This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2540065, IEEE

Transactions on Fuzzy Systems

Improved Uncertainty Capture for Non-Singleton
Fuzzy Systems

Amir Pourabdollah, Member, IEEE, Christian Wagner, Senior Member, IEEE,
Jabran Hussain Aladi, Student Member, IEEE and Jonathan M. Garibaldi, Member, IEEE

Abstract—In non-singleton fuzzy logic systems (NSFLSs), input
uncertainties are modelled with input fuzzy sets in order to
capture input uncertainty (e.g., sensor noise). The performance
of NSFLSs in handling such uncertainties depends on both: the
appropriate modelling in the input fuzzy sets of the uncertainties
present in the system’s inputs, and on how the input fuzzy
sets (and their inherent model of uncertainty) interact with the
antecedent and thus affect the inference within the remainder
of the NSFLS. This paper proposes a novel development on
the latter. Specifically, an alteration to the standard composition
method of type-1 fuzzy relations is proposed, and applied to
build a new type of NSFLS. The proposed approach is based on
employing the centroid of the intersection of input and antecedent
sets as origin of the firing degree, rather than the traditional
maximum of their intersection, thus making the NSFLS more
sensitive to changes in the input’s uncertainty characteristics. The
traditional and novel approach to NSFLSs are experimentally
compared for two well-known problems of Mackey-Glass and
Lorenz chaotic time series predictions, where the NSFLSs’ inputs
have been perturbed with different levels of Gaussian noise.
Experiments are repeated for system training under noisy and
noise-free conditions. Analyses of the results show that the new
method outperforms the traditional approach. Moreover, it is
shown that while formally more complex, in practice, the new
method has no significant computational overhead compared to
the standard approach.

Index Terms—non-singleton, fuzzy logic systems, uncertainty,
time series prediction

I. INTRODUCTION

UZZY Logic Systems (FLSs) have shown their effec-

tiveness in a wide range of applications including en-
gineering, natural science and time-series prediction [1]-[3].
Handling uncertain and vague information has been at the
forefront of FLSs since the introduction of fuzzy sets (FSs)
by Zadeh in 1965 [4]. FLSs have been employed to handle
uncertainties in different forms such as uncertainty associated
with words (e.g., Computing with Words [5]) and with the
input data (e.g., in the form of sensor noise).

While Singleton FLSs (SFLSs) are the most common types
of FLSs, Non-Singleton FL.Ss (NSFLSs) [6], which are specif-
ically designed for handling the uncertainties associated with
the inputs to a FLS, also exist. NSFLSs are types of FLSs
where the input uncertainty is modelled by distributions (input
FSs) [7], rather than singleton FSs as is the case for SFLSs.
For example, a FS with a Membership Function (MF) around
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z (e.g., a Gaussian distribution centred on x or a sensor-
specific MF [8]) is used as the input FS [9]. In fact, SFLSs
are special cases of NSFLSs where the input is represented
by a singleton FS (i.e. a FS with a membership of 1 at x
and O elsewhere). Although the theory of NSFLSs has been
established for many years (e.g., in [6]), and the capacity
of NSFLSs to deliver superior performance in comparison to
SLFSs has been shown repeatedly [10], [11], the application of
NSFLSs is still rare in comparison to SFLSs. The commonly
cited reason for this is the additional computational and design
complexity of NSFLSs compared to SFLSs [10], [11].

One way of interpreting the low use of NSFLSs is that the
balance between performance gain and additional complexity
has not been sufficient to warrant the additional complexity
of their implementation as part of real world applications
(some of the user-related challenges and practical solutions
in a case of environmental management are discussed in a
previous work [12]). This paper seeks to further extend the
capacity of NSFLSs to deliver improved performance without
increasing their design complexity, thus hopefully supporting
the increased applicability of NSFLSs in applications.

We propose a novel inference method to be used in NS-
FLSs to improve their performance without adding significant
complexity/computation cost, by introducing a new method
of interaction between the antecedent(s) and the fuzzy input
set(s). The new method is based on altering the mathematics of
the standard composition of fuzzy relations method, such that
the centroid of the fuzzy sets’ intersection is used for calcu-
lating each rule’s firing strength instead of their intersection’s
maximum. While this change is not complex, it fundamentally
affects the whole inference process and enables NSFLSs to
more closely model (and react to) input uncertainties. The
applied change in the composition method will be formally
detailed in Section 3 after the standard method of composition
is described in Section 2.

In order to examine the proposed method in practice and
to assess its overloaded complexity, we apply it to two well-
known problems of Mackey-Glass and Lorenz chaotic time
series prediction which provide verifiable ground truth, enable
easy reproduction of our results by other researchers, and
enable us to easily modulate the different characteristics such
as the level of uncertainty/noise in the experiments. Moreover,
standard NSFLS solutions have already been designed for such
time series prediction applications (in [6], [7]) and thus can
serve as benchmarks for our experiments.

The structure of this paper is as follows: First, we review the
background and the related works. We proceed by proposing
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an alternative composition method for application in NSFLSs
and theoretically compare it with the traditional approach. In
Section IV, we experimentally compare new and traditional
NSFLSs using the application of Mackey-Glass and Lorenz
time-series prediction. Section V provides an analysis of the
computational complexity of the proposed methods in relation
to traditional NSFLSs. Finally, we conclude and provide the
direction of future work in Section VI.

II. BACKGROUND

In this section we briefly introduce background material,
including the composition of fuzzy relations, NSFLSs and the
related works.

A. Fuzzy Relations and Their Composition

As the name implies, fuzzy relations describe the relation
between two or more FSs. The concepts of fuzzy relations
and their compositions are briefly reviewed here as they
play an important role in NSFLSs’ input-to-output mapping.
Specifically, it will be shown in the next sub-section, how
the method of fuzzy relations composition determines the
inference method used in NSFLSs.

