusting dietary nutrients have also been shown to improve leg conditions in broilers by 

stimulating activity. Feeding low protein or low amino acid diets are known to increase the 

level of activities in chickens (Rovee-Collier et al., 1993). Bizeray et al. (2002) reported birds 

sequentially fed low lysine diets (0.85% lysine) had better leg conditions than birds fed normal 

lysine diets (1.19% lysine), but care must be taken to ensure minimum dietary protein 

requirements are met. 

1.7.6. Light and photoperiod 

Light intensity, photoperiod, light source and wave length are all aspects of light that can be 

manipulated to improve productivity and management practice (Manser, 1996). Birds grown 

in continuous light have been shown to have more leg abnormalities, increased incidence of 

tibial dyschondroplasia and impaired walking ability compared with those provided 

intermittent light (Buckland et al., 1976; Sanotra et al., 2002). Conversely, intermittent or 

stepped lighting programmes normally practised in commercial broiler production have been 

reported to have positive effects in the reduction of leg disorders (Classen and Riddell, 1989), 

as birds reared under these conditions are more active during light period (Simons and Haye, 

1985). 

Although it has been previously reported that increasing light intensity could increase activity 

which could consequently improve leg health (Hester et al., 1994; Prayitno et al., 1997), other 

investigators (Kristensen et al., 2006; Blatchford et al., 2009) reported that increasing light 

intensity did not improve leg health. The European Union Council Directive on lighting 

(European Commission, 2007) stipulates that at least 20lx light intensity must be provided for 

all ages of birds during the lighting period. 
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1.8. Nutritional imprinting in poultry  

1.8.1. Epigenetics  

The gene within the cell bears the blueprints required to synthesise proteins; and every cell 

thus has the same genetic information required to potentially make all body cells, tissues and 

organs. The central dogma of molecular biology, which states that the DNA sequence of a 

gene is first transcribed into RNA and then translated into a protein sequence was first stated 

by Crick (1958). This is the foundational basis for Genetics, the study of heritable changes in 

genes activity or function which occur due to the direct alteration of DNA sequence (Moore 

et al., 2013).  

The mutations to the DNA sequences which results in diseases were once accepted as reasons 

for observed aberrations. However they are not sufficient in explaining certain disease 

situations, e.g. cancer; or why despite having the same genetic makeup and raised in similar 

environments, some monozygotic (identical) twins have different susceptibility to different 

diseases (Cardno et al., 2002) or sometimes react differently to the same medicine. It is now 

evident in certain types of cancers that the genes which control the proliferation of cells can 

be inactivated when methylated, thereby resulting in tumours. These changes in the 

epigenome commonly referred to as epi-genetics exist due to other causes which overlay the 

DNA sequence (genotype) and sometimes do not reflect the expected outcomes in gene 

expression (cellular phenotype). Epigenetics orchestrates the means by which particular genes 

are either expressed or silenced without altering the underlying DNA sequence.  

The concept of Epigenetics (epi - ἐπί, the Greek prefix meaning over, outside of, or attached 

to) was originally coined by Waddington (Waddington, 2012) who referred to it as the study 

of causal mechanisms by which the genes of the genotype bring about phenotypic effects. It 

has since evolved in meaning. A more commonly cited definition is that of Riggs et al. (1996) 

https://en.wikipedia.org/wiki/Greek_language
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who defined it as the study of mitotically and/or meiotically heritable changes in gene function 

that cannot be explained by changes in DNA sequence. Epigenetics has been used to describe 

other processes which have not been demonstrated to be heritable such as histone 

modification, leading to several debatable attempts to redefine it (Ledford, 2008; Bird, 2007; 

Ho and Burggren, 2010). A recent more encompassing definition is that of the Roadmap 

Epigenomics Project (NIH, 2016), which defines Epigenetics as both heritable changes in 

gene activity and expression (in the progeny of cells or individuals) and also stable, long-term 

alterations in the transcriptional potential of a cell that are not necessarily heritable. 

1.8.2. Mode of action 

The identification of DNA methylation in mammals (Avery et al., 1944) and discovery of the 

methylation at the 5th carbon of the cytosine base within the double helix DNA structure of 

the calf’s thymus (Hotchkiss, 1948) opened a new paradigm to the understanding of gene 

function and expression. Chemical reactions occur within the gene which turns on or off 

particular base pairs in the DNA and alters how genes are either expressed or silenced. 

Specifically, cytosine methylation within CpG dinucleotides islands of DNA (short dispersed 

regions of unmethylated DNA located in the promoter regions of genes where cytosine 

nucleotide is followed by a guanine nucleotide in the linear sequence of bases) in conjunction 

with chromatin modification via the spatial arrangement of DNA around histone proteins are 

the main mechanisms by which a single allele of a gene is silenced (Bird, 2002; Ashwell and 

Angel, 2010). It has been reported that CpG methylation is well correlated with reduced 

transcription (Razin, 1998) and consequently gene expression (Razin and Riggs, 1980). 

Alterations to DNA methylation pattern involves active DNA methylation and demethylation 

in the neuronal genome.  
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In humans, 3 enzymes are involved in the methylation process (Hsieh, 1999): DNA 

methyltransferase 1 (DNMT1) which functions by maintaining methyl transfer after DNA 

replication, and two de novo DNA methyltransferases (DNMT3A and DNMT3B) which act 

on somatic cells by establishing a new methylation pattern to unmodified DNA; although this 

distinction is not clear cut (Robertson and Wolffe, 2000). It is thought that all three enzymes 

are involved in both de novo and maintenance functions (Robertson et al., 2000; Rountree et al., 

2000). In general, DNA methyl transferases are directly involved in the transfer of a methyl 

group from S-adenyl methionine (SAM) to the 5th carbon of a cytosine residue to form 5-

methylcytosine (5mC), suppressing transcription and ultimately the expression of genes 

(Figure 1.2). No enzyme is directly involved in demethylation of 5mC, but 5-hydroxymethyl-

cytosine (5hmC) has been reported to serve as an intermediate in the DNA methylation 

pathway (Moore et al., 2013).  Supplementation with dietary folate, vitamin B12, methionine, 

choline, and betaine is required for SAM synthesis (Cooney, 2002; Van den Veyver, 2002).              

 

 

                        -  

Figure 1.2. Methylation of cytosine to 5-methylcytosine by DNA methyltransferase 
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The mechanisms of DNA methylation have been widely reviewed in plants (Steimer et al., 

2004; Henderson and Jacobsen, 2007) and animals (Bird and Wolffe, 1999; Jones and Takai, 

2001). In response to various stimulation, the methylation of DNA and histone methylation 

have also been identified in poultry, e.g. acclimation to heat (Kisliouk and Meiri, 2009; 

Yossifoff et al., 2008), dietary deficiency e.g. phosphorus, calcium and protein (Yan et al., 

2005b; Rao et al., 2009), and immune response to diseases such as salmonella (Gou et al., 2012). 

1.8.3. Nutritional imprinting and epigenetics 

Nutritional imprinting, the early life experience of nutrition which has an effect on later 

physiological outcomes is an established phenomenon. Diet plays one of the most important 

roles in mediating the mechanisms of epigenetics. The regulation of gene expression through 

nutritional imprinting, where nutrition is manipulated (pre or postnatal) with effects on health, 

cognitive abilities, and lifespan is well documented (Lucas, 1998). These manipulations occur 

at specific developmental points leading to long term or permanent effects later in life (Lucas, 

1991). Nutritional manipulation at specific stages of development is known to have different 

outcomes (Symonds et al., 2007) thus identifying the stage of development is crucial for 

comparisons. This concept was further elaborated by Hanley et al. (2010) who also highlighted 

the importance of stage in developmental plasticity. 

Maternal nutrition is reported to have an effect on epigenetic mechanisms and has been linked 

to chronic degenerative diseases in offspring (Lumey et al., 2007; Heijmans et al., 2008). The 

classic study of Waterland and Jirtle (2003) showed feeding methylated diets to pregnant 

agouti mice downregulated the agouti gene expression in their offspring which were darker, 

leaner and healthier unlike the offspring of pregnant mice fed normal diets which retained 

their yellow colour and were more susceptible to hyperinsulinemia and tumour formation.  

http://ntu-primo.hosted.exlibrisgroup.com/primo_library/libweb/action/search.do?vl(freeText0)=Bird%2c+Adrian+P+&vl(6146263UI0)=creator&vl(13363089UI1)=all_items&fn=search&tab=all&mode=Basic&vid=NTU_VU4&scp.scps=scope%3a(NTU_BRACK_LIB)%2cscope%3a(NTU_CLIFT_LIB)%2cscope%3a(NTU_BOOTS_LIB)%2cscope%3a(NTU_ML_DS)%2cscope%3a(NTU_LMS_DS)%2cscope%3a(NTU_EPRINTS_DS)%2cprimo_central_multiple_fe&ct=lateralLinking
http://ntu-primo.hosted.exlibrisgroup.com/primo_library/libweb/action/search.do?vl(freeText0)=Bird%2c+Adrian+P+&vl(6146263UI0)=creator&vl(13363089UI1)=all_items&fn=search&tab=all&mode=Basic&vid=NTU_VU4&scp.scps=scope%3a(NTU_BRACK_LIB)%2cscope%3a(NTU_CLIFT_LIB)%2cscope%3a(NTU_BOOTS_LIB)%2cscope%3a(NTU_ML_DS)%2cscope%3a(NTU_LMS_DS)%2cscope%3a(NTU_EPRINTS_DS)%2cprimo_central_multiple_fe&ct=lateralLinking
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1.8.4. Transgenerational effect epigenetics 

The transgenerational effect of ancestral nutrition on progenies is well documented (Leon et 

al., 1998) and has been linked to epigenetics (Bygren et al., 2001; Whitelaw, 2006). For example, 

Martyn et al. (1996) showed early maternal nutrition influenced their offspring’s susceptibility 

to cardiovascular diseases, diabetes and hypertension; similar to the findings of Kaati et al. 

(2002) who identified a significant association in increased risk of cardiovascular diseases and 

diabetes between the nutrition of selected Swedish male parents and grandparents and their 

offspring. Examining a subset of the same Swedish cohort, Pembrey et al. (2006) reported sex-

specific transgenerational responses linking grandfather's food supply only to mortality risk 

ratios of their grandsons, and grandmother's food supply only to mortality risk ratios of their 

granddaughters. Results from the study of the Hertfordshire and Dutch Hunger Winter (Hales 

et al., 1991; Ravelli et al., 1998) have also confirmed the correlation between low birth weight 

and obesity in adulthood. 

Transgenerational transfer of parental behaviour has been reported in animals. In nursing rats, 

pup licking and grooming behaviour have been shown to have a remarkable but reversible 

effect on the ability of offspring to better cope with stress (Weaver et al., 2004; Cameron et al., 

2008). In humans, maternal care has been linked with offspring’s ability to cope with stress 

(Meaney, 2001); and the epigenetic mechanisms involved explained (Champagne, 2008; 

Champagne and Curley, 2009).  

1.8.5. Epigenetics in poultry  

The potential for improved performance in poultry though the application of epigenetics was 

recently reviewed by Frésard et al. (2013). The prenatal and neonatal period have been 

identified as the most important stages of development in poultry during which exposure to 

various stimuli are capable of shaping phenotypic traits (Dixon et al., 2016).  
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Early studies in poultry focused on the thermal conditioning of broilers early post-hatch 

(Yahav and Hurwitz, 1996; Yahav and McMurtry, 2001) by manipulating chicks to better 

tolerate heat stress later in life. This has been reported be one of the best strategies for adapting 

to heat stress (Lin et al., 2006). Renaudeau et al. (2011) reported that exposure to varying heat 

conditions at the end of incubation could help adapt birds to heat challenges later post-hatch, 

a proposition supported by other investigators (Yalçın et al., 2008; Piestun et al., 2008; Druyan 

et al., 2012).  

The molecular basis for how this works via the expression of the brain-derived neurotrophic 

factor (BDNF) gene in the hypothalamus during thermotolerance acquisition has been 

explained (Yossifoff et al., 2008; Kisliouk and Meiri, 2009). During the period of early thermal 

conditioning and later reexposure to heat stress, transient changes in the expression of BDNF 

occurs and have been related to changes in CpG methylation pattern in the BDNF promoter 

region of the brain in poultry. The precise timing of thermal conditioning is important 

otherwise such the technique could potentially lead to poor bone development and the down 

regulation of the gene important for adequate ossification (Oveido-Rondon and Wineland, 

2012). Yalçın et al. (2007) demonstrated that incubating broiler eggs below (36.9oC) or above 

(39oC) optimal incubating temperatures (37.8oC) during early embryo development (0 – 8 days) 

increased the incidence of tibial dyschondroplasia at 49 days post-hatch. 

More recent work in poultry nutrition have been directed towards exploring how the 

transgenerational effect of epigenetics could be used as a tool for improved productivity 

including skeletal quality. For example, it has been established that small egg size at hatch leads 

to small bird size at market age (Proudfoot and Hulan, 1981; Whiting and Pesti, 1984). 

However, some investigators (Lopez and Leeson, 1995; Rao et al., 2009; Van Emous et al., 

2015) demonstrated that when broiler breeders were fed low protein diets, although their 



 

74 
 

offspring were hatched from smaller eggs, they were more efficient at utilising nutrients, and 

were heavier and had more muscle mass compared to control chicks fed normal diet. Reduced 

mortality and improved growth rates in offspring have also been reported when broiler 

breeders were fed low-density diets (Enting et al., 2007). And by fortifying maternal diets with 

high dietary concentration of vitamin D, Atencio et al. (2005) and Driver et al. (2006b) 

demonstrated the positive effects it had on their progeny by reducing the incidence of rickets, 

tibial dyschondroplasia and increased bone ash.  

The potentials for epigenetics to address nutrient pollution due to the accumulation of 

undigested nutrients contained in poultry manure typical of concentrated animal feeding 

operations have been identified. Angel and Ashwell (2008) nutritionally imprinted birds with 

a low phosphorus diet for 90h (0.59%Ca : 0.25%avP) and reported better growth performance 

characteristics, tibia ash and phosphorus retention when the birds were later challenged with 

a low phosphorus diet (0.4%Ca : 0.11%avP) at the finisher stage (22 - 38d), compared to 

control birds by 38 days. It has also been proposed that nutritional imprinting may serve as a 

useful tool in addressing ammonia pollution in poultry production if birds are conditioned to 

be more efficient at utilising nitrogen (Angel, 2010).  

1.9. Current strategies for efficient phosphorus use in poultry 

Nahm (2007) reviewed the detrimental environmental effects of excreted phosphorus and 

concerns about the cost and rapid depletion of inorganic phosphate reserves have stimulated 

research into ways of improving phosphorus utilisation in poultry. This includes the simple 

avoidance of oversupplying feed with dietary phosphates (Waldroup, 1999) as poultry can 

utilise only a certain amount of nutrients for maintenance and production and excrete 

nutrients when supplied in excess of requirement.  
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Commonly used poultry feed ingredients have variable available phosphorus content and 

therefore varying phosphorus digestibility. The use of highly digestible feed ingredients and 

management strategies which optimises bird health are also known to improve the efficiency 

of feed utilisation. This in turn leads to less feed consumed and consequently less phosphorus 

excreted per kg meat produced.  

The nutrient requirement of birds changes with age and  older birds are better able to utilise 

phytate (Peeler, 1972), and thus a more targeted approach of phase feeding (Angel et al., 2000) 

where diets are formulated to meet changing nutrient requirements due to age has been shown 

to be effective in minimising wastage. Split-sex feeding where birds are reared and fed 

according to sex-specific nutritional requirement has been proposed to further improve 

precise feeding (Spiehs, 2005), but this has commercial limitation due to the additional costs 

of separating birds by sex at the hatchery. 

The inclusion of feed additives known to improve phosphorus utilisation which allows for a 

reduction of supplemental phosphorus routinely added to poultry diets have also been 

investigated by various researchers. Phytase is the most important feed additive known to 

improve phosphorus digestibility. According to the International Union of Biochemistry 

(IUB, 1979), it is the only enzyme capable of initiating the release of phosphorus from phytin 

and has been widely investigated (Perney et al., 1993; Ravindran et al., 2006; Plumstead et al., 

2007). Phytase supplementation in poultry has been effective in improving phosphorus 

retention (Kornegay et al., 1996; Qian et al., 1997) and phytate phosphorus digestibility by       

20 - 45% (Ravindran et al., 1995) by the release of unavailable phosphorus stored in plant 

grains. The use of dietary phytase has been reported to reduce phosphorus excretion by 15 - 

30% in poultry (Applegate et al., 2008). 
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Organic acids such as citric acid have been shown to improve phosphorus utilisation in 

broilers (Boling-Frankenbach et al., 2001; Snow et al., 2004) by reducing the pH of digesta and 

thereby creating the right environment for the dissociation of phytic acid and minerals (Maenz 

et al., 1999). The synergistic effect of citric acid with phytase was demonstrated in the study of 

Woyengo et al. (2010) who reported that the combination of the two additives further 

improved phosphorus digestibility. This was corroborated by Demirel et al. (2012) who 

reported citric acid significantly improved phosphorus retention, and in combination with 

phytase significantly increased tibia ash percentage. However, the mechanism of action of 

citric acid on phosphorus availability is not well defined. Pileggi et al. (1956) suggested that by 

binding to calcium, citric acid had anti-rachitogenic effect in rats by reducing the inhibitory 

effect of calcium on intestinal phytic acid hydrolysis. Citric acid is a strong chelator of calcium 

and renders phytate more susceptible to endogenous phytase by complexing with calcium 

bound to phytate (Boling et al., 2000).  

The dietary inclusion of the probiotic lactobacillus (Nahashon et al., 1994; Angel et al., 2005); 

and Vitamin D3 and its metabolites: 25-hydroxycholecalciferol, 1,25-dehydroxycholecalciferol 

(Edwards, 1993; Angel et al., 2006) have been shown to reduce phosphorus requirement by 

improving phosphorus utilisation.  

New plant genotypes that contain lower levels of phytate and more amounts of available 

phosphorus have been developed. For example, the use of high available phosphorus (HAP) 

maize (Waldroup et al., 2000) and soybeans (Dilger and Adeola, 2006) reduces the need for 

supplementary inorganic phosphorus. More recently the use of transgenic corn varieties with 

innate ability to express phytase within the endosperm (Nyannor and Adeola, 2008; Nyannor 

et al., 2009) have been shown to improve phytate phosphorus utilisation in poultry.  
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Despite these strategies, phosphorus is not completely digested in poultry, and the safe 

disposal of phosphorus contained in manure is important from the environmental stewardship 

viewpoint. Treating poultry litter with manure amendments such as aluminium sulphate has 

been shown to reduce the water soluble phosphorus content (Moore et al., 1995; Miles et al., 

2003; Bolan et al., 2010). Suitable land-based agricultural practices such as terracing and 

contour tillage which reduces surface runoff by increasing soil resistance to erosion and 

thereby reducing the impact of rainfall on soils are other well-practised measures which have 

been proven effective in reducing excessive phosphorus pollution in water.   

Transporting poultry manure to areas where it is needed for land application has been 

identified as the most direct way to resolve surpluses (Sims et al., 2005). However, the cost of 

haulage remains an economic bottleneck (Keplinger and Hauck, 2006). Greaves et al. (1999) 

identified the need for processing manure with a view of reducing volume whilst creating a 

valuable product. Sharpley (1999) also noted the potentials of using manure as a source of 

energy via combustion and anaerobic digestion. By composting manure, bulk size is reduced, 

and this could potentially reduce the cost of haulage. This is of advantage as the composted 

material is more uniform in physical and chemical properties and therefore its application on 

land more accurate.  

1.10. Conclusion 

Adequate supply of dietary phosphorus is important from the bird welfare and commercial 

standpoints, as it plays an important role in bone development, growth and efficient feed 

conversion. However, it is a finite resource, and careful consideration must be given to its 

judicial use in order to avoid oversupply whilst ensuring the bird's welfare is not compromised. 
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Presently, nutrition, health, and improved management practices are the main areas being 

explored in the quest to improve the efficiency of phosphorus utilisation in poultry.  

The NRC recommendation for phosphorus requirements in broilers (NRC, 1994) is widely 

used as a reference publication for diet formulation in research and commercial feed 

manufacture. However, it is based on studies dated between 1952 – 1983 and derived from 

methodologies different from the recently updated phosphorus availability assays (Shastak and 

Rodehutscord, 2013; WPSA, 2013). It has also been criticised for not being reflective of the 

present day broiler strains which are characterised by fast growth rate and larger muscle mass 

(Havenstein et al., 2003a; Schmidt et al., 2009) but poorly mineralised skeleton (Williams et al., 

2000b; Leeson, 2012). The lack of a centralised, up-to-date publication on poultry phosphorus 

requirements, and confusion over the potential phosphorus contribution of different feed 

materials with or without supplemental phytase (Applegate and Angel, 2014) has led to feeding 

dietary phosphorus with excesses of between a fifth and twice over published requirements 

(Applegate and Angel, 2008).  

The first part of this research project examines 4 common divergences in the bone ash 

methodology for evaluating bone mineralisation in broilers, and the established findings from 

the bone ash methodology study will be used in other studies in this project. The next part of 

this project focuses on characterising the normal range of tibia phosphorus content and whole 

body phosphorus content of broilers raised in commercial settings. This is followed by 

examininig strategies for maximising the efficiency of phosphorus utilisation: nutritional 

imprinting for improved phosphorus utilisation, and the use of a high phytase novel wheat 

cultivar to provide a more bioavailable form of phosphorus in broilers. 
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The key novel contribution of this project is providing the range of tibia ash and phosphorus 

content dataset applicable to normal healthy commercial broilers which are not currently 

available. Another novel contribution is examining how nutritional imprinting improves 

phosphorus utilisation and its impact on bone quality; and the potential use of a high phytase 

wheat cultivar not reported in the literature. 

Findings from this project addresses the contemporary issue of the dwindling phosphorus 

reserves through better utilisation whilst ensuring bird welfare is not compromised. It provides 

the poultry industry with an up-to-date reference dataset of bone and whole body phosphorus 

content which could be used to evaluate bone mineralisation and phosphorus requirement in 

broilers.  

1.11. Aims and objectives 

The overarching aim of this project was to characterise the bone and whole body phosphorus 

content in commercial broilers, and to examine 2 nutritional techniques for improving 

phosphorus utilisation in broilers. The specific objectives were to: 

 Examine the tibia bone ash methodology in evaluating bone mineralisation.  

 Characterise tibia morphometry and mineralisation in commercial broilers.  

 Characterise bone and whole body phosphorus content in commercial broilers. 

 Examine nutritional imprinting as a tool for improving phosphorus utilisation.  

 Evaluate the use of a high phytase novel wheat cultivar.  
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CHAPTER 2: MATERIALS AND METHODS 

2.1. Introduction 

The general materials and methods used in this thesis are described in this chapter. A total of 

8 studies involving 6 experimental trials were conducted as summarised below in Table 2.1. 

Four common divergences to the bone ash methodology were examined in Studies 1-4. The 

normal range of phosphorus and calcium content in the tibia of healthy commercial broilers 

was characterised in Study 5, while the relatedness between the phosphorus content of various 

bones (tibia, femur, and feet) with the whole body phosphorus content was examined in Study 

6. The use of nutritional imprinting for improving phosphorus utilisation was evaluated in 

Study 7, and the potential use of a high phytase wheat cultivar on phosphorus digestibility and 

bone mineralisation was investigated in Study 8.  

Table 2.1. Outline of studies conducted  
 

 
Study Investigation Chapter 

1 The effect of fat extraction on tibia ash content  3 

2 
The effect of including cartilage caps on fat extracted 
tibia ash content 

3 

3 
The effect of increasing fat extraction time on fat 
extraction efficiency 

3 

4 
The effect of autoclaving prior to fat extraction on 
tibia ash content 

3 

5 
Characterisation of tibia bone mineralisation in 
commercial broilers 

4 

6 
An investigation into the relationship between bone 
phosphorus content and whole body phosphorus 
content in commercial broilers 

5 

7 
Nutritional imprinting as a tool for improving 
phosphorus utilisation in broilers 

6 

8 
The effect of a high phytase wheat cultivar on 
phosphorus digestibility and bone mineralisation in 
broilers 

7 
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All experimental trials were conducted at the Poultry Research Unit located at the Nottingham 

Trent University, UK; with the exception of Studies 4 & 5 which were conducted at 6 

commercial broiler farms located in the UK.  

2.2. Birds and management 

Institutional and UK national NC3R ARRIVE guidelines for the care, use and reporting of 

animals in research (Kilkenny et al., 2010) were followed, and all experimental procedures 

involving animals were approved by the University's College of Arts and Science ethical review 

committee.  

For Studies 1 - 4, 7 & 8, Ross 308 day-old male broiler chicks were sourced from PD Hook 

Hatcheries Ltd, Oxfordshire. On arrival, birds were allocated to pens (0.64m2). Chicks were 

raised in-house in a thermostatically controlled room and provided with an initial room 

temperature of 32°C which was gradually reduced to 21°C by day 21 and maintained until the 

end of the experiment. Lighting was provided with 1h darkness from day 1 which was 

increased by 1h a day to 6h, then maintained until the end of the experiment. Wood shavings 

were spread on the pen floors (approximately 3cm thick) and was topped up as required during 

each trial. Birds were allocated in such a way that they were evenly distributed by weight across 

treatments. Experimental diets and water were provided ad libitum, and birds were checked 

twice daily to monitor birds and environmental conditions. Mortalities were recorded along 

with the date, and weight of the bird and reason if culled.  

For Studies 5 & 6 Ross 308 day-old chicks from a mixed flock were raised at one of six 

participating commercial farms which complied with the Ross 308 management guidelines 

(Aviagen, 2014). Birds were raised on wood shavings in open sheds which were 

thermostatically controlled to provide an initial room temperature of 30oC which was gradually 
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reduced to 20°C by day 27 and maintained until the end of the experiment.  Lighting was 

provided with 1h darkness from days 1 - 3, and then increased by 1h a day up until day 6. 

Lighting was then maintained on a daily 4 and 2 hourly split darkness period between days 7 

up until day 32. From days 33 - 35, total darkness was reduced daily to 3, 2 and 1h respectively. 

1h darkness was then maintained until the end of production cycle when birds were 

transported to processing plants. Standard commercial pelleted diets and water were provided 

ad libitum. Birds were regularly checked to monitor environmental conditions and mortalities 

recorded. When birds were culled, the reason for culling was also recorded.  

2.3. Diet formulation and feed preparation 

For Studies 1 - 4, 7 & 8, experimental diets of the mash type were manufactured on site. A 

production sheet specifying the quantity of ingredients based on nutrient requirement was 

produced. The dry feed ingredients were weighed on a top pan balance (Mettler, Toledo, 

Leicester, UK) as specified in the production sheet and mixed for 5 minutes in a ribbon mixer 

(Rigal Bennett, Goole, UK) in a maximum of 100kg batches. Oil was then added and feed 

mixed for an additional 5 minutes. During the mixing process, care was taken to brush down 

clumps of oil to ensure homogeneity. Details of the feed specification and calculated 

nutritional composition are given in the relevant chapters. 1kg samples of diets were taken for 

analysis. Nutrient composition was confirmed by laboratory analysis of diets later described 

in this chapter. 

For Studies 5 & 6, pelleted feed manufactured in a commercial feed mill was supplied to 

commercial farms. The feed was manufactured to meet the Ross 308 nutrient requirements 

(Aviagen, 2014). Strict compliance with national regulatory guidelines on the safe manufacture 
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of feed such as the Universal Feed Assurance Scheme and Foods Standard Agency were 

adhered to. These regulatory bodies operate within a wider EU legislative directive. 

2.4. Sampling and preparation methods 

2.4.1. Bird performance, lameness, and pododermatitis scores 

In Studies 1 - 4, 7 & 8, the experimental feed was preweighed into bags designated to particular 

pens and recorded. During the trials, additional feed was weighed into the feed bags and 

recorded. Feed intake was determined on each sampling day by calculating the difference 

between the total amount of feed added to the feed bags at the start of the sampling period 

and what was left at the end of the sampling period. 

Birds were individually weighed at the start of the trial and were evenly distributed to pens 

ensuring each treatment had a similar average pen weight. Birds were weighed by pen on each 

sampling day, and the average bird weight was determined by dividing the total pen weight by 

the number of birds left in pen.  

On each sampling day prior to post-morterm tissue collection, birds were culled by cervical 

dislocation and weighed individually. Body weight gain by pen was determined by calculating 

the difference between pen weight at the start and end of the sampling period. Individual body 

weight gain was determined by dividing the weight gain by the number of birds in a pen. Daily 

weight gain (by pen or individual bird) was calculated by dividing the average weight gain (by 

pen or individual bird) by the number of days between sampling. Feed conversion ratio (FCR) 

was determined by dividing the total feed intake by total weight gain. For Studies 5 & 6, daily 

feed intake and body weight gain was measured using computerised scales. 

Each bird was individually assessed for lameness (Studies 4 & 5) prior to selection using a 5 

point qualitative gait score system after the method of Leterrier et al. (2008). Briefly, this 
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involved classifying birds based on walking ability from 0 (no detectable gait abnormality) to 

4 (severe gait defect), and only birds which scored 0 were selected. Birds in Study 4 were also 

scored for the incidence of pododermatitis (Appendix 1) based on the welfare quality 

assessment protocol for poultry (Welfare Quality, 2009). Briefly, the feet of each bird were 

inspected and given a score based on the severity of pododermatitis ranged from 0 (no 

evidence of pododermatitis), 1 & 2 (minimal pododermatitis) and 3 & to 4 (severe 

pododermatitis). 

2.4.2. Duodenal tissue, digesta, and bone samples  

Birds were culled by cervical dislocation on each sampling day by a trained person before 

duodenal tissues, digesta or bones were collected. 

2.4.2.1 Duodenal tissues 

In Study 7, duodenal tissues were collected from 2 birds per replicate pen at days 4, 18 and 28 

for mRNA isolation and quantification. Dissecting utensils were baked at 240oC overnight 

before use and work surface cleaned with RnaseZap (Life Technologies, UK). 100mg 

duodenal tissue sample was cut from the middle of the duodenal loop and stored at -20oC in 

RNAlater (Life Technologies, UK) until further processing. 

2.4.2.2. Digesta 

Before digesta was collected, care was taken to ensure birds had access to feed for a minimum 

of 1h to ensure gut fill. Digesta was collected post-mortem by gently squeezing along the distal 

end of the small intestine identified as the portion between the Meckel’s diverticulum and the 

ileal-ceco-colonic junction. Digesta was pooled per pen into labelled pots and stored at -20oC 

until further processing. At processing, they were freeze-dried (LTE Scientific, Oldham, UK) 

for 5 days. Dried samples were finely ground in a mortar to ensure homogeneity. 
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2.4.2.3. Bone samples 

Tibia bones were separated from the feet at the tibiotarsal junction, and from the femur at the 

tibiofemoral junction. The femur was separated from the hip by carefully dislocating it with 

the aid of a scalpel where necessary. The bones were individually stored in sealed plastic zip-

lock bags at -20oC until further processing. At processing, bones were completely thawed at 

room temperature before all adhering tissues including fibula were removed following one of 

2 processing methods. Bones were either manually removed using laboratory scalpels whilst 

ensuring cartilage caps were kept intact (Studies 1, 3 - 8), or were autoclaved (Study 2) at 121oC 

and 15bars for 15 minutes (Boxer Laboratory Equipment, UK) and then allowed to cool to 

room temperature before manually removing adhering flesh from bones whilst preserving 

cartilage caps. 

 

 

 

Figure 2.1. Removal of adhering flesh from the tibia bone carefully done to ensure no 
cut is made through the cartilage caps at both ends 
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Figure 2.2. Tibia bone completely defleshed with cartilage caps intact 
               

2.4.2.4. Whole bird sample preparation 

In Study 6, birds from a mixed flock raised in commercial farms were euthanised by cervical 

dislocation at one of 3 sampling points: days 14, 28 and 36. Six birds were collected per bone 

type studied (tibia, femur, and feet) on each sampling day making a total of 18 birds per 

sampling day. At processing, birds were initially weighed to determine live bird weight. The 

digestive tract was opened to empty the digestive content in the crop, proventriculus, gizzard, 

intestines, and caeca after which the organs were rinsed with ultrapure water. Right and left 

bones (for each bone type studied) were removed from the related bird for onward processing 

as described in Section 2.4.2.3. The carcass of each bird (whole bird excluding bones) was 

then cut into small pieces and stored at -20oC until further processing. 

At processing, the carcass of each bird was thoroughly minced from slightly frozen using an 

electric mincer (Andrew James, Durham, UK) 4 times until a homogeneous mix was obtained. 

The mincer was thoroughly cleaned after each bird was minced to prevent carry over between 

bird samples. Minced birds were stored at -20oC until further processing. 

http://www.ebay.co.uk/itm/Andrew-James-Premium-Electric-Meat-Mincer-Grinder-Sausage-Maker-1800-Watt-/281318545387?hash=item417fe457eb
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2.5. Analytical procedures 

2.5.1. Bone morphometry and strength 

After defleshing, each tibia and femur bone was weighed to determine fresh bone weight 

accurate to 4d.p. using an analytical scale (Sartorius, UK). Feet was measured for fresh. The 

length and width of the tibia and femur were measured using a set of Vernier callipers. Tibia 

and femur strength was measured using a 3 point-bend TA-XT Plus Texture Analyser (Stable 

Micro Systems, UK; Figure 2.3), configured with a 50kg load cell and a test speed of 1.0mm/s, 

after the method of Shaw et al. (2010). The bones were supported on a fixture which was 

adjusted to match bone length which varied with age. Computer generated data for peak force 

in Newtons was then recorded. 

 

                                     

                               Figure 2.3. TA-XT Plus Texture Analyser 
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2.5.2. Dry matter  

Whole bones (tibia, femur, and feet), 5 - 10g of diets, or 70 - 100g of the whole minced body 

were carefully weighed into pre-weighed crucibles to determine fresh weight. They were then 

dried at 105oC in an oven until constant weight was achieved. Dried samples were re-weighed 

after they had cooled down in a desiccator. Moisture content was determined by the following 

formula: 

Moisture content (%) = fresh sample weight (g) – dry sample weight (g)  x 100 
                                                              fresh sample weight (g) 
 
Dry matter (%) = 100 - moisture content (%) 
                                           

2.5.3. Crude protein  

Diets were analysed for nitrogen content using the Kjeldahl method (AOAC official method 

2001.11). Approximately 1g of a sample was accurately weighed into distillation tubes, into 

which copper and selenium catalyst tablets (Fisher Scientific, UK) were also added. This was 

done in duplicate and starch was used as a blank.  12.5ml concentrated nitrogen-free sulphuric 

acid was then added to the distillation tubes and heated in a digestion unit (1007 Digester, 

Foss Tecato, UK) at 450oC for 45 minutes. Upon complete digestion of the samples, the 

distillation tubes were left to cool for 30 minutes after which 75ml distilled water was added 

to each tube. 50ml of 10M NaOH was then added to the samples by a distillation unit (2100 

Kjeltec, Foss Tecato, UK) and distilled for 3 minutes. During the process, liberated ammonia 

was captured into 25ml of 4% boric acid pH indicator solution which was previously measured 

into conical flasks. This caused a colour change from orange to blue. The resultant alkali 

solution was then titrated with 0.1M HCl using a burette and care was taken to record the 

volume of HCl required to neutralise the solution (indicated by a colour change from blue to 

rose pink). 
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The following calculations were used to determine % crude protein: 

% nitrogen = 1.4 x (V1 – V2) x M/W 

% crude protein = 6.25 x % nitrogen 

Where: 
W = original sample weight 
V1 = volume of acid used to titrate the sample 
V2 = volume of acid used to titrate the blank 
M = molarity of acid 
 

2.5.4. Extractable fat 

The extractable fat in diets, bones and the whole body of birds was done using either a 

conventional Soxhlet apparatus (Studies 1- 4, 7) or a rapid Soxhlet apparatus (Studies 5, 6 & 

8). 

2.5.4.1. Soxhlet fat extraction 

5g of dried diet, dried whole tibia or femur, or dried whole bird sample were inserted in 

thimbles which were placed in a fat extraction apparatus (Figure 2.4). A clean dry 250ml round 

bottom flask which also contained some anti-bumping granules was carefully weighed. 150ml 

petroleum ether (CAS 64742-49-0, Fisher Scientific, UK) was then carefully poured into the 

round bottom flask and connected to the fat extraction apparatus. The solvent was refluxed 

for 6h (or otherwise stated in the methodology study, Chapter 3) by heating the solvent on an 

electric heating mantle (Electrothermal, Staffordshire, UK) above its boiling point. The round 

bottom flasks with the remaining petroleum ether in the flasks were then placed on a hot plate 

to evaporate off the solvent. Flasks were then dried in an oven for 2h set at 105oC until 

constant weight was achieved. The flasks including content (fat and anti-bumping granules) 

were weighed after they had cooled down in a desiccator.  
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Fat was determined using the following formula: % extractable fat = [(M2 – M1) ÷ MO] x 100 

Where: 
MO = weight of sample (g) 

M1 = weight of flask + anti-bumping granules (g) 
M2 = weight of flask + fat + anti-bumping granules (g) 
                                   

 

Figure 2.4. Soxhlet fat extraction apparatus 
 

2.5.4.2. Soxtherm fat extraction 

The Soxtherm fat extraction system (Gerhardt, UK; Figure 2.5) is based on the conventional 

principles of the traditional Soxhlet fat extraction method. Clean dry extraction flasks which 

had boiling stones were accurately weighed at the start of the fat extraction process. 5g of 

dried diet, dried bone, or 10g of dried minced whole bird was weighed and inserted into 

extraction thimbles which were then placed in fat extraction beakers.  
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The fat extraction process took a total of 2 hours and constituted of the following 

programmable steps: 

a. Hot extraction phase: 170ml petroleum ether (CAS 64742-49-0, Fisher Scientific, UK) 

was poured into the extraction flask containing dried samples and brought to boil at 

150oC for 30 minutes. Fat was liberated from the sample during this process. 

b. Evaporating phase A: the level of the solvent was lowered below the extraction 

thimble. Excess solvent was collected in the rear solvent recovery tank. 

c. Extraction phase:  petroleum ether was then refluxed for 1h to further extract fat from 

the samples. 

d. Evaporating phase B: the remaining solvent was distilled and collected in the rear 

solvent recovery tank.  

e. Evaporating phase C: a further recovery of the remaining solvent which was distilled 

and collected at the rear solvent recovery tank. 

 

 The extraction flasks with remaining petroleum ether and boiling stones were placed on a hot 

plate to evaporate off the solvent. Flasks were then placed in an oven for 2h set at 105oC until 

constant weight was achieved. Flasks including content (fat and boiling stones) were weighed 

after they had cooled down in a desiccator. Fat was determined using the following formula: 

% extractable fat = [(M2 – M1) ÷ MO] x 100 
 
Where: 
MO = weight of sample (g) 

M1 = weight of flask + anti-bumping granules (g) 
M2 = weight of flask + fat + anti-bumping granules (g) 
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                        Figure 2.5. Soxtherm fat extractor (Gerhardt, UK) 
 

2.5.5. Ash content 

2.5.5.1. Diets and digesta 

Ash content of diets and digesta were determined by weighing 5 - 10g of dried samples into 

pre-weighed crucibles. These were then placed into a muffle furnace (Nabertherm, Germany) 

for 24h at 650oC. Ashed samples were cooled in a desiccator and re-weighed. Ash weight was 

determined by weighing the ash residue accurate to 4 d.p using an analytical balance 

(Sartorius, UK). 

2.5.5.2. Bones and whole body 

Ash content of bones was determined after the tibia and femur bones were defleshed and 

dried at 105oC for 24h. Fat was extracted from the dried bones in Studies 1- 4, & 7 by refluxing 

petroleum ether for 1 - 6h, using a conventional Soxhlet apparatus as described in the 

particular studies. The Soxtherm fat extraction apparatus was used in Studies 5, 6 & 8 to 

extract fat from bones and whole dried bird due to its rapid processing time and solvent 
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recovery features. Feet were dried at 105oC for 24h without any prior fat extraction. Following 

fat extraction, the bones were dried at 105oC for 24h, cooled in a desiccator, weighed and 

placed in into pre-weighed crucibles. These were then ashed in a muffle furnace (Nabertherm, 

Germany) for 24h at 650oC.   

Ash content of whole bird was determined using a similar procedure. Representative aliquots 

of thoroughly minced whole bird (70 - 100g per bird) were first dried for 4 days at 105oC until 

constant weight was achieved. They were then extracted of fat using the Soxtherm fat 

extraction apparatus as described in Section 2.5.4.2. Samples were then dried at 105oC for 2 

days prior to ash determination. 10g samples were ashed in a muffle furnace (Nabertherm, 

Germany) for 9h at 450oC, and then for a further 15h at 650oC.  

Ashed samples were cooled in a desiccator and reweighed to determine the ash weight. Ash 

% was determined using the following formula: 

Ash % = Dry sample weight – Ash sample weight x 100 
                                 Fresh sample weight 

 

2.5.6. Titanium dioxide 

In Studies 7 & 8, 0.5%  titanium dioxide (TiO2) was included in diets as an inert marker for 

digestibility studies. It was analysed in diets and digesta using a UV spectrophotometer after 

the method of Short et al. (1996). Standard titanium solution (0.5mg ml-1) was prepared by 

dissolving 250 mg TiO2  in 100ml concentrated H2SO4 (Fisher Scientific, UK) which was 

brought to 500ml by adding distilled water. 1-10ml of the TiO2 solution was poured into 

100ml volumetric flasks labelled 1-10. Concentrated H2SO4 was then added to each flask to 

reach a total volume of 10ml, to which 10ml 30% hydrogen peroxide (Fisher Scientific) was 
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added. The volumetric flasks were then brought to volume with distilled water and stored in 

darkness in glass vials. 

0.3 - 0.5g of feed or freeze dried digesta were weighed in duplicates into ceramic crucibles and 

ashed in a muffle furnace (Nabertherm, Germany) for 14h at 650oC. After cooling in a 

desiccator, 10ml 7.4M H2SO4 was pipetted into each crucible and heated on a hot plate for 2h 

when the samples were completely dissolved. Additional extra 5ml H2SO4 was added to the 

samples during this process if required. 

Cooled down samples were filtered through Whatman 541 hardened ashless filter papers into 

100ml volumetric flasks. 10ml of 30% hydrogen peroxide was added to each volumetric flask 

which was then brought to volume by adding distilled water. The absorbance of the samples 

and standards was read at 410nm using a UV spectrophotometer (Unicam Helios, USA). A 

regression analysis of the standard curve was performed to obtain the coefficient used in 

determining TiO2 concentration. The amount of TiO/mg in the solution was calculated using 

the following equation: 

TiO2/mg =     Absorbance x 100                 
                   Coefficient x sample weight (mg) 

 

2.5.7. Calcium and phosphorus 

The calcium and phosphorus content in the diets, digesta, tibia, femur and feet ash were 

analysed for calcium and phosphorus using an inductively coupled plasma optical emission 

spectrometry (ICP-OES) assay (Optima 2100 DV, PerkinElmer, USA). All glassware used 

were soaked in 1% nitic acid overnight to remove all mineral contamination. 0.5g of each 

sample was incubated in duplicate with 10ml aqua regia (made up by mixing 1 part HNO3 

with 3 parts HCl) in 50ml flasks conical and incubated for 16h. Samples were then boiled for 
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90 minutes and then cooled down for 30 minutes. 5ml aqua regia was then added to the 

samples and boiled for another 60 minutes. Cooled down samples were filtered through 

Whatman 541 hardened ashless filter papers into 50ml volumetric flasks. Ultrapure water was 

used to rinse the conical flasks 3 times after which the volumetric flasks were brought to 

volume (50ml). These were thoroughly mixed and transferred into 15ml tubes. 

Ca standards (10 - 1000ppm) and P standards (0 - 350ppm) were prepared by diluting 

1000ppm ICP-OES standards (Fisher Scientific, UK) with ultra-pure water and used for ICP-

OES  analysis. The Ca and P content of the samples were analysed by ICP-OES set at a 

wavelength of 317.933nm for Ca and 213.617nm for P. Analysed Ca and P emission intensities 

of standards and samples were recorded. Standard curves were determined by regressing Ca 

and P emission intensities against the range of standards prepared. Mineral concentration 

(ppm) was calculated by the following formula: 

Mineral conc. (ppm) = Dilution volume (ml)  x  MEI – Intercept  
                                        Sample weight (g)            Gradient  

Mineral conc. (g/kg) = Mineral conc. (ppm) ÷ 1000 

Where: 
Mineral conc.     = mineral concentration of Ca or P 
Dilution volume = final volume in which samples were dissolved, i.e. 50ml 
Sample weight    = weight of sample analysed  
MEI                    = Ca or P mineral emission intensity analysed by ICP-OES 
Intercept            = intercept of the standard curve of Ca or P 
Gradient            = gradient of the standard curve of Ca or P 
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Figure 2.6. Example of a standard curve for Ca emission intensity 
  
 

 

Figure 2.7. Example of a standard curve for P emission intensity 
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2.5.8. Total phytate 

The total phytic acid of ileal digesta collected from birds in Studies 7 & 8; and trial diets 

including feed ingredients used in Study 8 were analysed for total phytic acid using a 

MegazymeTM K-PHYT assay (Megazyme International, Ireland). 

Sample extraction was done by carefully adding 20mL 0.66M HCl to 1g of accurately weighed 

feed, diet or ileal digesta. These were stirred with a magnetic stirrer for a minimum of 3h. 1mL 

of the resulting solution was pipetted into a 1.5mL microfuge tube and centrifuged for 10 

minutes at 13,000rpm. 0.5mL of the resulting extract supernatant was then transferred into a 

clean unused microfuge tube to which 0.5mL 0.75M NaOH was added to neutralise the 

sample. 

An enzymatic dephosphorylation reaction was carried out for free and total phosphorus as 

follows. For free phosphorus, 0.62mL ultra-pure water, 0.20mL acidic buffer solution (pH of 

5.5 containing sodium azide 0.02% w/v as preservative) and 0.05mL neutralised sample were 

pipetted into fresh 1.5mL microfuge tube. These were then mixed by vortex and incubated at 

40oC for 10 minutes in a water bath. 0.02mL ultra-pure water and 0.20mL of an alkaline buffer 

(pH of 10.4 containing MgCl2, ZnSO4 and sodium azide 0.02% w/v as a preservative) were 

then added, mixed by vortex and incubated at 40oC for 15 minutes in a water bath. 0.3mL 

trichloroacetic acid (50% w/v) was added to terminate the reaction. For total phosphorus, 

0.6mL ultra-pure water, 0.20mL acidic buffer solution (of pH 5.5 containing sodium azide 

0.02% w/v as preservative), 0.05mL neutralised sample and 0.02mL phytase suspension were 

pipetted into fresh 1.5mL microfuge tube. These were then mixed by vortex and incubated at 

40oC for 10 minutes in a water bath. 0.20mL of an alkaline buffer (of a pH of 10.4 containing 

MgCl2, ZnSO4 and sodium azide 0.02% w/v as a preservative) and 0.02mL alkaline 

phosphatase suspension were then added, mixed by vortex and incubated at 40oC for 15 
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minutes in a water bath. 0.3mL trichloroacetic acid (50% w/v) was added to terminate the 

reaction. 

The terminated reactions for free and total phosphorus were centrifuged for 10 minutes at 

13,000rpm. 1mL of supernatants were carefully pipetted into a 1.5mL microfuge tube to which 

0.50mL colour reagent (made by mixing 5 parts of ascorbic acid 10% w/v / 1M H2SO4 with 

1 part ammonium molybdate 5% w/v) was added.  

Standards were prepared by diluting phosphorus standard solution (50µg/mL with 0.02% w/v 

sodium azide preservative) with ultrapure water into 15mL tubes as follows: 

Sample Standard 0 
(0 µg) 

Standard 1 
(0.5 µg) 

Standard 2 
(2.5 µg) 

Standard 3 
(5 µg) 

Standard 4 
(7.5 µg) 

Distilled water 
(mL) 

5.00 4.95 4.75 4.50 4.25 

Phosphorus 
standard (mL) 

- 0.05 0.25 0.5 0.75 

 

1mL of made up standards and 0.5mL colour reagent were pipetted in duplicates into 1.5 

microfuge tubes. All samples including standards were incubated for 1h at 40oC, mixed by 

vortex, transferred into cuvettes and read at 655nm on a UV-VIS spectrophotometer (Unicam 

Helios, USA).  

The absorbance of each phosphorus standard was determined by subtracting absorbance of 

standard 0 from the other standards (1 - 4). 

Factor M (µg/∆Aphosphorus) was determined using the formula:  

M =   P (µg)                      
          ∆Aphosphorus 
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Mean value for M (µg/∆Aphosphorus) was calculated using the formula: 

(MSTD1 + MSTD2 + MSTD3 + MSTD4) ÷ 4    [µg/∆Aphosphorus] 
                                               
Where STD = standard. 
 
Concentration of phosphorus (c) was calculated using the following formula: 
c =     mean M x 20 x F      x    ∆Aphosphorus      [g/100g] 
           10,000 x 1.0 x v 
 
Where: 
Mean M  = mean value of phosphorus standards [µg/∆Aphosphorus] 
20           =  original sample extract volume (mL) 
F             = dilution factor 
∆A          = absorbance change of sample 
10,000     = conversion from µg/g to g/100g 
1.0      = weight of original sample matter (g) 
v              =  sample  volume (used in the colorimetric determination step)  
 
 
It follows for phosphorus: 
c =     mean M x 20 x 55.6      x    ∆Aphosphorus      [g/100g] 
           10,000 x 1.0 x 1.0 
 
  =     mean M x 0.1112      x    ∆Aphosphorus             [g/100g] 
 
 Phytic acid content = phosphorus [g/100g] 
                                               0.282 
The calculation of phytic acid content assumes that the amount of phosphorus measured is 

exclusively released from phytic acid and that this comprises 28.2% phytic acid (Kumari et al., 

2014). These calculations were done using the Mega-CalcTM software tool available for free 

from the Megazyme website (www.megazyme.com). 

2.5.9. Nutrient digestibility 

Titanium dioxide concentration was determined by UV spectrophotometer described in 

Section 2.5.6, after the method of Short et al. (1996). Ca and P content of diets, feed, ileal 

digesta and bones were determined by ICP-OES described in Section 2.5.7. The following 
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calculations were used in determining ileal digestibility coefficient and amount of nutrient 

digested, after the method of Mutucumarana et al. (2014). 

The apparent ileal digestibility coefficient = 1 -   (Ca or P in digesta x TiO2 in diet) 
                                                                                 (TiO2 digesta x Ca or P diet) 
 
Ca or P digested = apparent ileal digestibility coefficient x Ca or P in diet 

2.5.10. Energy determination 

Gross energy (GE) content of diets, digesta and excreta was determined using a bomb 

calorimeter (Instrument 1261, Parr Instruments, Illinois, USA). Approximately 1g sample was 

mixed with small amount of water and made into pellets with a pellet press (Parr Instruments, 

USA). The pellets were dried overnight at 105°C in a drying oven before being weighed into 

tin crucibles and placed in the bomb calorimeter (Parr Instruments, USA). 10cm of fuse wire 

was threaded through the holes in the bomb with the electrodes attached, ensuring the wire 

was in contact with the pellet. The bomb was then assembled, ensuring the top was tightly 

screwed on, and then filled with oxygen. The bomb was then carefully placed into the 

calorimeter bucket of water filled with 2L of water, and the lid of the bomb jacket was shut, 

and the process was started. The pellets were exploded in the calorimeter and the energy 

produced was measure in MJ/kg. 

Apparent metabolisable energy (AME) was calculated by:  

GE diet - (GE  digesta x (TiO2 in the diet/TiO2 in digesta))   

The nitrogen content of the digesta was analysed by Dumas method, and metabolisable 

nitrogen was calculated using the following equation: 

Diet N – Digesta N x (Diet Ti/Digesta Ti) 
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The apparent ileal metabolisable energy was also corrected to zero N balance (AMEn) using 

the figure of 34.4 kg/g N retained as detailed by Hill and Anderson (1958). 

2.5.11. Gene expression of sodium-phosphate cotransporter IIb (NaPi-IIb) 

2.5.11.1. Isolation and quantification of NaPi-IIb total mRNA 

100g tissue was collected from duodenal tissue samples and stored in RNAlater at -80oC until 

further processing. At processing, tissue samples were homogenised in 1ml Tri-Reagent (Life 

Technologies) with 5mm stainless steel bead (Qiagen) in the Qiagen Tissue Lyser II. Phase 

separation was performed using molecular grade 1-bromo-3-chloropropane (Sigma). RNA 

was then purified from the aqueous phase using the MagMAX-96 for Microarray Isolation kit 

(Life Technologies) and the RNA subsequently stored at -20°C. The concentration of RNA 

was determined spectrophotometrically using a NanoDrop ND-1000 UV-Vis 

spectrophotometer (Thermo Scientific). RNA (5μl) was reverse-transcribed into cDNA using 

20µl RT premix 2 (Primerdesign). The reaction was performed at 42°C for 20 minutes and 

72°C for 10 minutes.  cDNA was stored at -20°C until used in the PCR reaction. The NaPi-

IIb gene-specific primers were designed by Primerdesign Ltd, UK. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as the housekeeping gene. 

The primers for NaPi-IIb were as follows: 

Forward, 5'- AATAGCGTTGATAGATGAGACAAGG-3' 

Reverse, 5'- AATCCCATAGAGTACACGAATGATTT-3'  

 

2.5.11.2 Quantitative Real-Time PCR 

Quantitative Real-Time PCR was performed using Stratagene Mx3005p (Agilent 

Technologies). PCR was carried out in duplicates in Stratagene PCR plates (Agilent 

Technologies) under the following conditions: 95°C for 2 minutes, 40 cycles of 95°C for 10s 
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and 60°C for 1 minute. 10µl cDNA was diluted in 90µl PCR water (Solis BioDyne) and 5µl 

diluted cDNA used in each PCR reaction.  1µl of each primer/probe mix was combined with 

10µl PrecisionPLUS Mastermix and 4µl PCR water (all from Primerdesign). Relative gene 

expression was determined using the comparative cyclic threshold (CT) method of Livak and 

Schmittgen (2001).  

2.6. Data analysis 

All data were analysed using IBM SPSS statistical software, version 23 (IBM Statistics, 2016). 

Normality of data was confirmed -by performing the Kolmogorov-Smirnov test.  Levene's 

test to assess the equality of variances between treatment groups. Details of the statistical 

methods used are described in the relevant sections. All data were considered statistically 

significant when  P  < 0.05. 

 

 

 

 

 

 

 

 

 

 

 



 

103 
 

CHAPTER 3: EVALUATING THE BONE ASH METHODOLOGY USED IN 
ASSESSING PHOSPHORUS MINERALISATION IN BROILERS  

3.1. Introduction 

There have been significant improvements in the growth rate of commercial broilers 

(Havenstein et al., 2003b; Gous, 2010) as breeding companies continue to intensively select 

for rapid growth and high meat yield (Druyan et al., 2007; Talaty et al., 2010). However, the 

improved growth rate has had a negative impact on metabolic disorders with an increase in 

the incidences of skeletal deformities (Lilburn, 1994; Angel, 2007; Buzala et al., 2014). 

Consequently, the economic cost incurred from increased mortality during rearing and 

transportation, and rejects or downgrades at processing plants remains a major challenge in 

commercial poultry production (Rath et al., 2000; Driver et al., 2006a; Talaty et al., 2009; Shim 

et al., 2008). 

Phosphorus is required for adequate skeletal development, and it is widely researched in 

broiler nutrition (Waldroup et al., 2000). The low availability and variability of phytate 

phosphorus from plant sources necessitates the inclusion of additional inorganic phosphorus 

in the feed (Perney et al., 1993; Watson et al., 2006), often at levels which exceed requirement 

in order to provide a margin of safety (Dhandu and Angel, 2003). However there are concerns 

regarding the rapid depletion of the world phosphate reserves (Cordell et al., 2009), and the 

detrimental effects of undigested dietary phosphorus to the environment (Sharpley, 1999; 

Dilger et al., 2004). This underscores the importance of optimising the utilisation of dietary 

phosphorus in poultry whilst avoiding any compromise on skeletal integrity. To this end, an 

accurate evaluation of the effect of dietary phosphorus on the skeleton is required.  

Bone mineralisation is routinely used to assess phosphorus availability in poultry. It has been 

demonstrated that broilers respond to increase in dietary phosphorus with an increase in tibia 
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ash weight (Venäläinen et al., 2006); and a corresponding reduction in tibia ash percentage 

when dietary phosphorus is reduced (Watson et al., 2006). However, there is a lack of up-to-

date bone mineralisation data derived from commercial broiler production in the literature. 

The various bone measurements that have been used to evaluate bone mineralisation in 

broilers include: bone mineral content (Shang et al., 2015), bone ash concentration (Shastak et 

al., 2012a), bone densitometry (Barreiro et al., 2009), bone breaking strength (Shaw et al., 2010), 

and bone ash (Atteh and Leeson, 1983). However, according to the report of Sullivan and 

Douglas (1990) cited in the work of Qian et al. (1996), bone ash is the preferred criterion by 

researchers due to its simplicity. Different bone types have been examined by various 

investigators for ash content. These include the femur (Dickey et al., 2012), toe (Karimi et al., 

2013), foot (Garcia and Dale, 2006; Shastak et al., 2012a) and tibia (Olukosi and Fru-Nji, 2014). 

Tibia ash is the most common bone used in evaluating bone mineralisation in poultry research 

(Hall et al., 2003).  

Only very few studies have directly characterised bone morphology and mineralisation in 

poultry (Bond et al., 1991; Skinner and Waldroup, 1995; Williams et al., 2000b; Applegate and 

Lilburn, 2002), but the publication dates and experimental rearing conditions (small pens or 

cages) suggest the bone data reported from these studies may not be applicable to current 

commercial practices. It was therefore of interest to characterise the range of tibia bone 

mineralisation found in a current strain of healthy, commercially reared broilers to create a 

database of benchmarks applicable to current commercial practice. This was examined in 

Chapter 4, but before embarking on that study, it was important to evaluate the methodology 

for evaluating bone ash in broilers.   

As already discussed in Chapter 1, Section 1.4.1.1.1; a review of the available literature (Table 

1.3) shows common divergences in the various processing methods employed in the tibia 
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bone ash methodology. For example, it is necessary to remove all adhering flesh from the 

bones, and this is usually done by manual excision. However, this a laborious and time-

consuming process and therefore different processing methods have been employed to make 

the process easier. These include enzymatic maceration techniques (Shastak et al., 2012a), 

autoclaving (Boling-Frankenbach et al., 2001; Kim et al., 2008) and boiling (Ruiz-Feria et al., 

2014). Another divergence in the bone processing method prior to ash determination is the 

inclusion of the cartilage caps of the defleshed bones (Lumpkins and Batal, 2005), or removing 

them (Snow et al., 2004; Angel et al., 2006). Extracting fat from the bones prior to ash 

determination is a commonly cited methodology, although this step has been omitted in some 

previous research (Qian et al., 1996; Baird et al., 2008). It is also common practice not precisely 

state what procedures were followed when extracting fat from the bones.   

3.1.2. Aims and objectives 

The overall aim of this study was to investigate four common divergences in the tibia bone 

processing methods employed prior to ash determination in poultry, and to examine the 

sensitivity of these procedures in identifying bone ash responses.  

The specific objectives were: 

 To examine the effect of fat extraction on tibia ash content. 

 To investigate the effect of including cartilage caps on fat extracted tibia ash. 

 To investigate the effect of increasing fat extraction time on fat extraction efficiency. 

 To evaluate the effect of autoclaving prior to fat extraction on tibia ash content. 

The hypothesis of these series of studies was that different bone processing method would 

result in different bone ash values. 
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3.2. Materials and methods 

3.2.1. Bird husbandry and trial design 

Institutional and UK national NC3R ARRIVE guidelines for the care, use and reporting of 

animals in research (Kilkenny et al., 2010) were followed, and all experimental procedures 

involving animals were approved by the University's College of Arts and Science ethical review 

committee. Two trials were conducted to evaluate the effect of 4 divergences in the tibia bone 

processing methods employed prior to ash determination.  

Ross 308 day-old male broiler chicks were sourced from PD Hook Hatcheries Ltd, 

Oxfordshire. On arrival, the birds were allocated to pens (0.64m2). The birds were allocated 

in such a way that they were evenly distributed by weight across treatments. The birds were 

raised in-house in a thermostatically controlled room and provided with an initial room 

temperature of 32°C which was gradually reduced to 21°C by day 21 and maintained till the 

end of the experiment. Lighting was provided with 1h darkness from day 1 and was increased 

by 1h a day to 6h, then maintained until the end of the experiment. Wood shavings were 

spread on the pen floors (approximately 3cm thick) and was topped up as required during the 

course of each trial. Experimental diets and water were provided ad libitum, and birds were 

checked twice daily to monitor birds and environmental conditions. Mortalities were recorded 

along with the date and weight of the bird and reason if culled.  

In Trial 1, 288 day-old male broiler chicks were fed one of six mash type diets which varied in 

phosphorus and phytase content (Tables 3.1 and 3.2), formulated to produce a range of bone 

ash content. Each diet was allocated to 8 replicate pens, with 6 birds allocated per replicate 

pen. On day 35, 2 birds per replicate pen were euthanised by cervical dislocation, and right 

and left tibia bones removed and individually stored at -20oC until further processing. In   

Study 1, the effect of fat extraction prior to bone ash determination was examined by 
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comparing fat extracted right tibia bones including cartilage caps (n = 98) with un-extracted 

left tibia bones including cartilage caps (n = 98). The right fat extracted tibia bones examined 

in Study 1 were used to evaluate the effect of including cartilage caps in Study 2. 

In Trial 2, 264 day-old male broiler chicks were fed a standard commercial mash diet (Tables 

3.3 and 3.4). The diet was formulated to meet or exceed the Ross 308 nutrient requirements 

(Aviagen, 2014) and 8 birds per pen were allocated to 33 replicate pens. On day 42, 1 bird per 

pen was euthanised by cervical dislocation and right and left tibia bones removed and 

individually stored at -20oC until further processing. Right tibia bones including cartilage caps 

(n = 33) were used in Study 3 to examine the effect of fat extraction time on fat extraction 

efficiency using the Soxhlet fat extraction method. In Study 4, the effect of autoclaving bones 

prior to fat extraction on bone ash content was examined. Left tibia bones including cartilage 

caps (n = 33) were autoclaved before fat extraction and bone ash determination, and were 

compared with the ash content of fat extracted right tibia bones obtained in Study 3. 