In order to have a formal review, we briefly describe the
mathematical backgrounds of the standard method of fuzzy
relations composition. If X and Y are two FSs with two
universes of discourse, and (X xY") is their Cartesian Product
over the two universes, a fuzzy relation [7] between the two
FSs is another FS called R, defined as:

R(X,Y) = {l(z,9), pr(z,y)] | (z,y) € (X xY)} (D)

If, for three FSs X, U and Y, two fuzzy relations P(X,U)
and Q(U,Y) are defined, the fuzzy composition of the two
relations is another fuzzy relation denoted as P o Q(X,Y)
with a MF defined as:

ppoq(z,y) = supucupp(z,u) * pg(u, y)] (2)

where sup is the supremum operator and * is any t-norm oper-
ator [13]. Equation (2) is also known as sup-star composition
in the literature.

As a special case, a FS and a fuzzy relation can also be the
two parts of a fuzzy composition. If unlike @, P is a FS (not
an explicit relation between two FSs), it can be considered as
a relation between X and X, i.e., X = U and pp(z,u) is
reduced to px (z). In this case, (2) is rewritten as:

x0T, y) = supgex [px (@) * po(z, y)] (3)

Equation (3) is particularly useful for input-to-output map-
ping in the inference engine of NSFLSs. This will be described
in the next sub-section after NSFLSs are introduced.

B. Non-Singleton FLSs

1) Overview: In order to address uncertainty in the actual
inputs to the FLS, the fuzzifier in NSFLS maps a given crisp
input to a fuzzy input set, rather than to a fuzzy singleton as
is the case in SFLSs. Thus, as shown in Fig. 1, the overall
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Fig. 1. FLS components and the illustration of different fuzzification methods.
Singleton and non-singleton fuzzifications of a sample input =’ are also shown.

FLS

components of a SFLS and a NSFLS are identical, the only
difference is the handling of the crisp inputs in the fuzzifier.

In NSFLSs, the appropriate type of membership function
to be employed for the input FSs is application dependent,
i.e. it is dependent on the characteristics of the uncertainty
affecting the system’s inputs, with the most common being a
type of fuzzy number, i.e. a convex, normal FS [7]. In Fig. 1,
a Gaussian distribution is shown as an example.

2) The Composition of Fuzzy Relations used in NSFLSs:
FLSs use different FSs (input, antecedent, and consequent -for
Mamdani FLSs- FSs) and their compositions to establish the
mathematical relationships between inputs and outputs. For
Mamdani’s inference method [14] in SFLSs for example, the
firing strength of each rule depends on the firing degree of each
antecedent MF for each crisp (singleton FS) input. In NSFLSs,
the computation is more complex since each antecedent has
to be combined with (non-singleton) FSs in order to work out
the firing strength of each rule.

The general mapping between NSFLSs’ inputs and outputs,
i.e. between input set X and output set Y in Fig. 1, is
comprehensively detailed in [7]. We do not repeat the details
of how the comprehensive formula for the mapping is derived,
instead we focus on the results at an abstract level.

For illustration, consider a single-input, single-rule and
single-output system of Fig. 1 where Mamdani implication
is used. Let = and y be members of input and output FSs (X,
Y) and let A and C be two FSs representing an antecedent
and a consequent. The only defined rule is If x is A then y
is C. We also define pux (z), pa(z), pe(y) and py (y) as the
MFs of X, A, C and Y respectively. We notice that the output
set of a one-rule inference engine is a composition between
its input FS and a FS that is determined by a rule (each rule
is considered as a fuzzy relation between antecedent(s) and a
consequent, i.e. between input space and output space - more
details can be found in [7]).

Equation (3) has already formulated the composition be-
tween a fuzzy set X and a fuzzy relation @). Thus in (3), X can
represent the input FS while the relation () represents a rule. In
such NSFLS, g (x,y) can also be written as p14 () * uc(y).
Equation (3) can then be written for the described NSFLS as:

pxoQ(T,y) = suprex[px () * pa(z) x pc(y)) 4

Since po(y) is independent of x, it can be taken out of
the supremum operator, leading to an input-to-output mapping
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Fig. 3. The illustration of how a standard NSFLS calculates its output (Y)
according to its input (X), antecedent (A) and consequent (C') FSs.

expression:
py (y) = pe(y) * supzex [k (z) * pa(@)] (5)

or equally;
py () = pe(y) * pnx (@sup) * pa(Tsup) ()

where ,,, is the value of = at which px(z) * pa(x) takes
its maximum. Equation (6) is a reduced version of the gen-
eral input-to-output mapping derived in [7] for the described
simplified NSFLS. The inference engine in a NSFLS can then
be imagined as a prefilter unit added to an inference unit, in
which the prefilter unit transforms the uncertain input set to a
representative numerical value g, (Fig. 2) [7]. Handling the
input uncertainty in NSFLSs is concentrated in the prefiltering
unit, i.e. the rest of the FLS acts identically to a singleton FLS.

In discrete systems (including the majority of FLS appli-
cations) the supremum operator is replaced by the maximum
operator and x,;, in equation (6) is replaced by ,,q,. The
most commonly used forms of sup-star composition in discrete
systems are max-min and max-product compositions. In this
paper we focus on the max-min composition, so px (x)xu ()
is the intersection of X and A, and px (Tmaz) and pa(Tmaz)
are equal. As such, (6) can be written as:

py (y) = min[pa(Tmaz), ke (y)] (7N

Briefly, this formula tells us that the firing level of an
antecedent is the peak of its intersection with the input set (Fig.
3). The above formula is for the simplified form of NSFLS.
For the general NSFLS case, the same formulation is iterated
for an arbitrary number of inputs and rules (detailed in [7]).