Table 3.1. Feed composition of the experimental diets (g/kg as fed basis), Trial 1 
 

Ingredient 
Starter  
(1 - 10d) 

Grower 1  
(10 - 20d) 

Grower 2  
(20 - 26d)  

Finisher  
(26 - 35d)  

Corn 400 270 260 250 

Wheat 215.79 331.86 363.38 379.83 

Wheat meal     20     17 

Soya - HiPro  131 240 238 149 

Soya pellets  186       56 

Rapeseed meal     60   30   20 

Rapeseed expeller       30   50 

Vegetable oil  20   46   49   50 

Limestone, fine  12.1   11.4     9.2   10.3 

Ca-Na-P fine    3     5     7.8     3.6 

Monocap.   11.5     2.8     

Salt    2.4     2.0     1.5     1.8 

Sodium bicarbonate    1     0.9     0.9     1.3 
1Additives/Premix  17.21   10.04   10.22   11.17 

 1Supplied per kilogram of diet: manganese, 100 mg; zinc, 80 mg; iron (ferrous sulphate), 20 mg; copper, 10 mg; iodine, 1 mg; 

molybdenum, 0.48 mg; selenium, 0.2 mg; retinol, 13.5 mg; cholecalciferol, 3 mg; tocopherol, 25 mg; menadione, 5.0 mg; thiamine, 
3 mg; riboflavin, 10 mg; pantothenic acid, 15 mg; pyroxidine, 3.0 mg; niacin, 60 mg; cobalamin, 30 µg; folic acid, 1.5 mg; and biotin 
125 mg 
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Table 3.2. Calculated feed composition of the experimental diets (g/kg as fed basis), Trial 1 

 

Treatment 
group 

Phytase 
inclusion/kg 

Diet composition Starter Grower 1 Grower 2 Finisher 

Ca   10 8 7.5 6.5 
1Crude protein 220.2 219 218 216 
1Ether extract   79 88 92 94 
1Ash     5.6 49 50 47 

Control 0 FTU 

Total digestible P     4.5 3.4 3.1 2.5 
Digestible P from 
phytase     0 0 0 0 
Digestible P from feed 1.3 1.4 1.4 1.4 
Digestible P from 
mineral additive 3.2 2 1.7 1.1 

Group 1 
 
500 FTU 

 

Total digestible P 4.5 3.4 3.1 2.5 
Digestible P from 
phytase 1.1 1.1 1.1 1.1 
Digestible P from feed 1.3 1.4 1.4 1.4 
Digestible P from 
mineral additive 2.1 0.9 0.6 0 

Group 2 
 
500 FTU 

 

Total digestible P 4.5 2.8 2.5 2.5 
Digestible P from 
phytase 1.1 1.1 1.1 1.1 
Digestible P from feed 1.3 1.4 1.4 1.4 
Digestible P from 
mineral additive 2.1 0.3 0 0 

Group 3 
 
500 FTU 

 

Total digestible P 4.5 2.5 2.5 2.5 
Digestible P from 
phytase 1.1 1.1 1.1 1.1 
Digestible P from feed 1.3 1.4 1.4 1.4 
Digestible P from 
mineral additive 2.1 0 0 0 

Group 4 
 
750 FTU 

 

Total digestible P 4.7 2.7 2.7 2.7 
Digestible P from 
phytase 1.3 1.3 1.3 1.3 
Digestible P from feed 1.3 1.4 1.4 1.4 
Digestible P from 
mineral additive 2.1 0 0 0 

Group 5 
 
1000 FTU 

 

Total digestible P 4.8 2.8 2.8 2.8 
Digestible P from 
phytase 1.4 1.4 1.4 1.4 
Digestible P from feed 1.3 1.4 1.4 1.4 
Digestible P from 
mineral additive 2.1 0 0 0 

1Analysed. 
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Table 3.3. Feed composition of experimental diets (g/kg as fed basis), Trial 2 
 

Ingredient 
 
Starter (1 - 14d)  

 
Grower (15 - 28d) Finisher (29 - 42d) 

Wheat - Feed 585.2 612.4 694.8 

Soybean meal 48 351.5 317.8 240.1 

Soy oil   15.9   31.7   28.7 

Salt    4.3     4.0     4.2 

DL-Methionine    3.3     2.0     1.3 

Lysine HCl    2.5     0.5        0.3 

Threonine    0.9     
Limestone  13.3   11.2      10.3 

Dicalcium phosphate  18.0   15.3      15.3 
1Vitamin premix    4.0     4.0        4.0 

 

 
 

 

Table 3.4. Analysed feed composition of the experimental diets (as fed basis), Trial 2 
 

Diet 

1DM 
(%) Ash (%) 

2GE 
(MJ/kg) 

Protein 
(%) Fat (%) 

Ca 
(g/kg) 

P 
(g/kg) 

Starter 88.1 5.11 18.61 24.99 6.14 12.85 6.70 

Grower 88.1 4.43 19.02 23.18 7.34 11.69 5.59 

Finisher 88.1 4.10 20.30 20.37 6.09   8.75 4.32 
1Dry matter 
2Gross energy 
 

3.2.2. Bone processing  

All tibia bones were processed as previously described in Chapter 2, Sections 2.4.2.3, 2.5.2, 

2.5.4.1 and 2.5.5.2. Briefly, right and left tibia bones were completely thawed at room 

temperature before all adhering tissues including fibula were either manually excised using 

laboratory scalpels, whilst ensuring cartilage caps were kept intact (Studies 1 - 3) or autoclaved 

at 121oC and 15bars for 15 minutes (Study 4) before removing all adhering tissues including 

fibula but ensuring cartilage caps were kept intact. After further processing dependent on the 

study as described below, bones were then ashed at 650oC for 24h in a muffle furnace to 

determine ash weight and ash percentage. 

 1Supplied per kilogram of diet: manganese, 100 mg; zinc, 80 mg; iron (ferrous sulphate), 20 mg; copper, 10 mg; 

iodine, 1 mg; molybdenum, 0.48 mg; selenium, 0.2 mg; retinol, 13.5 mg; cholecalciferol, 3 mg; tocopherol, 25 mg; 
menadione, 5.0 mg; thiamine, 3 mg; riboflavin, 10 mg; pantothenic acid, 15 mg; pyroxidine, 3.0 mg; niacin, 60 mg; 
cobalamin, 30 µg; folic acid, 1.5 mg; and biotin 125 mg 
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3.2.2.1. Study 1: the effect of fat extraction on tibia ash content 

Right tibia bones including cartilage caps (n = 98) were dried, fat extracted using the Soxhlet 

extraction method and then dried until constant weight was achieved. The corresponding left 

tibia bones including cartilage caps (n = 98) were not fat extracted but dried until constant 

weight was achieved. Ash weight and ash percentage of the right and left bones were then 

compared to examine the effect of the 2 bone processing methods on ash content, and 

sensitivity in elucidating treatment means. 

3.2.2.2. Study 2: the effect of including cartilage caps on fat extracted tibia ash content 

The effect of including cartilage caps on bone ash was evaluated using the right tibia bones 

analysed in Study 1, by comparing ash values when cartilage caps were included, with ash 

values when cartilage caps were not included prior to ash determination. 

3.2.2.3. Study 3: the effect of increasing fat extraction time on fat extraction efficiency 

Right tibia bones including cartilage caps of birds sampled in Trial 2 (n = 33) were dried at 

105oC for 24h prior to 1h fat extraction in petroleum ether using the Soxhlet extraction 

method to determine the amount of fat extracted. This process was cumulatively repeated 8 

times in total. Additional hourly fat extracted was determined to evaluate fat extraction 

efficiency. 

3.2.2.4. Study 4: the effect of autoclaving prior to fat extraction on tibia ash content   

Autoclaved left tibia bones, including cartilage caps from birds sampled in Trial 2 (n = 33) 

were extracted of fat for 8h using the Soxhlet extraction method, then dried until constant 

weight was achieved. Bones were then ashed, and compared with ashed right tibia bones 

examined in Study 3. 
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3.2.3. Statistical analysis 

Results were analysed using using IBM SPSS statistical software, version 23 (IBM Statistics, 

2016). The General Linear Model for one-way between-groups ANOVA was used to analyse 

data obtained in Studies 1 and 2. Data were analysed in Study 3 using the General Linear 

Model for one-way repeated-measures ANOVA, while the independent t-test procedure was 

used to compare data obtained in Study 4. Significant differences between treatment means 

were elucidated using the Bonferroni procedure for Studies 1-3. Bone ash data of the different 

bone processing methods determined within Studies 1, 2 & 4 were compared using the 

independent t-test procedure.  

The strength of relationships between bone ash data for the different bone processing 

methodologies was examined using the bivariate model of the Pearson correlation procedure. 

The interpretation of the strength between relationships was based on those of Cohen (1988): 

small when r = 0.1 - 0.29, medium when r = 0.30 - 0.49 and large when r = 0.50 - 1.0. Data 

were considered statistically significant when P < 0.05. 

3.3. Results 

From the results obtained in Study 1 (Table 3.5), although the mean un-extracted dry bone 

weights were significantly heavier than the extracted dry bone weights (7.17g vs. 5.66g; P < 

0.001), mean ash weight was similar for both processing methods (2.07g vs. 2.05g; P = 0.727).  

The un-extracted bones were more sensitive in elucidating differences in treatment means for 

ash weight compared with extracted bones (P = < 0.001 and 0.009 respectively). Conversely, 

mean ash percentage of the fat extracted bones was significantly greater (36.50% vs. 28.74%; 

P < 0.001) than the un-extracted bones by 22%; and was also more sensitive in elucidating 

differences in treatment means than the un-extracted bones (P = 0.001 and 0.005 respectively). 

When the fat extracted bones were compared with un-extracted bones, a large correlation was 
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found for ash weight (r = 0.592), while a medium strength correlation found for ash 

percentage (r = 0.367). 

Table 3.5. The effect of fat extraction on tibia ash content 
 

 Mean ash weight (g) Mean ash percentage (%) 
Treatment1 + Fat extraction -  Fat extraction + Fat extraction -  Fat extraction 

1 2.21ab      2.31a 38.70a 30.19a 
2 2.29a      2.27a 38.52ab 29.68ab 
3 2.05ab      1.90b 35.98abc 27.21ab 
4 1.83b      1.77b 34.04c 26.84b 
5 1.93ab      2.02ab 35.11bc 29.12ab 
6 2.12ab      2.04ab 36.61abc 29.40ab 
Mean 2.07      2.05 36.50 28.74 
Pooled SEM 0.042      0.035  0.378   0.319 
P value 0.009   <0.001  0.001   0.005 

1Experimental diets. 
a-cMeans within the same column with no common subscript differ significantly (P < 0.05). 
 

In Study 2, although mean ash weight was significantly greater when cartilage caps were 

included compared to when they were not (2.07g vs. 1.88g; P = 0.001), both bone processing 

methods (cartilage inclusion vs. non-inclusion) elucidated identical differences in treatment 

means for ash weight, Table 3.6. Ash percentage was significantly greater (44.54% vs. 36.50%; 

P < 0.001) when cartilage caps were not included compared to when they were included prior 

to ash determination. Interestingly when ash percentage was determined, method sensitivity 

was improved when cartilage caps were removed compared to when they were left on. 
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Table 3.6. The effect of including cartilage caps on fat extracted tibia ash content 
 

 Mean ash weight (g) Mean ash percentage (%) 
Treatment1 + Cartilage  cap -  Cartilage cap + Cartilage  cap -  Cartilage cap 

1 2.21 ab 2.00ab    38.70a    47.48a 
2 2.29a 2.08a    38.52ab    46.94a 
3 2.05ab 1.88ab    35.98abc    44.23ab 
4 1.83b 1.68b    34.04c    41.71b 
5 1.93ab 1.75ab    35.11bc    42.43b 
6 2.12ab 1.92ab    36.61abc    44.43ab 
Mean 2.07 1.88    36.50    44.54 
Pooled SEM 0.042 0.039     0.378    0.409 
P value 0.009 0.025     0.001   <0.001 

1Experimental diets.  
a-c Means within the same column with no common subscript differ significantly (P < 0.05). 
 
 

In Study 3, the cumulative mean fat extracted from tibia bones was significantly different (P 

< 0.001) when fat was determined on an hourly basis up to 8 hours, Table 3.7. Additional 

hourly mean fat extracted was also significantly different up to 6 hours (P < 0.001), beyond 

which no significant differences were observed. 

Table 3.7. The effect of increasing fat extraction time on fat extraction efficiency 
 

 
Fat extraction 
time (h) 

 
Cumulative mean 
fat extracted1 (%) 

 
Additional mean 
fat extracted1 (%) 

1   5.72a    5.72a    
2   9.39b   3.89b    
3 11.57c   2.41c    
4 12.90d   1.50d    
5 13.53e   0.72e    

6 13.91f   0.45ef   
7 14.21g  0.35f     

8 14.51h  0.35f     

Pooled SEM 0.243 0.131 

P value < 0.001 < 0.001 
1Fat extracted from a total of 33 right tibia bones. 
a-h Means within the same column with no common subscript differ significantly (P < 0.05). 
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In Study 4, autoclaving bones prior to fat extraction did not have any significant effect on ash 

weight in 42d old broilers. Although ash percentage was also not significantly different 

between both processing methods, autoclaved bones tended to have greater ash percentage 

compared to the bones which were not autoclaved (P = 0.084).  

Table 3.8. The effect of autoclaving tibia bone before fat extraction on ash content 
 

1Mean values determined from a total of 33 tibia bones per processing method. 
 

3.4. Discussion 

The need for standardising the methodology for determining the ash content of bones has for 

long been recognised. Previous investigators (St. John et al.,1933; Bethke and Record, 1934) 

observed variations in the processing methods employed in determining bone ash content in 

poultry e.g. use of different fat extraction solvents, different drying temperature, inclusion or 

removal of cartilage caps, and determining bone ash percentage either on air dry or moisture-

free basis. These variations in methodology may affect the result obtained (Orban et al., 1993). 

It was therefore of interest to identify which bone processing method and ash criterion (weight 

or %) best reflect sensitivity to changes in bone mineralisation in order to improve accuracy 

when comparing bone data, especially from unrelated studies which may have been 

determined from different processing methods 

 

Bone processing 
method 

 
1Dry bone weight (g) 

 
1Bone ash weight (g) 1Bone ash % 

Fat extracted bones 5.49 2.33 42.15 
Autoclaved bones 5.35 2.31 42.95 
P value 0.603 0.858   0.084 
Pooled SEM 0.141 0.065   0.231 
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3.4.1. Study 1: the effect of fat extraction on tibia ash content 

The fat extraction procedure is a well-cited methodology routinely employed prior to ash 

determination (Waldroup et al., 2000; Yan et al., 2005a; Driver et al., 2006a); and is known to 

reduce variation between samples (Garcia and Dale, 2006). However, this process requires 

substantial use of organic solvents and laboratory processing time, which raises the question 

of whether fat extraction is an essential step in the methodology used to determine bone ash 

content.  

Garcia and Dale (2006) analysed bones from 2-week old broilers and reported sensitivity in 

tibia ash percentage was not improved when the fat extraction method was compared with 

the non-fat extraction method. They however acknowledged that measurements in older birds 

might be more variable due to higher bone lipid content. Age-related increases in the fat 

content of eviscerated male broiler carcasses have been reported (Perreault and Leeson, 1992). 

Although the bone fat content was not determined in this study, it is expected that the fat 

content in the bones of the 35d birds used would be greater than the 2 week-old birds used 

in the study of Garcia and Dale (2006), which may partly explain why differences in assay 

sensitivity were observed in this study.  

A medium strength correlation (r = 0.367) was found for ash percentage when fat extracted 

bones were compared with un-extracted bones. This is in contrast with the findings of Yan et 

al. (2005a) who reported a much higher coefficient of determination for ash percentage (R2 = 

0.95) when fat extracted tibia bones were compared with un-extracted tibia bones in 21d old 

broilers. This may be due to different reasons. The broilers in the study of Yan et al. (2005a) 

were fed a wide range of dietary phosphorus (0.39 – 0.73% total P) which resulted in a wide 

range of tibia ash values (29.57% - 41.57%). This would have extended the correlation plot 

resulting in a higher coefficient of determination. The observed differences may also be due 
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to the physiological differences at the age of sampling. It is expected that the older birds in 

this study (35d) would have retained more dietary fat in the bones compared to 21d broilers. 

This may have led to increased variation between bone samples and subsequently weaker 

correlation in bone ash percentage between the two processing methods.   

Considering the significant differences in actual bone ash percentage values and improvement 

in method sensitivity when ash percentage was determined, this study suggests accuracy is 

improved when fat is extracted prior to ash determination when evaluating bone 

mineralisation, especially when comparing bone samples from unrelated studies. Extracting 

fat from the bones prior to ash determination will remove variations in the fat content of the 

bones, particularly in older birds fed varied dietary fat content. 

3.4.2. Study 2: the effect of including cartilage caps on fat extracted tibia ash content 

Ash percentage was significantly greater (P < 0.001) when cartilage caps were not included 

compared to when they were included prior to ash determination. This stands to reason as the 

cartilage caps had lower mineral content and resulted in lower ash weight and % when 

included in ash determination. Cartilage caps are sometimes removed prior to ash 

determination (Baird et al., 2008; Chowdhury et al., 2009); and comparison of ash 

measurements derived from bones where this is the case, with ash values of bones when 

cartilage caps are included may be misleading, particularly in disease situations. For example 

Hamilton and Garlich (1971) and Huff et al. (1980) reported aflatoxin decreases bone ash 

content by inhibiting fat metabolism. Bacterial chondronecrosis with osteomyelitis, one of the 

main causes of lameness in broilers (Wideman et al., 2013), affects the cartilaginous epiphysis 

of the proximal tibiotarsus in broilers and has been shown to correlate with high bone ash 
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values. Thorp and Waddington (1997) determined higher ash values in birds diagnosed with 

chondronecrosis compared with normal healthy birds (52.5% vs. 47.7%).  

In this study, removing the cartilage caps was more sensitive in elucidating differences in 

treatment means. In controlled research trials where the health status of a flock is known, 

removing the cartilage caps in order to improve the accuracy of comparisons may be adopted. 

However, it may be beneficial to include the cartilage caps when comparing bone ash values 

from unrelated studies, particularly when the health status is unknown. Although strong 

correlations were observed between both methods for both ash weight and ash percentage    

(r = 0.995 and 0.893 respectively); the result from this study suggests accuracy in comparing 

ash data between the two methods is improved when ash weight data is used. This 

demonstrates how different processing method can result in various ash values (weight and 

%) and highlights the importance of precisely stating what methods were followed in order to 

accurately compare results.  

3.4.3. Study 3: the effect of increasing fat extraction time on fat extraction efficiency 

Organic solvents are routinely used to extract fat from the bone. However, there is a lack of 

common procedure adopted by researchers in extracting fat from the bone. Variations of this 

method reported in the literature include soaking in diethyl alcohol for 48h (Perney et al., 

1993), a 2-phase fat extraction process with ethyl alcohol for 36h followed by diethyl ether for 

either 36h (Sun et al., 2013); or 48h (Watson et al., 2006; Hamdi et al., 2015); or a 2-phase 

extraction process with ethanol for 48h followed by ether for 48h (Payne et al., 2005). Fat 

extraction with petroleum ether using the Soxhlet method is very well cited in the literature 

but has been carried out for varied times, e.g. 6h (Olukosi and Fru-Nji, 2014) and 16h (Li et 

al., 2016b). Researchers are also sometimes not specific in stating the fat extraction time 
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followed. Although it has for long been reported by Bethke and Record (1934) that the use of 

different organic solvent did not affect bone ash percentage, an understanding of the 

minimum time required to extract fat from bones is important, considering laboratory cost, 

bone processing time required and the potential detrimental effects on the environment when 

organic solvents are used.  

No significant differences were observed in additional percentage fat extracted from bones 

beyond 6h using the Soxhlet fat extraction method. This suggests 6h is adequate to extract fat 

from bones using petroleum ether. This has obvious benefits for reduced processing time and 

costs compared with other methods that take longer or use multiple solvents. 

3.4.4. Study 4: the effect of autoclaving prior to fat extraction on tibia ash content 

The manual removal of flesh from the bones is a laborious and time-consuming process. 

Autoclaving tibia bones prior to ash determination is a technique sometimes employed  to 

make the process of flesh removal easier by softening the adhering tissues (Boling-

Frankenbach et al., 2001; Kim et al., 2008). However, the effect of autoclaving prior to fat 

extraction on bone ash has not been investigated.  

The autoclaved bones tended to have a greater ash percentage (P = 0.084) compared to the 

ones which were not autoclaved. The autoclaved bones had numerically lower dry bone weight 

compared to the bones which were not autoclaved (5.53g vs. 49g, P = 0.603). Autoclaving the 

bones may have liberated some fat from the bones and improved subsequent fat extraction 

efficiency compared to when the bones were not autoclaved. This however needs to be 

verified considering the small sample size used in this study. Nonetheless, there is the need 

for subsequent fat extraction after autoclaving to adequately remove fat from the bones and 

also reduce variability in bone fat content as already discussed.  
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Comparing the strength of the relationship between the two bone processing methods, ash 

weight was more strongly correlated than ash percentage (r = 0.620 and 0.346 respectively; 

Figures 3.1 & 3.2). This suggests that accuracy in comparing bone mineralisation data from 

unrelated studies where these two processing methods are employed is improved when ash 

weight is used. 

 

Figure 3.1. Correlation between autoclaved and unautoclaved fat extracted tibia ash 
weight 
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Figure 3.2. Correlation between autoclaved and unautoclaved fat extracted tibia ash % 

 

Autoclaving bones before fat extraction helps to soften the adhering flesh, and enables the 

process of defleshing bones easier. However, considering the time required to label and 

autoclave the bones, it is doubtful if any significant time would be gained by autoclaving. Once 

the technique for manually removing flesh from bones is learnt (manual excision without prior 

autoclaving), defleshing bones can be quickly done. In agreement, Orban et al. (1993) reported 

it took about 25% less time to manually excise flesh from bones compared to boiling bones 

in water for 10 minutes due to the time required to process the bones (labelling, boiling, 

cooling and de-fleshing). Not autoclaving the bones also provides an opportunity to capture 

other bone measurements, particularly bone strength and histology which cannot be accurately 

obtained from soft autoclaved bones. These will help in further understanding bone 

mineralisation data.  
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3.5. Implication 

The logistics involved in rapidly determining bone ash from a large dataset can be onerous. 

There is therefore the need to develop a rapid way of obtaining results without compromising 

reliability. The recommended 6h fat extraction time determined in this study may significantly 

reduce the bone processing time and increase sample throughput compared to other bone 

processing methods that take longer. This is advantageous when analysing a large dataset. 

More work needs to be done to develop a consensus on what method gives the best reliability 

with least input. 

3.6. Conclusion 

The lack of a standardised procedure for evaluating bone mineralisation, which leads to 

differences in results as previously highlighted in the report of Orban et al. (1993), remains a 

pertinent issue in contemporary poultry research. The findings from these studies support the 

hypothesis that different bone processing methods result in different bone ash values. This 

could potentially hamper meaningful comparison of bone ash measurements particularly from 

unrelated studies where different processing methods are employed.  

There are significant differences in ash percentage when cartilage caps are included or not 

included in the bone processing methodology, and it would be misleading to directly compare 

values obtained from different studies where these two processing methods are employed. 

From the results obtained in these studies, it is has been demonstrated that sensitivity in 

elucidating treatment means is improved when cartilage caps are removed from tibia bones 

prior to ash determination. This could be adapted for use in controlled research trials where 

the health status of the flock is known. However, some previous reports have shown that ash 

percentage is increased in disease conditions affecting the cartilage caps. It may therefore be 

beneficial to include the cartilage caps when comparing bone ash values from unrelated 
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studies, particularly when the health status is unknown. It is also recommended that tibia 

bones are extracted of fat for a minimum of 6h with the cartilage caps included when using 

the Soxhlet fat extraction method. Fat extraction will help remove any variation in bone lipid 

content which may arise due to the effect of diet, disease or age-related differences. These 

established methods will be used in further studies in this PhD project. 

The results obtained from these studies highlight the effect of different bone processing 

methods on bone ash (weight and %), and therefore the importance of a making careful 

consideration on what criterion to use when evaluating bone mineralisation. Researchers must 

therefore adopt a common method in the bone processing which will enable accurate 

comparisons of results from unrelated studies. 
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CHAPTER 4: CHARACTERISATION OF TIBIA BONE MINERALISATION IN 
COMMERCIAL BROILERS 

4.1. Introduction 

Tremendous increases in growth rate have occurred in commercial broiler strains (Zuidhof et 

al., 2014) but bone development has not kept pace with overall growth, and the skeleton 

remains a weak link in physically supporting heavy carcasses in young birds (Applegate and 

Lilburn, 2002). The current NRC recommendations for phosphorus requirement in broilers 

(NRC, 1994) are based on research conducted from 1952 – 1983 and may not be applicable 

to the modern broiler strain. The need for an update of nutrient requirements has therefore 

been suggested (Applegate and Angel, 2014) which will better reflect the current physiological 

needs of modern broilers.  

Phosphorus retention in the bones is widely studied to evaluate phosphorus availability of raw 

materials and efficacy of phytase enzymes, but studies are often conducted in research settings 

that do not represent commercial rearing conditions for modern broilers. Only very few 

studies have directly characterised bone morphology and mineralisation (Bond et al., 1991; 

Skinner and Waldroup, 1995; Williams et al., 2000b; Applegate and Lilburn, 2002), but the 

publication dates and experimental rearing conditions (small pens or cages) suggest the bone 

data reported from these studies may not be applicable to current commercial practices.  

In order to appropriately update the broiler nutrient requirements, an understanding of the 

current range of normal bone morphology and mineralisation values of birds is required. The 

lack of such benchmarks was particularly noted by practicing Poultry Veterinarians and Feed 

Nutritionists, who commented on the difficulty in determining the cause of flock lameness in 

broilers without readily available reference values of normal bone mineralisation data.  
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4.1.2. Aims and objectives 

The overall aim of this study was to characterise the range of tibia bone mineralisation found 

in healthy, commercially reared broilers to create a database of benchmarks applicable to 

current commercial practice. 

The specific objectives were: 

 To characterise the normal range of age and sex-related tibia bone parameters in Ross 

308 broilers. 

 To examine the relatedness between various bone measurements in Ross 308 broilers. 

4.2. Materials and methods 

4.2.1. Trial procedure 

Institutional and UK national NC3R ARRIVE guidelines for the care, use and reporting of 

animals in research (Kilkenny et al., 2010) were followed, and all experimental procedures 

involving animals were approved by the University's College of Arts and Science ethical review 

committee. Age and sex-related tibia bone morphology and mineralisation values of healthy 

commercial broilers were sequentially sampled across 6 commercial farms from 24 flocks of 

birds. The sampling process described in detail below was repeated 4 times for each 

participating farm, i.e. 4 different flock cycles of birds were studied at each participating farm. 

The trial was conducted between February 2015 and September 2015. 

On each farm, a mixed flock of Ross 308 day-old broilers was raised on wood shavings in 

open plan houses which were thermostatically controlled to provide an initial room 

temperature of 30oC. This was gradually reduced to 20°C by day 27°C and maintained till the 

end of the production cycle. Lighting was provided with 1h darkness from days 1-3 and then 

increased by 1h a day until day 6. Lighting was then maintained afterward on a daily 4 and 2 
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hourly split darkness period between days 7 and 32. On days 33 - 35, total daily darkness was 

reduced to 3, 2 and 1h respectively. 1h darkness was then maintained until the end of 

production cycle when birds were transported to processing plants. Standard commercial 

pelleted diets were formulated for 4 growth phases to meet or exceed the Ross 308 broiler 

nutrient specification (Aviagen, 2014). Diets and water were provided ad libitum. Birds were 

regularly checked to monitor environmental conditions and mortality recorded. 

 

Figure 4.1. UK broiler production sites for the six participating farms 
N.B. 2 farms shared the same grid reference on the map 
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4.2.2. Sample collection  

At the start of the trial, farm performance data for all flock of birds on each participating farm 

were evaluated in order to identify a rearing house which produced healthy birds with no 

diagnosed incidence of lameness or other health-related problems. This was a crucial screening 

criterion as this study was intended to characterise the normal range of bone mineralisation in 

healthy birds. This process of examining flock records for health and performance was 

repeated each time a flock of birds was studied. From the selected house, 6 birds were 

collected at 3 different sampling points: six unsexed birds at day 14; and three cockerels and 

three pullets at day 28 and at the end of crop (varied between 34 – 40 days) just before the 

birds were sent for processing, hence 18 birds per flock. Each bird was individually assessed 

for lameness prior to selection using a 5 point qualitative gait score system after the method 

of Leterrier et al. (2008). Briefly, this involved classifying birds based on walking ability from 

0 (no detectable gait abnormality) to 4 (severe gait defect), and only birds which scored 0 were 

selected. Birds were also scored for the incidence of pododermatitis (Appendix 1) based on 

the welfare quality assessment protocol for poultry (Welfare Quality, 2009). Briefly, the feet 

of each bird were inspected and given a score based on the severity of pododermatitis which 

ranged from 0 (no evidence of pododermatitis), 1 & 2 (minimal pododermatitis) and 3 & to 4 

(severe pododermatitis). A questionnaire (Appendix 2) was administered to the Farm 

Managers to capture the relevant flock performance data. Iindividual bird data was also 

recorded (Appendix 3). 

At sampling, the selected birds were euthanised by cervical dislocation and individually 

weighed, after which left tibia bones were collected and individually stored at -20oC until 

further processing. These were collected as described in Chapter 2, Sections 2.4.2.3. 
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4.2.3. Determined parameters 

The parameters measured were body weight, pododermatitis score, bone length, bone width, 

fresh bone weight, bone strength, dry fat extracted weight, bone ash weight, bone ash 

percentage, bone calcium content and bone phosphorus content, as previously described in 

Chapter 2, Sections 2.5.1, 2.5.2, 2.5.4.2 and 2.5.5.2. Briefly, right and left tibia bones were 

separated at the tibiotarsal junction where the feet were removed, and the tibio-femoral 

junction where the femurs were removed, and then individually stored at -20oC until further 

processing. At processing, the bones were manually cleaned and weighed but ensuring the 

cartilage caps were intact. Bone length and width were measured using a set of Vernier 

callipers. Bone strength was measured using a TA-XT Plus Texture Analyser (Stable Micro 

Systems, Surrey, UK). The average measurement of both right and left bones were used to 

determine bone length, width, and strength. Left tibia bones including cartilage caps were 

dried to constant weight, defatted and bone ash weight determined. The bones were then 

dried at 105oC for 24h prior to fat extraction using the Soxtherm hot fat extraction method 

for 2h. The left tibia bones including cartilage caps were dried at 105oC for 24h until constant 

weight was achieved and then ashed for 24h at 650oC in a furnace to determine ash weight. 

Bone ash was analysed for total calcium and total phosphorus content using an ICP-OES 

assay as previously described in Chapter 2, Sections 2.5.7. 

4.2.4. Data analysis 

Data were analysed using IBM SPSS version 23 for Windows (IBM Statistics, 2016).  

Descriptive statistics were used to characterise the bone parameters measured at each 

sampling point (day 14, day 28 and the end of crop). Differences due to sex for day 28 and 

end of crop were separated using the independent t-test procedure. The General Linear two-

way ANOVA model was used to evaluate the main effects of bird sex (cockerel or pullets) 
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and age (days), and their interactions on all bone parameters measured for the combined 

dataset. At each sampling point, the strength of relationship between bone measurements was 

examined using the Pearson correlation procedure. Interpretations of the strength of 

relationships were based on those of Cohen (1988): small r = 0.1 - 0.29, medium r = 0.30 - 

0.49 and large r = 0.50 - 1.0. Data were considered statistically significant when P < 0.05. 

4.3. Results 

 As expected, there was a significant increase in bone parameters with age, and greater 

measurements in cockerels compared to pullets (Tables 4.1 – 4.4). At day 28, no significant 

differences were found in podo score between both sexes (P = 0.922) and bone Ca:P                 

(P = 0.818). Ash weight tended to be higher in cockerels compared to pullets (P = 0.091); 

while all other parameters measured were significantly greater in cockerels compared to pullets 

(P < 0.0001). At the end of crop, no significant differences were found in podo score between 

cockerels and pullets (P = 0.144) and bone Ca:P (P = 0.652). Ash weight was significantly 

higher in pullets compared to cockerels (P = 0.036); while all other parameters measured were 

significantly greater in cockerels compared to pullets (P < 0.0001). The strength of 

relationships between bone parameters was analysed (Tables 4.5 – 4.9), and further ranked 

according to sex and sampling age (Appendix 4 – 8). At all sampling age, calcium was more 

positively correlated with phosphorus (r ≥ 0.92) compared to all other parameters, as was the 

correlation between bone ash weight and dry bone weight (r ≥ 0.94), and fresh bone weight 

and dry fat extracted bone weight (r ≥ 0.86). Bone ash weight consistently ranked second in 

strength of correlation with bone calcium content or bone phosphorus content at day 28 and 

end of crop compared to all parameters measured. In general, medium to weak correlations 

were found between bone parameters and bone ash percentage or bone strength respectively 

across sampling age or sex. 
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Table 4.1. Tibia bone morphology, strength, and mineralisation in 14 day-old unsexed broilers 
 

 
N        Mean 

Std. 
Deviation 

Std. Error 
of Mean Median Range Minimum Maximum 

Bird weight (g) 144 496.56 89.17 7.431        504.6        498.7       269.5        768.2 

Podo score 144 0.15 0.51 0.042           0         3            0          3 

Bone length (mm) 144 61.17 3.45 0.287 61.03         17.8 52.52 70.32 

Bone width (mm) 144 4.22 0.44 0.036 4.18 2.53 3.21 5.74 

Fresh bone weight (g) 144 3.76 0.75 0.062 3.76 4.36 2.04             6.4 

Bone strength (N) 144       103.9          40.92         3.41 97.46 245.55   37.32 282.87 

Dry fat extracted bone weight (g) 144 1.21 0.24         0.02 1.22 1.43          0.7 2.13 

Bone ash weight (g) 144 0.48          0.1 0.008 0.48 0.65 0.27 0.92 

Ash % 144 39.59 1.86 0.155 39.73 11.92 32.01 43.94 

Ca content/dry bone weight (mg) 144 160.37 44.24 3.687 153.59 322.11         15.8 337.91 

P content/dry bone weight (mg) 144 62.26 18.41 1.534 58.68 135.23 5.95 141.18 

Bone Ca:P 144 2.59           0.2 0.017           2.6 2.14            1.9 4.03 
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Table 4.2. Tibia bone morphology, strength, and mineralisation in 28 day-old cockerels and pullets   
 

  Sex N       Mean Std. Dev. 
Std. Error 
of Mean     Median        Range 

    
Minimum 

     
Maximum       P 

Bird weight (g) Cockerels 72 1605.61 182.61 21.521 1642.00 809.20 1137.50 1946.70 <0.0001 

  Pullets 72 1324.85 193.70 22.828 1326.15 979.40 881.20 1860.60  

Podo score Cockerels 72 0.74 0.80 0.095 1.00 3.00 0.00 3.00         0.922 

  Pullets 72 0.75 0.88 0.104 0.50 3.00 0.00 3.00  

Bone length (mm) Cockerels 72 91.58 3.03 0.357 91.89 17.59 81.56 99.15 <0.0001 

  Pullets 72 88.10 3.73 0.440 88.08 18.21 78.84 97.05  

Bone width (mm) Cockerels 72 7.05 0.52 0.061 6.97 2.34 5.85 8.19 <0.0001 

  Pullets 72 6.25 0.51 0.060 6.26 2.45 4.88 7.33  

Fresh bone weight (g) Cockerels 72 12.79 1.50 0.176 12.96 7.33 9.37 16.70 <0.0001 

  Pullets 72 10.12 1.52 0.179 10.06 6.40 7.14 13.54  

Bone strength (N) Cockerels 72 248.35 67.43 7.947 234.84 304.67 156.22 460.89 <0.0001 

  Pullets 72 201.17 51.09 6.021 194.58 216.32 123.87 340.19  
Dry fat extracted bone 
weight (g) Cockerels 72 4.56 0.51 0.060 4.61 2.74 3.26 6.00 <0.0001 

  Pullets 72 3.67 0.53 0.062 3.71 2.30 2.51 4.81  

Bone ash weight (g) Cockerels 72 1.82 0.23 0.027 1.84 1.24 1.28 2.52 <0.0001 

  Pullets 72 1.48 0.23 0.027 1.49 1.05 0.99 2.04  

Ash % Cockerels 72 39.93 1.69 0.200 39.69 7.66 36.93 44.59         0.091 

  Pullets 72 40.42 1.80 0.212 40.32 8.33 35.97 44.30  
Ca content/dry bone 
(mg) Cockerels 72 596.47 124.63 14.687 588.29 729.71 220.42 950.13 <0.0001 

  Pullets 72 481.47 87.28 10.287 471.74 498.51 208.47 706.98  

P content/dry bone (mg) Cockerels 72 226.48 44.19 5.208 225.14 264.46 88.87 353.33 <0.0001 

  Pullets 72 183.49 37.43 4.411 183.37 212.09 53.75 265.84  

Bone Ca:P Cockerels 72 2.63 0.19 0.022 2.63 1.80 2.08 3.88  

 Pullets 72 2.65 0.24 0.209 2.63 2.00 1.97 3.97          0.818 
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Table 4.3. Tibia bone morphology, strength, and mineralisation by the end of crop in cockerels and pullets 
 

  Sex N         Mean    Std. Dev. 
Std. Error         
of Mean     Median       Range  Minimum  Maximum           P 

Bird weight (g) Cockerels 69 2392.36 370.81 44.640 2393.30 1798.40 1542.60 3341.00 <0.0001 

  Pullets 69 1947.04 248.89 29.963 1915.00 1019.40 1412.60 2432.00  

Podo score Cockerels 69 0.62 0.94 0.113 0.00 3.00 0.00 3.00         0.144 

  Pullets 69 0.87 1.03 0.124 0.00 3.00 0.00 3.00  

Bone length (mm) Cockerels 69 105.40 5.54 0.667 105.28 28.09 92.79 120.88 <0.0001 

  Pullets 69 101.01 4.10 0.493 101.14 19.95 90.24 110.19  

Bone width (mm) Cockerels 69 8.25 0.77 0.093 8.29 3.09 6.70 9.79 <0.0001 

  Pullets 69 7.20 0.46 0.055 7.17 2.17 6.15 8.32  

Fresh bone weight (g) Cockerels 69 18.73 2.76 0.332 18.87 13.07 12.17 25.24 <0.0001 

  Pullets 69 14.31 1.63 0.196 14.23 7.21 10.61 17.82  

Bone strength (N) Cockerels 69 303.83 66.51 8.007 296.38 312.42 177.04 489.46 <0.0001 

  Pullets 69 258.46 56.09 6.753 241.98 298.79 133.72 432.51  
Dry fat extracted bone 
weight (g) Cockerels 69 7.14 1.12 0.135 7.14 5.35 4.37 9.72 <0.0001 

  Pullets 69 5.64 0.77 0.093 5.65 3.79 3.73 7.52  

Bone ash weight (g) Cockerels 69 2.78 0.47 0.056 2.80 2.08 1.76 3.84 <0.0001 

  Pullets 69 2.23 0.30 0.037 2.19 1.67 1.39 3.06  

Ash % Cockerels 69 38.89 1.79 0.216 38.89 8.68 35.02 43.70         0.036 

  Pullets 69 39.53 1.78 0.214 39.46 8.20 35.88 44.08  
Ca content/dry bone 
(mg) Cockerels 69 910.81 208.08 25.050 923.60 1019.36 248.27 1267.63 <0.0001 

  Pullets 69 719.27 144.38 17.382 732.33 924.83 166.84 1091.67  

P content/dry bone (mg) Cockerels 69 343.91 74.61 8.982 347.67 376.32 103.17 479.49 <0.0001 

 Pullets 69 270.53 48.45 5.833 282.53 306.01 69.29 375.30  

Bone Ca:P Cockerels 69 2.64 0.10 0.012 2.65 0.59 2.41 3.00  

 Pullets 69 2.65 0.20 0.025 2.63 1.53 2.37 3.89         0.652 
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Table 4.4. Effect of sex and sampling age on bone morphology, strength, and mineralisation in Ross 308broilers 
 

       P (ANOVA) 

 
Day 14 
unsexed 

Day 28 
pullets 

Day 28 
cockerels 

End of crop 
pullets 

End of 
crop 
cockerels 

Pooled 
SEM 

 
Sex 

    
  Age 

 
Sex x age 

Bird weight (g) 496.55a 1324.85b 1605.61c 1947.03d 2392.36e 35.551 < 0.001 < 0.001 0.005 

Podo score 0.15a 0.62b 0.73b 0.75b 0.87b 0.041 0.035 < 0.001 0.322 

Bone length (mm) 61.17a 88.09b 91.58c 101.01d 105.40e 0.875 < 0.001 < 0.001 0.064 

Bone width (mm) 4.22a 6.25b 7.05c 7.20c 8.25d 0.078 < 0.001 < 0.001 0.074 

Fresh bone weight (g) 3.76a 10.12b 12.79c 14.31d 18.73e 0.275 < 0.001 < 0.001 0.002 

Bone strength (N) 103.90a 201.17b 248.35c 258.46c 303.83d 4.544 < 0.001 < 0.001 0.545 
Dry fat extracted bone 
weight (g) 1.21a 3.67b 4.56c 5.64d 7.14e 0.11 < 0.001 < 0.001 0.006 

Bone ash weight (g) 0.48a 1.48b 1.82c 2.22d 2.78e 0.043 < 0.001 < 0.001 0.003 

Ash % 39.59bc 40.42a 39.93ab 39.53bc 38.89c 0.09 0.075 0.077 0.462 
Ca content/dry bone 
weight (mg) 160.37a 481.47b 596.47c 719.27d 910.81e 14.592 < 0001 < 0.001 < 0.001 
P content/dry bone 
weight (mg) 62.26a 183.79b 226.48c 270.53d 343.91e 5.439 < 0.001 < 0.001 0.001 

Bone Ca:P 2.59 2.65 2.63 2.64 2.64 0.009 0.843 0.117 0.955 
a-eMeans within the same row with no common subscript differ significantly (P < 0.05). 
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Table 4.5. Pearson correlation values between bone parameters in 14 day-old unsexed broilers 
 

 
 

Bird 
weight 
(g) 

Podo 
score 

Bone 
length 
(mm) 

Bone 
width 
(mm) 

Fresh 
bone 
weight 
(g) 

Bone 
strength 
(N) 

Dry fat 
extracted 
bone 
weight (g) 

Bone 
ash 
weight 
(g) Ash % 

Ca 
content/dry 
bone weight 
(mg) 

P 
content/dry 
bone weight 
(mg) 

Bird weight (g)  0.156 0.593 0.559 0.628 0.287 0.627 0.598  0.052 0.465 0.449 

Podo score 0.156  0.102 0.132 0.187 -0.106 0.142 0.120 -0.058 0.137 0.147 

Bone length (mm) 0.593   0.102  0.768 0.903 0.522 0.889 0.847  0.047 0.585 0.560 

Bone width (mm) 0.559   0.132 0.768  0.880 0.669 0.851 0.830  0.131 0.563 0.549 

Fresh bone weight (g) 0.628   0.187 0.903 0.880  0.560 0.946 0.895  0.020 0.649 0.642 

Bone strength (N) 0.287 -0.106 0.522 0.669 0.560  0.617 0.682  0.414 0.418 0.388 

Dry fat extracted bone weight (g) 0.627  0.142 0.889 0.851 0.946 0.617  0.975  0.129 0.719 0.704 

Bone ash weight (g) 0.598  0.120 0.847 0.830 0.895 0.682 0.975   0.344 0.714 0.693 

Ash % 0.052 -0.058 0.047 0.131 0.020 0.414 0.129 0.344  0.164 0.131 

Ca content/dry bone weight (mg) 0.465  0.137 0.585 0.563 0.649 0.418 0.719 0.714  0.164  0.963 

P content/dry bone weight (mg) 0.449  0.147 0.560 0.549 0.642 0.388 0.704 0.693  0.131 0.963  
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Table 4.6. Pearson correlation values between bone parameters in 28 day-old cockerels 
 

 

Bird 
weight 
(g) 

Podo 
score 

Bone 
length 
(mm) 

Bone 
width 
(mm) 

Fresh 
bone 
weight 
(g) 

Bone 
strength 
(N) 

Dry fat 
extracted 
bone 
weight (g) 

Bone 
ash 
weight 
(g) Ash % 

Ca 
content/dry 
bone weight 
(mg) 

P 
content/dry 
bone weight 
(mg) 

Bird weight (g)  0.009 0.414 0.416 0.525 0.136 0.541 0.541  0.190 0.369 0.348 
Podo score 0.009  -0.031 -0.146 -0.012    -0.136    -0.103 -0.138 -0.138       -0.109       -0.048 
Bone length (mm) 0.414 -0.031  0.402 0.757 0.233 0.741 0.677  0.031 0.356 0.416 
Bone width (mm) 0.416 -0.146 0.402  0.730 0.421 0.706 0.741  0.303 0.491 0.537 
Fresh bone weight (g) 0.525 -0.012 0.757 0.730  0.444 0.947 0.900  0.137 0.523 0.561 
Bone strength (N) 0.136 -0.136 0.233 0.421 0.444  0.489 0.605  0.465 0.579 0.582 
Dry fat extracted bone weight (g) 0.541 -0.103 0.741 0.706 0.947 0.489  0.939  0.112 0.561 0.581 
Bone ash weight (g) 0.541 -0.138 0.677 0.741 0.900 0.605 0.939   0.445 0.638 0.642 
Ash % 0.190 -0.138 0.031 0.303 0.137 0.465 0.112 0.445  0.378 0.345 
Ca content/dry bone weight (mg) 0.369 -0.109 0.356 0.491 0.523 0.579 0.561 0.638  0.378  0.938 
P content/dry bone weight (mg) 0.348 -0.048 0.416 0.537 0.561 0.582 0.581 0.642  0.345 0.938  
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Table 4.7. Pearson correlation values between bone parameters in 28 day-old pullets 
 

 

Bird 
weight 
(g) 

Podo 
score 

Bone 
length 
(mm) 

Bone 
width 
(mm) 

Fresh 
bone 
weight 
(g) 

Bone 
strength 
(N) 

Dry fat 
extracted 
bone 
weight (g) 

Bone 
ash 
weight 
(g) Ash % 

Ca 
content/dry 
bone weight 
(mg) 

P 
content/dry 
bone weight 
(mg) 

Bird weight (g)   0.177 0.623 0.474 0.736 0.350  0.679 0.703 0.241 0.532 0.462 
Podo score 0.177  0.045 -0.225 -0.037 0.289 -0.027  -0.008 0.064 0.071 0.089 
Bone length (mm) 0.623  0.045   0.549  0.855 0.071 0.740 0.676  -0.051 0.471 0.427 
Bone width (mm) 0.474 -0.225 0.549   0.705 0.185 0.677 0.645 0.035 0.486 0.449 
Fresh bone weight (g) 0.736 -0.037 0.855 0.705  0.165 0.859 0.813 0.047 0.531 0.486 
Bone strength (N) 0.350 0.289 0.071 0.185 0.165  0.119 0.235 0.423 0.456 0.390 
Dry fat extracted bone weight (g) 0.679 -0.027 0.740 0.677 0.859 0.119  0.957 0.087 0.620 0.569 
Bone ash weight (g) 0.703 -0.008 0.676 0.645 0.813 0.235 0.957  0.371 0.695 0.629 
Ash % 0.241 0.064  -0.051 0.035 0.047 0.423 0.087 0.371  0.397 0.335 
Ca content/dry bone weight (mg) 0.532 0.071 0.471 0.486 0.531 0.456 0.620 0.695 0.397  0.950 
P content/dry bone weight (mg) 0.462 0.089 0.427 0.449 0.486 0.390 0.569 0.629 0.335 0.950  
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Table 4.8. Pearson correlation values between bone parameters by the end of crop in cockerels 
 

 

Bird 
weight 
(g) 

Podo 
score 

Bone 
length 
(mm) 

Bone 
width 
(mm) 

Fresh 
bone 
weight 
(g) 

Bone 
strength 
(N) 

Dry fat 
extracted 
bone 
weight (g) 

Bone 
ash 
weight 
(g) Ash % 

Ca 
content/dry 
bone weight 
(mg) 

P 
content/dry 
bone weight 
(mg) 

Bird weight (g)  0.040 0.852 0.755 0.902 0.300 0.914 0.918  0.241 0.607 0.604 
Podo score 0.040  0.044 0.240 0.092 0.221 0.113 0.100 -0.028 0.146 0.118 
Bone length (mm) 0.852 0.044  0.676 0.901 0.174 0.900 0.837 -0.012 0.542 0.527 
Bone width (mm) 0.755 0.240 0.676  0.837 0.274 0.823 0.847  0.271 0.528 0.509 
Fresh bone weight (g) 0.902 0.092 0.901 0.837  0.213 0.981 0.950  0.121 0.583 0.574 
Bone strength (N) 0.300 0.221 0.174 0.274 0.213  0.235 0.373  0.569 0.399 0.390 
Dry fat extracted bone weight (g) 0.914 0.113 0.900 0.823 0.981 0.235  0.964  0.105 0.607 0.596 
Bone ash weight (g) 0.918 0.100 0.837 0.847 0.950 0.373 0.964   0.363 0.644 0.637 
Ash % 0.241 -0.028 -0.012 0.271 0.121 0.569 0.105 0.363  0.303 0.314 
Ca content/dry bone weight (mg) 0.607 0.146 0.542 0.528 0.583 0.399 0.607 0.644  0.303  0.988 
P content/dry bone weight (mg) 0.604 0.118 0.527 0.509 0.574 0.390 0.596 0.637  0.314 0.988  
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Table 4.9. Pearson correlation values between bone parameters by the end of crop in pullets 
 

 

Bird 
weight 
(g) 

Podo 
score 

Bone 
length 
(mm) 

Bone 
width 
(mm) 

Fresh 
bone 
weight 
(g) 

Bone 
strength 
(N) 

Dry fat 
extracted 
bone 
weight (g) 

Bone 
ash 
weight 
(g) Ash % 

Ca 
content/dry 
bone weight 
(mg) 

P 
content/dry 
bone weight 
(mg) 

Bird weight (g)  0.134 0.706 0.593 0.868 0.171 0.847 0.853 0.035 0.400 0.389 
Podo score 0.134  0.232 0.115 0.237 0.278 0.217 0.172 -0.120 0.279 0.191 
Bone length (mm) 0.706 0.232  0.520 0.821    -0.054 0.840 0.754 -0.245 0.330 0.267 
Bone width (mm) 0.593 0.115 0.520  0.727 0.181 0.719 0.737  0.058 0.287 0.297 
Fresh bone weight (g) 0.868 0.237 0.821 0.727  0.095 0.957 0.925 -0.087 0.363 0.314 
Bone strength (N) 0.171 0.278  -0.054 0.181 0.095  0.078 0.243  0.505 0.372 0.385 
Dry fat extracted bone weight (g) 0.847 0.217 0.840 0.719 0.957 0.078  0.940 -0.162 0.395 0.354 
Bone ash weight (g) 0.853 0.172 0.754 0.737 0.925 0.243 0.940   0.179 0.491 0.467 
Ash % 0.035 -0.120  -0.245 0.058  -0.087 0.505    -0.162 0.179  0.292 0.342 
Ca content/dry bone weight (mg) 0.400 0.279 0.330 0.287 0.363 0.372 0.395 0.491 0.292  0.920 
P content/dry bone weight (mg) 0.389 0.191 0.267 0.297 0.314 0.385 0.354 0.467 0.342 0.920  
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4.4. Discussion 

Tremendous changes have occurred in the productivity of the broiler chicken over the past 

six decades. Notably among which includes a significant increase in growth rate, better feed 

efficiency and carcass yield as reported in the studies of Havenstein et al. (1994a,b; 2003a,b) 

who compared a 1957 broiler strain with a 1991 and 2001 improved broiler strain. These 

findings have also been recently confirmed by other investigators (Schmidt et al., 2009; Collins 

et al., 2014; Zuidhof et al., 2014). Although the development of new and improved feedstuff, 

advances in animal health, better husbandry techniques and more precise feed formulation 

techniques have contributed to the observed changes; the application of quantitative genetics 

through selective breeding programmes (Hunton, 2006) is the single most important 

contributory factor accounting for 85 – 90% of the observed changes (Havenstein, 2006).  

Broiler breeding programmes are usually aimed at improved growth rate and feed efficiency 

(Petracci et al., 2013), but poor bone mineralisation relative to body weight has been a direct 

consequence (Leeson, 2012). An understanding of the age-related pattern of bone 

mineralisation is therefore important for the precise evaluation of nutritional needs (Skinner 

and Waldroup, 1995), and to benchmark baseline limits which will help in properly assessing 

field problems relating to poor bone mineralisation in broilers.  

Bone mineralisation values are normally derived from research recommendations. However, 

it has been questioned how applicable these values are to current commercial practice. 

Although it has been noted that not all bones contribute equally to structural support, and 

that a single bone may not be a true representation of skeletal integrity (Van Wyhe et al., 2012), 

long bones have been widely evaluated in bone mineralisation studies in broilers. The tibia 

bone was evaluated in this study as it is most common bone used in evaluating bone 

mineralisation in poultry research (Shaw et al., 2010).  
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4.4.1. Growth performance 

Body weight at each sampling age was higher than the NRC (1994) typical broiler body weight 

for male and female broilers, and also that of previous studies that characterised bone growth 

in broilers (Bond et al., 1991; Skinner and Waldroup, 1995; Applegate and Lilburn, 2002). 

However it is in good agreement with the Ross 308 performance objectives (Aviagen, 2014), 

and reflect the changes in improved growth rate that have occurred due to selective breeding 

between previous reports and when this trial was conducted.  

4.4.2. Bone morphometry, breaking strength and mineralisation  

The bone morphometric data determined in this study was greater than those from previous 

age and sex-related tibia data (Bond et al., 1991; Skinner and Waldroup, 1995; Applegate and 

Lilburn, 2002). This was expected as increased body size results in increased bone 

morphometry (Williams et al., 2000b). The mean bird weight at each sampling age in this study 

was greater in comparison to these previous studies. 

There is a paucity of recent age and sex-related characterisation of broiler bone mineralisation 

in the literature. Talaty et al. (2010) examined the relationship between bone mineralisation 

and gait score in 4 commercial male broiler crosses but captured only bone morphometric and 

densitometric data, with no information on bone strength or phosphorus content. Shim et al. 

(2012a) examined the effect of growth on bone mineralisation by comparing a slow and fast 

growing strain of unsexed broilers. However the birds were partly raised in wired floor cages 

from 4 - 6 weeks and significantly smaller and weaker bones have been reported in cage reared 

birds compared to birds raised on the floor (Bond et al., 1991; Fleming et al., 1994). Neither 

authors (Talaty et al., 2010; Shim et al., 2012a) characterised the age-related differences in bone 

measurements but collected bone data at the end of the experiment (42d), past the period of 

rapid bone development. Barreiro et al. (2009) evaluated age-related bone mineralisation and 
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densitometric values in broilers, but the study was based on a small dataset of 29 male broilers. 

Charuta et al. (2013) characterised the age and sex-related densitometric and geometric 

differences in broilers using quantitative computed tomography but did not include other 

bone measurements such as length, width, strength, ash and mineral content.  

Comparisons of the mean bone measurements determined in this study were made with 

published data of control birds given standard diets from different studies. Kleczek et al. (2012) 

investigated the effect of dietary supplementation of propolis (a natural alternative to 

antibiotic growth promoter) on bone physiochemical properties and strength in 35d broilers 

(mixed flock). The tibia length in 35d control broilers was shorter when compared to the end 

of crop data observed in this study (93.0 mm vs. 103.2mm), although bone weight and 

maximum shear force were greater (22.71g/445N vs. 16.5g/281N respectively). In another 

study, Swiatkiewicz et al. (2012) investigated the effect of organic acids (short and medium 

chain fatty acids) on tibia bone characteristics. The authors reported remarkably greater bone 

strength in a 42d mixed flock of Ross 308 control broilers compared to that determined in 

this study (416N vs. 281N respectively), despite reporting a comparable mean fresh bone 

weight and bone length (15g and 102mm vs. 16.5g and 103.2mm, respectively). Age-related 

increases in bone parameters have been reported (Rath et al., 2000) and this may partly explain 

the observed differences, as the end of crop data in this study was sampled from a wider age 

range (34 - 40d). 

Bone ash weight and bone ash percentage are two common criteria used in evaluating bone 

mineralisation. De Groote and Huyghebaert (1997) reported 80% of the total body 

phosphorus is retained in the bones, and the amount of bone ash weight is indicative of how 

well a bone is mineralised (Shim et al., 2012a). A range of bone ash percentage data have been 

cited in the literature, probably as a result of the effect of methodology differences already 
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discussed in Chapter 3, which makes the comparison of data between studies difficult but 

patterns and changes within a study may still be usefully discussed.  

Kleczek et al. (2012) reported high bone ash percentage (54% at day 35), while Mirakzehi et al. 

(2013) reported 48 – 54% at days 21 and 42 respectively. However, much lower values have 

been reported in broilers. For example, Khodambashi et al. (2013) investigated the effect of 

phytase and organic acid supplementation and reported 41.5% bone ash percentage in 28d 

Ross 308 male broilers fed control diets. This is slightly higher than the 39.93% determined 

in 28d cockerels in this study. Skinner and Waldroup (1995) reported a numerical increase in 

bone ash percentage with age in floor-reared male and female broilers (39.3% and 40.4% at 

day 14; and 42.8% and 43.8% at day 42 respectively). In contrast, Barreiro et al. (2009) reported 

bone ash percentage was 43%, 47.7% and 43.7% on days 8, 22 and 43 respectively; and 

concluded that the higher bone ash percentage determined on day 22 was due to a greater 

demand for mineral in response to rapid growth at that age. This pattern was not observed in 

this study. The mean bone ash percentage at each sampling age and sex determined in this 

study was between 39 - 40%. The overall mean bone ash percentage (39.67%) was in close 

comparison to that determined by Shim et al. (2012a) who reported 39.76% bone ash 

percentage at 42d for fast-growing unsexed broilers.   

It was remarkable to find the wide range of bone ash percentage (minimum of 32% and a 

maximum of 44.6%) in this study. This however can be explained. Because of the variability 

between batches of feed ingredients and the difficulty in precisely evaluating nutrients at the 

point of manufacture, there may be a difference between the nutrient content of the feed 

formulated to what is delivered in commercial feed production (Bedford et al., 2016). Also, an 

individual bird within a large flock may respond differently to environmental or husbandry 

challenges which may affect nutrient metabolism and bone growth pattern. The mean 
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population size of the birds used in this study was 33,000 per shed, from which only 6 birds 

were selected at random from a particular shed at each sampling day. It is possible that healthy 

birds with extreme bone mineralisation values were selected, which resulted in the wide range 

of values determined.  

4.4.3. Sexual dimorphism in bone parameters  

Sexual dimorphism in bone parameters has been reported in poultry (Bond et al., 1991; Yalçin 

et al., 2001). In general, cockerels had greater bone measurements than pullets, and it was 

hypothesised this might be due to the sex-related differences in body weight. Data was further 

analysed to examine if the observed differences were influenced by body weight or other 

factors. Day 28 and end of crop combined data were analysed separately for each sex to 

examine the strength of correlation between body weight and bone weight or strength; and 

strength of correlation between bone weight and 3 other bone measurements: bone strength, 

calcium content, and phosphorus content (Table 4.10). 

Body weight was more strongly correlated with bone weight in cockerels than in pullets (0.95 

and 0.93 respectively), and variation in body weight accounted for 90% and 87% of the 

variability in bone weight for cockerels and pullets respectively. This is in agreement with the 

findings of Applegate and Lilburn (2002) who characterised the relationship between growth 

and skeletal development in commercial broilers and reported variation in body weight 

accounted for 99 % variability of fat extracted tibia weight. The higher variability reported by 

the authors might be due to the wider age range of birds sampled in that study (1 - 43d) which 

would have extended the correlation plot, compared to 28 - 40d examined in this study. 

Similarly, the strength of correlation between bone weight and bone mineral content (calcium 

and phosphorus) was higher in cockerels than in pullets. In contrast, medium strength 

correlations were found between bone weight and bone strength in both cockerels and pullets 
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(0.472 and 0.440 respectively), and variation in bone weight accounted for only 22% and 19% 

variability in bone strength in cockerels and pullets respectively. Similarly, variation in body 

weight accounted for only 19% and 26% variability in bone strength in cockerels and pullets 

respectively. Data from this study suggests that the sex-related differences in bone parameters 

can be partly explained by the differences in bone weight as influenced by the differences in 

body weight. However, growth is controlled by a complex interaction of genetic, hormonal, 

and nutritional factors (Tesseraud et al., 2003) which may directly or indirectly affect growth. 

 

Table 4.10. Sex-related correlation of some bone parameters in broilers1 
 
Measurement Equation R2 

 
r 

 
P 

Pullets     
Bone weight vs. 
strength 

22.496x2 + 124.9 0.1939   0.440 <0.001 

Bone weight vs. bone 
calcium content 

109.2x2 + 91.513 0.5955   0.772 <0.001 

Bone weight vs. bone 
phosphorus content 

39.273x2 + 43.994 0.5785   0.761 <0.001 

Body weight vs. bone 
weight 

0.0029x3 - 0.0663 0.8663   0.931 <0.001 

Body weight vs. bone 
strength 

0.0811x3 + 97.049 0.2622   0.512 <0.001 

     
Cockerels     
Bone weight vs. 
strength 

21.938x2 + 147.82 0.2229  0.472 <0.001 

Bone weight vs. bone 
calcium content 

120.26x2 + 50.376 0.6513  0.807 <0.001 

Bone weight vs. bone 
phosphorus content 

44.268x2 + 26.299 0.6624  0.814 <0.001 

Body weight vs. bone 
weight 

0.003x3 - 0.1785 0.8980  0.948 <0.001 

Body weight vs. bone 
strength 

0.0644x3 + 147.24 0.1901  0.436 <0.001 

1Days 28; 34 - 40 
r = correlation 
R2 = coefficient of determination 
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Sex-related differences in skeletal mass and body weight have been associated with differences 

in metabolic processes and endocrine function (Tatara et al., 2012). For example, functional 

amino acids are essential in building protein and polypeptide structures, and their metabolism 

is also known to play a vital role in metabolic processes involved in body growth, reproduction 

and health (Wu et al., 2009). The skeletal tissues are the main body reservoir for functional 

amino acids, and they contribute to the overall body growth by improving protein accretion 

and feed utilisation.  

Increase in body weight has been linked to better skeletal metabolism of functional amino 

acids such as glutamine and tryptophan (Wagenmakers, 1998). For example, significantly 

higher glutamine and tryptophan concentrations were found in the breast muscle of male 

turkeys which were significantly heavier than females turkeys fed the same diet (Tatara et al., 

2012). Nonetheless, other sex-related factors may also explain the differences found in bone 

parameters between cockerels and pullets. For example, gonadal steroids have long been 

recognised to play a major role in the maintenance of skeletal homoeostasis by regulating 

proliferation and resorptive processes involved in bone mineralisation (Rath et al., 1996). 

Oestrogen is known to induce medullary osteogenesis (Turner and Schraer, 1977), but the 

effect of androgens on bone development in poultry is inconclusive, and the mechanism of 

action is not clear. Fennell and Scanes (1992) reported androgens suppressed skeletal growth 

in white leghorn chickens but in contrast, Deyhim et al. (1992) reported testosterone did not 

affect bone growth in 28d and 48d old male and female broilers. Rath et al. (1996) compared 

the effect of different gonadal steroids on the bones of male broiler chickens and reported 

that although testosterone did not affect bone weight, bone length, and percentage tibia and 

femur ash; significantly stronger bones were observed in 6 week-old male broilers. Although 

neither functional amino acids nor gonadal hormones were measured in this study, they may 
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have played a role, resulting in the sex-related differences of bone parameters reported in this 

study. Further work is warranted to examine the effect of functional amino acids and gonadal 

hormones on sexual dimorphism in commercial broilers.  

4.4.3. Bone Ca:P content 

As previously noted by Skinner and Waldroup (1995), there is a scarcity of the typical broiler 

bone Ca and P content in the literature. The overall mean Ca:P molar ratio determined in this 

study was 2.64, and was not significantly different across the various sampling age or sex 

(Table 4.4). Also remarkable was the range (1.90 - 3.89) found across the overall dataset which 

is substantially higher than the 1.67:1 Ca:P molar ratio found in calcium phosphate 

hydroxyapatite (Pellegrino and Biltz, 1968). Similar to the findings in this study, Williams et al. 

(2000a) observed wide Ca:P molar ratios (1.82 – 3.89) in birds given a range of dietary Ca and 

available phosphorus content. The authors reported some of the diets contained almost 

double the recommended 0.45% avP (NRC, 1994) and concluded that high bone Ca:P molar 

ratio could not be attributed to only mineral deficiency. In contrast, when the dataset 

published by Skinner and Waldroup (1995) is recalculated, the overall mean Ca:P molar ratio 

were 2.01 (1.82 – 2.40) and 2.02 (1.82 – 2.30) for male and female broilers respectively (aged 

1 – 56d). Similarly, Barreiro et al. (2009) reported mean tibia Ca:P molar ratios of 2.0 - 2.01.  It 

is unclear if the wide range of Ca:P molar ratios observed in this study is due to the effect of 

selective breeding on bone quality, or the difficulty in precisely delivering nutrients to all birds 

in large-scale bird husbandry which may have affected bone mineralisation and is worthy of 

further investigation. However, it is important to note that the mineral status of a bird is not 

fixed and that bone resorption occurs regularly in response to requirements. 
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4.5. Implication 

This dataset provides a detailed examination of bone parameters within a fixed range of 

conditions. The use of 6 farms owned by a single UK integrator which provided uniform feed 

to just one bird strain concomitantly increases the rigour of the data but limits the breadth of 

application. In order to increase the value of the database to the commercial sector, other 

strains of broilers, reared by other integrators and independent producers across a range of 

geographical regions should be examined similarly. Also, as already discussed, the evolution 

of bird strains through selective breeding and changes to industry practice would necessitate 

regularly updating the database to ensure it reflects the current industry standards. 