We have briefly reviewed the origins of using sup-star and
max-min compositions for NSFLS input-to-output mappings.
Selecting sy, (and ,,q4) to be the output of prefiltering is

a direct result of utilizing the sup-star composition of fuzzy
relations. However, the introduced methods are not the only
possible methods. Section 3 is about considering the possible
benefits of using an alternative method.

Before introducing the alternative in section 3, we briefly
review in the next sub-section, the other related works about
the theory, applications and performances of NSFLSs, with a
focus on our selected benchmark problem of noisy time-series
prediction.

C. Other Related Work

In addition to the classical literature about the NSFLS
fundamentals and using the standard composition method (e.g.,
[13], [15]), there are a number of other research works that
are connected to the focus of this paper.

Regarding NSFLS application for uncertain reasoning and
prediction, in [16] NSFLSs are utilized to forecast time series
from the domain of financial markets. After establishing
the theory and application of NSFLS and its application
in noisy time-series prediction problems ( [6], [7], [17]),
some practical prediction applications were also examined.
For example in [18], the Box-Jenkin’s gas furnace time series
data is used in conjunction with NSFLS-based prediction,
showing that the employed NSFLS provides better prediction
in comparison to the SFLS. Among the different time-series
prediction problems, predicting Mackey-Glass time series [19]
has been a benchmark problem in the literature which has been
considered by a number of researchers, e.g., in [20]-[23].

Beyond the development and application of NSFLSs in
type-1 fuzzy systems, there have been substantial advances
in the application of non-singleton fuzzification as part of
type-2 FLSs [24]. The recent developments of the theory and
applications of type-2 FLSs have shown the advantages of
using type-2 FLSs (both general and interval type-2 FLSs)
over type-1 FLSs when the uncertainties at different levels
increase (e.g., in noisy time series prediction [25], [26] and
in noisy image processing [27]). Further, non-singleton inputs
have also been applied to type-2 FLSs, resulting in hybrid
solutions for uncertainty handling at different uncertainty
levels. For example in [28] and [29], non-singleton type-
2 FLSs are shown to effectively handle different levels of
uncertainties in industrial use cases. It has also been shown
that in the presence of perturbations, the generalized type-2
fuzzy controllers outperform their type-1 and interval type-
2 counterparts [30], [31], and that interval type-2 NSFLSs
outperform type-1 NSFLSs in different application domains
[32], [33]. Incorporating other Al techniques with type-2
FLSs has also resulted in hybrid solutions for predicting the
behaviour of non-linear complex systems (e.g., using neural
networks in [34] and genetic algorithms in [35]).

For optimizing the non-singleton fuzzification performance,
the approaches taken in [17], [36]-[38], are to dynamically
tune the parameters of the input fuzzy sets of type-2 FLSs
according to the characteristics of the input uncertainties.
While some researchers have focused on comparing non-
singleton type-1 with singleton type-2 FLSs (e.g., in [9], [39]),
others have taken the advantages of the both systems by
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developing type-2 non-singleton type-2 FLSs (i.e. type-2 FLSs
that use non-singleton type-2 input fuzzy sets), e.g., in [11],
[40]. The current paper focuses specifically on type-1 non-
singleton type-1 FLSs but the proposed concepts are equally
applicable to type-2 FLSs as the proposed changes are at the
inference level of NSFLSs applicable to both type-2 and type-
2 NSFLSs. An analysis of their application in the type-2 FLS
context will be addressed in a future paper.

III. A NOVEL APPROACH FOR NSFLSs

In this section we investigate whether or not z,,, (see Fig.
2) as a result of the prefiltering stage is the only possible
approach or whether an alternative to the sup-star composition
can provide superior results. We discuss the motivation both
from the perspective of modelling the input uncertainty with
high fidelity as well as from a formal perspective of the
underlying composition. Specifically, we will highlight that
following the traditional approach to NSFLSs, selecting s
may lead to the loss of valuable information encoded in the
input FS membership function (which captures the uncertainty
of the FLS input).

A. Motivation

In the previous section, it was highlighted that the prefilter-
ing stage is the critical step in NSFLSs’ functionality. This
stage is where for each rule, sup-star composition is used
to combine the information encoded in the input set(s) with
that of the antecedent set(s) to generate the firing level of
the rule. Thus, it is clear that any change in the composition
method will fundamentally impact the performed inference,
and consequently the system’s output. In this paper we are
particularly interested in establishing an efficient composition
method which can perform the combination between input and
antecedent sets as comprehensively as possible - minimizing
information loss about the distribution of uncertainty in the
input fuzzy sets’ membership functions.

The traditional approach to NSFLSs provides only a limited
capacity for capturing this uncertainty as the degree of firing of
a given antecedent FS is the result of a simplified process for
extracting the firing strength from the intersection of input and
antecedent FSs as clarified in the examples below. Importantly,
while the change to this process of finding the appropriate
firing strength proposed in this paper may seem small, it is
an essential part of the resulting NSFLSs which significantly
affects their capacity to model the actually uncertainty present,
and thus to provide superior results for appropriately modelled
FSs. The latter finally is vital in the more general context of
this work: fuzzy systems are credited widely with dealing well
with uncertainty in systems. However, exactly how to leverage
this capacity in the best way possible based on insight on
real applications (and uncertainties present) is still not well
understood. Providing mechanisms such as in this paper which
clearly and comprehensively link the uncertainty captured by
input fuzzy sets to the antecedents and thus performance of the
fuzzy system are vital as key steps on advancing the research
around fuzzy systems as a whole.