4.6. Conclusion 

There is a growing consensus for the need to update the NRC recommendation of nutrient 

requirements in broilers due to the continually increasing growth rate and a concomitant 

reduction in slaughter age. The data collected and presented in this chapter makes a significant 

contribution to the knowledge of the current range of normal bone morphology, and calcium 

and phosphorus mineralisation values of commercial broilers. Standard mean bone 

mineralisation values are typically used for evaluation purposes; however in this study, a range 

of bone morphology and mineralisation values was determined in healthy birds and should be 

considered for evaluation purposes. Although only one bird strain is represented, it may serve 

as a benchmark of values applicable to commercial practice rather than solely relying on data 

derived from controlled research trials.  

The next study (Chapter 5) was to verify if the bone is a reliable model for assessing 

phosphorus requirement in broilers. This fundamental question will be examined by 

evaluating bone calcium and phosphorus content, and whole body phosphorus content in 

commercial broilers. 
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CHAPTER 5: AN INVESTIGATION INTO THE RELATIONSHIP BETWEEN 
BONE PHOSPHORUS CONTENT AND WHOLE BODY PHOSPHORUS 
CONTENT IN COMMERCIAL BROILERS 

5.1. Introduction 

Recommendations for nutrient requirement are usually derived using the factorial approach 

based on a theoretical framework, or growth balance trials that give realistic estimates 

(McDonald et al., 2011). These, however, require a knowledge of nutrient retention or 

comparative whole body analysis, which are not only laborious but expensive to determine. 

Consequently, the use of other simpler assays such as bone, growth, and blood criteria have 

been used to rank phosphorus availability (Rodehutscord, 2009). Results from these assays 

however are known to depend on the test material used, and criterion evaluated (Shastak et al., 

2012a), and do not provide biological retention values (Coon et al., 2002) useful for comparing 

phosphorus availability from different sources. Nonetheless, bone measurements are still 

widely used as a simpler alternative to the whole body phosphorus retention assay to evaluate 

phosphorus availability. The question remains as to whether an individual bone is a reliable 

estimate of whole body phosphorus retention (Shastak et al., 2012c).  

Considerably more information is available on the relatedness between bone phosphorus 

content and phosphorus availability, but only very few studies have examined the relationship 

between bone mineral content and whole body phosphorus (WBP) content. Previous studies 

examining WBP content were conducted in small controlled trials, and have only examined 

its relatedness with tibia phosphorus content (Huyghebaert et al., 1980; Shastak et al., 2012c). 

Considering the differences between experimental trials and commercial husbandry practices, 

it is not known if previous results accurately model phosphorus retention in commercially 

raised chickens. Also, the femur and feet bones are commonly used in evaluating bone 
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mineralisation but, there is a current lack of understanding of the relatedness between WBP 

content and the phosphorus content of these bones. 

5.1.2. Aims and objectives 

The overall aim of this study was to characterise the normal range of WBP content of 

commercial broilers, and to examine its relatedness with the phosphorus content of different 

bones, in order to provide values that are applicable to commercial practice when evaluating 

phosphorus requirements.  

The specific objectives were: 

 To characterise the WBP content in commercial broilers.   

 To examine the relatedness between WBP content and the phosphorus content of the 

tibia, femur, and feet in commercial broilers.   

The hypothesis of this trial was that for each age assessed, any of the three leg bone types 

sampled would reflect one WBP content of the bird. 

5.2. Materials and methods  

Institutional and UK national NC3R ARRIVE guidelines for the care, use and reporting of 

animals in research (Kilkenny et al., 2010) were followed, and all experimental procedures 

involving animals were approved by the University's College of Arts and Science ethical review 

committee. 37 209 Ross 308 day-old mixed broiler flock were raised on wood shavings in an 

open plan house (1840m2) which was thermostatically controlled to provide an initial room 

temperature of 30oC. This was gradually reduced to 20°C by day 27 and maintained until the 

end of the experiment. Lighting was provided with 1h darkness from days 1-3 and then 

increased by 1h a day until day 6. Lighting was then maintained on a daily 4 and 2 hourly split 

darkness period between 7 – 32 days. On days 33 - 35, total daily darkness was reduced to 3, 
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2 and 1h respectively. 1h darkness was then maintained until the end of production cycle when 

birds were transported to processing plants. Standard commercial pelleted diets were 

formulated for 4 growth phases to meet or exceed the Ross 308 broiler  nutrient specification 

(Aviagen, 2014). Diets and water were provided ad libitum. Birds were regularly checked to 

monitor environmental conditions and mortality recorded.  

5.2.1. Sample collection 

At the start of the trial, farm performance data for all flock of birds were evaluated in order 

to identify a rearing house which produced healthy birds with no diagnosed incidence of 

lameness or other health-related problems. This was a crucial screening criterion as this study 

was intended to characterise the normal range of WBP content and bone measurements in 

healthy birds. 

In order to characterise age-related developmental changes, birds were collected at 3 different 

sampling points: days 14, 28 and 36 post-hatch. Each bird was individually assessed for 

lameness prior to selection using a 5 point qualitative gait score system after the method of 

Leterrier et al. (2008). Briefly, this involved classifying birds based on walking ability from 0 

(no detectable gait abnormality) to 4 (severe gait defect), and only birds which scored 0 were 

selected. Birds were collected and grouped according to the 3 different bones studied, i.e. tibia, 

femur and feet as follows: 6 unsexed bird for each bone type studied at day 14; and 3 cockerels 

and 3 pullets each for each bone type studied at days 28 and 36 respectively, hence 54 birds in 

total. A questionnaire (Appendix 2) was then administered to the Farm Manager to capture 

the relevant flock performance data. 
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5.2.2. Bird preparation 

Upon selection, each bird was individually euthanised by cervical dislocation and weighed. 

The birds were then dissected, and content in the crop, proventriculus, intestine, and caeca, 

emptied and flushed with ultra-pure water. The birds including the emptied organs were re-

weighed to determine whole body weight after which both right and left bones (tibia, femur, 

and feet, according to the bone type studied) were removed as described in Chapter 2, Section 

2.4.2.3. Whole body (WB) as used in this study is defined as the whole bird including feather, 

cleaned viscera and bones but emptied of digestive tract content. Briefly, flesh from the tibia 

and femur was carefully removed with a scalpel whilst ensuring cartilage caps were kept intact. 

Care was taken to ensure the flesh removed from the bones was added back to the remaining 

carcasses. The feet were not defleshed. The whole bird including feathers and viscera but 

excluding the tibia, femur or feet were then individually cut into small pieces and stored at       

-20oC until further processing. Their associated bones (tibia, femur or feet) were also 

individually stored at -20oC until further processing. 

At processing, whole body (excluding sampled bones) were individually ground from slightly 

frozen in an electric mincer as described in Chapter 2, Section 2.4.2.4. Briefly, the cut pieces 

of the whole body were fed through the mincer and kneaded by hand before re-mincing. This 

process was repeated 4 times until the sample was thoroughly ground and homogenised.  

Between each bird minced, the electric mincer was fully cleaned and rinsed with ultra-pure 

water in order to prevent carryover of tissue. A 200g representative sample of each ground 

bird was then collected and stored at -20oC until further analysis. 

5.2.3. Determined parameters 

Bones were defleshed, and bone weight, length, width, and strength measured, and ash weight 

determined as previously described in Chapter 2, Sections 2.4.2.3, 2.5.1, 2.5.4.2 and 2.5.5.2. 
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Briefly right and left tibia and femur bones were individually weighed, and measured for length 

and width using a set of Vernier callipers. Bone strength was measured using a TA-XT Plus 

Texture Analyser (Stable Micro Systems, Surrey, UK) and dried at 105oC for 24h prior to fat 

extraction using the Soxtherm hot fat extraction method for 2h. Tibia and femur bones 

including cartilage caps were dried at 105oC for 24h until constant weight was achieved. Right 

and left feet bones were not fat extracted but dried at 105oC until constant weight was 

achieved. All bones were then ashed for 24h at 650oC in a furnace to determine ash weight. 

Whole body samples were processed as described in Chapter 2, Section 2.4.2.4. Briefly, ground 

whole body samples (excluding bones) oven dried at 105oC for approximately 5 days until 

constant weight was achieved to determine moisture content and then extracted of fat using 

the Soxtherm hot fat extraction method for 2h as previously described in Chapter 2, Section 

2.5.4.2. Whole body samples were then dried at 105oC for approximately 5 days until constant 

weight was achieved to obtain dried fat extracted samples. The, dry fat extracted samples were 

then ground, and 10g subsamples weighed to determine ash content. The 10g subsamples 

were gradually ashed in a furnace for 9h at 450oC, and then for a further 15h at 650oC. Both 

bone and whole body ash were analysed for total calcium and total phosphorus content using 

the ICP-OES assay as previously described in Chapter 2, Section 2.5.7. 

5.2.4. Data analysis 

Mean values of all right and left bone measurements were used for statistical analysis. WBP 

and WBCa content for each bird were calculated as the sum of calcium and phosphorus 

content determined in the whole bird plus that determined in their respective bones. Data 

were analysed using IBM SPSS version 23 for Windows (IBM Statistics, 2016). The General 

Linear one-way ANOVA model was used to evaluate the main effects of either bird sex 

(cockerels or pullets) or age (days) on bone parameters and WBP content for the whole 
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dataset. Significant differences in bone measurements, and whole body phosphorus and 

calcium content between cockerels and pullets at days 28 and 36 were separated using the 

Tukey’s HSD procedure. The strength of the relationship between the calcium and 

phosphorus content in tibia, femur, feet and whole body; and with all other bone 

measurements were examined using the Pearson correlation procedure. Regression analysis 

was performed to examine the relatedness between the phosphorus content of the tibia, femur 

and feet bones and their respective WBP content. Statistically significant difference was 

declared at P < 0.05. 

5.3. Results 

None of the birds sampled in this study showed any signs of ill health, nutrient deficiency or 

lameness, nor revealed any signs of skeletal disease post-mortem. The body weight of the 

birds sampled ranged between 348g – 2747g, accounting for age and sex-related differences 

at the time of sampling. The overall growth rate (analysed from farm data) was in very close 

comparison with the Ross 308 performance objectives (Aviagen, 2014; Figure 5.1). The 

apparent deviation from the Ross 308 performance objectives is an artefact of the thinning 

process, where the largest birds are removed for slaughter and the rest left to grow a bit longer. 

           

Figure 5.1. Growth performance of trial birds in comparison with Ross 308 growth 
performance objectives (Aviagen, 2014) 
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Mean body weight loss due to the emptying of the intestinal tract was 7.72 ± 2.44% of all 

birds sampled. An overall mean of 5.06g/kg WBP and 6.95 g/kg WBCa were determined in 

this study, and were not significantly different when analysed by age or sex (Tables 5.1). With 

an increase in age, significant differences were found for all bone parameters with the 

exception of ash percentage, WBP and WBCa (Tables 5.2 - 5.4). In general, greater bone 

measurements were found in cockerels compared with pullets and in older birds compared 

with younger birds.  

Table 5.1. WBP and WBCa content in broilers 
 

 
 
Bird 

       
 
      1N 

                  
WBCa (g/kg) 

 
WBP (g/kg) 

 
WBCa:WBP 

Sex     

Day 14 unsexed bird 18 6.73 5.01 1.34a 

Day 28 pullets   9 7.05 5.11   1.38 ab 

Day 28 cockerels   9 7.38 5.20 1.42b 

Day 36 pullets   9 6.98 5.07  1.37 ab 

Day 36 cockerels   9 6.81 4.98  1.37ab 

P value     0.359   0.764  0.020 

     

Age (days)     

14 18 6.73 5.01 1.34a 

28 18 7.21 5.17 1.40b 

36 18 6.89 5.03  1.37ab 

P value     0.179   0.498  0.010 

     

Overall mean  6.95 5.06           1.37 

Pooled SEM   0.107  0.054    0.008 
   1Number of birds. 
   a, bMeans within the same column with no common subscript differ significantly (P < 0.05). 
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Table 5.2.  Characterisation of tibia morphology, strength, mineralisation, WBP and WBCa content in broilers 
 

 

 
 

D14 
unsexed 

D28 
pullets 

D28 
cockerels 

D36 
pullets 

D36 
cockerels 1SEM 

 
P value 

Whole bird weight (g) 509.57a 1341.13b     1505.4bc    1903.5cd 2192.46d   162.080 <0.001 

Fresh tibia weight (g) 4.61a          11.25b 13.51bc   16.08cd        18.90d 1.362 <0.001 

Tibia length (mm) 63.14a 90.32b         93.53b      104.42c 105.09c 4.318 <0.001 

Tibia width (mm) 4.46a 6.14b           7.05bc          7.75c 8.20c 0.377 <0.001 

Tibia strength (N) 88.43a 170.91b      197.08b      206.63b 226.88b 14.873 <0.001 

2Dry tibia weight (g) 1.43a 4.08b           4.73bc 6.34cd 7.11d 0.549 <0.001 

Tibia ash (g) 0.54a 1.63b          1.90b 2.41bc 2.71c 0.214 <0.001 

Tibia ash %        37.77         40.10       40.11        37.97          37.89 0.415           0.145 

Tibia P content (mg)         75.89a 238.03b       265.12b 344.07bc 387.92c 30.888 <0.001 

Tibia Ca content (mg) 182.86a 580.88b       651.26b 841.92bc 951.89c 76.153 <0.001 

WBP content (g/kg)          4.65 4.94         5.18         4.91           4.98 0.073 0.143 

WBCa content (g/kg)          6.18 6.80         7.38         6.78           6.75 0.144 0.061 
1Pooled standard error of mean. 
2Fat extraxted. 
a, b, c, d Means within the same row with no common subscript differ significantly (P < 0.05). 
 
 



 

155 
 

Table 5.3.  Characterisation of femur morphology, strength, mineralisation, WBP and WBCa content in broilers 
 

 
 
 

D14 
unsexed 

D28 
pullets 

D28 
cockerels 

D36 
pullets 

D36 
cockerels 1SEM 

 
P value 

Whole bird weight (g) 499.13a 1241.73b 1429.30bc 1714.10c 2506.40d 171.712 <0.001 

Fresh femur weight (g) 3.16a 7.70b       10.12c 10.51c 14.58d 1.007 <0.001 

Femur length (mm) 46.52a 63.46b       67.74c 73.26d 75.27d 2.846 <0.001 

Femur width (mm) 5.10a 7.35b 8.38bc 8.58c 10.11d 0.455 <0.001 

Femur strength (N) 116.51a  206.99b      227.90b 219.24b 315.24c 17.117 <0.001 

2Dry femur weight (g) 1.01a 2.79b         3.56c 3.76c 5.43d 0.384 <0.001 

Femur ash (g) 0.39a 1.05b         1.32c 1.41c 2.02d 0.141 <0.001 

Femur ash %         38.54       37.50      37.07        37.62        37.18 0.209 0.066 

Femur P content (mg) 55.15a 156.02b     197.53c 221.23c 315.76d      22.558 <0.001 

Femur Ca content (mg) 131.06a 376.15b    487.18c 534.07c 763.50d      54.927 <0.001 

WBP content (g/kg) 5.35         5.64         5.62          5.09          4.95 0.093 0.088 

WBCa content (g/kg) 7.42         7.97     8.20          7.03          6.70 0.190 0.101 
1Pooled standard error of mean. 
2Fat extraxted. 
a, b, c, dMeans within the same row with no common subscript differ significantly (P < 0.05). 
 

 



 

156 
 

Table 5.4.  Characterisation of feet mineralisation, WBP and WBCa content in broilers 
 

Bird 
D14 

unsexed 
D28 

pullets 
D28 

cockerels 
D36 

pullets 
D36 

cockerels 1SEM P value 

Whole bird weight (g)   497.70a 1200.83b 1359.80bc 1763.30c 2260.80d 159.153   <0.001 

Fresh feet weight (g)        9.25a 21.03b 26.16bc 32.91c 43.91d 3.084 <0.001 

Dry feet weight (g)   3.64a   8.22b 10.33bc 12.38c 16.24d 1.129 <0.001 

Feet ash (g) 0.51a 1.19b 1.51bc 1.88c 2.40d 0.170 <0.001 

Feet ash %      14.14     14.48     14.69      15.19       14.81 0.165       0.295 

Feet P content (mg)   77.33a   150.24b    219.47c     254.16c 316.61d 22.157 <0.001 

Feet Ca content (mg) 166.25a 351.76b    515.20c 612.31c 765.63d 55.365 <0.001 

WBP content (g/kg)        5.04       4.76       4.80         5.22        5.00 0.082 0.503 

WBCa content (g/kg)        6.61       6.38       6.56         7.13        6.98 0.165 0.704 
1Pooled standard error of mean. 
a, b, c, dMeans within the same row that do not have the same subscript differ significantly (P < 0.05).  
 

 

 



 

157 
 

5.4. Discussion 

Increase in growth rate has been reported to affect growth allometry (Schmidt et al., 2009) and 

skeletal integrity (Williams et al., 2000b; Angel, 2007). Consequently, there is the need to 

investigate the effect of changing nutrient requirements in relation to rapidly changing carcass 

characteristics (Applegate and Angel, 2014). 

In order to accurately meet phosphorus requirement while avoiding over supply, precise 

knowledge of the available phosphorus contribution of an ingredient is required (Liu et al., 

2012). This is usually determined by feeding an animal a test phosphorus source in a dose-

response trial, taking into account the amount of phosphorus ingested and excreted. 

Phosphorus availability could also be determined by the direct measurement of WBP content, 

although there is difficulty in obtaining homogeneous samples (Haag, 1939). In general, both 

assays require substantial laboratory effort hence easier alternatives such as the use of growth, 

blood or bone characteristics to rank phosphorus availability are often employed 

(Rodehutscord, 2009).   

The use of various bone criteria (morphology, strength, and ash) which dates back its historic 

use in relative phosphorus bioavailability studies (Hurwitz, 1964; Ravindran et al., 1995) is still 

widely used in evaluating phosphorus availability (Karimi et al., 2013; Faridi et al., 2015). This 

study builds on findings from previous studies by evaluating the phosphorus content of 

various bone types (tibia, femur and feet) and their relatedness with WBP content in 

commercial broilers.   
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5.4.1. WBP and WBCa content 

There is a paucity of WBP and WBCa data in the literature. In this study, there were no 

significant differences when WBP or WBCa content was analysed by age or sex (Table 5.1). 

The overall mean WBP and WBCa retention (5.06 and 6.95 g/kg respectively) were in very 

close agreement with the WPSA report (WPSA, 1985) and that of Nieß et al. (2005), but in 

contrast higher than that reported in other studies (Table 5.5) used for comparison. The mean 

values from those studies (Table 5.5) were however derived from phosphorus/calcium dose-

response trials in which WBP and WBCa content were determined in birds given increasing 

concentration of dietary phosphorus and calcium.  

 

Table 5.5. WBP (g/kg) and WBCa (g/kg) from previous reports 

1Corresponding WBCa content in parenthesis 

 

 

 

 
Age (days) 

 
1Cockerels 

 
Pullets 

 
1Unsexed 

    
Source 

  0     3.4 (4.3)  
21     4.9 (6.8)  
42     4.8 (6.7) WPSA, 1985 

21 – 42    5.1 (6.9)   Nieß et al., 2005 

21   2.2 – 3.9 (2.4 – 5.5)  
35    3.0 – 4.5 (3.4 – 6.8) Shastak et al., 2012b 

35 and 43    4.7     4.5  Van Krimpen et al., 2013 

10    4.5   (5.3 –6.1)    
21    4.75 (5.7 – 6.8)    
30    4.48 (6.0)    
38    4.19 (5.6)   Van Krimpen et al., 2016 
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Shastak et al. (2012c) reported a range of WBP content: 2.2 – 3.9 g/kg at day 21, and 3.0 – 4.5 

g/kg at day 35 respectively. In that study, a linear and significant increase in WBP was 

observed in birds given increasing levels of dietary phosphorus concentration (3.5 - 5.9 g/kg 

total phosphorus) intended to be below requirement across 7 treatments. Interestingly, a 

relatively constant 5g/kg WBP was determined in this study despite the increase in body 

weight (Figure 5.2.). This is similar to the findings of Narcy (2014) cited by Bedford et al. 

(2016) who reported 5g/kg WBP content in 500g and 2500g broilers. This is also in agreement 

with the report of Nieß et al. (2005) who concluded body weight had no effect on the 

concentration of major minerals and trace elements.  

WBCa:P data determined in this study were significantly different according to age or sex 

(Table 5.1) but these were in close comparison to that of the WPSA report (WPSA, 1985) for 

0, 3 and 6 weeks broilers. 

 

 
 
Figure 5.2. Whole body phosphorus and whole body calcium retention as a function 
of body weight 
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The lower WBCa and WBP values reported by other researchers listed in Table 5.5 compared 

to this study can be explained. In those trials, the diets were formulated to be lower than 

phosphorus requirement which resulted in the lower amount of phosphorus retained in the 

birds. On the contrary, the WBCa and WBP data determined in some other reports (Nieß et 

al., 2005; Narcy, 2014) was similar to the findings of this study where broilers were fed 

nutritionally adequate calcium and phosphorus diets. This suggests there is a limit to the 

amount of calcium and phosphorus retained in the whole body, orchestrated by the process 

of homoeostasis which controls their assimilation and metabolism.  

Phosphorus utilisation is improved when dietary calcium concentration is low, and Ca:P ratios 

are narrow (Selle et al., 2009). However, improved phosphorus absorption could lead to 

increased phosphorus excretion when dietary calcium is low. Plumstead et al. (2008) evaluated 

the effect of calcium on phosphorus utilisation by feeding broilers varying levels of  Ca:P diets. 

The authors reported that although feeding low dietary calcium concentration increased 

phosphorus absorption in the intestine, there was a corresponding increase in phosphorus 

excretion due to lack of sufficient calcium needed to combine with the circulating phosphorus 

to form hydroxyapatite in the bone. The authors concluded that the kidneys play an important 

role in regulating plasma calcium and phosphorus concentration and therefore any excess 

phosphorus is excreted in the urine. It can thus be concluded that the nutritional state of the 

birds determines the amount of phosphorus retained; and that when fed adequate amount of 

dietary phosphorus and calcium, there is a limit to the amount retained in the whole body. 

This conclusion highlights the relevance of the WBP data determined in this study, which was 

conducted using diets formulated to meet or exceed the estimated phosphorus requirements 

for each growth phase, in contrast to WBP data determined in previous studies that focussed 

on phosphorus bioavailability, where marginally deficient phosphorus diets were used. 
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Table 5.6. Bone Ca:P and the relatedness between bone P content and WBP content 
 

Age 
(days) 

Tibia 
Ca:P 

Tibia 
WBP:Bone P 

Femur 
Ca:P 

Femur 
WBP:Bone P 

Feet 
Ca:P 

Feet 
WBP:Bone P 

14 2.41a 31.41 2.37 48.50a    2.11a    32.38 
28 2.45b 28.65 2.44 42.57b    2.34b    33.77 
36 2.45b 27.90 2.42 40.49b    2.41b    34.01 
P value 0.005   0.092 0.158   0.001 <0.001      0.217 
Mean 2.43 29.33 2.41 43.85    2.29     34.05 
Pooled 
SEM 0.007  0.711 0.014   1.054 0.039       0.844 

  a, bMeans within the same column with no common subscript differ significantly (P < 0.05). 
 

WBCa:P ratio in this study at days 14, 28 and 36 were 1.34, 1.40 and 1.37 respectively (Table 

5.1). These were in close comparison to that of the WPSA report for 0, 3 and 6 weeks broilers 

fed adequate dietary calcium and phosphorus diets: 1.3, 1.4 and 1.4 respectively (WPSA, 1985). 

Given that all the birds received nutritionally adequate diets and that relatively more calcium 

was retained in the bones at days 28 and 36 compared to day 14, it is therefore not surprising 

that with an increase in body weight, relatively more calcium was retained in the whole body 

compared with phosphorus as clearly shown in Figure 5.2. 

The overall bone Ca:P ratio determined in this study was 2.38, indicating a higher proportion 

of calcium relative to phosphorus was retained in the bone. Also notable is the lower bone 

Ca:P ratio determined at day 14 in the 3 bone types compared days 28 and 36 (Table 5.6). 

Williams et al. (2000b) observed bone mineral is not a pure substance. Bone acts as a reservoir, 

and it is involved in the removal and replacement of calcium and phosphorus in the bone 

crystal lattice. This may disrupt the Ca:P molar ratio especially during the critical period of 

bone development. In young broilers, the period of rapid bone formation (4 - 18d) and 

mineralisation (4 - 11d) occurs during early development (Williams et al., 2000b). The young 

immature bones are likely to have a greater amount of the mineral precursors of 

hydroxyapatite present (McLean and Urist, 1968); and the numerous exchange of 
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calcium/phosphate groups in the crystal lattice of the bone as it functions as a mineral 

reservoir may have resulted in the lower molar Ca:P ratios observed at day 14 compared to 

days 28 and 36. This suggests that with an increase in age, more calcium is retained, and 

explains the divergence in the greater amount of WBCa relative to WBP in larger birds (Figure 

5.2).  

5.4.2. Relatedness between bone ash or phosphorus content with WBP content  

Strong correlations (r  ≥ 0.985) were found between the ash weight of the various bones and 

their respective WBP content (Tables 5.7 – 5.9). Strong correlations (r  ≥ 0.978) were also 

found between the phosphorus content of the various bones and their respective WBP 

content. This indicates bone phosphorus content or ash weight are reliable indicators of WBP 

retention. In contrast, bone ash percentage was weakly correlated with tibia phosphorus 

content and WBP content (Table 5.7); and negatively correlated with femur phosphorus 

content and WBP content (Tables 5.8). Medium strength correlations were found between 

feet ash percentage and feet phosphorus content and WBP content (Tables 5.9). 

Although bone ash percentage is routinely used to evaluate bone mineralisation in poultry, the 

negative to medium strength correlations observed indicates it is not a sensitive measure of 

WBP content. The poor reliability of ash percentage in indicating phosphorus availability or 

adequately assessing bone mineralisation has been questioned by other investigators (Hall et 

al., 2003; Li et al., 2015). Coon et al. (2007) observed that the slope of percentage bone ash 

measurements was not as sensitive as bone ash weight or bone breaking force in evaluating 

the relative biological availability of a phosphorus source. From this study, it can be concluded 

that bone ash weight and retained phosphorus in the bone are reliable indicators of WBP 

content, the contrary being the case for bone ash percentage. 
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Acknowledging the difficulty in obtaining WBP content, Hurwitz (1964) proposed tibia 

phosphorus content might be a reliable estimate of WBP content after observing a constant 

WBP:tibia phosphorus ratio of 19.6 in broilers irrespective of dietary treatment. Huyghebaert 

et al. (1980) reported a WBP:tibia phosphorus ratio of  17.95 when broilers were fed dietary 

phosphorus content of less than 0.6%; and 16.8 at higher dietary phosphorus levels indicating 

more phosphorus was retained in the tibia at higher dietary phosphorus concentration. 

Recently, Shastak et al. (2012c) fed broilers incremental levels of phosphorus and reported a 

WBP:tibia phosphorus ratio of 21.3 and 19.8 at days 21 and 35 respectively. The mean 

WBP:tibia phosphorus ratio determined in this study (29.33, Table 5.6) is much higher than 

the values previously reported by other investigators (Hurwitz, 1964; Huyghebaert et al., 1980; 

Shastak et al., 2012c). Although not significant, there was a numerical decrease in WBP:tibia 

phosphorus ratio with age. This indicates that as the birds aged, relatively more phosphorus 

was retained in the bones compared to what was retained in the whole body.  

Data from this study suggests WBP:tibia phosphorus ratio may not be as constant as 

previously assumed. As noted by Shastak et al. (2012c), this might also be due to differences 

in the length of experimental period, varying dietary phosphorus content, age of bird at 

sampling, and the changes in bird composition due to selection for improved growth rate, 

each of which might have altered the WBP:bone phosphorus composition of broilers. It might 

also be due to environmental or husbandry effects as previous data were derived from birds 

reared in controlled experimental conditions where measurements are more precise compared 

to the birds in this study which were raised in a commercial setting. Lighting, litter quality, 

health management and humidity are factors that could affect bone quality (Hester, 1994). 
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Table 5.7. Pearson correlation values between tibia and whole body P and Ca content 
 

 

 

 

 

 

 

  

Whole 
bird 
weight 
(g) 

Tibia 
weight 
(g) 

Tibia 
length 
(mm) 

Tibia 
width 
(mm) 

Tibia 
Strength 
(N) 

Dry fat 
extracted 
tibia 
weight 
(g) 

Tibia 
ash 
weight 
(g) 

Tibia 
ash % 

Tibia P 
content 
(mg) 

Tibia 
Ca 
content 
(mg) 

WBP 
content 
(mg) 

WBCa 
content 
(mg) 

Tibia P content (mg) 0.994 0.987 0.967 0.983 0.963 0.991 0.998 0.284  1.000 0.986 0.981 

Tibia Ca content (mg) 0.994 0.987 0.966 0.984 0.964 0.991 0.998 0.287 1.000  0.986 0.981 
Whole body P content 
(mg) 0.995 0.992 0.980 0.979 0.944 0.993 0.990 0.207 0.986 0.986  0.999 
Whole body Ca content 
(mg) 0.990 0.989 0.983 0.978 0.945 0.989 0.986 0.213 0.981 0.981 0.999  
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Table 5.8. Pearson correlation values between femur and whole body P and Ca content  
 

 
 

 

 

 

 

  

Whole 
bird 
weight 
(g) 

Femur 
weight 
(g) 

Femur 
length 
(mm) 

Femur 
width 
(mm) 

Femur 
Strength 
(N) 

Dry fat 
extracted 
femur 
weight 
(g) 

Femur 
ash 
weight 
(g) 

Femur 
ash % 

Femur 
P 
content 
(mg) 

Femur 
Ca 
content 
(mg) 

WBP 
content 
(mg) 

WBCa 
content 
(mg) 

Femur P content (mg) 0.990 0.994 0.958 0.984 0.967 0.997 0.997 -0.590  1.000 0.984 0.975 

Femur Ca content (mg) 0.988 0.995 0.959 0.986 0.968 0.998 0.998 -0.593 1.000  0.984 0.975 
Whole body P content 
(mg) 0.989 0.985 0.948 0.966 0.948 0.984 0.985 -0.585 0.984 0.984  0.997 
Whole body Ca content 
(mg) 0.975 0.977 0.950 0.962 0.939 0.976 0.977 -0.593 0.975 0.975 0.997  
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Table 5.9. Pearson correlation values between feet and whole body P and Ca content 
 

 

 

  

Whole 
bird 
weight (g) 

Feet 
weight 
(g) 

Dry feet 
weight 
(g) 

Feet ash  
weight 
(g) 

Feet 
ash % 

Feet P 
content 
(mg) 

Feet Ca 
content 
(mg) 

WBP 
content 
(g/kg) 

WBCa 
content 
(g/kg) 

Feet P content (mg) 0.981 0.981 0.988 0.992 0.493  0.999 0.978 0.977 

Feet Ca content (mg) 0.981 0.984 0.990 0.994 0.480 0.999  0.978 0.977 

Whole body P content (mg) 0.996 0.989 0.988 0.990 0.480 0.978 0.978  0.999 

Whole body Ca content (mg) 0.993 0.988 0.986 0.988 0.471 0.977 0.977 0.999  
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5.4.3. Relatedness between femur and feet bone phosphorus content and WBP content  

Bone measurements are known to vary in relatedness and level of sensitivity to mineralisation 

(Ravindran et al., 1995; Cheng and Coon, 1990). The relatedness between tibia phosphorus 

content and WBP content have been examined and discussed. Although the ash content of 

the femur and feet ash have also been used to evaluate bone mineralisation in broilers (Hemme 

et al., 2005; Garcia and Dale, 2006), the relationship between the phosphorus content of these 

bones (femur and feet) and WBP content have not been reported in the literature. Strong 

correlations linear were found between the phosphorus content of all three bones and WBP 

content (Figure 5.3). 

Similar to the tibia bone, there was a numerical decrease in WBP:femur phosphorus content 

with age (Table 5.6). The age-related decrease in WBP:bone phosphorus ratio of the tibia and 

femur can be explained by the increase in size and mineralisation of these bones with age. The 

amount of minerals deposited in the bone collagen matrix is known to increase with age (Rath 

et al., 2000). But in contrast, an increase was observed in WBP: feet phosphorus content with 

age. This indicates that relatively more phosphorus was retained in the whole body compared 

with that retained in the feet. Feet ash percentage was considerably less (P = 0.001) than the 

ash percentage determined in the other bones suggesting it contained less mineral content per 

unit weight.  
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Figure 5.3. Regression of bone phosphorus content on WBP  
 

Shastak et al. (2012c) determined a constant slope of 17.7 in day 21 and 35 birds when the 

phosphorus content of tibia bones was regressed against WBP content, indicating that for 

each mg of phosphorus retained in the tibia, 17.7mg was retained in the whole body. The 

authors suggested the slope may be a suitable criterion for determining WBP retention in 

broilers. Data from this study was further analysed to evaluate the correlation between 

phosphorus retained in the 3 bones and phosphorus retained in the whole body.   

Linear increases in WBP content relative to increase in bone phosphorus were observed.  

From the slopes of regression (Figure 5.3), for each mg retained in the tibia, femur, and feet, 

25.85mg, 36.76mg and 35.97mg phosphorus were retained in the whole body respectively. 

The slope of regression for the femur and feet bone is not available in the literature to make 

any comparisons. The slope of WBP retention relative to retained phosphorus in the tibia 

determined in this study was higher than that reported by Shastak et al. (2012c). It is possible 
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that the differences in diet composition between experimental trials (adequate dietary 

phosphorus in this study vs. a range of dietary phosphorus concentration formulated below 

requirement) may have contributed to the observed differences and warrants further 

investigation. The variability in phosphorus availability is known to affect bone mineral status 

in poultry (Adeola, 2010); and this directly determines the amount of phosphorus retained in 

the bone or whole body. The possible difference in husbandry methods (commercial 

husbandry practice in this study vs. precise experimental trial) might also be a possible 

explanation.  

 It was interesting to note that the slopes of the femur and feet phosphorus content regressed 

against WBP content were parallel and greater than the slope of tibia phosphorus content. 

The proximal region of the tibia is the fastest growing growth plate in broilers (Julian, 1998); 

and as a result of rapid growth retained more phosphorus. The mean ash weight was 

consistently greater in the tibia compared to the femur or feet ash weight at all sampling age 

(Table 5.10), and consequently contained more phosphorus than the femur and feet. Thus 

while the ratio between WBP and the phosphorus retained in the femur and feet followed a 

similar linear pattern, with an increase in age, disproportionately more phosphorus was 

retained in the tibia relative to that retained in the whole body. The findings from this study 

do not support the hypothesis that for each age assessed, any of the 3 leg bone type sampled 

reflects one WBP content of the bird. 
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Table 5.10. Ash weight and phosphorus content of the tibia, femur and feet 
 

 
Bone parameter 

 
D14 

 
D28 

 
D36 

Bone ash (g)    
Tibia bone ash 0.54a 1.76a     2.56a 
Femur bone ash 0.39b 1.18b     1.72b 
Feet bone ash 0.51a 1.35b     2.14ab 
P value 0.004 0.001     0.010 
Pooled SEM 0.022 0.076     0.124 
    
Bone phosphorus content (mg)    
Tibia phosphorus content   76a  252a     366a 
Femur phosphorus content   55b  177b     268b 
Feet phosphorus content   77a  185b     285ab 
P value 0.002 0.003    0.031 
Pooled SEM 3.242 11.134   16.937 

  a, bMeans within the same column with no common subscript differ significantly (P < 0.05) 
 

5.4.4. Implication 

As already discussed, it is important to continually re-evaluate the optimal phosphorus 

requirement in poultry. Given that the amount of phosphorus retained in the body is fairly 

constant as demonstrated in this study, digestible phosphorus requirement was re-calculated 

(Figure 5.4) using the method of Bedford et al. (2016) by dividing the weight gain increment 

in phosphorus (derived using the mean WBP) by feed intake (using the Ross 308 performance 

objectives, Aviagen, 2014).  
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 Figure 5.4. Estimated digestible phosphorus requirement as a function of age  
 

The current NRC requirement for 3 - 6 week old broilers is 0.35% nPP,  however by day 22, 

0.34% avP was determined in this study, and this decreased with age. Although the absolute 

requirement will depend on environmental, husbandry and nutritional status of the bird as 

noted by Bedford et al. (2016), this study shows that beyond 21 days, the calculated available 

requirement is less than 0.35%. This implies that the current NRC recommendation for 3 - 6 

week old broilers may exceed requirement, as previously suggested by Dhandu and Angel 

(2003). This study also suggests a mean value of 2.6g/kg available phosphorus is required to 

meet the Ross 308 performance objective between 31 - 38 days, and this is in exact agreement 

with the findings of Van Krimpen et al. (2016). 

 5.5. Conclusion 

Phosphorus plays an important role in growth and bone mineralisation. As a finite resource, 

preserving the global phosphate reserves in a sustainable way is of major concern. To this end, 

the precise use of dietary phosphorus in order to minimise wastage has long been recognised 

(Summers, 1997).  

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 10 20 30 40 50

%
 A

va
il

ab
le

 p
h

o
sp

h
o

ru
s

Age (days)

Assumed dietary P content %



 

172 
 

WBP determined in this study was in close comparison to findings of other reports (WPSA, 

1985; Nieß et al., 2005; Narcy, 2014) where broilers were fed adequate calcium and phosphorus 

diets. This study demonstrates that despite the improvements in growth rate and muscle mass 

observed in modern broiler strains, WBP and WBCa content in broilers, including the 

partitioning of calcium in relation to phosphorus in the whole body of broilers has remained 

the same irrespective of age and sex. The strong linear relationship between WBP content and 

various bone measurements (including retained phosphorus content) suggests the bone is a 

reliable indicator of WBP retention in broilers. However, the lack of agreement between the 

data determined in this study and that reported in previous studies further highlights the 

difficulty in defining the relationship between bone phosphorus retention and WBP 

phosphorus content by a mathematical constant and needs to be examined further. 

More studies are required to validate the data obtained in this study, and to establish if the 

results are as a result of environmental and husbandry effects common to commercial 

husbandry, or are due to the effect of selective breeding on the current broiler strains. Further 

work is also required to ascertain what dietary phosphorus requirements are, particularly at 

the finishing stage of production when feed intake in increased. This should be done in light 

of the vast array of nutritional strategies currently utilised to aid phosphorus utilisation and 

improve bone mineralisation in poultry, giving careful consideration to bird welfare and 

economic objectives 
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CHAPTER 6: NUTRITIONAL IMPRINTING AS A TOOL FOR IMPROVING 
PHOSPHORUS UTILISATION IN BROILERS 

6.1. Introduction 

Earlier studies in this thesis examined appropriate tools and methodologies for assessing 

phosphorus requirement in broilers. The next two studies examine strategies for maximising 

the efficiency of phosphorus utilisation in broilers.  

Reducing excessive dietary levels of phosphorus is one of the nutritional strategies adopted to 

minimise wastage (Waldroup, 1999). Beyond efforts to precisely meet the bird’s needs, 

restricting phosphorus supply in broiler diets has been investigated in older birds (21 days or 

more) without adverse effect on performance (Skinner et al., 1992; Dhandu and Angel, 2003). 

However, feeding phosphorus deficient diet continuously from hatch through to finishing 

(Moran and Todd, 1994), or omitting dietary phosphorus at the finishing stage (Chen and 

Moran, 1995) have resulted in poor bone mineralisation and a high incidence of broken bones 

at processing.  Such nutritional strategies are therefore not ideal for minimising phosphorus 

usage from both the commercial and welfare perspectives.  

The nutritional imprinting of birds for better nutrient absorption is a new and emerging 

approach reported to improve flock performance and reduce environmental pollution 

through better nutrient absorption (Angel, 2010). Angel and Ashwell (2008) demonstrated the 

benefits of nutritionally imprinting broilers with low phosphorus diets early post-hatch. In 

that study, birds in the test group were fed a moderately deficient Ca/P diet (0.59% Ca / 

0.25% avP) for 90 hours immediately post-hatch; followed by a standard Ca/P diet (1.11% 

Ca / 0.5% avP) until day 22 (starter phase). They were then compared with birds fed the same 

standard diet (1.11% Ca / 0.5% avP) throughout the starter phase (1 - 22d). Marginally 

deficient diets (0.4% Ca / 0.11% avP) were then fed to both bird groups afterward until 38 
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days (finishing phase). The authors reported that the nutritionally imprinted birds were 

significantly heavier, had a better feed to gain ratio, higher phosphorus absorption, and greater 

tibia ash weight compared to the control group birds by 38 days. However, despite the 

promising results of nutritional imprinting of broilers for better phosphorus utilisation 

conducted in experimental battery cages, it has not been adopted for use in commercial poultry 

farming.  

6.1.2. Aims and objectives  

The overall aim of this trial was to verify the impact of nutritional imprinting on phosphorus 

utilisation.  

The specific objectives were: 

 To evaluate the effect of nutritional imprinting on growth performance. 

 To evaluate the effect of nutritional imprinting on bone morphometry and bone 

mineralisation.  

 To examine the effect of nutritional imprinting on ileal phosphorus and calcium 

digestibility. 

 To evaluate the effect of nutritional imprinting on the gene expression of sodium-

phosphate cotransporter type IIb used as a marker for phosphate transport. 

 

The hypothesis of this trial was that phosphorus utilisation may be manipulated by nutritional 

imprinting. Broilers were raised in floor pens to simulate current commercial rearing practice. 
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6.2. Materials and methods  

6.2.1. Trial procedure  

Institutional and UK national NC3R ARRIVE guidelines for the care, use and reporting of 

animals in research (Kilkenny et al., 2010) were followed, and all experimental procedures 

involving animals were approved by the University's College of Arts and Science ethical review 

committee. 144 one day-old male Ross 308 broiler chicks were used in a 28-day experiment. 

Chicks from a parent flock aged 45 weeks were sourced from PD Hook Hatcheries Ltd, 

Oxfordshire, and housed in an environmentally controlled room as previously described in 

Chapter 2, Section 2.2. The experimental design consisted of two groups of birds: a control 

group and test group of birds. Each group consisted of 6 replicate pens, each containing 12 

birds per pen at placement. On arrival, the birds were weighed to determine individual bird 

weight, and were then allocated to pens ensuring there were no significant differences in mean 

pen weight across treatments. Maize/soya mash diets (Table 6.1) were formulated for two 

growth phases (starter: 1 - 18 days and grower: 19 - 28 days). 

Table 6.1. Feed composition of experimental diets (g/kg as fed basis) 
 

Ingredient Starter diet  Low P starter diet Low P grower diet 

Maize 546.9 579.1 603.5 

Soya 48 367.9 362.4 335.1 

Soya oil   35   25   33.9 

Calcium carbonate   16.5     8.7     5.5 

Monocalcium phosphate   16.7     7.8     3.6 

DL-Methionine     1.6     1.6     1.7 

L-lysine HCL     2.2     2.2     3.2 

Vitamin premix*      4     4     4 

Titanium dioxide     5     5     5 

Salt     3     3     3 

Threonine     1.2     1.2     1.5 
 

 

Supplied per kilogram of diet: manganese, 100 mg; zinc, 80 mg; iron (ferrous sulphate), 20 mg; copper, 10 mg; iodine, 1 
mg; molybdenum, 0.48 mg; selenium, 0.2 mg; retinol, 13.5 mg; cholecalciferol, 3 mg; tocopherol, 25 mg; menadione, 5.0 
mg; thiamine, 3 mg; riboflavin, 10 mg; pantothenic acid, 15 mg; pyroxidine, 3.0 mg; niacin, 60 mg; cobalamin, 30 µg; 
folic acid, 1.5 mg; and biotin 125 mg 
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During the starter phase (day 1 – day 18), birds in the control group were fed a standard mash 

starter diet formulated to meet the Ross 308 (Aviagen, 2014) nutrient specification for all 

nutrients including Ca and P (1.05% Ca and 0.5% nPP). The test group of birds were fed a 

low Ca/P mash diet (0.6% Ca and 0.3% nPP) for the first four days from hatch, and were 

then fed the same standard starter diet as the control group of birds (1.05% Ca and 0.5% nPP) 

from day 5 to day 18. A marginally low phosphorus diet (0.4% Ca and 0.2% nPP) was then 

fed to both groups of birds from 19 - 28 days. Diets and water were provided ad libitum to all 

birds during the experimental procedure. Birds were observed twice daily to monitor 

environmental conditions and mortality recorded. Nutrient analysis of experimental diets are 

presented in Table 6.2. 

Table 6.2. Nutrient analysis of experimental diets (% as fed basis) 

 

 
Starter diet 
 

  Low P starter diet 
 

  Low P grower diet 
 

Composition Calculated Analysed Calculated Analysed Calculated Analysed 

Dry matter  90.15 84.54 89.89 85.25    88.90 85.54 
ME (MJ/kg)  12.9  12.9  13.4  
Crude protein  22.5  22.2 22.5 22.7 21.5 21.4 
Crude fat    5.98   6.01   5.11   5.13   6.07   6.09 
Lysine    1.44    1.43    1.43  
Threonine    0.96    0.96    0.94  
Methionine    0.51    0.51    0.51  
Total calcium    1.05   1.05   0.60   0.62   0.40   0.40 
Total phosphorus    0.76   0.77   0.56   0.55   0.46   0.42 
nPP    0.50   0.49   0.30   0.30   0.20   0.19 
Titanium dioxide    0.50   0.52   0.50   0.52   0.50   0.49 

 

6.3. Sample collection 

Sampling was carried out on days 4 and 18, planned to coincide with diet change, and on day 

28 when the experiment was concluded. Six birds per replicate pen were euthanised on day 4 

by cervical dislocation to ensure sufficient digesta was obtained for analysis as described in 
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Chapter 2, Section 2.4.2.2. Briefly, digesta was collected from the distal end of the small 

intestine, identified as the portion between Meckel’s diverticulum and the ileal-ceco-colonic 

junction, for ileal digestibility studies. Digesta was pooled per pen and frozen at -20oC until 

analysis. 100g duodenal tissue was collected from 1 bird per replicate pen for total NaPi-IIb 

mRNA quantification as described in Chapter 2, Section 2.5.11, and stored in RNAlater at       

-80oC until further processing. Left tibia bones were collected from two birds per pen as 

described in Chapter 2, Section 2.4.2.3 for bone measurements. Briefly, the bones were 

separated at the tibiotarsal junction where the feet were removed, and the tibio-femoral 

junction where the femurs were removed, and then individually stored at -20oC until further 

processing. Digesta, duodenal tissue, and left tibia bones were also collected on days 18 and 

28 from two birds per replicate pen after euthanasia by cervical dislocation as described for 

sampling day 4. 

6.4. Determined parameters 

6.4.1. Growth performance 

Body weight, body weight gain, feed intake, and feed conversion ratio were evaluated per pen 

on sampling days (days 4,18 and 28); and on a weekly basis as described in Chapter 2, Section 

2.4.1. FCR of birds was calculated by dividing feed intake by body weight gain, taking into 

account any mortalities. 

6.4.2. Tibia bone morphometry, strength, and ash 

Tibia weight, length, width, strength, and ash content of the left tibia bones were measured as 

previously described in Chapter 2, Sections 2.5.1, 2.5.4.1 and 2.5.5.2. Briefly, flesh from all 

bones was manually removed and weighed whilst leaving the cartilage caps intact. Bone length 

and width were measured using a set of Vernier callipers. Bone strength was measured using 

a TA-XT Plus Texture Analyser (Stable Micro Systems, Surrey, UK) before fat extraction 
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using the Soxhlet fat extraction method for 6h. The tibia bones including cartilage caps were 

then dried at 105oC for 24h until constant weight was achieved and then ashed for 24h at 

650oC in a furnace to determine ash weight. 

6.4.3. Diet nutrient analysis  

Diets were analysed for dry matter, protein content and fat content as previously described in 

Chapter 2, Sections 2.5.2, 2.5.3 and 2.5.4.1.  

6.4.4. Titanium dioxide, calcium and phosphorus analysis 

Diets and digesta were analysed for titanium dioxide content using the ICP-OES assay 

previously described in Chapter 2, Section 2.5.6. Diets, digesta, and bone ash were also 

analysed for total calcium and total phosphorus content using the ICP-OES assay previously 

described in Chapter 2, Section 2.5.7. 

6.4.5. Non-phytate phosphorus  

Digesta samples were freeze-dried and finely ground using a pestle and mortar. The total 

phytic acid content of ileal digesta samples was analysed using a MegazymeTM K-PHYT assay 

(Megazyme International, Ireland) previously described in Chapter 2, Section 2.5.8. The non-

phytate phosphorus (nPP) content of diets and digesta samples were calculated as the 

difference between total phosphorus and phytate phosphorus.  

6.4.6. Sodium phosphate cotransporter IIb mRNA  

Sodium phosphate cotransporter (NaPi-IIb) mRNA used as a marker for phosphate transport 

was isolated and quantified according to the method outlined in Chapter 2, Section 2.5.11. 

Briefly, 100g duodenal tissue was collected from one bird per pen, placed in RNAlater, and 

subsequently stored at −80oC. At processing, tissue samples were homogenised in 1ml Tri-

Reagent (Life Technologies) with 5mm stainless steel beads (Qiagen) in the Qiagen Tissue 



 

179 
 

Lyser II. Phase separation was performed using molecular grade 1-bromo-3-chloropropane 

(Sigma). RNA was purified from the aqueous phase using the MagMAX-94 for Microarray 

Isolation kit (Life Technologies) and the RNA subsequently stored at -20°C. 

RNA (5μl) was reverse-transcribed into cDNA using 20µl RT premix 2 (Primerdesign). The 

reaction was performed at 42°C for 20 minutes and 72°C for 10 minutes  cDNA was stored 

at -20°C until used in the PCR reaction. The NaPi-IIb gene-specific primers were designed by 

Primerdesign Ltd, UK. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as 

the housekeeping. Quantitative Real-Time PCR was performed using Stratagene Mx3005p 

(Agilent Technologies). Relative gene expression was determined by the comparative cyclic 

threshold (CT) method of Livak and Schmittgen (2001).  

6.5. Data analysis 

Results were analysed using IBM SPSS statistical software, version 23 for Windows (IBM 

Statistics, 2016). Statistically significant differences between groups were declared at P < 0.05 

using the independent t-test procedure. 

6.6. Results 

6.6.1. Bird performance 

No significant differences were found between the control and the test group of birds when 

bird performance data were analysed for body weight, body weight gain, feed intake, or feed 

conversion ratio at all 3 sampling points (Tables 6.3 – 6.5). 
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Table 6.3. Mean bird performance data (0 – 4d) 
 

Treatment group BW (g) 
 
BWG (g) FI (g) FCR 

Control 80 37 67 1.80 

Treatment 82 39 74 1.90 

Pooled SEM   0.878   0.964   1.852 0.063 

P value   0.274   0.322   0.071 0.455 

 
 

Table 6.4. Mean bird performance data (5 – 18d) 
 

Treatment group BW (g) 
 
BWG (g) FI (g) FCR 

Control 492 411 424 1.54 

Treatment 459 377 780 1.81 

Pooled SEM   11.753    11.203   46.126 0.128 

P value     0.346      0.311     0.266 0.141 

 
 

Table 6.5. Mean bird performance data (19 – 28d) 
 
 

Treatment group BW (g) 
 
BWG (g) FI (g) FCR 

Control 1149 438 1102 1.74 

Treatment 1085 413 1094 1.82 

Pooled SEM     26.276   17.505     32.904 0.067 

P value       0.423     0.664       0.953 0.694 

 
 

6.6.2. Bone measurements 

Bone measurement data for days 4, 18 and 28 are presented in Tables 6.6 - 6.8. 

No significant differences were found between treatment groups at all sampling points. 
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Table 6.6. Effect of nutritional imprinting on broilers: d4 mean tibia measurements  
 

Treatment group 1Dry weight (g) Length (mm) Width (mm) 

Control 0.17 36.14 2.08 

Treatment 0.17 36.70 2.17 

SEM 0.004      0.235 0.031 

P value 0.857      0.251 0.193 
1Fat extracted  

 

Table 6.7. Effect of nutritional imprinting on broilers: d18 mean tibia measurements  
- 

Treatment group 1Dry weight (g) Length (mm) Width (mm) 

Control 1.41         63.28            4.56 

Treatment 1.30         61.38            4.46 

Pooled SEM 0.073           0.934            0.117 

P value 0.460           0.319            0.682 
1Fat extracted 

 

 

Table 6.8. Effect of nutritional imprinting on broilers: d28 mean tibia measurements  
 

Treatment group 1Dry weight (g) Length (mm) Width (mm) 

Control 3.68 84.99  7.22 

Treatment 3.68 84.16  7.46 

Pooled SEM 0.138      0.878       0.151 

P value 0.994      0.647       0.453 
1Fat extracted  
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6.6.3. Bone mineralisation 

Data for bone strength, bone ash weight, ash percentage, calcium and phosphorus content 

for days 4, 18 and 28 are presented in Tables 6.9 – 6.11. Apart from bone strength which was 

significantly greater in the test group of birds compared to the control group of birds at day 

28 (P = 0.012), no other significant differences were found.  

 

Table 6.9. Effect of nutritional imprinting on broilers: d4 mean tibia mineralisation 

 

Treatment 
group Strength (N) Ash weight (g) Ash % 

Ca content/dry 
bone (g/kg ) 

P content/dry 
bone (g/kg ) 

Control 15.67 0.06 32.79 19.97 7.82 
Treatment 16.17 0.05 32.81 19.66 8.05 
Pooled SEM   0.749 0.001   0.482   0.574 0.286 
P value   0.751 0.985   0.793    0.694 0.694 

 

 

Table 6.10. Effect of nutritional imprinting on broilers: d18 mean tibia mineralisation 
 

Treatment 
group Strength (N) Ash weight (g) Ash % 

Ca content/dry 
bone (g/kg ) 

P content/dry 
bone (g/kg ) 

Control 122.56 0.55 38.63 198.93 75.98 
Treatment 123.37 0.51 38.65 191.51 74.51 
Pooled SEM    9.500 0.324   0.665   12.427   4.678 
P value    0.967 0.577   0.990     0.772   0.880 

 

 

Table 6.11. Effect of nutritional imprinting on broilers: d28 mean tibia mineralisation 
 

Treatment 
group Strength (N) Ash weight (g) Ash % 

Ca content/dry 
bone (g/kg ) 

P content/dry 
bone (g/kg ) 

Control 217.71 1.38 37.20 481.93 183.71 
Treatment 286.36 1.41 38.21 515.90 193.33 
Pooled SEM   14.158 0.057   0.450   20.298     7.702 
P value     0.012 0.802   0.275     0.415     0.544 
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6.6.4. Phosphorus and Calcium ileal digestibility 

By day 4, the apparent P ileal digestibility coefficient was significantly greater in the control 

group of birds compared with the treatment group of birds (P = 0.016) which also digested 

significantly more P and Ca (P <0.001 respectively; Table 6.12). No significant differences 

were found in the apparent calcium digestibility between the two treatment groups.  

Table 6.12. Effect of nutritional imprinting on apparent ileal digestible coefficient and 
amount of mineral digested, d4 

 

 
Apparent ileal  
digestibility coefficient  

Amount of mineral  
digested (g/kg diet) 

Treatment 
group Ca P  Ca     P  

Control 0.61 0.73   6.54    5.61 

Treatment 0.66 0.69   4.06    3.76 

Pooled SEM 0.016 0.008   0.397    0.282 

P value 0.165 0.016 <0.001 <0.001 

 

No significant differences were found in the Ca and P digestibility coefficient, or the amount 

of Ca and P digested between the two group of birds by day 18 (Table 6.13).  

Table 6.13. Effect of nutritional imprinting on apparent ileal digestible coefficient and 
amount of mineral digested, d18 

 

 
Apparent ileal  
digestibility coefficient  

Amount of mineral  
digested (g/kg diet) 

Treatment 
group Ca P Ca  P  

Control 0.67 0.72 7.14 5.54 

Treatment 0.65 0.71 6.96 5.52 

Pooled SEM 0.018 0.008 0.193 0.059 

P value 0.701 0.687 0.676 0.885 

 

By day 28, the apparent ileal P digestibility coefficient and the amount of P digested were 

significantly greater in the nutritionally imprinted group of birds (P <0.001 respectively) 

compared to the control group of birds (Table 6.14). The apparent ileal Ca digestibility 
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coefficient, and the amount of Ca digested were however similar in both treatment groups of 

birds. 

Table 6.14. Effect of nutritional imprinting on apparent ileal digestible coefficient and 
amount of mineral digested, day 28 

 

 
Apparent ileal  
digestibility coefficient  

Amount of mineral  
digested (g/kg diet) 

Treatment 
group Ca    P Ca      P  

Control 0.51   0.58 2.06   2.44 

Treatment 0.51   0.62 2.06   2.60 

Pooled SEM 0.020   0.007 0.079   0.029 

P value 0.984 <0.001 0.984 <0.001 
 

6.6.5. Isolation and quantification of sodium-phosphate cotransporter iib total mRNA 

Nutritional imprinting had no significant effect on the gene expression of NaPi-IIb total 

mRNA on days 4, 18 and 28 (Table 6.15). 

Table 6.15. Effect of nutritional imprinting on NaPi-IIb gene expression 

 

              Gene expression  
Treatment group GAPDH1 NaPi-IIb mRNA n-Fold2 

Day 4    
Control 19.06 21.75 1.0 
Treatment 19.09 22.09 1.23 
Pooled SEM   0.175   0.179  
P value   0.926   0.377  

Day 18    
Control  19.87 22.65 1.0 
Treatment  19.92 23.04 1.36 
Pooled SEM    0.209   0.286  
P value    0.910   0.517  

Day 28    
Control  20.41 23.93 1.0 
Treatment  21.38 24.73 1.13 
Pooled SEM    0.480   0.388  
P value    0.334   0.324  

1GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) was used as the reference gene 
2Mean fold change of NaPi-IIb mRNA expression was calculated using the 2–ΔΔCt relative 
quantification method (Livak and Schmittgen, 2001). 
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6.7. Discussion 

Nutritional imprinting, defined as the early conditioning of life events where specific 

conditions give rise to later physiological outcomes is a well-established phenomenon (Hanley 

et al., 2010). In poultry, it provides a means by which the bird responds and adapts to 

challenges during early development such as heat stress or nutritional deficiency. This is 

achieved by regulating the genes that are expressed or suppressed in the adult phenotype (Feil 

and Fraga, 2012). The effect of nutrition on health, behaviour, and cognition in poultry is 

further elaborated in the review of Dixon et al. (2016). Nutritional imprinting of phosphorus 

was examined in this study to evaluate its effect on bone mineralisation and phosphorus 

utilisation in broilers. 

6.7.1. Growth performance  

No significant differences in growth performance were found between the control and test 

group of birds at all sampling ages in this study. This implies that transiently feeding broilers 

0.6%Ca / 0.3% nPP diets for 4 days immediately post-hatch does not have a deleterious effect 

on bird performance. It has been shown that growth performance and bone mineralisation 

are not negatively affected when dietary phosphorus is reduced concurrently with dietary 

calcium (Driver et al., 2005). Rama Rao et al. (2006) reported similar body weight gain and feed 

intake in broilers given 6g Ca and 3g nPP /kg diet compared to broilers given 9g Ca and 4.5g 

nPP/kg diet between 2 and 14 days. This is corroborated by the report of Letourneau-

Montminy et al. (2007) who conducted a meta-analysis study to evaluate phosphorus utilisation 

in broilers. The authors arrived at the same conclusion that a dietary concentration of 6g Ca 

and 3g nPP/kg had a similar effect on growth performance and bone mineralisation as the 

NRC recommended levels. 
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Compensatory growth as an adaptive response to low dietary phosphorus has been previously 

reported in poultry (Yan et al., 2005b; Letourneau-Montminy et al., 2008). However in this 

study, giving the treatment group of birds adequate phosphorus diets for 2 weeks after the 

initial 4 day challenge period of transiently feeding them low phosphorus diets was not 

sufficient enough to elicit compensatory growth by day 18. Although no significant differences 

were found in weight gain and feed conversion ratio by day 18, the control group of birds had 

numerically greater growth performance measurements. Similar to the findings of this study, 

Angel and Ashwell (2008) reported no significant differences in weight gain and feed to gain 

ratio between a control group and nutritionally imprinted group of birds. These authors 

however reported that the control group of birds were significantly heavier than the 

nutritionally imprinted birds by days 8 and 22.  

When birds were re-challenged with a marginally low phosphorus diet for 10 days in this study 

(between 19 - 28 days), no significant changes were observed in growth performance, and the 

control group of birds still had numerically greater growth measurements. This is in contrast 

with the finding of Angel and Ashwell (2008) who reported that the nutritionally imprinted 

broilers had a significantly higher body weight, body weight gain and feed to gain ratio 

compared with the control birds fed the same diet by day 38. They however did not provide 

growth performance data for the birds at 28 days, the age at which growth performance was 

evaluated in this study, hampering direct comparison. The difference in length of dietary 

challenge (10 days in this study vs. 16 days in the study of Angel and Ashwell, 2008) may have 

resulted in the observed differences. 

6.7.2. Bone morphometry, strength, and mineralisation  

No significant differences were found in bone measurements (length, width, weight) at any of 

the sampling points, and there was no available data in the literature to compare results. 
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However, this was expected considering that no differences were found in body weight 

between the control group of birds and the test group of birds in this study.  

With the exception of the significantly greater bone strength (P = 0.012) determined in the 

nutritionally imprinted birds at day 28 (Table 6.11), no other significant differences were 

found in the bone mineralisation data measured at all sampling points (Tables 6.9 – 6.11). 

Interestingly by the end of the experiment (day 28), ash weight, ash percentage and bone 

calcium and phosphorus content were numerically greater (but not significantly different) in 

the nutritionally imprinted group of birds compared with the control group. Surprisingly, 

although the tibia bones in the test group of birds were numerically shorter, they had 

numerically greater bone width was measured at day 28 compared with the control group of 

birds. This may have contributed to increased bone strength. Williams et al. (2004) compared 

bone growth in a fast and slow-growing strain of broilers and reported bone width plays an 

important functional role in bone strength by increasing the periosteal apposition and 

production of new osteons at the periosteal surface in response to increased load during 

growth in fast-growing chickens. Data from this study suggests that an increase in bone width 

resulting from increased bone mineralisation could also be initiated by other factors, e.g. 

response to the dietary challenge as result of nutritional imprinting; and not only growth as 

alluded to by Williams et al. (2004). More work is needed to examine the effect of nutritional 

imprinting with low dietary phosphorus on broiler bone mineralisation.  

 

Tibia ash (Waldroup et al., 2000; Driver et al., 2006a) and bone strength (Cheng and Coon, 

1990; Sohail and Roland, 1999) are two measuremets traditionally used as indicators of bone 

quality in poultry. Tibia ash weight was not sensitive in elucidating bone mineralisation 

differences between the two treatment groups in this study, although significant differences 
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in bone strength were found at day 28 (P = 0.012). It was therefore of interest to examine the 

effect of nutritional imprinting on the relationship between bone ash weight and strength.  

 

By day 4, with an increase in bone ash weight, relatively less bone strength was observed in 

the nutritionally imprinted group of birds compared to the control group of birds (Figure 

6.1). Phosphorus contributes to the compressional strength in the bone, but it is also required 

for growth and a variety of other physiological functions in the body. It is possible that in 

response to increase in size, more phosphorus was liberated from the bones of the test group 

of birds to meet growth requirement which led to relatively less bone strength. 

 

 

Figure 6.1. Regression of tibia bone strength as a function of ash weight, day 4 
Control group of birds:    y = 0.3452x - 3.8337, R² = 0.7515. P < 0.001 
Imprinted group of birds y = 0.311x - 0.84, R² = 0.5452. P = 0.004 
 

Similar large linear correlations were found between bone strength and bone ash for both 

groups of birds at day 18 (Figure 6.2). This suggests that nutritionally imprinting birds with 

transiently low phosphorus diets had no lasting effect on bone ash and bone strength after 

two weeks of feeding adequate phosphorus diets. 
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Figure 6.2. Regression of tibia bone strength as a function of ash weight, day 18 
Control group of birds:    y = 290.43x - 34.142, R² = 0.9145. P < 0.001 
Imprinted group of birds y = 274.27x - 17.304, R² = 0.9158. P < 0.001 
 

 

By day 28 however, re-challenging the test group of birds with low phosphorus diets triggered 

a more than an ordinary response in bone strength. While a large correlation was found 

between bone strength and bone ash weight in the control group of birds, the test group of 

birds exhibited disproportionately high bone strength relative to their bone ash weight as 

evidenced by the low correlation values (Figure 6.3). This may be due to the significantly 

greater amount of phosphorus digested by the test group of birds compared to the control 

group at day 28 (Table 6.14) which led to the numerically greater amount of phosphorus 

retained in the tibia (P = 0.544) and significantly greater bone strength (P < 0.012) as 

presented in Table 6.11.  