In other words, a deviation from the traditional sup-star
composition methods that can capture the interaction of input
and antecedent FSs as accurately as possible, may provide a
pathway for the uncertainty of the input to be captured in
the input FSs with high fidelity and translating the effect of
these models consistently and efficiently to FLS outputs. In
turn, this should enable the separation of input uncertainty and
linguistic antecedent uncertainty modelling, both of which are
commonly “mixed” in the input and antecedent FSs. We feel
this is valuable and important, in particular as it enables the
capture and modelling of uncertainties where they arise, i.e.
separately in the inputs (e.g., a sensor) or in the antecedent
(e.g., experts are unsure about the linguistic labels - what is
“low”). The latter is vital to pave the way for the development
of improved, systematic design methods for real world fuzzy
systems.

To illustrate, we provide two examples in Fig. 4. In each,
different input FSs in a typical NSFLS context are intersected
with an antecedent. As the actual input FSs are different, we
expect a different firing level and thus output of the FLS.
However, the actual firing levels are the same in both cases,
ie. ux1(Tmaz) = x2(Tmaz). A different way of looking at
this is that the differences in the uncertainty models (captured
by the inputs FSs) are not reflected in the firing strengths and
thus also not in the NSLS outputs.

The latter is particularly important when input fuzzy sets are
modelled precisely to capture the actual levels of uncertainty
encountered in the real world, such as is the case when they
are designed based for example on prior modelling [8], [11].
Employing fuzzy systems which are designed based on the
modelling of the real world uncertainty present in an envi-
ronment has considerable potential for providing meaningful
and efficient pathways for the better design of fuzzy systems.
However, in order to enable this, a clear interrelation between
the actual uncertainty models and their effect needs to be in
place. Establishing this link by improving on the traditional
approach to NSFLS is the aim of this paper.

Based on the above, it is arguable that x,,,,, may not neces-
sarily be the best choice in terms of capturing the interaction
(i.e. intersection) between the input and antecedent FSs with
the highest fidelity possible. We will specifically note that
certain alternatives to sup-star composition are theoretically
valid. Consequently, in NSFLSs, it seems desirable to identify
an approach which results in a better capture of the detailed
interaction of the input and antecedent set, thus preserving
more information captured in the input FS and thus input
uncertainty model.

Before formally defining any alternative composition
method, we review the theory of the composition of fuzzy
relations to identify any formal limitations for developing
new alternatives that are not necessarily based on sup-star
composition.

B. The Validity of Alternative Composition Methods

To see if the literature provides any specific formal unique-
ness for using the supremum (or maximum) operator, we note
that in formulating the sup-star composition (2) in [7] and
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Fig. 4. In two examples (a) and (b), the intersection of two different input
fuzzy sets X1 and X> with a single antecedent fuzzy set A are shown, where
the firing strengths for the standard NSFLS approach are equal for both inputs.
For the proposed approach, the alternative firing strengths arising from using
the centroid of each intersection instead of their maximum are also shown.

[13], first a formula for the crisp sets has been proven, then
the proof is extended to fuzzy relations: Let X, U and Y
be crisp sets, and two crisp relations P(X,U) and Q(U,Y))
defined over the crisp sets. If P o @ is the composition of the
two relations (i.e. mapping between X and Y), it was shown
in [7] that the crisp MF of such a relation can only be:

®)

where * is any t-norm operator and p() is the MF of crisp
sets, i.e. either 0 or 1. The same formula was extended to
fuzzy sets which led to the sup-star composition (2). Thus, in
the transition from crisp to fuzzy domains, the max operator
in the crisp domain was replaced by the same operator in
fuzzy domain. In other words, the step of choosing 1’s over
0’s has been replaced by choosing the maximum of some
real numbers in the range of [0, 1]. The justification provided
for this replacement in [7] and [13] is that it is reducible to
the crisp domain. Naturally, a number of different operations
equally follow this justification, i.e. any other fuzzy operation

HPoQ (-T7 y) = maxﬂGU[:uP (J?, u) * UQ (’U,, y)]v
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that can be reduced to the max in the crisp domain may be
considered.

Based on the motivation and the formal context, we proceed
to introduce an alternative composition method which can be
employed as part of novel NSFLSs as will later be shown.

C. The Centroid-based Composition

We propose an alternative to the traditional sup-star com-
position that can be applied in NSFLSs to better capture
the interaction of input and antecedent FSs. Since we are
interested in taking as much of the information about the shape
of FSs into account as possible, our choice is computing the
centroid of the resulting intersection of input and antecedents

FSs.
More formally, let cen define an operator for FSs as:

cengex (X) = pix(Teen), ©)
where x..,, is the centroid of X defined as:
xT
X x)dx
SUcen(X) — M (10)

Tmax
fxrnin ﬂX(x)dx
For crisp sets, where px(z) = 1 just for a single value
T = Tymaz, (10) reduces to Teep, = Tpmae. Thus, note that cen
operator is also reducible to max operator for crisp sets.
In discrete domain, the above equation can be rewritten as:

n
21:1 Tillx (xl)
n b
Zizl px ()
where n is the number of discretization levels.

A new general alternative to (2) for fuzzy relations compo-
sition can now be defined as:

Teen(X) = (11)

NPOQ(m7y) = CenuGU[ﬂP(xvu) *MQ(uvy)] (12)

By analogy to the sup-star composition (2), we refer to the
new composition as cen-star composition. When applying the
cen-star composition in the context of NSFLSs, the input-to-

output mapping (5) results:

1y (y) = e (Y) * fxna (mcen(X n A>)7

where x .., 18 the value of x at the centroid of the intersection
between the MFs of an input X and an antecedent A. Note
that while in max-min composition, 14 (Zmaz) = o (Tmaz)s
in the new formulation this is not necessarily the case, thus
resulting in the requirement for specifying the membership
degree in the actual intersection, i.e. [ty ,(Tcen). If the
minimum-operator is used as the t-norm, (13) can be written

as:

13)

pry (y) = min[uo(y), fixoa (Teen(X N A))] (14

Briefly, Equation (14) tells us that the firing level of a
given antecedent is given by the degree of membership of the
centroid of the intersection within the membership function
formed by intersecting antecedent and input FSs. Figure 4
illustrates this for the two inputs FSs X1 and X2, resulting
in the firing levels px1(Zeen1) and pxo(Zcenz) respectively.
Note that the firing levels are not equal, as they were for the
standard NSFLS approach. This alternative cen-min approach
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will be used hereafter as an alternative to (7) in mapping
between the input and output of NSFLSs. We refer to such a
NSFLS as Cen-NSFLS hereafter, whereas the standard NSFLS
based on max-min composition is referred to as Standard-
NSFLS. As mentioned before, equations (14) and (7) are
developed for a simplified one-rule NSFLS, but they are used
iteratively (over all inputs, antecedents and rules) to make
a general input-to-output mapping, similar to the iteration
explained in [7] for max-min composition.

The following section focuses on the exploration of this
new version of composition through a series of experiments
and analysis.

IV. EXPERIMENTS AND RESULTS

Following the proposition of the cen-min composition
method in (14), its applicability in NSFLSs is examined
in this section. Specifically, we aim to shed light on the
intuitive hypothesis that the novel composition based on the
centroid provides a superior integration and modelling of the
uncertainty in system inputs and antecedents, in turn resulting
in superior performance when the input uncertainty is captured
within the input FSs of NSFLSs. In this context, we design
a standard NSFLS and a Cen-NSFLSs for the prediction of
arbitrary Mackey-Glass (will be called M-G hereafter) and
Lorenz chaotic time series under different Gaussian noise
conditions (reflected in the different input FSs), and compare
the results. In addition we compare both NSFLSs to a standard
SFLS.

In the next subsections, firstly the M-G time series predic-
tion experiment is explained in details. Secondly, the results
of the similar experiment on Lorenz time series will briefly be
presented. Finally, the results will be discussed in general.

A. Method of M-G Time Series Experiment

The method described in [6], uses standard NSFLSs for
the prediction of M-G time series in noisy conditions and
compares the results to SFLSs. We follow a similar approach
but conduct the same experiment using a standard NSFLS and
a Cen-NSFLS, as well as a SFLS. The prediction performance
is evaluated based on the MSE (Mean Square Error) indicating
the deviation of the prediction from the actual expected value.
We then compare the calculated MSEs for the individual
experiments. Regarding the rule-base generation, we follow
the method given in [41], an established approach to learning
rules from existing input-output pairs.

M-G time series is characterized by a differential equation
[19] as:

dx(t) 0.2x(t — 1)
de 14290t —1)

For 7 > 17, (15) demonstrates a chaotic behaviour. We
have selected 7 = 30. Using (15), x(¢) is calculated for 2000
consecutive time points, i.e.: t = —999 to ¢t = 1000. The first
1000 points are for the initial transients to die out, then using
points ¢ = 1 to t = 700 the system is trained to develop
its rule-base. The last 300 points from ¢t = 701 to £ = 1000
are used for testing the system. Rules are trained according
to the one-pass method described in [41]. Nine past points in

—0.12(t) (15)

the time series are employed as inputs to generate a predicted
value. Seven equally-distributed triangular MFs are also used
to model the input domains.

The work in [6] used noisy data for both training and testing.
While this is the case in most real world scenarios, it is also
practically possible that a system is trained in noise-free (lab-)
conditions then be used in a noisy real-world setting. To take
this into account, we repeat our experiments for the two cases,
i.e., where the system is trained in either noise-free or noisy
conditions. In noise-free training, the same rule-base generated
for the SFLS is used whereas in noisy training the rule-base
is re-trained with noisy inputs.

Three FLSs are designed: a SFLS, a standard NSFLS and a
Cen-NSFLS. For all the systems, centroid deffuzification and
Mamdani inference is used with min and max operators for
the t-norm and t-conorm respectively. The same discretization
levels (100) is used for all FLSs. The input models used for
both NSFLSs are Gaussian MFs centred on the crisp (noise-
free) inputs, with a standard-deviation equal to that of the
noise added in the given experiment. We note that the Gaussian
fuzzifier employed for the NSFLSs is not necessarily the best
approach, but we feel it provides a reasonable choice which
should allow the NSFLS to “track” increasing uncertainty in
the inputs. For both NSFLS, two experiments are conducted
for different signal-to-noise ratios (SNRs) of 10dB and 5dB.

The described combinations of the system configuration
leads to 8 individual systems/experiments in addition to the
singleton FLS experiment. Each experiment generates 300
outputs which are compared to the pre-computed outputs
calculated by (15). The MSE over the 300 points is used as a
measure of the overall error of a given FLS. Note that the aim
of the experiments is the comparison of the individual types of
FLS, i.e. the relative best performance. We are not seeking to
build a "best” time series prediction FLS for which one could
employ more FSs, a different strategy for rule creation, etc. In
order to mitigate the effect of randomness, each experiment is
repeated 30 times and the generated MSEs are averaged. This
means that there are 270 individual experiments in total. The
experiment design is illustrated in Fig. 5. The next sub-section
provides the experiments’ results.

B. Results of M-G Time Series Experiments

In order to illustrate the results, we provide both visual
representations of individual experiment outputs as well as
tables capturing the MSE results averaged over the 30 repeated
experiments.