 

 
 

0

50

100

150

200

250

0.2 0.4 0.6 0.8 1

B
o

n
e
 s

tr
e
n

g
th

 (
N

)

Ash weight (g)

Imprinted birds

Control birds



 

190 
 

 

Figure 6.3. Regression of tibia bone strength as a function of ash weight, day 28 
Control group of birds:    y = 169.79x – 16.315, R² = 0.7821. P < 0.001 
Imprinted group of birds y = 94.632x + 153.09, R² = 0.1112. P = 0.289 
 
 

The level of bone mineralisation is related to bone strength (Boivin and Meunier, 2002). 

Calcium and phosphorus (hydroxyapatite) are the major minerals found in the bone which 

gives it compressional strength (Rath et al., 2000). However, hydroxyapatite combines with 

the bone organic matrix (mainly made of collagen) which contributes to the tensile strength 

of bones (Einhorn, 1996). Collagen and other bone biochemical constituents have been 

reported to have an effect on increased bone strength and integrity by further strengthening 

bones through the interfibrillar interactions of its molecules to form hydroxyllysylpyridinoline 

and lysylpyridinoline, which are later oxidised to form pyridinium links (Knott and Bailey, 

1998). Rath et al. (1999) reported substantially greater bone strength was strongly correlated 

with increases in pyridinium crosslinks in 72-week old broilers compared to 7-week old 

broilers. The contributory effect of collagen on bone strength was not examined in this study, 

and it is unknown if it contributed to the increased bone strength observed in the nutritionally 

imprinted birds.   
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6.7.3. Sodium phosphate cotransporter IIb gene expression 

It is well established that sodium phosphate cotransporter (NaPi-IIb) is involved in phosphate 

uptake in poultry (Segawa et al., 2002; Huber et al., 2006). Yan et al. (2007) characterised the 

NaPi-IIb in broiler chickens and reported a higher mRNA expression in the duodenum 

compared to the jejunum and ileum.  

In this study, nutritional imprinting had no significant effect on the expression of the NaPi-

IIb mRNA, although the expression of NaPi-IIb mRNA in the test group of birds increased 

by 23, 36 and 13% at days 4, 18 and 28 respectively (Table 6.15). This is much lower than the 

findings of Ashwell and Angel (2008) who reported a 3.1 fold increase in duodenal NaPi-IIb 

cotransporter expression on day 4 when broilers were transiently fed a low phosphorus diet 

(0.59% Ca / 0.25% avP). They also reported a 2.5 fold increase in duodenal NaPi-IIb 

cotransporter expression by day 38 when the broilers were later challenged with low 

phosphorus diets. The observed differences may be due to several reasons, and comparisons 

will be made with the study of Ashwell and Angel (2008).  

Firstly, these authors fed a much lower dietary phosphorus (0.4% Ca / 0.11% avP) during the 

period of phosphorus challenge compared to this study (0.4% Ca / 0.20% nPP), and it is 

possible that the dietary phosphorus in this study was not low enough to trigger the same 

effect the other authors observed. Secondly, the period of the challenge was shorter in this 

study (10 days) compared to 16 days (day 22 to d 38), and it is possible that greater expression 

of the NaPi-IIb cotransporter mRNA may have been observed after a longer period of low 

dietary phosphorus challenge (16 days or more). Thirdly, unlike the study of Ashwell and 

Angel (2008) which was conducted in battery cages where dietary feed intake would have been 

precise, birds in this study were raised in floor pens to simulate commercial farm practice. The 

birds had access to litter and may have consumed additional dietary phosphorus from the litter 
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in addition to that supplied in the diet to meet requirement. Thus, the relatively higher dietary 

phosphorus used to challenge the birds in this study, shorter period of dietary phosphorus 

challenge, and possible access to supplementary phosphorus in the litter may have contributed 

to why significant differences in NaPi-IIb mRNA expression were not observed between the 

2 treatment groups in this study. 

6.7.4. Apparent calcium and phosphorus ileal digestibility coefficient 

The significantly higher amount of calcium and phosphorus digested by the control group of 

birds compared with the test group of birds at day 4 (P < 0.001 respectively) is consistent with 

the findings of Angel and Ashwell (2008). This is attributable to the different dietary 

concentrations of calcium and phosphorus; the control group of birds had higher 

concentrations in their diets and thus consumed and digested more nutrients. When both 

groups of birds were fed the same dietary calcium and phosphorus concentration between day 

5 to day 18, as expected, no significant difference was found in the calcium and phosphorus 

digested.  

At day 28 when both birds were challenged with low phosphorus diets, the amount of 

phosphorus digested by the test group of birds was significantly higher (P < 0.001) compared 

to the control group of birds (Table 6.14). This shows that the test group of birds were more 

efficient in phosphorus absorption, consistent with the report of Angel and Ashwell (2008). 

However, no significant differences were found in the amount of calcium digested by day 28. 

It is possible that the control group of birds, similar to the nutritionally imprinted group of 

birds responded to the low dietary calcium diet by increased calcium absorption to maintain 

calcium homoeostasis in the short term.  
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Improved efficiency in intestinal calcium absorption in response to calcium deficiency has 

previously been reported (Blahos et al., 1987), and is thought to be coordinated by the up-

regulation of 1, 25 dihydroxycholecalciferol (Shafey, 1993) when calcium is deficient (Hurwitz, 

1996). This is supported by the study of Rousseau et al. (2012) who examined the effect of 

dietary calcium on phosphorus utilisation in finishing broilers (22 - 38d) and reported 

increased calcium retention (51.52% vs. 42.52%) in broilers fed a low dietary Ca/nPP 

concentration (0.37% and 0.18% respectively) compared to those fed a higher dietary Ca/nPP 

concentration (0.77% and 0.35% respectively).  

6.8. Implication 

Maximising bone mineralisation is known to improve bone strength (Cheng and Coon, 1990) 

and improves the ability to withstand mechanical stress (Orban et al., 1993); while poor bone 

mineralisation can increase the incidence of fractures resulting in downgrades at processing 

(Driver et al., 2006a). Transiently feeding poultry low phosphorus diets early post-hatch has 

been shown to improve bone mineralisation and strength, and may help improve processing 

yields by reducing downgrades due to fracture at processing. Nutritional imprinting could thus 

be adopted as a tool for improved bone strength whilst conserving the rapidly depleting global 

phosphate reserves. 

6.9. Conclusion 

Nutritional imprinting did not have any adverse impact on growth performance and bone 

mineralisation in broilers transiently feed low phosphorus diets for four days early post-hatch. 

Interestingly when later challenged with a low phosphorus diet during the growing phase, the 

nutritionally imprinted birds were more efficient at utilising dietary phosphorus and developed 

significantly stronger bones compared to unconditioned birds. The findings from this study 
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support the hypothesis that phosphorus is more efficiently utilised when birds are nutritionally 

imprinted with low phosphorus diets immediately post hatch. 

Future work aimed at understudying the changes that may have occurred by examining bone 

histology and organic matrix is needed to elucidate the remarkable effect nutritional imprinting 

had on bone strength. There is also the need to establish the optimal dietary phosphorus 

concentration broilers can be imprinted with at the early stage of development; and the 

minimum dietary concentration they can be challenged with at the finishing phase without 

compromising on growth, bird welfare or economic returns. This should be evaluated in 

combination with other feed additives (e.g. phytase and vitamin D) routinely used to improve 

phosphorus utilisation.  

The next study examines another nutritional intervention used to improve phosphorus 

utilisation by adapting feed to provide a more bioavailable form of dietary phosphorus. 
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CHAPTER 7: THE EFFECT OF A HIGH PHYTASE WHEAT CULTIVAR ON 
PHOSPHORUS DIGESTIBILITY AND BONE MINERALISATION IN 
BROILERS  

7.1. Introduction 

The previous study focused on aiding the bird in becoming more efficient at utilising dietary 

phosphorus. This current study considers the complementary approach of adapting feed to 

provide a more bioavailable form of phosphorus. 

The development of feed ingredients with increased available phosphorus as an alternative 

nutritional strategy to supply phosphorus in the diets has attracted interest over recent decades 

(Yan et al., 2000). For example, high available phosphorus (HAP) hybrids of plants with low 

phytate phosphorus content have been developed by using the low phytic acid 1-1 (lpal-1) 

allele of such plant species. Improved varieties of such plant hybrids include maize (Ceylan et 

al., 2003; Snow et al., 2004), barley (Jang et al., 2003; Linares et al., 2007) and soybean (Sands et 

al., 2003; Dilger and Adeola, 2006). When fed to broilers, they have been shown to contain 

more available phosphorus leading to reduced inorganic phosphorus requirements (Huff et 

al., 1998). When compared with standard plant varieties, they have also resulted in a significant 

reduction in faecal phosphorus content without any compromise in bird performance 

(Waldroup et al., 2000; Yan et al., 2000). However, these seeds are not commercially available 

for several reasons: lower yields compared to normal breeds (Raboy et al., 2001), higher 

handling costs i.e. seed segregation, storage and testing costs (Makki et al., 2001), and 

consumers reluctance in accepting genetically modified grains. 

Another strategy identified is the use of transgenic phytase expressing seeds (Dionisio et al., 

2011). Improved knowledge in recombinant DNA technology has been used to develop 

transgenic corn varieties with innate ability to express phytase within the endosperm of canola 

(Zhang et al., 2000) and maize (Gao et al., 2013). By using the phytase-encoding gene from a 
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microbe (e.g. Aspergillus niger), these transgenic plant varieties contain phytase which is 

expressed in the endosperm of the seed kernel. Transgenic maize varieties have been reported 

to improve broiler growth performance and phosphorus utilisation in phosphorous deficient 

diets (Nyannor and Adeola, 2008); and are as effective as microbial phytases in maize-soybean 

diets (Gao et al., 2012).  

7.1.2. Aims and objectives 

The overall aim of this study was to evaluate the impact of substituting standard wheat with a 

novel cultivar of wheat containing high intrinsic phytase activity (HIGHPHY) in broiler diets 

on phosphorus release from phytate in diets containing marginally low levels of available 

phosphorus.    

The specific objectives were: 

 To evaluate the effect of feeding broilers HIGHPHY on growth performance. 

 To evaluate the effect of feeding broilers HIGHPHY on bone morphometry and bone 

mineralisation.  

 To examine the effect of feeding broilers HIGHPHY on ileal phosphorus and calcium 

digestibility. 

The hypothesis of this trial was that phosphorus utilisation may be improved by feeding 

broilers a high phytase wheat cultivar. 
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7.2. Materials and methods 

7.2.1. Trial procedure 

Institutional and UK national NC3R ARRIVE guidelines for the care, use and reporting of 

animals in research (Kilkenny et al., 2010) were followed, and all experimental procedures 

involving animals were approved by the University's College of Arts and Science ethical review 

committee. Wheat grains used in the feeding trial were standard field grown wheat Triticum 

aestivum L. cv Skagen with a phytase activity on 1060 FTU/kg, and a high phytase wheat variety 

HIGHPHY Triticum aestivum L. with a phytase activity on 6196 FTU/kg provided by Plant 

Bioscience Ltd, UK.  

180 male Ross 308 day-old broiler chicks from a flock aged 43 weeks were sourced from PD 

Hook Hatcheries Ltd, Oxfordshire and housed in an environmentally controlled room as 

previously described in Chapter 2, Section 2.2. On arrival, the birds were weighed to determine 

individual bird weight and then allocated to pens ensuring there were no significant differences 

in mean pen weight across treatments. Birds were observed twice daily to monitor 

environmental conditions and mortality recorded. Diets and water were provided ad libitum to 

all birds during the experimental procedure. Birds were observed twice daily to monitor 

environmental conditions and mortality recorded. 

The experimental design consisted of 5 dietary treatments (maize/soya mash diets) which 

were mixed in-house using a ribbon mixer (Table 7.1).  The five dietary treatments were based 

on a control diet of standard wheat containing a putative marginally low phosphorus supply 

and no phytase or HIGHPHY wheat added. A phytase containing positive control which 

provided adequate phosphorus supply through use of standard wheat with 500FTU/kg 

Quantum Blue phytase (AB Vista, Marlborough, UK), but with no HIGHPHY wheat added 

was used to allow comparison with commercial standards,. Three further diets were as per 
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control but with replacement of standard wheat with HIGHPHY wheat at 33%, 66% or 100% 

respectively. Titanium dioxide was added to all diets at 5g/kg inclusion as an inert marker for 

digestibility measures.  The birds were allocated to 9 replicate pens per diet, each containing 4 

birds per pen. 

7.2.2. Sample collection 

At the end of the experiment (day 21), three birds per replicate pen were euthanised by cervical 

dislocation. Digesta was collected post-mortem as described in Chapter 2, Section 2.4.2.2. 

Briefly, digesta was collected from the from the distal end of the small intestine identified as 

the portion between the Meckel’s diverticulum and the ileal-caeco-colonic junction. Digesta 

was pooled per pen and frozen at -20oC until further processing. Left tibia bones were 

collected from three birds per pen as described in Chapter 2, Section 2.4.2.3. Briefly, the bones 

were separated at the tibiotarsal junction where the feet were removed, and the tibio-femoral 

junction where the femurs were removed, and then individually stored at -20oC until further 

processing. 

7.2.3. Determined parameters 

7.2.3.1. Growth performance 

Body weight, body weight gain, feed intake, and feed conversion ratio were evaluated per pen 

on a weekly basis on sampling days 7, 14 and 21 as described in Chapter 2, Section 2.4.1. 

Mortality was monitored and dead birds removed, weighed, and recorded.  FCR of birds was 

calculated by dividing feed intake by body weight gain, taking into account any mortalities. 

7.2.3.2. Tibia bone morphometry, strength, and ash 

Tibia weight, length, width, strength, and ash content of the left tibia bones were measured as 

previously described in Chapter 2, Sections 2.5.1, 2.5.4.2 and 2.5.5.2. Briefly, flesh from all left 

tibia bones was manually removed and weighed whilst leaving the cartilage caps intact. Bone 
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length and width were measured using a set of Vernier callipers. Bone strength was measured 

using a TA-XT Plus Texture Analyser (Stable Micro Systems, Surrey, UK) before fat 

extraction extraction using the Soxtherm hot fat extraction method for 2h. The tibia bones 

including cartilage caps were then dried at 105oC for 24h until constant weight was achieved 

and then ashed for 24h at 650oC in a furnace to determine ash weight. Bone ash was analysed 

for total calcium and total phosphorus content using the ICP-OES assay previously described 

in Chapter 2, Section 2.5.7. 

 

Table 7.1. Dietary formulations HIGHPHY wheat Trial (% as fed) 

 

Diet Control 

Control + 
500 FTU 
phytase  

Control 
with 33% 
HIGHPHY1  

Control 
with 67% 
HIGHPHY1 

Control 
with 100% 
HIGHPHY1 

Standard Wheat  56.71 56.70 37.61 18.61    0 
Extruded Soya, 48% 
protein 35.00 35.00 35.00 35.00 35.00 

Soya oil   3.78   3.78   3.78   3.78   3.78 

Limestone   1.28   1.28   1.28   1.28   1.28 

Salt   0.17   0.17   0.17   0.17   0.17 

Sodium bicarbonate   0.26   0.26   0.26   0.26   0.26 

Monocal phosphate, HCL   1.23   1.23   1.23   1.23   1.23 

Lysine HCl   0.21   0.21   0.21   0.21   0.21 

Methionine   0.32   0.32   0.32   0.32   0.32 

Threonine   0.13   0.13   0.13   0.13   0.13 

Econase XT    0.01   0.01   0.01   0.01   0.01 

Quantum Blue Phytase    0   0.01   0   0   0 

Vitamin Mineral Premix2   0.40   0.40   0.40   0.40   0.40 

High Phytase Wheat   0   0  19.10  38.10   56.71 

Titinium dioxide   0.5   0.5  0.5   0.5   0.5 

 

1Percentage standard wheat replaced with HIGHPHY wheat (based on 570 g/kg wheat in total 
diet). 
2Supplied per kilogram of diet: manganese, 100 mg; zinc, 80 mg; iron (ferrous sulphate), 20 mg; 
copper, 10 mg; iodine, 1 mg; molybdenum, 0.48 mg; selenium, 0.2 mg;r etinol, 13.5 mg; 
cholecalciferol, 3 mg; tocopherol, 25 mg; menadione, 5.0 mg; thiamine, 3 mg; riboflavin, 10 mg; 
pantothenic acid, 15 mg; pyroxidine, 3.0 mg; niacin, 60 mg; cobalamin, 30 μg; folic acid, 1.5 mg; 
and biotin 125 mg. 
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Table 7.2. Analysed content of diets and grain - HIGHPHY wheat Trial 

 

 Control  

Control 
+ 500 
FTU 
phytase  

Control 
with 33% 
HIGHPHY1  

Control 
with 67% 
HIGHPHY1  

Control 
with 100% 
HIGHPHY1  

Control 
Wheat 

HIGHPHY 
Wheat 

DM (g/kg) 879.70 880.43 888.38 878.85 908.67 890.22 889.04 
Ash (g/kg) 61.86 59.83 58.11 58.39 62.47 17.20 16.94 
Protein (g/kg 
DM) 267.28 269.23 272.84 274.46 276.93 127.73 163.20 
GE (MJ/kg 
DM) 19.61 19.62 20.27 20.53 20.45 18.73 18.94 
Ca (g/kg DM) 7.83 7.96 7.73 7.82 7.82 0.93 0.80 
P (g/kg DM) 5.84 5.70 5.24 5.55 5.58 3.86 2.37 
Phytate (g/kg 
DM) 10.14 10.15 10.22 12.07 11.92 3.18 3.40 
Phytate-P (g/kg 
DM)2 2.84 2.86 2.88 3.40 3.36 2.59 0.96 
Non-phytate-P 
(g/kg DM)3 2.98 2.84 2.36 2.15 2.07 1.27 1.41 
Total Phytase 
Activity 
(FTU/kg)4 

605 1150 1804 3954 5925 1060 6196 

 
Analysed 
amino acid 
content (g/kg) 

       

CYS 6.031 5.398 5.437 6.448 6.963 5.544 4.444 
ASP 17.610 17.147 15.642 12.492 21.286 6.497 6.454 
THR 7.561 7.484 6.684 8.061 9.034 3.577 3.056 
SER 8.431 8.334 7.765 9.909 10.169 5.678 4.494 
GLU 42.077 38.556 38.324 44.916 50.346 39.656 30.748 
GLY 7.945 7.897 7.624 8.307 9.563 5.169 4.302 
ALA 7.830 7.815 7.485 8.185 9.435 4.445 3.797 
VAL 9.229 9.037 8.533 9.151 11.016 5.836 4.533 
MET 8.352 9.158 7.722 9.033 14.687 3.961 3.516 
ILE 8.125 8.471 7.211 8.195 9.473 4.810 3.715 
LEU 13.243 13.618 12.296 14.205 15.794 8.815 6.706 
TYR 3.538 4.799 4.986 4.872 5.094 2.184 1.466 
PHE 8.908 9.409 8.567 9.705 10.797 5.997 4.446 
LYS 10.534 10.822 9.757 10.870 12.508 3.531 3.255 
HIS 5.159 4.612 4.328 4.436 6.157 2.402 2.872 
ARG 12.087 11.590 10.841 11.704 13.916 4.679 5.641 

1Percentage standard wheat replaced with HIGHPHY wheat (based on 570g/kg wheat in total 
diet). 
2Phytate-P was calculated as 28.2% of phytate (Tran and Sauvant, 2004). 
3Non-phytate P was calculated as the difference between total P and phytate-P.  
4Total phytase activity was analysed by a colorimetric enzymatic method and calculated as (net 
optical density at 415nm*dilution volume)/(slope of standard curve x mass x incubation time) 
(Engelen et al. 2001).  
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7.2.3.3. Diet nutrient analysis  

All diets were analysed for dry matter, protein content and gross energy as described in 

Chapter 2, Sections 2.5.2, 2.5.3, 2.5.10. Gross energy of the digesta was measured as described  

previously for diets, and apparent ileal metabolisable energy (AME) was calculated by the 

following equation: 

GE diet - (GE  digesta x (TiO2 in the diet/TiO2 in digesta)).   

The nitrogen content of the digesta was analysed by Dumas method, and metabolisable 

nitrogen was calculated using the following equation: 

Diet N – Digesta N x (Diet Ti/Digesta Ti) 

The apparent ileal metabolisable energy was also corrected to zero N balance (AMEn) using 

the figure of 34.4 kg/g N retained as detailed by Hill and Anderson (1958). 

Amino acid content of diets and protein sources was determined using a Biochrom 30 amino 

acid analyser (Biochrom, Cambridge, UK) based on ion exchange chromatography. Briefly, 

samples were oxidised with performic acid before acid hydrolysis with nor-leucine added as 

an internal standard and then analysed against prepared standards.  

7.2.3.4. Titanium dioxide, calcium and phosphorus analysis 

Digesta samples were freeze-dried and finely ground using a pestle and mortar. Diets and 

digesta were analysed for titanium dioxide content using ICP-OES assay as previously 

described in Chapter 2, Section 2.5.6. Diets, digesta and bone ash were also analysed for total 

calcium and total phosphorus content using an ICP-OES assay as previously described in 

Chapter 2, Section 2.5.7. 
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7.2.3.5. Total phytic acid, non-phytate phosphorus and phytase activity 

Total phytic acid (PP) content of ileal digesta samples was analysed using a MegazymeTM K-

PHYT  assay, described in Chapter 2, Section 2.5.8. Non-phytate phosphorus (nPP) of diet 

and digesta samples was determined as the difference between total phosphorus and phytate 

phosphorus. Phytase activity was determined according to the method of Engelen et al. (2001), 

where samples were incubated with sodium phytate to liberate inorganic phosphate. 

7.2.4. Data analysis  

All data were analysed using IBM SPSS statistical software, version 23 (IBM Statistics, 2016). 

Data were analysed using General Linear one-way ANOVA model to evaluate the effect of 

dietary treatment on growth performance, tibia mineralisation and strength, ileal Ca and P 

digestibility, and phytate hydrolysis. Statistical significance was declared at P < 0.05. Duncan 

post hoc testing was used to elucidate differences between diets.  
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7.3. Results 

7.3.1. Bird performance 

Feeding broilers the HIGHPHY wheat up to 21 days had no detrimental effect on growth 

performance or health. Low mortality was observed across treatments (2 birds; 1.1%) and no 

losses incurred from the birds fed HIGHPHY wheat (Table 7.3). 

Table 7.3. Bird mortality per week and by treatment - HIGHPHY wheat Trial 
 

Treatment  0 – 7d  7 – 14d   14 – 21d 
Total per 
diet 

Control 0 0 1 1 
Control plus 500 FTU phytase 1 0 0 1 
Control with 33% HIGHPHY1 0 0 0 0 
Control with 67% HIGHPHY1 0 0 0 0 
Control with 100% HIGHPHY1 0 0 0 0 
Total per week 1 0 1 2 

1Percentage standard wheat replaced with HIGHPHY wheat (based on 570g/kg wheat in 
total diet) 
 

 

Results of feed intake, body weight gain and feed conversion ratio are presented in Table 7.4. 

Cumulative data analysed for the whole experimental period (21 days) showed improvement 

in feed intake and feed conversion ratio with increased supplementation of HIGHPHY wheat 

compared with the standard wheat variety (Table 7.4). Birds fed 100% HIGHPHY had the 

greatest body weight gain, and incremental improvement in FCR was recorded with an 

increase in the dietary inclusion of HIGHPHY (Table 7.4). 
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Table 7.4. Growth performance of birds fed varying replacement levels of HIGHPHY 
wheat from 0 to 21d 
 

 
Treatment 2FI/bird (g)  3BWG/bird (g)   4FCR 

Control 1238.0 764.5 1.63  

Control plus 500 FTU phytase 1162.3 722.2 1.57  

Control with 33% HIGHPHY1 1139.0 737.8 1.54  

Control with 67% HIGHPHY1 1124.2 726.9 1.49  

Control with 100% HIGHPHY1 1073.9 790.4 1.46  

Pooled SEM    24.03   11.47 0.030 

P value      0.070     0.268 0.317 
1 Percentage standard wheat replaced with HIGHPHY wheat (based on 570g/kg wheat in 
total diet). 
2Feed intake  
3Bod weight gain  
4Feed conversion ratio 
 

No significant differences were observed between the diets when AME and AMEn were 

determined in this study (Table 7.5). 

 

Table 7.5. Apparent ileal metabolisable energy (AME) and AME corrected to zero N 
balance from birds fed varying replacement levels of HIGHPHY wheat from 0 to 21d 
 

 
Treatment 2AME (MJ/kg) 3AMEn 

Control 12.8 11.6 

Control plus 500 FTU phytase 12.9 11.8 

Control with 33% HIGHPHY1 13.0 11.9 

Control with 67% HIGHPHY1 13.2 12.0 

Control with 100% HIGHPHY1 13.1 11.9 

Pooled SEM   0.17   0.17 

P value   0.492   0.543 

1Percentage standard wheat replaced with HIGHPHY wheat (based on 570g/kg wheat in 
total diet). 
2Apparent ileal metabolisable energy  
3Apparent ileal metabolisable energy corrected to zero N balance 
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7.3.2. Bone measurements 

No significant differences were found in bone measurements: length, width, weight, strength, 

and calcium and phosphorus content (Tables 7.6 and 7.7). 

Table 7.6. Tibia bone measurements of birds fed varying replacement levels of 
HIGHPHY wheat at d21   
 

Treatment 
Tibia 
length 
(mm) 

Tibia 
width 
(mm) 

Tibia 
weight 
(g) 

Tibia 
Ash 
(%) 

Tibia 
Strength 
(N) 

Control 72.74 5.24 4.43 39.83 135.07 

Control plus 500 FTU phytase 71.45 5.11 4.20 39.92 119.90 

Control with 33% HIGHPHY1 72.14 5.18 4.53 39.71 128.67 

Control with 67% HIGHPHY1 71.49 5.02 4.12 39.93 127.18 

Control with 100% HIGHPHY1 73.41 5.23 4.48 40.13 131.80 

Pooled SEM   0.280 0.051 0.060   0.462     5.144 

P value   0.241 0.290 0.222   0.987     0.416 
1Percentage standard wheat replaced with HIGHPHY wheat (based on 570g/kg wheat in 
total diet) 
 
 
 

Table 7.7. Calcium and phosphorus content of tibia bones at d21 of birds fed varying 
replacement levels of HIGHPHY wheat at d21   

 
    

 
Treatment Ca content (mg/dry tibia) P content (mg/dry tibia) 

Control 307.3 118.4 

Control plus 500 FTU phytase 298.2 116.9 

Control with 33% HIGHPHY1 307.4 121.5 

Control with 67% HIGHPHY1 287.4 113.3 

Control with 100% HIGHPHY1 314.3 122.9 

Pooled SEM   12.68     4.81 

P value     0.612     0.643 
1Percentage standard wheat replaced with HIGHPHY wheat (based on 570g/kg wheat in total 
diet)  
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7.3.3. Calcium and phosphorus ileal digestibility HIGHPHY wheat Trial 

Significant improvements were found in the coefficient of digestibility for Calcium and 

phosphorus in all diets containing HIGHPHY compared to the control diet. Broilers fed 

100% HIGHPHY showed the highest calcium and phosphorus digestibility coefficient across 

all treatment groups by day 21 (Table 7.8). 

Table 7.8. Apparent ileal calcium and phosphorus digestibility coefficients at d21 of 
birds fed varying replacement levels of HIGHPHY wheat 
 

1 Percentage standard wheat replaced with HIGHPHY wheat (based on 570g/kg wheat in 
total diet). 
  a-dMeans within the same column with no common subscript differ significantly (P < 0.05). 
 

7.4. Discussion 

Intrinsic mature grain phytase activity (MGPA) of cereal seeds provides a means for phytate 

digestion by the seeds and play an important role during seed germination by liberating 

phosphates from phytate. MGPA varies considerably between species (Brinch-Pedersen et al., 

2014), and most plants varieties in use make negligible mature grain phytase activity 

contribution. Eeckhout and de Paepe (1994) found high intrinsic mature grain phytase activity 

in rye, triticale, wheat and barley (5130, 1688, 1193 and 582 FTU/kg respectively); although 

the authors also reported low intrinsic phytase activity (less than 100 FTU/kg) in other seeds 

such as maize, oats, sorghum, peanut, and soya.  

 Apparent ileal digestibility coefficient 

Treatment    Ca       P 

Control    0.567d      0.561d 

Control plus 500 FTU phytase    0.608c      0.615c 

Control with 33% HIGHPHY1    0.645b      0.703b 

Control with 47% HIGHPHY1    0.618bc      0.644c 

Control with 100% HIGHPHY1    0.697a      0.755a 

Pooled SEM    0.0106      0.0168 

P value <0.001   <0.001 
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Due to limited endogenous phytase activity in poultry, birds are unable to efficiently utilise 

plant phosphorus which is present in seeds as phytate. In addition, the denaturation of these 

phytases during steam pelleting (Jongbloed and Kemme, 1990) and in the stomach (Zeller et 

al., 2015b) renders them inefficient in releasing phytate-bound phosphorus, necessitating the 

addition of inorganic phosphorus in the feed. However, this practice is not sustainable 

(Dionisio et al., 2011) due to concerns about the depletion of the world’s phosphate reserves 

(Steen, 1998). Dietary supplementation with exogenous phytase is a common approach that 

is effective in improving phosphorus utilisation from phytate (Angel et al., 2005; Plumstead et 

al., 2007). However, the additional cost of using feed enzymes including feed preparation 

constraints (Li et al., 1997; Gontia et al., 2011) remains a major challenge in feed manufacture. 

Another approach is the use of transgenic plants with innate ability to express phytases. Based 

on their catalytic mechanisms, phytases can be grouped into four families: histidine acid 

phosphatase, purple acid phosphatases (PAPhy), β-propeller phytases and cysteine 

phosphatases (Mullaney and Ullah, 2003; Puhl et al., 2007). The majority of phytases, however, 

belong to the histidine acid phosphatase group (Mitchell et al., 1997), to which the bacterial 

phytases from E. coli also belongs (Lim et al., 2000).  

Wheat is an extensively used feed ingredient in poultry feed, and its enzymes containing 

phytase activity consists of at least two types phytases: purple acid phosphatases (PAPhy), and 

multiple inositol phosphate phosphatases. PAPhy is the major contributor to MGPA in wheat 

(Nakano et al., 1999) and is further classified into the PAPhy_a isoform primarily expressed 

during grain filling and PAPhy_b expressed during germination. Its potential either in the 

purified (Morgan et al., 2015) or in recombinant purple acid phosphatase form (Brejnholt et 

al., 2011) to degrade phytate has been investigated but has received very little evaluation in 

animal feed trials (Brejnholt et al., 2011).  
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Brinch-Pedersen et al. (2000) reported a 4-fold increase in phytase activity in the Aspergillus 

niger phytase-encoding gene (PhyA) in transgenic wheat seeds suggesting its potential in phytate 

phosphorus digestibility but literature is sparse on its efficacy in broilers. Dionisio et al. (2011) 

cloned and characterised the biochemical parameters for wheat grain PAPhy and reported a 

pH optimum of 5.5 ± 0.14, broad temperature curve with optimum at 55°C ± 1.8°C, and Km 

of 35 µM with phytate as substrate. These are comparable in range to two readily available 

commercial phytase products (Menezes-Blackburn et al., 2015) previously evaluated in broiler 

feed simulation studies: Aspergillus niger based phytase – Natuphos (BASF, Germany) which 

belong to the 3-phytase group; and Peniphora lycii based phytase - Ronozyme P and Ronozyme 

NP (DSM, Switzerland) which belong to the 6-phytase group. Both products are commonly 

used in broiler diets, although new generation commercial phytase additives based on E. Coli 

– Quantum (AB Enzymes, Germany) or Citrobacter braakii - Ronozyme HiPhos (DSM, 

Switzerland) are now commercially available (Ariza et al., 2013). 

The effect of increasing levels of plant-derived PAPhy phytase on phosphorus release from 

phytate was evaluated in this study by substituting a standard wheat variety with graded levels 

of HIGHPHY wheat in broiler diets. The efficacy of HIGHPHY was examined by comparing 

it with a commercial histidine acid phosphatase phytase (Quantum Blue; pH optimum 4.5) 

supplied via a thermostabilized E. coli in releasing phosphorus in the standard wheat variety. 