First, we focus on the prediction of the SFLS. The SFLS
is trained using noise-free data for 0 < ¢ < 700 in which 184
rules are generated. Then the SFLS is executed to compute
its outputs over 700 < ¢ < 1000. The prediction results (Fig.
6) shows that the system is relatively well trained and closely
follows the pre-computed ground truth. This was anticipated
based on the results shown in [6]. The averaged MSE over 30
FLS runs is 0.0014. Note that no noise is added at this stage,
and the SFLS experiment is merely conducted as a benchmark.

Secondly, we focus on the NSFLSs and show the time series
prediction in different noise conditions. We do not compare
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Fig. 5. Illustration of the experiment design
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Fig. 6. SFLS output when trained with noise-free data compared to the pre-
computed dataset.

the results of the NSFLS with those of the SFLS (under
noise) in this paper, since the same comparison has already
been done in [6] where the authors showed that NSFLSs are
more capable in handling noisy inputs than SFLS in different
noise conditions. Instead, we focus on the comparison of the
standard NSFLS and the Cen-NSFLS. While the noise-free
training had produced 184 rules, the training process under
noise produced 557 rules for SNR=10dB and 664 rules for
SNR=5dB. In all the cases, noisy data is used for testing as
is intuitive in real-world applications.

Fig. 7 shows the NSFLS predictions when trained with
noise-free data and tested with noisy inputs with SNR=10dB
and SNR=5dB. This figure and specifically Table I highlight
that the Cen-NSFLS shows a reduced deviation from the pre-
computed time series and thus better performance in compari-
son to the standard NSFLS. Specifically, with SNR=10dB, the
averaged MSE dropped from 0.0067 to 0.0058 (reduced by
13.19%). Also in SNR=5dB, the averaged MSE has changed
from 0.0155 to 0.0135 (reduced by 12.61%).

The same experiments are conducted for the case of training
with noisy data. Fig. 8 and Table I show the results in two

Non-singleton FLS: Noise-Free Training, Noisy Input (SNR=10dB)

Cen-NSFLS prediction
Standard NSFLS prediction
Pre-computed

800

850

900 950

(@)

Non-singleton FLS: Noise-Free Training, Noisy Input (SNR=5dB)

t

800 850 900 950

(d)
Fig. 7. (a) Comparing the standard and the Cen-NSFLS outputs, when they

are trained with noise-free data and tested with noisy data with SNR=10dB.
(b) the same for SNR=5dB.

noise conditions. The average MSE changed from 0.0124 to
0.0114 (7.71% reduction) for SNR=10dB and from 0.0406 to
0.0332 (17.31% reduction) for SNR=5dB.

TABLE I
THE PREDICTION PERFORMANCE (FOR M-G TIME SERIES) PRODUCED BY
THE DIFFERENT FLSS BASED ON AVERAGE MSES (MEAN SQUARE

ERRORS).
System | SNR| Training MSE MSE Change
(dB) (Standard (Cen- (%)
NSFLS) NSFLS)

SFLS n/a | n/a 0.00138 0.00138 0.00
NSFLS | 10 noise-free | 0.00673 0.00584 -13.19
NSFLS | 5 noise-free | 0.01546 0.01351 -12.61
NSFLS | 10 noisy 0.01236 0.01141 -1.71
NSFLS | 5 noisy 0.04016 0.03320 -17.31

C. Lorenz Time Series Experiment

In addition to the M-G time series, we also compare the
NSFLSs’ performances using another known time series in
hydrodynamics and meteorology, namely the Lorenz time
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Fig. 8. (a) Comparing the standard and the Cen-NSFLS outputs, when they

are trained and tested with noisy data with SNR=10dB. (b) the same for
SNR=5dB.

series [42]. We consider the time series associated to variable
z of the three-dimensional Lorenz differential equations:

t=0(y—2z2); y=rx—y—az, z=zy—bz (16)

where the dots denote the next values to the three variables
z, y, z in the time series. To demonstrate a chaotic behaviour,
the attributes o, b and r are respectively set to 10, % and
28, as suggested in [42]. We do not repeat the details of the
experiment here, as the same method is already detailed for the
M-G problem. The summary of the results (Table II) show that
similar to the M-G experiment, the prediction errors (MSEs)
produced by the Cen-NSFLS is generally lower than the MSEs
produced by the standard NSFLS (between 3.11% to 11.22%
in different experiment settings).

D. Discussion

The summary of calculated MSEs and their improvements
for the M-G time series experiments (Table I and Fig. 9)
indicates that by changing from the standard-NSFLS to the
Cen-NSFLS, the MSE has improved in all four NSFLS
experiments. The highest improvement (17.31%) was found

TABLE I
THE PREDICTION PERFORMANCE (FOR LORENZ TIME SERIES) PRODUCED
BY THE DIFFERENT FLSS BASED ON AVERAGE MSES (MEAN SQUARE

ERRORS).
System | SNR| Training MSE MSE Change
(dB) (Standard (Cen- (%)
NSFLS) NSFLS)
SFLS n/a | n/a 1.18169 1.18169 0.00
NSFLS 10 noise-free | 7.71616 7.47650 -3.11
NSFLS | 5 noise-free 12.41810 11.88196 -4.32
NSFLS 10 noisy 11.29301 10.82722 -4.12
NSFLS | 5 noisy 23.29384 20.68090 -11.22
0.05
0.04
B MSE (Cen-NSFLS)
0.03
0.02
-12.61%
-7.71%
0.01 -13.19% I
;e M
SFLS (no NSFLS NSFLS NSFLS NSFLS
noise)  (SNR=10dB, (SNR=5dB, (SNR=10dB, (SNR=5dB,
noise-free  noise-free noisy noisy
training) training) training) training)

Fig. 9. Comparing the improvement of prediction errors (MSEs) produced
by the standard NSFLS and the Cen-NSFLS (for M-G time series). The MSE
improvements are shown in percentage.

for noisy training with higher levels of noise (SNR=5dB) and
the lowest improvement (7.71%) has was achieved in noisy
training but under lower noise levels (SNR=10dB). It is also
shown that when the system is trained with noise-free data, the
MSE improvement is similar in different noise levels compared
to when the system is trained with noisy data.

In order to examine the source of the observed MSE
improvements in the described time-series prediction FLSs,
it is helpful to investigate an individual output calculation and
compare the results between both composition methods. We
consider one of the NSFLSs (in the explained M-G experi-
ment) where SNR=5dB and where noise-free training is used.
Also, we focus on one of the data samples, namely at t=1000.
In this case, the outputs of the two systems (the standard and
the Cen-NSFLS) are 1.150 and 1.180 respectively, whereas the
expected value is 1.280. The two predicted values are results
of a centroid defuzzification in an NSFLS based on 9 previous
samples and a set of 184 fuzzy rules.

For t=1000, the output FSs of the two NSFLSs are illus-
trated in Fig. 10. Intuitively, we expect that the MF of the
output FS generated by the Cen-NSFLS at each point is less
than its counterpart in the standard NSFLS, because for each
intersection between an input and an antecedent FS, the firing
strength of x.., is equal or less than the firing strength of
Tmae (see Fig. 4). Beyond this, the centroids of the output
FSs are calculated based on the overall shape of the output
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Fig. 10. Output FSs for t=1000 in a sample SNR=5dB and noise-free trained
NSFLS. The centroid defuzzification results for both cases, together with the
expected value are shown.

TABLE III
THE NUMBER OF SAMPLES (OUT OF 300) WHERE EACH METHOD IS
OUTPERFORMED IN DIFFERENT NSFLS CONFIGURATIONS

NSFLS Configura- | Outperformed Outperformed

tion cen-min max-min
predictions predictions

SNR=10dB 216 84

noise-free training

SNR=5dB 214 86

noise-free training

SNR=10dB 204 96

noisy training

SNR=5dB 216 84

noisy training

MEF, not only on the individual membership grades. In the
example of Fig. 10, the change in the shape of the MF has
shifted the graph’s centroid to the right and has made it closer
to the expected value.

This particular set of results shows a better estimation of
the actual value by the Cen-NSFLS compared to the standard
NSFLS. However, it is important to note that for other samples,
this may not be the case. On a sample-by-sample analysis
(from t=701 to t=1000), the Cen-NSFLS ”outperformed” in
216 out of 300 samples. This shows that in most of the cases,
the change in the shape of the output MF has made the centroid
point closer to the expected value. In SNR=10dB and when
training method is done using noisy data, the result of the
sample-by-sample analysis is almost the same. Table III shows
the number of times that each of two NSFLSs outperformed
the other over the 300 samples for the different NSFLS
configurations. Table III show a similar MSE improvement
pattern to Table I. For example, the smallest cen-NSFLS
outperformance and the minimum MSE improvement are both
in the case of the higher SNR noisy-trained system.

The described outperformance of the Cen-NSFLS means
that in the studied time-series prediction systems, applying
the new method provides more accurate results especially
when the data samples (and thus our inputs) are more noisy.
This indicates that the original motivation - to better track
uncertainty captured in the input fuzzy sets - was achieved

1 txlx)
1 SNR=10dB SNR=5dB
Xy
Singleton Non-Singleton

Fig. 11. Three different uncertainty models used in the experiments. x1, x2
and x3 represent three actual inputs to the system where their uncertainties
are modelled by three different fuzzification types.

by the new composition method for NSFLS. Clearly, this
conclusion is so far based on observing a particular set of
NSFLSs in a specific setting for two types of time series.
Further work will be required to more generally evaluate the
proposed approach. With this in mind, the scalability of the
results to a wider range of NSFLS applications (particularly
in time-series prediction) is a direction for our future work.

Finally, in order to recapitulate and clarify our aims and
approach, it is noticeable that we did not change the method
through which the uncertainties are captured or modelled in
NSFLSs. Instead, we proposed to change the method in which
the uncertainty models are used for conducting fuzzy inference
in such systems. Fig. 11 shows the different types of input
FSs used to model input uncertainties in the experiments
(singleton and non-singleton with different input noise levels).
The experiments show that changing the composition method
resulted in better performance, i.e. “better use was made” of
the same uncertainty capturing models.

V. COMPUTATIONAL COMPLEXITY

It is intuitive to expect higher computational complexity for
the cen-min method over the max-min method. In this Section,
first, their respective computational complexity is compared.
Secondly, as complexity in both approaches is directly related
to the level of discretization performed, we proceed with
an analysis of the effects of selecting different discretization
levels on the quality of the results of both approaches. This
analysis is provided in a wider context than just NSFLSs.

A. Complexity

Arguably, the computational complexity of calculating the
centroid may be a drawback for the new composition method.
For an initial real world comparison, software (using Juzzy
library [43]) was developed to compare the time needed to
calculate x,,,, and x.., based on the introduced NSFLSs,
with the MF of the input and antecedent FSs being Gaussian.
Testing is done based on the standard and the Cen-NSFLS
experiment described in the previous section where input is
noisy (SNR=10dB) and training is noise-free. Using a regular
PC and in average over 300 samples (from =701 to t=1000),
the calculation of a single output out of 9 sample inputs using
184 rules took 37.19ms in the standard NSFLS and 36.84ms
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in the Cen-NSFLS. The test shows no significant difference in
the necessary time for a controlled iteration between the two
methods.

To explain this, it is important to recapitulate the discrete
nature of the FSs employed and the underlying computation
for either approach. Specifically, while the max-min method
relies on identifying the maximum of the intersection of
two discrete MFs, the cen-min method seeks to identify its
centroid. In fact, both methods rely on traversing the discrete
MFs, while performing basic computations as illustrated by
the sample Java code listings for both approaches.