Mortality across the trial was 1.1% (2 birds), with no losses from any diet containing the 

HIGHPHY wheat, indicating that feeding broilers the novel wheat cultivar had no adverse 

effect on bird health. No significant differences were found when feed intake, body weight 

gain and feed conversion rate (FCR) were evaluated cumulatively after 21 days of feeding 

(Table 7.4). Although data was not significantly different, body weight gain was highest for 

broilers fed diets where 100% of the standard wheat was replaced by HIGHPHY wheat, and 
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FCR was incrementally improved with increasing inclusion of HIGHPHY. This provides 

further evidence that the HIGHPHY wheat has no detrimental effect on health. Interestingly, 

diet did not affect tibia bone length, width, weight, strength or tibia mineral content (Tables 

7.6 and 7.7). This suggests that the level of marginally adequate phosphorus concentration in 

the diet was not low enough to impact on bone parameters (morphometry, strength, ash, or 

mineral content) and that the study did not reveal the full potential of the experimental diets.  

The data presented in Table 7.8 shows that the HIGHPHY MGPA had a significant, positive 

impact on the amount of calcium and phosphorus digested in the ileum at d21. Significantly 

more calcium and phosphorus were digested in birds fed diets containing 100% HIGHPHY 

wheat compared to those fed any other diet, indicating that the wheat PAPhy is functional in 

the broiler digestive tract. The ileal calcium and phosphorus digestibility coefficients for the 

100% and 33% inclusion HIGHPHY wheat diets were significantly higher than the control 

diet, and the diet supplemented with exogenous phytase (Table 7.8). This is not surprising 

given the linear increase in total phytase activity levels when HIGHPHY wheat was substituted 

with standard wheat (Table 7.2). Further improvement in phosphorus digestibility when 

phytase concentration is increased beyond the recommended 500 FTU used commercially 

(super-dosing) is well established in poultry (Walk et al., 2013, 2014). A 100% substitution of 

standard wheat with HIGHPHY resulted in higher phosphorus and calcium ileal digestibility 

coefficients than the conventional wheat diet (34.6% and 22.9% respectively). Also, 22.8% 

and 14.6% higher ileal digestibility coefficients for phosphorus and calcium respectively was 

determined when 100 % HIGHPHY diets were compared with the diet supplemented with 

exogenous histidine acid phosphatase phytase (HAP). Strangely, although the intermediate 

replacement level (67% HIGHPHY) significantly improved calcium and phosphorus 

digestibility over the control diet, it was not significantly better in improving calcium and 
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phosphorus digestibility compared to either the 33% HIGHPHY diet (lowest replacement 

level), or the diet supplemented with exogenous HAP Phytase. This response was not 

expected and requires further investigation.  

7.5. Limitation of the study 

Phytate is known to react with dietary proteins to form aggregates which are less accessible to 

proteases (Cheryan, 1980); and protein digestion can be adversely affected by the presence of 

phytate (Vaintraub and Bulmaga, 1991). Greater concentrations of protein and phosphorus 

were determined in HIGHPHY wheat compared with the conventional wheat variety (Table 

7.2). The high protein content of the HIGHPHY wheat is worthy of further investigation via 

amino digestibility assessment, considering that apart from reducing the anti-nutritional 

effects of phytate in feed, it may provide a useful contribution to digestible amino acids. This 

may have greater significance when fed over longer feeding periods. 

Phytases are thought to act in the upper gastrointestinal tract of broilers (Brejnholt et al., 2011), 

and a range of pH have been reported in broilers: 4.4 - 5.6 in the crop, 3.6 – 4.8 in the 

proventriculus and 2.6 – 4.1 in the gizzard (Taylor and Jones, 2004; Jiménez-Moreno et al., 

2009). However, 60% of phytate remains after the gizzard, and may be hydrolyzed further 

along the gastrointestinal tract (Morgan et al., 2015). The efficacy of phytases is optimised at 

specific pH, and high pH optimum may thus facilitate phytate breakdown in the small intestine 

where the pH tends to be higher. The pH optimum of 5.5 for wheat grain PAPhy is higher 

than the optimum pH of the exogenous phytase used in this study (Quantum Blue; pH 

optimum 4.5). There may therefore be a synergistic effect on phytate degradation when PAPhy 

phytase is fed in conjunction with a traditional histidine acid phosphatase phytase thereby 

creating broader pH optimum. This is also worthy of further investigation. 
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Although this study did not evaluate the effect of heat treatment during feed production on 

HIGHPHY PAPhy phytase activity, a broad optimum temperature curve has been previously 

reported. Brinch-Pedersen et al. (2012) estimated the optimum temperature curve of 

HIGHPHY PAPhy phytase by incubating it in flour at 80°C and 100% relative humidity for 

10, 20 and 40 minutes and reported residual activity after were 70, 42 and 22%, respectively. 

This indicates the potential of HIGHPHY PAPhy in resisting high temperature and moist 

treatments. This however needs to be determined in a commercial feed manufacture setting 

before full incorporation into pelleted poultry diets. 

7.6. Conclusion 

In this study, the potential of intrinsic PAPhy phytase expressed in wheat on phosphorus 

release from phytate was evaluated in a broiler diet. It was found that just 33% replacement 

of standard wheat with HIGHPHY is required to significantly improve calcium and 

phosphorus digestibility coefficients compared to conventional supplementation of broiler 

diets with exogenous phytase. Replacement of standard wheat by 100% HIGHPHY further 

improved both calcium and phosphorus digestibility. Findings from this study support the 

hypothesis that wheat PAPhys improves phosphorus digestibility in broilers and indicates its 

promising potential, particularly where there are barriers to the use of genetically modified 

plants or supplements. 
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CHAPTER 8: OVERALL CONCLUSIONS AND RECOMMENDATIONS 

8.1. Overall conclusions 

One of the challenges faced in commercial poultry production is how to avoid phosphorus 

deficiencies which negatively impacts bird welfare and productivity, or oversupply which leads 

to wastage and environmental pollution. It has also been suggested that the NRC guidelines 

for phosphorus requirements in poultry (NRC, 1994) may not adequately reflect phosphorus 

requirements in the current strain of broilers which are selected for fast growth (Applegate 

and Angel, 2014). Consequently, there is the need for a review of the current phosphorus 

requirements in broilers, which will better reflect current physiological needs.  

Bone ash and phosphorus content are widely studied to evaluate the phosphorus availability 

of raw materials. However, there is a lack of available dataset in the literature, of the normal 

range of bone ash values in commercial broilers.  Therefore, in order to appropriately update 

phosphorus requirements in broilers, an understanding of the current range of normal bone 

ash and phosphorus content of broilers is required. 

The first part of this thesis was to characterise the range of tibia bone measurements (including 

bone ash and phosphorus content) found in healthy commercially reared broilers in order to 

create a database of benchmarks applicable to current commercial practice. The lack of such 

benchmarks was particularly noted by practicing Poultry Veterinarians and Feed Nutritionists, 

who commented on the difficulty in determining the cause of flock lameness without readily 

available reference values of normal bone mineralisation data for commercially raised broilers. 

However, it soon became clear that unless Scientists established a consensus over clear 

methods, the industry could not be served by science in this project. 

The first two years were spent examining 4 common variations in the bone processing 

methodology to establish their relative impact on results. The additional cost incurred in 
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laboratory processing time when bones are extracted of fat prior to bone ash determination, 

and concerns over the use of organic solvents have often raised the question if fat extraction 

is an essential step in the bone ash methodology. As a result, many research groups continue 

to omit this step.  

Results presented in Chapter 3 (Section 3.3.1) suggests that sensitivity in elucidating 

differences in treatment means is improved for ash percentage when fat is extracted from the 

bones prior to ash determination. Although defatting bones is laborious and increases analysis 

cost, the fat extraction assay has been shown to reduce variation between bone samples 

(Garcia and Dale, 2006) and is therefore recommended to be adopted for more accurate 

comparison of results. Sensitivity in elucidating differences in treatment means was improved 

for ash percentage when cartilage caps were removed from the bones prior to ash 

determination (Section 3.3.2). However, increased ash percentages have been reported when 

cartilage caps are affected by disease (Thorp and Waddington, 1997) and it may be 

advantageous to include the cartilage caps for better comparison of bone ash data, particularly 

when the health status of a bird flock is unknown. A minimum fat extraction time of 6h using 

the Soxhlet procedure was adequate in extracting fat from bones as shown in Section 3.3.3; 

while autoclaving the bones prior to fat extraction did not have any significant effect on bone 

ash or ash percentage (Section 3.3.4). These established methods, i.e., fat extraction of bones 

with cartilage caps included were then used in the other studies reported in this PhD project. 

The next 2 studies in this project focused on the characterisation of bone and whole body 

phosphorus content of a common commercial broiler strain, the Ross 308. Rather than solely 

providing a mean value for each parameter measured as commonly reported in the literature, 

a range of bone morphometric and mineralisation data (which overlapped previously reported 

data) was sequentially determined from hatch to slaughter in healthy male and female broiler 
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chicks and data presented (Chapter 4). This dataset provides a detailed examination of bone 

parameters within a fixed range of conditions and provides a significant contribution to the 

gap in knowledge of the current range of age and sex-related normal bone morphology and 

mineralisation values of healthy commercial broilers. It is now being used by a major UK 

integrated broiler production company. 

The use of 6 farms owned by a single UK integrator which provided uniform feed to just one 

bird strain concomitantly increases the rigour of the data but limits the breadth of application. 

In order to increase the value of the database to the commercial sector, other strains of 

broilers, reared by other integrators and independent producers across a range of geographical 

regions should be examined in a similar way to with a view of increasing the overall sample 

size and to ascertain the findings of this study. It will require regular updating to ensure it 

reflects the current industry standards due to the evolution of bird strains through selective 

breeding, and changes to industry practice. The major limitations however are researchers 

agreeing on a common consensus of the bone processing methodology, the appropriate 

sample size, the strain of birds to be evaluated, and frequency of sampling.  It is hoped that 

published findings of this study will generate new and enhanced collaborations on future work 

between the academia and industry. It is also hoped that the poultry industry will lend more 

support in ensuring the onerous task of maintaining this database is achieved by funding 

poultry research groups. 

It has also been suggested that the tibia phosphorus content might be a reliable estimate of 

WBP content, but this relationship has been examined in only very few studies (Hurwitz, 1964; 

Huyghebaert et al., 1980; Shastak et al., 2012c). Extensive literature searches indicate WBP 

content has not been determined in commercially raised broilers, and no data has been 

published on the relationship between the femur or feet phosphorus content and WBP 
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content. Surprisingly, despite the changes in bird composition due to selection for improved 

growth rate (Collins et al., 2014; Zuidhof et al., 2014).  WBP content determined in Chapter 5 

of this project (5g/kg) suggests it has remained the same. Strong correlations (r ≥ 0.97) were 

found between the phosphorus content of the tibia, femur and feet and WBP content 

(Chapter 5, Tables 5.7 – 5.9), indicating the phosphorus content of these bones are reliable 

indicators of WBP retention. However, the steeper slope of regression when tibia phosphorus 

content was regressed against WBP content in this study compared to the work of Shastak et 

al. (2012c) require further investigation.  It was interesting to note the slope of the femur and 

feet phosphorus content were parallel (36.76 and 35.97 respectively) and steeper than the slope 

of tibia phosphorus content (25.85), suggesting that although all three bones strongly indicate 

WBP content, there are differences in the phosphorus retained in the 3 bone types relative to 

WBP content. However since no other published data is available, further research is 

warranted to determine the biological veritability of the present finding. 

The first 3 studies in this project (Chapters 3 – 5) established appropriate tools and methods 

for assessing phosphorus requirement in broilers. The next two studies examined strategies 

for maximising the efficiency of phosphorus utilisation in broilers. The first (Chapter 6) 

focused on aiding the bird in becoming more efficient at utilising dietary phosphorus, while 

the complimentary approach of adapting feed to provide a more bioavailable form of 

phosphorus was examined in Chapter 7. 

The nutritional imprinting of birds for better phosphorus absorption in later life is a new and 

emerging technique that could help conserve the dwindling global phosphate reserve through 

reduced diet phosphorus inclusions. Angel and Ashwell (2008) demonstrated clear benefits of 

nutritionally imprinting broilers with low phosphorus diets early post-hatch, but interestingly 

the practice has not been adopted commercially, suggesting further investigation into the level 
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of treatment response was required. The present study (reported in Chapter 6) confirms the 

findings of Angel and Ashwell (2008) that significantly more phosphorus (P < 0.001) is 

digested when birds are nutritionally imprinted early post-hatch. Most interestingly, the 

imprinted birds in this study had significantly stronger bones (P < 0.012) and 

disproportionately exhibited significantly higher bone strength relative to their bone ash. 

Findings from this study strongly suggest that the practice of nutritional imprinting for 

improved phosphorus absorption should be commercially re-considered by the poultry 

industry on the basis that leg health may be improved alongside the potential reduction in 

rock phosphate usage.  

Scientific initiatives in recent years have led to a substantially increased knowledge base on the 

complementary effect of supplementary phytases in cereals that can form the basis for 

integrating nutrition, breeding, molecular biology and genetics, but the use of intrinsic mature 

grain phytase activity determined in seed grains have not been widely examined. In Chapter 7, 

the efficacy of naturally expressed purple acid phosphatases (PAPhy) found in a novel wheat 

cultivar (HIGHPHY) was compared with a new generation commercially available phytase. 

For the first time, the promising potential for improving phosphorus digestibility in animal 

feed using wheat purple acid phosphatases was demonstrated. Further characterisation of the 

HIGHPHY wheat is required to determine the optimum inclusion in a commercial feed 

formulation matrix.  
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8.2. Future research and development 

8.2.1. Characterisation of bone mineralisation in poultry  

The characterisation of bone mineralisation in lame commercial broilers is warranted as it is 

expected that bone data determined in lame birds might be different to the data reported in 

this project, especially in cases directly related to poor bone mineralisation. Such dataset will 

be beneficial in understanding what values might be found in lame birds, and in combination 

with the data reported in this project, will serve as a useful tool in drawing conclusions on the 

bone status of broiler flocks.  

Poor bone mineralisation is known to increase the incidence of fractures resulting in 

downgrades at processing plants (Driver et al., 2006a). Therefore a comprehensive study 

examining the correlation between bone mineralisation in commercial poultry flocks and 

factory processing data will help fine-tune the optimisation of dietary phosphorus for bird 

welfare and best economic returns.  

Applegate and Lilburn (2002) reported less mineralisation in the diaphyseal region of the 

femur compared to the tibia, and suggested that the femur may be important in evaluating 

long bone skeletal abnormalities during the latter period of broiler growth. Similar work 

characterising the femur bone is recommended for comparative analysis. Similar work 

characterising bone mineralisation in commercial layers is recommended. 

8.2.2. Nutritional imprinting 

Nutritional imprinting improved bone mineralisation and significantly improved bone 

strength. Future work aimed at understudying the changes that may have occurred by 

examining bone histology and organic matrix is needed to elucidate the remarkable effect 

nutritional imprinting had on bone strength. 
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The effect of breeder nutrition on subsequent progeny performance such as growth 

performance, immune status, and leg health is well documented (Hocking, 2007; Oveido-

Rondon and Wineland, 2012; Chang et al., 2016). However, published data on the effects of 

nutritional imprinting of broiler breeders for improved phosphorus utilisation in progeny are 

not available in the literature and presents a valuable area of further research. 

More work is also required to establish the optimal level of dietary phosphorus concentration 

and length of dietary challenge required to give best results considering bird welfare and 

economic returns. This should be examined early post-hatch when the chick consumes its first 

meal, and at a subsequent period of challenge during the growing/finishing stage.  

8.2.3. Additive effect of nutritional techniques 

In this project, nutritional imprinting and the use of a high phytase expressing wheat cultivar 

to improve phosphorus utilisation were not examined in combination with other feed 

additives (phytase and vitamin D) routinely used to improve phosphorus utilisation. The 

synergistic effect of these feed additives in combination with nutritional imprinting and the 

use of a high phytase expressing wheat cultivar presents a valuable area of further research.  
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8.3. Recommendations 

 There is the need to agree on a common consensus for the bone ash methodology 

used by researchers for assessing bone mineralisation in broilers. A minimum Soxhlet 

fat extraction time of 6h is recommended. In controlled research trials where the 

health status of a flock is known, removing the cartilage caps in order to improve the 

accuracy of comparisons may be adopted. However, disease conditions have been 

reported to increase bone ash percentage, and it may be beneficial to include the 

cartilage caps when comparing bone ash values from unrelated studies, particularly 

when the health status is unknown, in order to improve accuracy when comparing 

bone ash data from unrelated studies. 

 The current database of bone mineralisation of commercial broilers will serve as a 

useful tool in understanding values applicable to commercial practice but will need to 

be regularly updated in line with changes due to selective breeding. 

 Retainable whole body phosphorus content is constant (5g/kg) irrespective of bird 

size. This has remained constant despite improvement in bird growth rate and may be 

useful in better understanding phosphorus requirement in broilers. 

 Nutritional imprinting for improved phosphorus utilisation (0.6% Ca and 0.3% nPP 

for 4 days immediately post-hatch) and the use of the high phytase wheat variety (at 

100% replacement for standard wheat in a wheat/soya broiler diet) are useful 

techniques that can be employed to improve phosphorus utilisation in broilers. This 

could be further improved through the use of other feed additives such as vitamin D 

and phytases.  
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In conclusion, phosphorus plays an important role in poultry nutrition, and its judicial use is 

important from the environmental stewardship viewpoint. Improving phosphorus utilisation 

in poultry will not only help minimise wastage and reduce the negative effect undigested 

phosphorus has on the environment, but will also help in preserving the world phosphorus 

reserves.  

Science should serve society, and this thesis was undertaken to meet the request of the 

commercial broiler sector. Continued collaboration between the poultry industry and 

academia is required to examine and improve on the promising results presented in this 

project. 
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Appendix 1: Scoring scale for pododermatitis  

 

 

Classification of the severity of pododermatitis) based on the welfare quality assessment protocol for poultry (Welfare Quality, 2009) 

 
Score 

 
Severity of pododermatitis 

0 No evidence of foot pad dermatitis 
1 & 2 Minimal evidence of foot pad dermatitis 
3 & 4 Severe evidence of foot pad dermatitis 
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Appendix 2: Poultry data form 

Date of sampling ______________ 

Name of farm and address ______________ 

Poultry house code________________ 

Parent flock code(s) and age (weeks) ______________ 

Age of birds at sampling (days) ______________ 

Sex of birds:  Males ______   Females _______   Mixed _________ 

Number of birds housed ______________ 

Floor area of poultry house ______________ 

-Litter condition: wet ______fair ___ dry ___  

Current body weight ______________ (if not available age and weight at last 
weigh_____________) 

Target market weight: Male  _____   Female ______ Mixed _________ 

 Target market age Male  _____   Female ______ Mixed _________ 

Feed conversion ratio ______________ 

Gait score                       ______________ 

Current cumulative number of culls related to lameness ______________ 

Current cumulative number of culls due to other factors including disease ______________ 

Mortality (including all culls)    ______________ 

Do you use additives in water (in addition to that supplied)? 

         None         __________ 

         Vitamin D3  _________ 

         Antibiotics  ___________ 

         Others   _________ (please specify) 

 Lighting programme  _________ (please indicate pattern) 

 

Please attach feed ticket
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Appendix 3: Individual bird data form 

Date                    Farm                House                                              Sampling age 

Bird 1 
 

Bird 2 
 

Bird 3 

Storage bag code   Storage bag code   Storage bag code  

Sex   Sex   Sex  

Bird weight (g)   Bird weight (g)   Bird weight (g)  

Fresh bone weight (g)   Fresh bone weight (g)   Fresh bone weight (g)  

Bone length (mm)   Bone length (mm)   Bone length (mm)  

Bone width (mm)   Bone width (mm)   Bone width (mm)  

Bone strength (N)   Bone strength (N)   Bone strength (N)  

 

Bird 4 
 

Bird 5 
 

Bird 6 

Storage bag code   Storage bag code   Storage bag code  

Sex   Sex   Sex  

Bird weight (g)   Bird weight (g)   Bird weight (g)  

Fresh bone weight (g)   Fresh bone weight (g)   Fresh bone weight (g)  

Bone length (mm)   Bone length (mm)   Bone length (mm)  

Bone width (mm)   Bone width (mm)   Bone width (mm)  

Bone strength (N)   Bone strength (N)   Bone strength (N)  
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Appendix 4: Ranking of Pearson correlation values according to bone measurements in 14 day-old unsexed broilers 

Ca content/dry bone weight (mg)   P content/dry bone weight (mg)  Bone ash weight (g) 

P content/dry bone weight (mg) 0.963  Ca content/dry bone weight (mg) 0.963  Dry fat extracted bone weight (g) 0.975 

Dry fat extracted bone weight (g) 0.719  Dry fat extracted bone weight (g) 0.704  Fresh bone weight (g) 0.895 

Bone ash weight (g) 0.714  Bone ash weight (g) 0.693  Bone length (mm) 0.847 

Fresh bone weight (g) 0.649  Fresh bone weight (g) 0.642  Bone width (mm) 0.830 

Bone length (mm) 0.585  Bone length (mm) 0.560  Ca content/dry bone weight (mg) 0.714 

Bone width (mm) 0.563  Bone width (mm) 0.549  P content/dry bone weight (mg) 0.693 

Bird weight (g) 0.465  Bird weight (g) 0.449  Bone strength (N) 0.682 

Bone strength (N) 0.418  Bone strength (N) 0.388  Bird weight (g) 0.598 

Ash percentage 0.164  Podo score 0.147  Ash percentage 0.344 

Podo score 0.137  Ash percentage 0.131  Podo score 0.120 

        

Ash percentage  Bone strength (N)  Dry fat extracted bone weight (g) 

Bone strength (N) 0.414  Bone ash weight (g) 0.682  Bone ash weight (g) 0.975 

Bone ash weight (g) 0.344  Bone width (mm) 0.669  Fresh bone weight (g) 0.946 

Ca content/dry bone weight (mg) 0.164  Dry fat extracted bone weight (g) 0.617  Bone length (mm) 0.889 

Bone width (mm) 0.131  Fresh bone weight (g) 0.560  Bone width (mm) 0.851 

P content/dry bone weight (mg) 0.131  Bone length (mm) 0.522  Ca content/dry bone weight (mg) 0.719 

Dry fat extracted bone weight (g) 0.129  Ca content/dry bone weight (mg) 0.418  P content/dry bone weight (mg) 0.704 

Bird weight (g) 0.052  Ash percentage 0.414  Bird weight (g) 0.627 

Bone length (mm) 0.047  P content/dry bone weight (mg) 0.388  Bone strength (N) 0.617 

Fresh bone weight (g) 0.020  Bird weight (g) 0.287  Podo score 0.142 

Podo score -0.058  Podo score -0.106  Ash percentage 0.129 
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Appendix 5: Ranking of Pearson correlation values according to bone measurements in day 28 cockerels 

Ca content/dry bone weight (mg)   P content/dry bone weight (mg)  Bone ash weight (g) 

P content/dry bone weight (mg) 0.938  Ca content/dry bone weight (mg) 0.938  Dry fat extracted bone weight (g) 0.939 

Bone ash weight (g) 0.638  Bone ash weight (g) 0.642  Fresh bone weight (g) 0.900 

Bone strength (N) 0.579  Bone strength (N) 0.582  Bone width (mm) 0.741 

Dry fat extracted bone weight (g) 0.561  Dry fat extracted bone weight (g) 0.581  Bone length (mm) 0.677 

Fresh bone weight (g) 0.523  Fresh bone weight (g) 0.561  P content/dry bone weight (mg) 0.642 

Bone width (mm) 0.491  Bone width (mm) 0.537  Ca content/dry bone weight (mg) 0.638 

Ash percentage 0.378  Bone length (mm) 0.416  Bone strength (N) 0.605 

Bird weight (g) 0.369  Bird weight (g) 0.348  Bird weight (g) 0.541 

Bone length (mm) 0.356  Ash percentage 0.345  Ash percentage 0.445 

Podo score -0.109  Podo score -0.048  Podo score -0.138 

        

Ash percentage  Bone strength (N)  Dry fat extracted bone weight (g) 

Bone strength (N) 0.465  Bone ash weight (g) 0.605  Fresh bone weight (g) 0.947 

Bone ash weight (g) 0.445  P content/dry bone weight (mg) 0.582  Bone ash weight (g) 0.939 

Ca content/dry bone weight (mg) 0.378  Ca content/dry bone weight (mg) 0.579  Bone length (mm) 0.741 

P content/dry bone weight (mg) 0.345  Dry fat extracted bone weight (g) 0.489  Bone width (mm) 0.706 

Bone width (mm) 0.303  Ash percentage 0.465  P content/dry bone weight (mg) 0.581 

Bird weight (g) 0.190  Fresh bone weight (g) 0.444  Ca content/dry bone weight (mg) 0.561 

Fresh bone weight (g) 0.137  Bone width (mm) 0.421  Bird weight (g) 0.541 

Dry fat extracted bone weight (g) 0.112  Bone length (mm) 0.233  Bone strength (N) 0.489 

Bone length (mm) 0.031  Bird weight (g) 0.136  Ash percentage 0.112 

Podo score -0.138  Podo score -0.136  Podo score -0.103 
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Appendix 6: Ranking of Pearson correlation values according to bone measurements in day 28 pullets 

Ca content/dry bone weight (mg)   P content/dry bone weight (mg)  Bone ash weight (g) 

P content/dry bone weight (mg) 0.950  Ca content/dry bone weight (mg) 0.950  Dry fat extracted bone weight (g) 0.957 

Bone ash weight (g) 0.695  Bone ash weight (g) 0.629  Fresh bone weight (g) 0.813 

Dry fat extracted bone weight (g) 0.620  Dry fat extracted bone weight (g) 0.569  Bird weight (g) 0.703 

Bird weight (g) 0.532  Fresh bone weight (g) 0.486  Ca content/dry bone weight (mg) 0.695 

Fresh bone weight (g) 0.531  Bird weight (g) 0.462  Bone length (mm) 0.676 

Bone width (mm) 0.486  Bone width (mm) 0.449  Bone width (mm) 0.645 

Bone length (mm) 0.471  Bone length (mm) 0.427  P content/dry bone weight (mg) 0.629 

Bone strength (N) 0.456  Bone strength (N) 0.390  Ash percentage 0.371 

Ash percentage 0.397  Ash percentage 0.335  Bone strength (N) 0.235 

Podo score 0.071  Podo score 0.089  Podo score -0.008 

        

Ash percentage  Bone strength (N)  Dry fat extracted bone weight (g) 

Bone strength (N) 0.423  Ca content/dry bone weight (mg) 0.456  Bone ash weight (g) 0.957 

Ca content/dry bone weight (mg) 0.397  Ash percentage 0.423  Fresh bone weight (g) 0.859 

Bone ash weight (g) 0.371  P content/dry bone weight (mg) 0.390  Bone length (mm) 0.740 

P content/dry bone weight (mg) 0.335  Bird weight (g) 0.350  Bird weight (g) 0.679 

Bird weight (g) 0.241  Podo score 0.289  Bone width (mm) 0.677 

Dry fat extracted bone weight (g) 0.087  Bone ash weight (g) 0.235  Ca content/dry bone weight (mg) 0.620 

Podo score 0.064  Bone width (mm) 0.185  P content/dry bone weight (mg) 0.569 

Fresh bone weight (g) 0.047  Fresh bone weight (g) 0.165  Bone strength (N) 0.119 

Bone width (mm) 0.035  Dry fat extracted bone weight (g) 0.119  Ash percentage 0.087 

Bone length (mm) -0.051  Bone length (mm) 0.071  Podo score -0.027 

 



 

274 
 

Appendix 7: Ranking of Pearson correlation values according to bone measurements in end of crop cockerels 

Ca content/dry bone weight (mg)   P content/dry bone weight (mg)  Bone ash weight (g) 

P content/dry bone weight (mg) 0.988  Ca content/dry bone weight (mg) 0.988  Dry fat extracted bone weight (g) 0.964 

Bone ash weight (g) 0.644  Bone ash weight (g) 0.637  Fresh bone weight (g) 0.950 

Bird weight (g) 0.607  Bird weight (g) 0.604  Bird weight (g) 0.918 

Dry fat extracted bone weight (g) 0.607  Dry fat extracted bone weight (g) 0.596  Bone width (mm) 0.847 

Fresh bone weight (g) 0.583  Fresh bone weight (g) 0.574  Bone length (mm) 0.837 

Bone length (mm) 0.542  Bone length (mm) 0.527  Ca content/dry bone weight (mg) 0.644 

Bone width (mm) 0.528  Bone width (mm) 0.509  P content/dry bone weight (mg) 0.637 

Bone strength (N) 0.399  Bone strength (N) 0.390  Bone strength (N) 0.373 

Ash percentage 0.303  Ash percentage 0.314  Ash percentage 0.363 

Podo score 0.146  Podo score 0.118  Podo score 0.100 

        

Ash percentage  Bone strength (N)  Dry fat extracted bone weight (g) 

Bone strength (N) 0.569  Ash percentage 0.569  Fresh bone weight (g) 0.981 

Bone ash weight (g) 0.363  Ca content/dry bone weight (mg) 0.399  Bone ash weight (g) 0.964 

P content/dry bone weight (mg) 0.314  P content/dry bone weight (mg) 0.390  Bird weight (g) 0.914 

Ca content/dry bone weight (mg) 0.303  Bone ash weight (g) 0.373  Bone length (mm) 0.900 

Bone width (mm) 0.271  Bird weight (g) 0.300  Bone width (mm) 0.823 

Bird weight (g) 0.241  Bone width (mm) 0.274  Ca content/dry bone weight (mg) 0.607 

Fresh bone weight (g) 0.121  Dry fat extracted bone weight (g) 0.235  P content/dry bone weight (mg) 0.596 

Dry fat extracted bone weight (g) 0.105  Podo score 0.221  Bone strength (N) 0.235 

Bone length (mm) -0.012  Fresh bone weight (g) 0.213  Podo score 0.113 

Podo score -0.028  Bone length (mm) 0.174  Ash percentage 0.105 
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Appendix 8: Ranking of Pearson correlation values according to bone measurements in end of crop pullets 

Ca content/dry bone weight (mg)   P content/dry bone weight (mg)  Bone ash weight (g) 

P content/dry bone weight (mg) 0.920  Ca content/dry bone weight (mg) 0.920  Dry fat extracted bone weight (g) 0.940 

Bone ash weight (g) 0.491  Bone ash weight (g) 0.467  Fresh bone weight (g) 0.925 

Bird weight (g) 0.400  Bird weight (g) 0.389  Bird weight (g) 0.853 

Dry fat extracted bone weight (g) 0.395  Bone strength (N) 0.385  Bone length (mm) 0.754 

Bone strength (N) 0.372  Dry fat extracted bone weight (g) 0.354  Bone width (mm) 0.737 

Fresh bone weight (g) 0.363  Ash percentage 0.342  Ca content/dry bone weight (mg) 0.491 

Bone length (mm) 0.330  Fresh bone weight (g) 0.314  P content/dry bone weight (mg) 0.467 

Ash percentage 0.292  Bone width (mm) 0.297  Bone strength (N) 0.243 

Bone width (mm) 0.287  Bone length (mm) 0.267  Ash percentage 0.179 

Podo score 0.279  Podo score 0.191  Podo score 0.172 

        

Ash percentage  Bone strength (N)  Dry fat extracted bone weight (g) 

Bone strength (N) 0.505  Ash percentage 0.505  Fresh bone weight (g) 0.957 

P content/dry bone weight (mg) 0.342  P content/dry bone weight (mg) 0.385  Bone ash weight (g) 0.940 

Ca content/dry bone weight (mg) 0.292  Ca content/dry bone weight (mg) 0.372  Bird weight (g) 0.847 

Bone ash weight (g) 0.179  Podo score 0.278  Bone length (mm) 0.840 

Bone width (mm) 0.058  Bone ash weight (g) 0.243  Bone width (mm) 0.719 

Bird weight (g) 0.035  Bone width (mm) 0.181  Ca content/dry bone weight (mg) 0.395 

Fresh bone weight (g) -0.087  Bird weight (g) 0.171  P content/dry bone weight (mg) 0.354 

Podo score -0.120  Fresh bone weight (g) 0.095  Podo score 0.217 

Dry fat extracted bone weight (g) -0.162  Dry fat extracted bone weight (g) 0.078  Bone strength (N) 0.078 

Bone length (mm) -0.245  Bone length (mm) -0.054  Ash percentage -0.162 

 