The following listing shows the computation of x4, in
max-min method:

peak=0; xmax=1;

for (i=1; i<=disc;
if (u(i)>peak) {
peak=u(i);

xmax=x (1); } }
return xmax;

i++) |

and the following listing computes Z.e,, in cen-min method:

numerator=0; denominator=0;

for (i=1; i>=disc; i++) {
numerator+=x (i) *u(i);
denominator+=u(i); }

return numerator/denominator;

In the above listings, disc is the discretization level and
u(4) is the discrete degree of membership of the intersection
between the input and antecedent set. In the second listing, the
calculation is based on the discrete version of x..,, formulated
in (11).

Our explanation to the observed similarity of computation
times between the two methods is that firstly as already noted,
both listings include a similar loop over disc sampled points.
Secondly, while the cen-min approach employs multiplication
(i.e. more complex than the Boolean check employed in the
max-min approach), both methods are computationally so
simple that on modern computer architectures, the effect is
negligible for common discretization levels. We discuss the
latter further in the following subsection.

B. The effect of Discretization Levels

Since the calculation of the fuzzy set composition is done
for discrete MFs, selecting an optimum discretization level is a
trade-off between accuracy and computation complexity. Thus,
it is interesting to consider comparing the performance of the
cen-min and max-min composition methods by changing the
discretization levels.

We illustrate this comparison in concept for a simple
example, highlighting the difference between the real value (in
the continuous case) and the calculated value (in the real world
discrete case) of x4, and x ¢, in Fig. 12. The example shows
the intersection of two triangular MFs which is captured by 10
discretization steps (for easy visualization). It highlights that
in this particular case, the real and actually calculated values
for x.., are much closer than those for ,,qz.

For further illustration, using the same example as in Fig.
12, we change the discretization levels varied from 1 to 100,
capturing the computed x4, and x..,. The results of this are

shown in Fig. 13, indicating how for increasing discretization
levels, x..,, approaches its steady (and accurate) value much
earlier than x,,4,. This is intuitive and explained by consid-
ering that when finding x,,,,, the error is directly based on
the relative position of the single maximum between the two
sampled points around it whereas in z..,,, the relative positions
of all the sampled points are involved in the calculation (as in
(10)).

While the above observations is clearly specific to this
particular example, it suggests that in general the computation
of the cen-min method is more stable and less error-prone
compared to max-min method when the discretization levels
are relatively low. A more formal evaluation of this effect is
beyond the scope of the current paper and will be addressed
in the future.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel method of fuzzy relations
composition in order to enable a higher fidelity capture of the
input uncertainty embodied by input fuzzy sets in NSFLSs in
comparison to traditional NSFLSs. In the novel approach, the
sup (supremum - commonly maximum) operation is replaced
by the cen (centroid) operation. The resulting cen-min method
thus replaces the maximum of the intersection of input and an-
tecedent FS by the degree of membership of the intersection’s
centroid. This operation visually better captures the detail of
the input FS’s MF during inference and thus should provide
the potential for the more fine-grained modelling of the input
uncertainty using the MF of the input FSs.

In order to support this intuition, we applied the new
approach for NSFLS designed to two common time series pre-
diction problem (M-G and Lorenz) and compared the results
of the both the novel and traditional NSFLS formulations for
(a) different noise levels on SNR=10dB and SNR=5dB, and
(b) different training methods with noise-free and noisy data.
The results show that the mean-squared error (MSE) between
the NSFLS predictions and the actual time series values is

oy (x) pa(x)

1 10
Real x,,,=3.0 ~— Real x.,=4.66

max
Calculated x,,,,=3.7 Calculated x_,,=4.68

Fig. 12. A sample case where the intersection of the two FSs is a triangular
area with zje ¢ = 1, Tmaa = 3 and x,jgpe = 10. The sample discretization
level is 10, so the calculated x4 has a considerable difference (0.7)
compared to the actual x,,q4, Whereas the difference is much lower between
the calculated xceyn and the actual xcen.
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Fig. 13. The effect of selecting the discretization level on the calculated
Tmagz and Teen in the example shown in Fig. 12

reduced for the new approach by about 7 to 17 percent in the
M-G time series, and by about 3 to 11 percent in the Lorenz
time series - for different noise/training conditions. Initial
exploration of the computational complexity of the proposed
approach has shown that while formally more complex, in real
world application there is no significant difference between the
novel and traditional NSFLS approaches.

In summary, FLSs excel and are famous for their capability
of uncertainty handling. However, the actual capacity of FLSs
to capture and model uncertainty in different aspects (e.g.,
input and linguistic uncertainty) in applications is not well
understood and provides significant further scope for research.
This paper specifically aims to develop the capacity of NSFLSs
to leverage accurate models of input uncertainty to provide
better overall uncertainty capture and thus, better FLS perfor-
mance. In future, the improved uncertainty capture is sought
to also support better uncertainty representation at an output
stage (i.e. beyond a crisp output, akin to what is currently
achieved by the centroid interval for interval type-2 FLSs).

Beyond the work presented here, there are a number of
interesting avenues for future work. These include (a) trying
other alternative methods (e.g. fuzzy similarity and distance
[44]) in NSFLSs for comparing input and antecedent FSs
beyond focusing on their intersections; (b) trying other use
cases in time-series or other applications when input data is
noisy; (c) studying the comparison for other types of MFs
including non-Gaussian, non-convex and dynamic/adaptive
types of input FSs (as in [17], [36], [37] and [38]); and (d)
trying the new method for non-singleton type-2 systems and
type-2 non-singleton type-2 systems (i.e. where the input FS
is also of type-2).
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